
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DO WE REALLY NEED PARAMETER-ISOLATION TO
PROTECT TASK KNOWLEDGE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the dynamic nature of tasks, how deep networks can transition from a
static structure, trained on previous tasks, to a dynamic structure that adapts
to continuously changing data inputs has garnered significant attention. This
involves learning new task knowledge while avoiding catastrophic forgetting of
previously acquired knowledge. Continual learning is a learning approach aimed
at addressing the problem of catastrophic forgetting, primarily by constraining or
isolating parameter changes to protect the knowledge of prior tasks. However, while
existing methods offer good protection for old task knowledge, they often diminish
the ability to learn new task knowledge. Given the sparsity of activation channels in
a deep network, we introduce a novel misaligned fusion method within the context
of continual learning. This approach allows for the adaptive allocation of available
pathways to protect crucial knowledge from previous tasks, replacing traditional
isolation techniques. Furthermore, when new tasks are introduced, the network can
undergo full parameter training, enabling a more comprehensive learning of new
tasks. This work conducts comparative tests of our method against other approaches
using deep network architectures of various sizes and popular benchmark datasets.
The performance demonstrates the effectiveness and superiority of our method.

1 INTRODUCTION

Continual learning, a scenario that requires a model to handle a continuous stream of tasks while
preserving performance on all seen tasks, is pivotal for the advancement of artificial general intel-
ligence (Masana et al., 2022; Liang & Li, 2024; Wang et al., 2024). The approach, mirroring the
human learning process of acquiring and retaining diverse experiences about the real world, confronts
a significant challenge: catastrophic forgetting (McCloskey & Cohen, 1989). This phenomenon
results in the diminished proficiency of model in prior tasks after learning on new ones.

Various continual learning approaches have been proposed to mitigate the issue of catastrophic
forgetting, broadly categorized into three types. Regularization-based approaches entail adding
regularization terms that leverage the weight information of previous tasks during the training of the
current task. While this approach can mitigate catastrophic forgetting to some extent by constraining
parameter shifts and ensuring protection of model parameters, it tends to result in relatively lower
performance when confronted with significant variations in data characteristics. Rehearsal-based
approaches preserve data segments from previous tasks or use synthesized pseudo-data to retain
previous knowledge while learning new tasks, which can achieve a more unified output range for
the classification heads, leading to superior performance in scenarios of task agnostic. However,
from the perspective of data privacy protection (Agarwal et al., 2018), this approach does not suffice.
Architecture-based approaches focus on protecting parameters through techniques, achieving
performance that matches or exceeds that of previous network training. However, they have two
drawbacks, one is the requirement to know the task to which the identified object belongs in order to
achieve accurate recognition, and another is that this method leads to the isolation of tasks, hindering
effective communication and information sharing among them.

We argue that existing architecture-based continual learning methods do not adequately leverage
the overall consideration of the sparsity of activation channels in deep networks. As illustrated
in Figure 1, We adopt a holistic perspective on the deep network, allocating distinct activation
pathways for each task through pathway protection involves assigning unique pathways for data

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Pathway

Task 1 Task 2 Task 3 Task 4

Ours (Pathway Protection)Parameter Protection

Task 1 Task 2 Task 3 Task 4

Neuron

(a)

Pathway

Task 1 Task 2 Task 3 Task 4

Ours (Pathway Protection)Parameter Protection

Task 1 Task 2 Task 3 Task 4

Neuron

(b)

Task-aware

Task-agnostic

Parameter

Protection

Pathway

Protection

(c)
Task1 Task2 Task3 Task4

70

75

80

85

A
cc

ur
ac

y 78.8 78.7

73.9

79.6
78.8

82.2

80.5

85.0Parameter Protection
Ours

(d)
Figure 1: (a) and (b): The illustrative comparison diagram between our method and the parameter-
protective approach depicts the key distinctions in our methodologies. (c): We showcase the ability
of our method to adapt even in task-agnostic scenarios, whereas the parameter-protective approach
requires knowledge of task identifiers for effective recognition. (d): The performance comparison
between our method and the WSN Kang et al. (2022a) method.

transmission in the deep network. Here, pathway (Kipf & Welling, 2016; Zoph & Le, 2016; Huang
et al., 2017; Vaswani et al., 2017) refers to the trajectories the data take through the deep network,
traversing from the input layer through intermediate layers to the output layer. Meanwhile, the
concept of channel is akin to a neuron. The parameter-protective approach primarily involves
pruning or masking operations on neurons maintains performance when task is known, it lacks
consideration for the overall deep network structure. Consequently, in subsequent tasks, the reducible
number of learnable parameters hinders the achievement of optimal performance. As depicted in
the Figure 1(d), our approach is expected to outperform the latest parameter-protective methods
WSN (Kang et al., 2022a). Meanwhile, considering brain’s hierarchical, sparsity, and recurrent
structure (Friston, 2008), brain activity relies on sparsity connections, where only a few neurons
respond to any given stimulus (Babadi & Sompolinsky, 2014), brain learns and retains knowledge
by re-configuring existing neurons to create more efficient neural pathways. Therefore, pathways
protection is all you need.

Inspired by compensatory mechanisms observed in neuroscience and based on the sparsity of
activation channels in neural networks, we propose a novel method to maintain the overall stability
of deep network channels while allocating distinct pathways to different tasks across the network.
Our approach initially involves training a model for the first task. As new tasks emerge, a new
model is trained for each new task. Then, a matching procedure is employed to fuse the new and
old models, yielding a merged model. Conventional model fusion methods involve straightforward
weight averaging (McMahan et al., 2017; Jiang et al., 2017), yet deep network parameterizations
are often highly redundant, lacking one-to-one correspondence between channels (Singh & Jaggi,
2020). Simple averaging may lead to interference and even cancellation of effective components, a
concern exacerbated during continual learning. Hence, in this paper, we align channels before model
fusion. In the shallow layers of the deep network, where tasks share more common features (Zhou
et al., 2022), we match the channels with high similarity to enhance mutual commonality. In contrast,
in deeper layers, where tasks exhibit more specific characteristics (Zhou et al., 2022), we match
channels with low similarity to facilitate the fusion of distinct task features while preserving their
distinctiveness, thus achieving pathway protection.

Figure 2 intuitively demonstrates the effectiveness of our approach. The concept of "Activation
Level" refers to the average magnitude of the weights obtained after activation in the last layer of
the feature extraction phase. We use activation levels to measure whether pathways associated with
different tasks can be distinguished. We present the activation output of data from different tasks
in the last convolution layer of the trained model. As depicted in the left subplot of Figure 2, our
method consistently exhibits a distinctive prominence for each task. In other words, our method
adaptively allocates a set of pathways for each task, preventing the knowledge of old tasks stored
in deep network parameters from being overwritten when learning new tasks, thereby mitigating
catastrophic forgetting. In contrast, the Learning without Forgetting (LwF) method (Li & Hoiem,
2017) probably demonstrates nearly uniform channel activation levels for each task, leading to mixed
channel utilization among tasks. As the accuracy plot in the top right corner illustrates, even after
training on new tasks, our method maintains consistent or better performance on previous tasks.

It is worthwhile to summarize our key contributions as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Ours

LwF

Pathway index 0

Pathway index 79

: Ours : LwF

…
…

Task 1 Task 2 Task 3 Task 4

Figure 2: Left Figure: A comparison between our approach and LwF (Li & Hoiem, 2017). The
activation values in the last convolution layer of the models are displayed across channels. The
channels of the models have been rearranged along the horizontal axis for clearer demonstration.
Bottom Right Figure: An explanatory legend for the horizontal axis (channel index) in the left
figure. Top Right Figure: A comparative analysis under the condition of task awareness between
our method and LwF indicates that our accuracy remains largely unchanged, contrasting with a
substantial decline observed in the case of LwF.

1. We explored a new direction, employing pathway protection approach for continual learning.
2. We proposed a novel data-free continual learning approach, learning without isolation (LwI),

based on graph matching.
3. Our experiments on both CIFAR-100 and Tiny-Imagenet datasets demonstrate that our

framework outperforms other methods. The source code of our framework is accessible at
https://anonymous.4open.science/r/LwI-2B73.

2 RELATED WORK

Continual learning. Deep networks exhibit a static structure, implying that once a task is learned,
network parameters need to remain fixed to prevent catastrophic forgetting (Wang et al., 2024).
However, continual learning addresses a more prevalent scenario in which tasks arrive as a continuous
data stream for the network to learn. In this context, strategies like regularization-based, rehearsal-
based, and dynamic architecture-based approaches are employed to mitigate catastrophic forgetting.
Regularization-based methods apply constraints to limit changes in weights or nodes from past
tasks, thereby reducing catastrophic forgetting. For instance, methods like EWC (Kirkpatrick et al.,
2017) incorporate the Fisher information matrix of previous task weights, while RWalk (Chaudhry
et al., 2018) merges this matrix’s approximation with online path integration to gauge parameter
importance. LwF method, on the other hand, employs output alignment to prevent the model weights
from a large shift. SPG (Konishi et al., 2023) employs the Fisher information matrix to control the
updates of each parameter, enabling more granular parameter protection. Rehearsal-based approaches
involve preserving portions of data from previous tasks or using some techniques to generate pseudo-
data (Shin et al., 2017). This data is then combined with the current dataset during the training
for the next task, alleviating catastrophic forgetting. For example, both approaches, LUCIR (Hou
et al., 2019) and iCaRL (Rebuffi et al., 2017), leverage the technique of preserving a portion of
previously acquired data along with knowledge distillation for incremental learning. Continual
Prototype Evolution (CoPE) (De Lange et al., 2021) combines the principles of the nearest-mean
classifier with a reservoir-based sampling strategy. Dynamic architecture-based methods encompass

3

https://anonymous.4open.science/r/LwI-2B73

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

expanding models and employing parameter isolation techniques to retain previous knowledge while
accommodating new knowledge expansion.

Parameter isolation-based continual learning. This approach aims to safeguard parameters to pre-
serve knowledge acquired from previous tasks (Zhang et al., 2024b). The Piggyback method (Mallya
et al., 2018) involves learning a series of masks over a post-pretrained model, corresponding to
various tasks, resulting in a series of task-specific subnetworks. The PackNet method (Mallya &
Lazebnik, 2018) uses pruning method to protect neurons, which are important to previous tasks.
CLNP method (Golkar et al., 2019) divides neurons in the deep network into active, inactive, and
interference parts, utilizing previously learned features and unused weights from the network to train
new tasks. Supsup method (Wortsman et al., 2020) employs masking to protect specific parameters
important for tasks. Chen et al. (2020) prunes the model to obtain the optimal subnetwork for the task,
thus preserving knowledge and achieves generalization for new tasks through re-growing. GPM (Saha
et al., 2021) utilizes gradient mapping to project the knowledge from previous tasks into mutually
orthogonal gradient subspaces, thereby enabling continual learning. The WSN algorithm (Kang et al.,
2022a), based on the lottery hypothesis, learns a compact subnetwork for each task while maintaining
the weights chosen for previous tasks unchanged. SPU (Zhang et al., 2024a) employs causal tracking
to select model parameters for updates, thereby facilitating knowledge protection. However, most
of these methods involve pruning or masking based on network weights, leading to non-structured
modifications that risk compromising the integrity of network. Our approach integrates the channel
properties of network. This allows different tasks to utilize distinct pathways for propagation and
flow, preserving the overall integrity of the deep network without causing disruption.

The sparsity of deep network. According to the mechanisms observed in neuroscience, in the brains
of healthy adults, the density of connections remains roughly constant. Despite learning more tasks,
the capacity of neurons in the brain remains relatively unchanged. Meanwhile, within deep networks,
this phenomenon also manifests. Upon completion of training, deep networks typically exhibit sparse
activation, with a small proportion of effectively activated neurons (Han et al., 2015; Liu et al., 2015;
Fan et al., 2020; Dai et al., 2021). Furthermore, as per the findings from Mao et al. (2017), there
exists an inverse correlation between the overall accuracy and granularity of deep networks. Under
comparable sparsity conditions, finer granularity tends to yield optimal accuracy. Concurrently, the
MEMO method (Zhou et al., 2022) highlights similarities in the shallow layers of different models
while showcasing differences in the deeper layers. Therefore, we hypothesized that within the coarser
granularity (shallow layers) of the deep network, a denser occupation of channels occurs, while in the
finer granularity (deeper layers), channel occupation tends to be sparser. We proceeded to validate
this hypothesis through experimental verification.

3 PRELIMINARY

In this section, we provide an elucidation of the problems to be addressed and the prerequisite
knowledge required for subsequent methods. In Section 3.1, we present an exposition on continual
learning. Sections 3.2 and 3.3 introduce the foundational knowledge underpinning our approach,
which includes deep network sparsity and graph matching algorithms.

3.1 PROBLEM STATEMENT

Consider a supervised continual learning scenario where learners need to solve T+1 tasks in sequence
without catastrophically forgetting old tasks. At the same time, due to data privacy restrictions, we
cannot store data from previous tasks. We use Dt+1 = {Xt+1;Yt+1} to denote a dataset for task
t+1. Xt+1 = {x1, ..., xn} and Yt+1 = {y1, ..., yn} represent that the dataset includes n data classes
along with their corresponding labels for task t+ 1. And we use Mt to denote a trained model for
task t. Meanwhile, D1:t = {X1, ..., Xt;Y1, ..., Yt} denotes datasets for all seen tasks from task 1 to
task t. We represent the deep network model using the following formula:

Mt(x) = f(θ), (1)
and a standard continual learning scenario designed to learn a series of tasks by minimizing optimiza-
tion problems at each step:

min
θ

L(f(Xt+1; θ), Yt+1), (2)
where L denotes the loss function used when training task t + 1. It is well known that simply
optimizing the loss function can easily lead to catastrophic forgetting.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a

c

b

d

𝐿4

𝐿3

𝐿2

𝐿1

𝑀𝑜𝑑𝑒𝑙 𝑋 𝑀𝑜𝑑𝑒𝑙 𝑌

Task t Task t+1

𝑀𝑜𝑑𝑒𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐺𝑟𝑎𝑝ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

6

3
4

1

2

𝐺𝑟𝑎𝑝ℎ 𝑋 𝐺𝑟𝑎𝑝ℎ 𝑌

5

Node Correspondence

Edge Correspondence

B

A

C
D

F
E

𝐿1𝐿2

a

b

Deep Layers

Minimum Similarity

Shallow Layers

Maximum Similarity
Input Layer

𝐿3

c

d

Model 𝑌

Model 𝑌

𝑀𝑜𝑑𝑒𝑙 𝑋

𝑀𝑜𝑑𝑒𝑙 𝑋 𝑀𝑜𝑑𝑒𝑙 𝑋

Output Layer

Model 𝑌𝑀𝑜𝑑𝑒𝑙 𝑋

𝑀𝑜𝑑𝑒𝑙 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥

Model 𝑌

Append operation
𝐿4

Figure 3: The overall structure of our proposed LwI algorithm. In the right diagram, we represent
the deep network in four parts: L1 corresponds to the input layer, L2 to the shallow layers, L3 to
the deeper layers, and L4 to the output layer. The channels in the deep network can be analogous to
nodes in a graph, and the connections between channels correspond to the edges in the graph. On the
left side, L1 requires no matching operation. L4 only needs to append operations for the output heads
of different tasks. L2 matches the channels with maximum similarity. Conversely, L3 undergoes
minimization of similarity matching.
3.2 GRAPH MATCHING FOR DEEP NETWORK FUSION.

Recently, some studies have employed graph matching approaches for model fusion (Su et al.,
2021). Graph matching bears resemblance to a quadratic assignment problem (QAP) (Loiola et al.,
2007), with the objective of establishing correspondences between the nodes in an image and the
edges connecting these nodes. The activation distribution of deep network channels is not fixed
across training iterations, resulting in some neurons exhibiting high activation for one task, but low
activation for another. If a straightforward averaging fusion is performed, it may lead to interference
and blending of effective components within the deep network (Singh & Jaggi, 2020). Hence, aligning
the channels before fusion becomes a crucial step in the integration process.

In this context, we conceptualize the matching process between deep networks as a graph matching
problem. In our framework, a deep network is conceptualized as an image. This representation
enables the alignment of two deep networks through the application of a graph matching algorithm.
At each layer, we interpret the channels within that layer as nodes in an image, and the connections
between adjacent layer channels as edges. It is noteworthy that, within deep networks, we assert
that matching occurs exclusively within each layer, as cross-layer matching holds no significant
relevance. This approach facilitates the effective application of graph matching methods in deep
networks, given their large-scale neuron configuration. The specific formula for graph matching is
presented as follows:

max
P

N−1∑
a=0

N−1∑
b=0

N−1∑
c=0

N−1∑
d=0

P[a,b]K[a,c,b,d]P[c,d],

s.t. P0 = I;PL = I;

Nm−1∑
a=0

Pm[a,c] = 1,∀m ∈ [1, L− 1];

Nm−1∑
b=0

Pm[a,c] = 1,∀m ∈ [1, L− 1].

(3)

where a and c represent node indices between adjacent layers in modelX as shown in Figure 3.1, b
and d represent node indices between adjacent layers in modelY as shown in Figure 3.1, L represents
the index of the last layer in the neural network, N =

∑L
m=0 Nm represents the sum of the number

of nodes across all layers, Nm represents the number of nodes across layer m, K represents the
similarity matrix between adjacent layers in modelX and modelY , P0 represents the permutation
matrix for the first layer, PN represents the permutation matrix for the last layer, Pm,m ∈ [1, N −1]
denotes the permutation matrix for intermediate layers. We need to solve the assignment matrix
P , and according to the formula, we can find that the time complexity of using the graph matching

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Model Fusion Process

Input: the weight matrix between the layer l − 1 and l is denoted as W (l−1,l), P (l−1,l)

represents the corresponding permutation matrix, fusion coefficient is k.
Output: the fusion model Wfusion.
for layer 1, ..., N do

Calculate the permutation matrix P (l−1,l) according to the Algorithm 2 in appendix;
if layer == 1 then

Calculate Ŵ
(0,1)
o ← P (0,1)⊤W

(0,1)
o ;

end
else

Calculate W̃
(l−1,l)
o ←W

(l−1,l)
o P (l−2,l−1);

Calculate Ŵ
(l−1,l)
o ← P (l−1,l)⊤W̃

(l−1,l)
o ;

end
W

(l−1,l)
fusion = k ∗ Ŵ (l−1,l)

o + (1− k) ∗W (l−1,l)
n ;

end
Wo = Wfusion;

method is O(N4). However, based on the above analysis, we use a layer-by-layer calculation of the
assignment matrix in this paper to align the channels at each layer of the deep network, so that N is
not the number of all channels, but the number of channels in each layer. More analysis could be
found in the appendix A.3.

In practical applications, highly precise matching results are not necessary, and the majority of current
work focuses on the approximate matching of nodes or edges. The previous work can be divided into
classical methods and deep graph matching methods. In this paper, a more commonly used method,
Sinkhorn algorithm (Cuturi, 2013), is used. The Sinkhorn algorithm, rooted in entropy regularization,
transforms a binary 0-1 matrix into a soft matching matrix with a sum of 1 through a process of
bi-directional relaxation.

3.3 THE SPARSITY OF DEEP NETWORK.

The primary rationale behind this approach stems from the sparsity of deep networks. To accommo-
date future learning tasks, continual learners often utilize over-parameterized deep networks. The
reason is that continual learning frequently relies on over-parameterized deep deep networks to allow
flexibility for future tasks.

We believe that a deep network is composed of multiple layers, and we use ℓ to represent the index
of one layer of the deep network. Meanwhile, it has been observed in previous studies (Zhou et al.,
2022) that shallow layers across models of different tasks exhibit notable similarities, whereas deeper
layers demonstrate distinct characteristics. The deep network model can be decoupled into a classifier,
denoted as G(·), and a feature extractor, represented as F (·). The feature extractor further bifurcates
into a shallow-layer deep network S(·) and a deep-layer deep network D(·) in Eq.(4):

M(x) = Gℓ (Fℓ(x)) = Gℓ (Dℓ (Sℓ(x)))) . (4)

The Lottery Ticket Hypothesis (Frankle & Carbin, 2018) posits that within deep networks, there exist
specific "winning tickets" generated during the training process. These winning tickets, it suggests,
enable comparable performance with the entire network in different tasks while employing fewer
parameters and requiring shorter training times. Regarding the sparsity aspect of deep networks,
the Lottery Ticket Hypothesis asserts that only a small subset of connections (weights) within the
network is crucial for learning and performance, while the remaining connections can be pruned (set
to zero) without significantly affecting the performance of network.

According to previous studies, the sparsity of deep networks means it’s unnecessary to compute
information for every parameter, as much of it is ineffective. Theoretically, we can utilize the sparsity
of deep networks by allocating different channels for different tasks, achieving comparable or even
superior performance, thereby tackling the catastrophic forgetting problem in continual learning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 METHODOLOGY

In this section, we delve into a comprehensive discussion of our proposed continual learning structure
based on graph matching, along with its specific implementation. Section 4.1 outlines the framework
of proposed method for continual learning based on graph matching. We fuse the model trained on a
new task with the one trained on previous tasks. Rather than merely averaging the parameters of the
two models, we conduct pathway alignment based on graph matching before fusion. To achieve the
protection and sharing of knowledge, we employ different similarity matrix across different layers of
the deep network. Section 4.2 provides a detailed account of the optimization process.

4.1 GRAPH-NOT-MATCHING FOR CONTINUAL LEARNING

Unlike previous architecture-based methods, which usually mask weights crucial for the previous
task, our strategy stems from the holistic nature and sparsity of neural networks. We believe that
safeguarding previous tasks through misaligned addition represents a matching approach. This
method not only protects the overall integrity of the deep network, but also allocates different
directional channels for various tasks.

Overview. The overall structure of our proposed LwI algorithm is shown in Figure 3. When a new
task arrives, we train a new model for it. We then employ graph matching for channel alignment before
model fusion, by analogizing neural network nodes to nodes in graph matching and connections
between deep network channels to edges in graph matching. The specific alignment operations, as
illustrated in the left diagram, involve matching the channels with high similarity in shallow layers
and low similarity in deep layers. Meanwhile, matching operations are not required in L1, and in
L4, only append operation is necessary. The overall process of our proposed method is illustrated in
Algorithm 3 in appendix.

Model Fusion Process. The fusion process of the new and old models is illustrated in Algorithm 1.
We use Euclidean Distance in Eq.(5) to compute distances between weights and subsequently employ
specific graph matching algorithms:

K[a,c,b,d] = ∥eac − ebd∥2, (5)

where K denoted the similarity matrix, eac and ebd denote the similarity relationship between
the channels of adjacent layers in two models, specifically focusing on the edges (a, c) and (b, d),
respectively. We also utilize cosine similarity for measurement, and specific details can be found in the
ablation study and the appendix C.5. In the shallow layers, we need to maximize similarity matching
for protecting old knowledge and promoting the collaboration of different tasks. Hence, the similarity
matrix between two edges is itself. Conversely, in the deeper layers, we repeat a similar process but
utilize a minimizing similarity approach for protecting the individuality of different tasks, facilitating
misaligned fusion of channels. Therefore, the similarity matrix between two edges is represented by
its negation. The specific matching process can be found in Algorithm 2 in the appendix. This process
yields a permutation matrix, enabling us to perform matrix multiplication between the old model and
the permutation matrix. Subsequently, the permutation matrix of similarity from the previous layer is
multiplied with the parameter matrix of the current layer, ensuring the coherence of the connections
between the channels. The matrix multiplication of the permutation matrix for the current layer is
performed with itself, positioning the most similar or dissimilar channels accordingly. This process
achieves channel alignment within the current layer.

Graph-Matching and Graph-not-Matching. We adopted the combined approach of maximizing
and minimizing similarities for the following reasons: 1). To facilitate collaboration between tasks.
2). Considering the sparsity of deep network channels, we allocate different channels for different
tasks in the sparse layer, thereby preserving the characteristics of each task. The key to implementing
soft matching in our method lies in calculating the optimal transport matrix, which is the matching
matrix P . Here, we provide a more detailed explanation of Algorithm 1. Our goal is to use the
similarity matrix K to obtain the matrix P , where Pab represents the optimal amount of mass to
transport the a-th neuron in the l-th layer of modelX to the b-th neuron in the l-th layer of modelY .
The implementation process is that, in the shallow layers, we observe that different tasks occupy
denser channels with shared features. Consequently, for these distinct tasks, we consolidate their
most similar channels, facilitating mutual reinforcement of common features, for the collaboration of
knowledge among different tasks. Meanwhile, in the deeper layers, we observe that different tasks

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Task-agnostic and Task-aware accuracy (%) of different methods. Our approach is based on
data-free, but the results of exemplar-based methods are also provided.

Dataset Architecture Method Exemplar Task-agnostic Task-aware
5 splits 10 splits 20 splits 5 splits 10 splits 20 splits

CIFAR-100 ResNet32

EWC

no

31.81 ± 1.45 21.14 ± 0.98 12.32 ± 0.56 64.22 ± 0.83 65.86 ± 1.55 63.43 ± 1.59
RWalk 21.40 ± 1.22 20.07 ± 1.91 12.49 ± 1.36 64.98 ± 0.97 69.16 ± 1.29 67.98 ± 1.38
LwF 37.54 ± 0.43 25.78 ± 0.43 15.86 ± 1.15 74.63 ± 0.72 75.98 ± 1.03 76.37 ± 1.44
SPG 30.74 ± 0.27 22.54 ± 1.23 11.28 ± 0.22 62.22 ± 1.54 70.34 ± 0.52 72.39 ± 0.05
SPU 34.56 ± 0.93 23.44 ± 0.36 17.33 ± 0.21 66.02 ± 0.47 73.31 ± 0.21 78.34 ± 0.47
GPM - - - 71.72 ± 0.35 78.74 ± 1.17 80.47 ± 0.33
WSN - - - 75.47 ± 0.48 80.12 ± 0.60 82.51 ± 0.50
Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35

iCaRL 2000 37.23 ± 0.74 36.88 ± 2.33 33.88 ± 3.03 62.98 ± 0.79 73.40 ± 1.46 81.74 ± 1.65
LUCIR 48.48 ± 1.16 41.10 ± 1.98 36.46 ± 1.83 75.40 ± 0.57 80.05 ± 1.00 84.95 ± 0.99

CIFAR-100 ResNet18

EWC

no

30.84 ± 0.27 18.66 ± 0.62 9.21 ± 0.25 61.25 ± 0.46 56.53 ± 1.84 51.34 ± 0.72
RWalk 38.81 ± 2.08 21.78 ± 0.53 7.82 ± 1.07 69.41 ± 1.70 61.91 ± 0.62 57.57 ± 1.16
LwF 44.66 ± 0.97 30.41 ± 0.82 16.66 ± 1.36 79.96 ± 0.52 81.35 ± 0.51 81.45 ± 0.67
SPG 26.32 ± 0.57 20.16 ± 1.51 10.54 ± 0.14 64.98 ± 0.97 69.16 ± 1.29 67.98 ± 1.38
SPU 43.79 ± 0.40 25.12 ± 0.48 16.08 ± 0.71 74.63 ± 0.72 75.98 ± 1.03 76.37 ± 1.44
GPM - - - 78.23 ± 1.13 81.42 ± 1.43 86.21 ± 0.46
WSN - - - 78.65 ± 1.33 83.08 ± 1.57 86.10 ± 0.25
Ours 51.95 ± 0.56 36.36 ± 1.06 22.99 ± 0.39 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55

iCaRL 2000 49.44 ± 0.78 39.27 ± 0.37 28.48 ± 1.57 73.84 ± 0.36 76.63 ± 0.62 78.49 ± 0.74
LUCIR 55.67 ± 1.04 42.56 ± 0.97 33.84 ± 1.95 81.22 ± 0.25 84.41 ± 0.22 86.19 ± 0.25

Tiny-Imagenet ResNet18

EWC

no

19.21 ± 0.31 10.32 ± 0.29 4.69 ± 0.39 42.84 ± 0.54 36.21 ± 1.07 30.82 ± 2.06
RWalk 21.69 ± 0.64 12.94 ± 0.38 7.84 ± 0.21 55.67 ± 1.27 56.14 ± 0.29 59.58 ± 0.40
LwF 26.76 ± 0.50 20.14 ± 0.28 13.09 ± 0.24 59.66 ± 0.47 63.52 ± 0.57 70.59 ± 0.47
SPG 22.80 ± 0.26 12.03 ± 0.73 7.86 ± 0.24 54.50 ± 0.47 57.81 ± 0.23 59.67 ± 0.44
SPU 25.50 ± 0.40 19.98 ± 0.06 13.44 ± 0.18 57.15 ± 0.31 59.93 ± 0.08 63.64 ± 0.38
GPM - - - 58.45 ± 0.38 63.17 ± 0.24 70.16 ± 0.42
WSN - - - 57.38 ± 0.51 64.12 ± 0.43 71.54 ± 0.43
Ours 34.33 ± 0.51 26.15 ± 0.22 15.59 ± 0.84 62.97 ± 0.14 68.67 ± 0.36 72.74 ± 0.27

iCaRL 2000 28.81 ± 0.14 23.37 ± 0.24 14.68 ± 0.35 56.17 ± 0.34 59.49 ± 0.91 61.00 ± 0.67
LUCIR 30.17 ± 0.37 20.15 ± 0.63 13.48 ± 0.60 60.25 ± 0.38 65.52 ± 0.16 66.56 ± 0.66

occupy sparser channels, emphasizing distinct characteristics. Thus, for these tasks, we consider
the misaligned fusion of channels that represent unique traits of each task, aiming to safeguard the
individual characteristics.

4.2 OPTIMIZATION

Knowledge distillation aims to mitigate semantic discrepancies between the new and old models,
otherwise, model fusion loses its significance. Additionally, in training a model for a new task,
leveraging the universally applicable knowledge from the old task model, such as shallow-level
enhances the efficiency of learning through distillation. To leverage prior task knowledge, we
employed previous models as pre-trained models, integrating their parameters into the current model
for subsequent task training. Simultaneously, throughout the entire training process, the feature
extractor of the classifier undergoes continuous modifications. If there is a noticeable drift in
the feature space of the classifier, the knowledge memorized by the model may become outdated.
Consequently, it is imperative to maintain a relative consistency in the feature space of the classifier
during the training process. Further details can be found in the appendix C.6 and C.7.

5 RESULTS AND DISCUSSION

In the main text, we present the results of three experiments, including the application of the ResNet32
architecture to the CIFAR-100 dataset, and ResNet18 to both the CIFAR-100 and Tiny-ImageNet
datasets. The remaining experimental results are included in the appendix C.

5.1 SETTINGS

Datasets. Following the work (Masana et al., 2022), we evaluate our method with baselines on
benchmark datasets with settings, including CIFAR-100 and Tiny-Imagenet datasets. Under the
condition of continual learning, we use three task-splitting settings: 5 splits, 10 splits, and 20 splits.

Architecture. In order to verify our proposed method can achieve knowledge protection for different
tasks, we conducted a large number of experiments to study the effect of model size on performance.
In this article, we use ResNet32 and ResNet18 architectures (He et al., 2016) for comparison(the
sizes and parameter counts of the two models are detailed in the appendix B.3).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Baselines. In order to demonstrate the advantages and effectiveness of our approach, we conduct
comparative tests against different continual learning methods. Specifically, baseline methods include
regularization-based frameworks, like EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem, 2017),
RWalk (Chaudhry et al., 2018) and SPG (Konishi et al., 2023), architecture-based framework, like
GPM (Saha et al., 2021), WSN (Kang et al., 2022a) and SPU (Zhang et al., 2024a), which is
inapplicable in scenarios where the task is unknown, and some classical rehearsal-base methods, such
as LUCIR (Hou et al., 2019) and iCaRL (Rebuffi et al., 2017).

Implementation Details. We trained the model for 200 epoches and optimized it in conjunction with
SGD, setting the batch size of the dataset as 64. For rehearsal-based methods, we set 2000 exemplars
using the herding method to select (Masana et al., 2022). In addition, we evaluate the methods on
task-aware and task-agnostic settings. More experimental details could be found in the appendix B.

5.2 DIFFERENT DEEP NETWORK ARCHITECTURES ON CIFAR-100 DATASET.

The performance of all methods on the same dataset, that is CIFAR-100 dataset, is shown in the
Table 1. Our approach surpasses the baseline performance of all without exemplar in the comparative
experiments. Furthermore, when compared to methods employing exemplar such as iCaRL and
LUCIR, our approach exhibits superior performance across the majority of test results.

We observe that with increasing network capacity, our performance in task-agnostic scenarios
improves significantly. This is primarily attributed to the fact that, under the conditions of smaller
network models, channels are more densely occupied by various tasks. As the size of the network
model increases, the sparsity of the occupied channels gradually increases.

5.3 DIFFERENT DATASETS BASED ON RESNET18 ARCHITECTURE.

The performance of all methods in the same deep network architecture is shown in the latter two
blocks in Table 1. With the escalation of dataset complexity, channels within the same structured deep
network are more extensively leveraged. Consequently, judiciously preserving channels occupied by
different tasks becomes essential to achieve better performance under task-agnostic conditions.

5.4 EXPERIMENTAL TESTING OF FORGETTING RATES FOR DIFFERENT METHODS.

The experimental results for testing forgetting rates show that we used the ResNet18 architecture to
evaluate forgetting rates on the CIFAR-100 dataset. The Figure 4(a) indicates that we achieve lower
forgetting rates, and our method also demonstrates improved learning capabilities.

5.5 ABLATION STUDIES

To validate the effectiveness of our proposed method, LwI, we conducted ablation experiments on
the model. In this context, "w/o task diversion" signifies match the channels with high similarity for
every layer of the deep network, while "Ours n layers" indicates applying minimization of similarity
matching for the different n layers. The term "with cosine" indicates employing cosine similarity for
channel similarity measurement. More experimental details and results are available in appendix C.

Minimum similarity matching on different layers. When conducting comparative experiments
using different layers, the ultimate results show minimal distinctions compared to exclusively mini-
mizing similarity matching in only the final layer.

Table 2: Task-agnostic and task-aware accuracy (%) of methods on using minimum similarity
matching on different layers.

Method Task-agnostic Task-aware
5 splits 10 splits 20 splits 5 splits 10 splits 20 splits

Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
Ours 2 layers 26.84 ± 0.86 23.50 ± 0.30 16.05 ± 0.28 61.92 ± 0.66 71.30 ± 0.83 75.42 ± 0.44
Ours 3 layers 20.22 ± 1.08 19.71 ± 0.82 13.53 ± 0.50 51.01 ± 0.92 66.49 ± 0.37 71.14 ± 0.85
Ours 4 layers 15.91 ± 0.95 13.69 ± 0.58 10.42 ± 0.39 42.09 ± 1.45 55.27 ± 0.41 67.48 ± 0.81

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Task-agnostic and task-aware accuracy (%) of methods on the validation of effectiveness
with task diversion module and different similarity measurement methods.

Method Task-agnostic Task-aware
5 splits 10 splits 20 splits 5 splits 10 splits 20 splits

Ours 34.33 ± 0.51 26.15 ± 0.22 15.59 ± 0.84 62.97 ± 0.14 68.67 ± 0.36 72.74 ± 0.27
Ours w/o task diversion 30.75 ± 0.43 21.29 ± 0.34 14.30 ± 0.26 62.12 ± 0.26 66.94 ± 0.50 71.72 ± 0.60

Ours with cosine 34.17 ± 0.54 25.98 ± 0.25 15.48 ± 0.65 62.69 ± 0.32 68.86 ± 0.24 72.30 ± 0.47

Effectiveness with task diversion module. As evidenced by the results, our approach incorporates
the minimization of similarity matching in the final layer, facilitating channel diversion for task
segregation and consequently ensuring protection across distinct tasks.

Different similarity measurement methods. According to Table 3, it is observed that under two
different testing conditions, when measuring model similarity for the purpose of model fusion, the use
of Euclidean distance consistently yields slightly higher performance compared to cosine similarity.

The performance of various methods when the number of tasks increases by an order of
magnitude. We increased the number of tasks by an order of magnitude for testing, dividing the Tiny-
ImageNet dataset into 100 tasks, each with two categories. The comparison methods primarily focus
on the latest approaches to parameter protection and the experimental results are shown in Figure 4(b).
From the Figure, we can observe that our method achieves the best performance when compared to
other approaches, The analysis suggests that the use of isolation-based methods reduces the number
of learnable parameters in the network, leading to decreased learning ability for subsequent tasks
and demonstrates that our pathway protection approach can preserve knowledge of old tasks while
generalizing to new task knowledge.

5 splits 10 splits 20 splits
0.0

0.1

0.2

0.3

0.4

0.5

Fo
rg

et
tin

g
R

at
e

0.257

0.315

0.376

0.118

0.205

0.302

0.015
0.045

0.082
0.012

0.055
0.086

0.010 0.025 0.038

0.003 0.021 0.034

EWC
RWalk

LwF
iCaRL

LUCIR
Ours

(a) Task-aware forgetting rates of different methods.
Methods

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

0.434

0.529

0.606
0.506

0.568
0.646

SPG
SPU

WSN
EWC

LwF
Ours

(b) Task-aware accuracy of methods when the number of
tasks is 100.

Figure 4: Some comparative experiments under task-aware scenario.

6 CONCLUSION

This paper proposes a framework for continual learning, LwI, achieving pathway protection between
different tasks using model fusion approach. Inspired by the compensatory mechanisms in the human
brain and considering deep network sparsity, we employ graph matching approach to achieve pathway
protection for the cooperation and diversification between different tasks. our method facilitates
the collaboration and preservation of knowledge among different tasks, consequently leading to
enhanced performance. We validated our approach using two network structures of different sizes,
and further validation can be performed on larger models. Our method acknowledge some limitations,
notably the lack of validation of the proposed method using large models. Additionally, the graph
matching algorithm can be accelerated in future work by employing sparse matrix techniques, we
will investigate more effective and efficient matching processes in future work. We hope this work
opens the new direction for future research, pathway protection.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

To ensure the reproducibility of our work, we have anonymously open-sourced our code at https:
//anonymous.4open.science/r/LwI-2B73. Additionally, we describe the dataset and
parameter settings in sections 5.1 and B.4, and provide more details about the code execution
environment in C.10.

REFERENCES

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan McMahan.
cpsgd: Communication-efficient and differentially-private distributed sgd. Advances in Neural
Information Processing Systems, 31, 2018.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Baktash Babadi and Haim Sompolinsky. Sparseness and expansion in sensory representations.
Neuron, 83(5):1213–1226, 2014.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European conference on computer vision (ECCV), pp. 532–547, 2018.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Long live the lottery:
The existence of winning tickets in lifelong learning. In International Conference on Learning
Representations, 2020.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph matching. In
Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part V 11, pp. 492–505. Springer, 2010.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Wenliang Dai, Samuel Cahyawijaya, Zihan Liu, and Pascale Fung. Multimodal end-to-end sparse
model for emotion recognition. arXiv preprint arXiv:2103.09666, 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Yuchen Fan, Jiahui Yu, Yiqun Mei, Yulun Zhang, Yun Fu, Ding Liu, and Thomas S Huang. Neural
sparse representation for image restoration. Advances in Neural Information Processing Systems,
33:15394–15404, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Karl Friston. Hierarchical models in the brain. PLoS computational biology, 4(11):e1000211, 2008.

Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph matching. IEEE
Transactions on pattern analysis and machine intelligence, 18(4):377–388, 1996.

Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning. arXiv
preprint arXiv:1903.04476, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

11

https://anonymous.4open.science/r/LwI-2B73
https://anonymous.4open.science/r/LwI-2B73

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 831–839, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in
fixed topology networks. Advances in Neural Information Processing Systems, 30, 2017.

Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with
winning subnetworks. In International Conference on Machine Learning, pp. 10734–10750.
PMLR, 2022a.

Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-incremental learning by knowledge distillation
with adaptive feature consolidation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16071–16080, 2022b.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameter-
level soft-masking for continual learning. In International Conference on Machine Learning, pp.
17492–17505. PMLR, 2023.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using
pairwise constraints. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, volume 2, pp. 1482–1489. IEEE, 2005.

Marius Leordeanu, Rahul Sukthankar, and Martial Hebert. Unsupervised learning for graph matching.
International journal of computer vision, 96:28–45, 2012.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in
Neural Information Processing Systems, 36, 2024.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 806–814, 2015.

Eliane Maria Loiola, Nair Maria Maia De Abreu, Paulo Oswaldo Boaventura-Netto, Peter Hahn, and
Tania Querido. A survey for the quadratic assignment problem. European journal of operational
research, 176(2):657–690, 2007.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European conference on computer vision
(ECCV), pp. 67–82, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Exploring
the granularity of sparsity in convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 13–20, 2017.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40:99–121, 2000.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045–22055, 2020.

Yixin Su, Rui Zhang, Sarah M. Erfani, and Junhao Gan. Neural graph matching based collaborative
filtering. In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval, pp. 849–858, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhenyi Wang, Yan Li, Li Shen, and Heng Huang. A unified and general framework for continual
learning. arXiv preprint arXiv:2403.13249, 2024.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International conference on learning
representations, 2019.

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the graph
matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):
2227–2242, 2008.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Wenxuan Zhang, Paul Janson, Rahaf Aljundi, and Mohamed Elhoseiny. Overcoming generic
knowledge loss with selective parameter update. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24046–24056, 2024a.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Continual learning on graphs: Challenges, solutions,
and opportunities. arXiv preprint arXiv:2402.11565, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, and De-Chuan Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. arXiv preprint arXiv:2205.13218, 2022.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THEORETICAL SUPPORTS

A.1 ANALYSIS

We analyze one layer of deep network channel, and first-order Taylor expansion is used for analy-
sis (Kang et al., 2022b):

L (Gℓ (Z
′
ℓ) , y) ≈

L (Gℓ (Zℓ) , y) +

Cℓ∑
c=1

〈
∇Zℓ,c

L (Gℓ (Zℓ) , y) , Z
′
ℓ,c − Zℓ,c

〉
F
.

(6)

Based on the above , We find that the first-order term is a deviation due to the deviation of the channel
c, so we need to use some ways to reduce this deviation. Naturally, we think about whether we can
make full use of the information of different channels brought by different tasks, so that different
tasks can occupy different channels to minimize inter-task interference.

A.2 SOME METHODS RELATED TO GRAPH MATCHING

The classical methods mainly include the path-following strategy (Zaslavskiy et al., 2008), graduated
assignment algorithm (Gold & Rangarajan, 1996), spectral matching algorithm (Leordeanu & Hebert,
2005), random-walk algorithm (Cho et al., 2010) and sequential Monte Carlo sampling (Leordeanu
et al., 2012). The method of deep graph matching (Yu et al., 2019) has also received more and more
attention in recent years.

The specific implementation of graph matching is illustrated in the following diagram5. Assuming
that the nodes in graph X are labeled from 1 to 6, and the nodes in graph Y are labeled from A to F,
the similarity matrix for pairwise nodes is shown in the upper right corner. Meanwhile, nodes are
interconnected, forming various edges, such as 1-2, 3-5 in graph X, and A-B, C-E in graph Y, as
indicated. The number of formed edges far exceeds the number of nodes, making node matching a
linear assignment problem, while graph matching poses a quadratic assignment problem. Aligning
the matched graphs allows the identification of the most similar parts.

𝐺𝑟𝑎𝑝ℎ 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

6

3
4

1

2

𝐺𝑟𝑎𝑝ℎ 𝑋 𝐺𝑟𝑎𝑝ℎ 𝑌

5

B

A

C
D

F
E

𝑋

𝑌

4

D

Node Similarity

𝑋

𝑌

5

E

3

C

Edge Similarity

𝐺𝑟𝑎𝑝ℎ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥

Figure 5: The illustration of graph matching. The two graphs to be matched, Graph X and Graph Y,
are depicted on the left figure, each annotated with corresponding nodes and partial connections. The
diagrams on the right represent the similarity matrices between nodes and between edges.
A.3 ADAPTIVE ALGORITHM

The specific calculation formula for Sinkhorn is as follows:

P = exp(M/τ),

Pij ←
Pij∑
j Pij

(the sum of each row is 1),

Pij ←
Pij∑
i Pij

(the sum of each column is 1).

(7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The second and third lines of the formula represent the process of enforcing bilateral constraints. The
second line scales each row to 1, while the third line scales each column to 1.

The delineation of the specific computational process is articulated in Algorithm 2. The diminished
complexity results in a notable reduction in computational requirements. Exploiting this attribute
makes it particularly apt for mitigating the heightened computational complexity that arises from
sparsity or the expansive nature of the assignment matrix.

For the similarity matrices corresponding to two channels, denoted by R, in the shallow layers of the
neural network, we use the original R for the computation of the permutation matrix. Conversely, in
the deep layers of the deep network, we employ the inverse of R, which is −R, for the computation
of the permutation matrix.

Through these two phases, we enable the extraction of richer information in the shallow layers upon
task arrival, while facilitating the divergence of different tasks in the deeper layers. This mechanism
guarantees the preservation of task distinctiveness by permitting them to traverse separate pathways.

In this paper, we employ the Sinkhorn algorithm; however, when τ ≤ τmin, the Sinkhorn algorithm
and the Hungarian algorithm (Kuhn, 1955) exhibit consistent trends.

The Earth Mover’s Distance (EMD) algorithm (Rubner et al., 2000) involves solving an optimization
problem known as the transportation problem. It is the manifestation of the Sinkhorn algorithm in a
low-dimensional space, and the specific algorithmic formula is as follows: Given two probability
distributions P and Q, represented by histograms pi and qj for i = 1, . . . ,m and j = 1, . . . , n
respectively, the EMD can be calculated as follows:

EMD(P,Q) = min
γ∈Γ(p,q)

m∑
i=1

n∑
j=1

γij · d(ci, dj),

where Γ(p, q) is the set of all possible transportation plans (joint distributions) between P and Q.
γij represents the amount of mass to be transported from pi to qj . d(ci, dj) is the ground distance
between the bin i in the source histogram and the bin j in the target histogram. The EMD can be
calculated using linear programming techniques:

EMD(P,Q) = min
γ

m∑
i=1

n∑
j=1

γij · d(ci, dj),

s.t.:
∑n

j=1 γij = pi ∀i ∈ [1,m],
∑m

i=1 γij = qj ∀j ∈ [1, n], γij ≥ 0 ∀i ∈ [1,m], j ∈ [1, n].

A.4 THE OVERALL FRAMEWORK OF LWI

The overarching framework of our algorithm operates in Algorithm 3: as tasks stream into the deep
network, the new model undergoes training with the input data. Upon completion of training, a fusion
of models occurs through maximizing similarity matching in the shallow layers and minimizing
similarity matching in the deeper layers. We have observed that our method excels in merging old and
new models under data-free conditions, achieving superior task preservation across different tasks.
Additionally, our approach, employing misaligned fusion, provides distinct channels for different
tasks, better preserving the overall integrity of the deep network.

A.5 ANALYSIS OF TIME COMPLEXITY

In the context of our hierarchical matching, the analysis of its time complexity is presented below.
Assuming a deep network with NL layers, each layer containing C channels, the conventional graph
matching incurs a time complexity of O(N4), where N represents the total number of nodes in the
graph. However, by adopting a hierarchical matching strategy for deep networks, we can compute the
time complexity for each layer individually and subsequently sum them up. As a result, our final time

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 2: Adaptive algorithm
Input: Similarity Matrix R, Total number of iterations E, Parameter τ for control the difference

between Hungarian algorithm and Sinkhorn algorithm ;
for each round e = 1, ..., E do

if Pi not converged then
if τ <= τmin then

adaptive algorithm← Hungarian algorithm;
end
else

adaptive algorithm← Sinkhorn algorithm;
end
if layer is deep then

R = −R
end
else

R = R
end
P = adaptive algorithm(R, τ);

end
end
Output: the learned permutation metrics Pi.

Algorithm 3: LwI
Input: Sequential tasks T1, ..., TN , Sequential data {X1, Y1}, {X2, Y2}, ..., {XN , YN}, New
Model for training model_new, Old model for fusion model_old.

Randomly initialize model_old and model_new
for task t = T1, ..., TN do

/* The training process of model_new */
for epoch i = 1, ..., n do

Initialize Total_loss = 0;
if t == 1 then

Update model_new wi
new ← w̃i

new;
model training: minimize loss function defined as Ltotal = Lce;

end
else

initialize model_new Wnew ←Wfusion;
Update model_new wi

new ← w̃i
new;

model training: minimize loss function defined as Ltotal = Lce + λ ∗ Lkd;
end

end
/* The training process of model_old */
if t == 1 then

initialize model_oldWold ←Wnew;
end
else

get model_old according to Algorithm 1;
end

end

complexity is O(1
N3

L
N4) determined by this summation:

O(

NL∑
1

C4) = O(

NL∑
1

(
N

NL
)4) = O(

1

N3
L

N4). (8)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

B.1 EVALUATION

In this paper, we employ two measures, task-agnostic and task-aware, to simultaneously evaluate
the performance of these methods in scenarios of known tasks (such as task incremental learning)
and unknown tasks (such as class incremental learning). Task-agnostic refers to appending all of the
classifier’s head to a given data and then taking the maximum value, where the label corresponding
to the maximum value is assigned to the category. Task-aware, on the other hand, involves already
knowing the task associated with a given data and directly obtaining the maximum value from the
corresponding classification head, where the label corresponding to the maximum value is assigned
to the data’s category. Due to the lack of uniformity in the output of the classification head in our
framework, the final performance of Task-agnostic is generally lower than that of Task-aware. Based
on the findings in Table 1 and the results below, it is evident that our approach has outperformed even
the exemplar-based methods iCaRL and LUCIR in the majority of task-agnostic scenarios.

Assuming that learning has been conducted for T tasks, the model possesses T classification heads
corresponding to the tasks indicated as 1 to T , with each classification head containing the respective
classes denoted as n1, ..., nT . Consequently, for the two measurement methodologies mentioned
above, we evaluate performance using the following formulas:

Accuracy =

∑N
k=1 yk
N

, yk =

{
1 Predictk == labelk.
0 else.

(9)

The formula for the task-agnostic method can be expressed as follows: the classification involves
selecting the prediction with the highest value from a total of n1 + . . . + nT classes to serve as the
final output:

Predictk = argmax([o0, ..., o(n1+...+nT−1)]). (10)
The formula for the task-aware method is as follows: given that it is the f-th task, the classification
involves selecting the prediction with the highest value from a total of nf classes to serve as the final
output:

Predictk = argmax([o0, ..., o(nf−1)]). (11)
where oi represents i-th output of the deep network.

In the coarser granularity layers of the neural network, we match the channels with high similarity to
enhance mutual common features. Conversely, in the finer granularity layers, we employ minimization
of similarity matching to enable misalignment fusion of distinct task features, thereby achieving a
protective effect.

B.2 EXPERIMENTS DETAILS

We now validate our method on several benchmark datasets against relevant continual learning
baselines. We followed similar experimental setups and framework described in Masana et al. (2022).
We utilized the SGD optimizer for training, and batch sizes for the training, validation and testing
sets were consistently set to 64 in all experiments. During network training, the learning rate was
initialized at 0.1. Furthermore, the learning rate was decreased by a factor of 0.1 in the 80th and 120th
epochs, and the total number of training epochs was set to 200. The model architecture and training
hyperparameters are the same for different methods. When employing ResNet32, the momentum for
the SGD optimizer was set to 0.9, while, for ResNet18, the momentum for SGD optimizer was set to
0.0.

To gauge the distributional disparity between the new and old models, we introduce divergence as a
measurement, and derive the objective of knowledge distillation through the following theoretical
deductions:

DKL(p∥q) = Ex∼p(x)

(
log

p(x)

q(x)

)
=

n∑
p (xi) · [log p (xi)− log q (xi)]

=

n∑
[−p (xi) log q (xi)− (−p (xi) · log p (xi))] .

(12)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In order to measure the distribution difference between the new and old models, we introduce
Kullback-Leibler(KL) Divergence to measure, and get the optimal object of knowledge distillation
through the theoretical equation. The last term in Eq.(12)’s final line represents cross-entropy, while
the subsequent term signifies entropy. Consequently, when dealing with the same dataset, entropy
remains constant, and the divergence between two distributions is determined by cross-entropy.

B.3 ARCHITECTURE DETAILS

ResNet32: The model utilized three convolution blocks, each block containing five convolution
layers. The number of output channels ranged from 16 to 32 and culminated in 64. In addition, a
fully connected (FC) layer consisting of 64 units was employed, and the output was divided into
multiple heads based on task requirements.

ResNet18: The model utilized four convolution blocks, with each block containing two convolution
layers. The number of output channels ranged from 64 to 128, 256 and increased to 512. A single
fully connected (FC) layer with 512 units was employed, and the output was divided into multiple
heads based on the task requirements.

Table 4: Comparison between different architecture of models.
Architecture Total parameters Model size

ResNet32 466,896 1.84MB
ResNet18 11,220,132 42.87MB

B.4 DATASETS SPLITS DETAILS

CIFAR-100 dataset contains 100 classes, each of which contains 600 32*32 color pictures, 500 are
for training, and 100 are for testing. The Tiny-Imagenet dataset contains 200 classes, each of which
contains 500 64*64 color images, 400 images among which were used for training, 50 used for
validation, and 50 for testing.

CIFAR-100: If set to 5 splits, it corresponds to 20 classes per head. If set to 10 splits, it corresponds
to 10 classes per category. If set to 20 splits, it corresponds to 5 classes per category.

Tiny-Imagenet: If set to 5 splits, it corresponds to 40 classes per head. If set to 10 splits, it
corresponds to 20 classes per category. If set to 20 splits, it corresponds to 10 classes per category.

B.5 BASELINES

We compared our method with three regularization-based methods, one architecture-based method,
and two exemplar-based methods. Regularization-based methods involve adding regularization terms
to the loss function during training to protect knowledge from previous tasks. The architecture-based
method, specifically the WSN method used in this paper, identifies the optimal subnetwork using
masking to achieve continual learning, making it effective under task-aware conditions. Exemplar-
based methods involve saving some data from previous tasks, mixing it with the current task’s
dataset for training, which contributes to uniformity across different task heads and is beneficial for
continuous learning in task-agnostic scenarios.

EWC (Kirkpatrick et al., 2017): This is a regularization method aimed at protecting previously
learned knowledge to prevent forgetting of prior tasks during new task training. It uses the Bayesian
formula to constrain the distribution of model parameters, making the crucial parameters from prior
tasks less susceptible to modification during new task learning. The formula is shown below:

L(θ) = Lnew(θ) + λ
∑
i

1

2
Ωi(θi − θ∗i)

2,

where Ωi respresents the fisher information matrix about parameters.

SI: The Path Integral method (SI) (Zenke et al., 2017) accumulates changes in each parameter along
the entire learning trajectory in an online manner. The authors of this paper posit that batch updates to
weights during parameter updates may lead to an overestimation of importance, while commencing
from a pre-trained model may result in its underestimation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

MAS: Memory aware synapses(MAS) (Aljundi et al., 2018) computes the regularization term online
by accumulating the sensitivity (gradient magnitude) of the learning function.

RWalk (Chaudhry et al., 2018): This method integrates the approximation of the Fisher information
matrix and online path integral into a single algorithm to compute the importance of each parameter.
As the outcomes of this method typically surpass those of SI and MAS methods, the comparative
experiments in the main body of this paper employ this approach for evaluation.

LwF (Li & Hoiem, 2017): The core concept is to retain the knowledge from previous tasks when
learning a new task, ensuring that the model does not entirely forget the content it has already learned.
By employing knowledge distillation, the outputs are aligned to achieve the effect of knowledge
preservation.

WSN (Kang et al., 2022a): The Lottery Ticket Hypothesis theory is employed, which posits that
there exists an optimal path within a neural network for a given task, and this is utilized to apply
channel masking. Therefore, this method is typically utilized for tasks with known training and
testing processes.

iCaRL (Rebuffi et al., 2017): The model incorporates exemplars and employs knowledge distillation
to preserve knowledge. The formula is shown below:

ℓ(Θ) = −
∑

(xi,yi)∈D

[
t∑

y=s

δy=yi
log gy (xi) + δy ̸=yi

log(1− gy (xi))

+

s−1∑
y=1

qyi log gy (xi) + (1− qyi) log(1− gy (xi))] .

LUCIR (Hou et al., 2019): The use of exemplars is accompanied by the application of several
strategies to mitigate the issue of the new class weight vector being larger than the old class, leading
to catastrophic forgetting and the model’s tendency to classify old class data as new class. In this
study, we employed Cosine Normalization, Less-Forget Constraint, and Inter-Class Separation as
several methods to alleviate this issue.

Some work has explored the application of pruning methods in continual learning. However, such
methods tend to disrupt the overall deep network architecture. Non-structured pruning, in particular,
can sometimes lead to more severe consequences. Based on the analysis and experiments mentioned
above, we opted to employ a method called "maximizing similarity matching" in the coarser granular-
ity section. This method facilitates the fusion of different deep networks as different tasks occupy
denser channels that contain more common features. In the finer granularity section, we employ a
method called "minimizing similarity matching" to perform a misalignment fusion of different deep
network channels, thereby safeguarding the distinct characteristics of different tasks.

C MORE EXPERIMENTS

C.1 DISCUSSION ABOUT TABLE 1

Through the comparison of results and analysis of the four experimental sets, we summarize the
findings and elucidate the underlying reasons.

Firstly, regarding the network model capacity, we posit that, under identical scenarios, the gradual
increase in model capacity leads to a sparser channel occupancy. This sparsity constitutes a key
aspect of our proposed methodology. Thus, the conclusions drawn from the experiments, particularly
the higher performance gains achieved by ResNet18 over ResNet32 under task-agnostic conditions,
validate the correctness of our proposed task diversification concept, as depicted in Figure 2.

Secondly, with respect to the dataset, our observations indicate that under equivalent deep network
architectures, the superiority of our method becomes more pronounced with increasing dataset
complexity. This emphasizes the efficacy of our approach in handling intricate datasets. EWC
and RWalk methods are designed to address issues arising from significant data variations, making
it challenging for these regularizations to effectively constrain parameter shifts. LwF, primarily

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

employed for training different tasks, experiences the blending of task knowledge, as illustrated in
Figure 2. This blending is likely to result in outcomes inferior to our method. WSN requires a mask
when dealing with various tasks, limiting its applicability to task-aware testing. Additionally, as
the number of tasks increases, the reduction in learnable parameters diminishes its effectiveness.
iCaRL and LUCIR methods benefit from partial datasets of all previous tasks during the training of
subsequent tasks, offering advantages for task-agnostic testing.

Thirdly, in the situation of task agnostic, our deep network exhibits lower performance compared to
exemplar-based continual learning (CL) methods on the CIFAR-100 dataset. We posit that, while our
deep network learns each task individually, the persistent setup of learning classification heads results
in inconsistent output sizes for these task-specific heads, thereby posing challenges in scenarios of
task uncertainty. The utilization of exemplars involves incorporating partial data from previous tasks
into the current dataset during training, mitigating the inconsistency in classification heads. However,
with the complexity of datasets such as Tiny-Imagenet, the performance improvement derived from
exemplar usage is surpassed by the benefits brought about by our approach of task-specific streams.

C.2 EXPERIMENTS ANALYSIS IN TABLE 1

According to the experiment on dataset CIFAR-100, architecture ResNet32, our approach surpasses
the baseline performance of all non-replay pools in the comparative experiments. Compared to the
best-performing regularization method LwF, our approach demonstrates a maximum improvement
of 5.88% under task-agnostic conditions. In scenarios of task awareness, the performance is further
enhanced, showing an improvement of 6.28%. In comparison to the WSN method, which primarily
designed for task incremental learning, hence not applicable to scenarios of task agnosticism. Under
the task-aware setting, our method achieves an approximately 1% improvement. When contrasted
with exemplar-based approaches, our method achieves its peak performance under task-aware 5/10
splits conditions.

With the increase in model size of deep network, the improvement of our method becomes more
pronounced under task-agnostic conditions. As shown in the second block, that is the experiment on
dataset CIFAR-100, architecture ResNet18, our method outperforms other comparative approaches
under task-aware conditions. In all other conditions, our method surpasses the performance of
the methods employed in the comparative experiments. When compared to the best-performing
regularization method, LwF, our approach exhibits a maximum improvement of 5.04% under task-
aware conditions and an even more substantial improvement of 7.29% under task-agnostic conditions.
In contrast to the WSN method, our approach demonstrates a performance improvement of around
2.45% in task-aware scenarios. In comparison with exemplar-based approaches, our method attains
its peak performance under task-aware 10/20 splits conditions.

C.3 EXPERIMENTS ON TINY-IMAGENET DATASET USING RESNET32.

According to Table 5 and 6, our method surpasses almost all comparative results, except for iCaRL
under task-agnostic 5-splits conditions. In comparison to the LwF method, our approach exhibits a
maximum improvement of up to 3.1% under task-agnostic conditions and 7.18% under task-aware
conditions. When contrasted with the LUCIR method, our performance surpasses by a maximum of
3.15% under task-agnostic conditions and 10.25% under task-aware conditions.

Under conditions of task-agnostic, analysis of the results in Table 5 reveals that our method, with
the exception of a slight underperformance compared to the iCaRL method in the 5-splits scenario,
consistently outperforms the comparative experiments in all other cases. In comparison to the
LwF method, which exhibits the best performance among regularization methods, our approach
demonstrates an improvement of up to 3.1%. Furthermore, when contrasted with the EWC method,
our method achieves a maximum improvement of 9.61%. Notably, when compared to exemplar-based
methods on the Tiny-Imagenet dataset, our approach even surpasses them, highlighting the advantages
of our task-shifting methodology. This is evident in the ability of our method to achieve higher
activation levels for each channel corresponding to a specific task, even without the unification of
classification heads. Thus, task specialization is achieved, with the activation intensity for each
channel surpassing that of all other tasks, emphasizing the effectiveness of our task-shifting approach.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: Task-agnostic accuracy (%) of methods on the Tiny-Imagenet dataset based on the architec-
ture of ResNet32.

Method Exemplar Task-agnostic
5 splits 10 splits 20 splits

EWC

no

7.76 ± 0.75 3.80 ± 0.32 2.60 ± 0.19
RWalk 11.10 ± 0.35 4.71 ± 0.21 4.54 ± 0.63
LwF 20.12 ± 0.63 13.72 ± 0.52 9.11 ± 0.40
Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29

iCaRL 2000 22.45 ± 0.14 16.48 ± 0.84 9.94± 0.24
LUCIR 20.05 ± 0.16 13.60 ± 0.42 10.38 ± 0.40

Under conditions of task-aware, examination of the results in Table 6 reveals that our method
consistently outperforms the comparative experiments.

In comparison to the LwF method, which demonstrates the best performance among regularization
methods, our approach exhibits a maximum improvement of up to 7.18%. Furthermore, when
contrasted with the RWalk method, our approach surpasses it even more significantly, reaching up
to 25.71%. In comparison to the architecture-based method WSN, the advantages of our method
under conditions of task knowledge are not particularly pronounced, with the highest improvement
being 2.36%. However, when compared to exemplar-based methods, the superiority of our approach
becomes notably evident.
Table 6: Task-aware accuracy (%) of methods on the Tiny-Imagenet dataset based on the architecture
of ResNet32.

Method Exemplar Task-aware
5 splits 10 splits 20 splits

EWC

no

31.97 ± 1.18 36.71 ± 1.23 42.91 ± 0.31
RWalk 43.75 ± 2.08 43.22 ± 2.11 37.66 ± 1.74
LwF 47.78 ± 0.98 52.39 ± 0.60 56.19 ± 0.54
WSN 50.06 ± 0.37 56.29 ± 0.75 63.24 ± 0.87
Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44

iCaRL 2000 44.87 ± 0.61 49.42 ± 1.29 54.43 ± 0.73
LUCIR 44.53 ± 0.68 46.86 ± 1.29 53.12 ± 0.73

Based on the above experimental results, we observe that our method not only accomplishes task
channel specialization under conditions of task agnostic without the need for deliberate unification of
classification heads but also, under conditions of task awareness, exhibits a comparative advantage. In
contrast to other methods, our approach shows minimal catastrophic forgetting of previously acquired
knowledge and, in certain instances, even demonstrates a facilitating effect. This observed promotion
of cooperation among tasks is a notable outcome of our method.

C.4 EXPERIMENTS ON CIFAR-100 DATASET USING ALEXNET.

According to Table 7 and 8, our method surpasses all comparative results.

Under conditions of task-agnostic, analysis of the results in Table 7 reveals that our method con-
sistently outperforms the comparative experiments in all cases. In comparison to the LwF method,
which exhibits the best performance among regularization methods, our approach demonstrates an
improvement of up to 2.0%. Furthermore, when contrasted with the EWC method, our method
achieves a maximum improvement of 16.1%. Thus, this is evident that task specialization is achieved,
with the activation intensity for each channel surpassing that of all other tasks, emphasizing the
effectiveness of our task-shifting approach.
Table 7: Task-agnostic accuracy (%) of methods on the CIFAR-100 dataset based on the architecture
of AlexNet.

Method Exemplar Task-agnostic
5 splits 10 splits 20 splits

EWC

no

13.8 ± 1.4 6.9 ± 2.0 4.5 ± 0.8
SI 14.2 ± 1.4 6.8 ± 2.0 3.8± 0.3

RWalk 14.0 ± 1.7 8.4 ± 1.4 3.7 ± 1.4
MAS 14.3 ± 1.1 8.2 ± 0.9 5.3 ± 0.9
LwF 27.9 ± 1.7 19.5 ± 1.6 10.7 ± 1.1
Ours 29.9 ± 0.6 20.4 ± 0.9 11.2 ± 1.1

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Under conditions of task-aware, examination of the results in Table 8 reveals that our method
consistently outperforms the comparative experiments. In comparison to the LwF method, which
demonstrates the best performance among regularization methods, our approach exhibits a maximum
improvement of up to 1.8%. Furthermore, when contrasted with the SI method, our approach
surpasses it even more significantly, reaching up to 27.8%. In comparison to EWC method, the
advantages of our method, with the highest improvement being 26.6%.
Table 8: Task-aware accuracy (%) of methods on the CIFAR-100 dataset based on the architecture of
AlexNet.

Method Exemplar Task-aware
5 splits 10 splits 20 splits

EWC

no

34.6 ± 2.0 38.9 ± 2.7 45.5 ± 3.2
SI 35.9 ± 1.2 37.7 ± 1.2 43.7 ± 3.2

RWalk 37.2 ± 1.7 38.5 ± 1.1 43.9 ± 2.9
MAS 37.1 ± 1.3 42.1 ± 1.9 50.5 ± 4.0
LwF 58.8 ± 1.1 64.8 ± 1.8 68.6 ± 0.8
Ours 60.6 ± 0.5 65.5 ± 0.8 68.8 ± 1.0

Based on the above experimental results, we observe that our method not only accomplishes task
channel specialization under conditions of task agnostic without the need for deliberate unification of
classification heads but also, under conditions of task awareness, exhibits a comparative advantage. In
contrast to other methods, our approach shows minimal catastrophic forgetting of previously acquired
knowledge and, in certain instances, even demonstrates a facilitating effect. This observed promotion
of cooperation among tasks is a notable outcome of our method.

C.5 EXPERIMENTS ON DIFFERENT SIMILARITY MEASUREMENT FORMULAS.

In this study, the Euclidean distance and cosine similarity were employed to measure the distance
between two model channels.

The Euclidean distance primarily quantifies the distance between two vectors in space, with smaller
absolute values indicating closer proximity. It is a commonly used distance measurement formula.
On the other hand,

Cosine similarity gauges the angle between two vectors within the same sphere, mainly reflecting
directional differences. Larger numerical values denote smaller angle discrepancies, indicating closer
proximity in space. It is a widely used formula for measuring similarity.

This section compared and validated the use of Euclidean distance and cosine similarity to measure
channel proximity and revealed that, in most cases, using distance measurement is preferable to using
cosine similarity.

Euclidean Distance = ∥a− b∥2 (13)

Cosine Similarity =
a · b

∥a∥ · ∥b∥
(14)

where a and b represent two vectors.

According to Table 9 and 10, it is observed that under two different testing conditions, when
measuring model similarity for the purpose of model fusion, the use of Euclidean distance consistently
yields slightly higher performance compared to cosine similarity. This trend holds true across various
scenarios, with the notable exception of the task-agnostic 10-splits condition, where results obtained
using Euclidean distance are recorded at 30.62%, while those using cosine similarity are slightly
higher at 31.16%. Consequently, based on the comparative experimental outcomes presented in this
paper, the choice is made to employ Euclidean distance for model fusion, facilitating a comprehensive
evaluation of testing effectiveness.

C.6 EXPERIMENTS ON WITHOUT USING KNOWLEDGE DISTILLATION MODULE.

According to Table 11, in order to verify the effectiveness of our method, we also carried out ablation
experiments on the knowledge distillation module, and the results showed that in this case, the
knowledge generation would be shifted to a large extent, thus reducing the effect.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: Task-agnostic accuracy (%) of methods between different similarity measurement formulas.

Dataset Architecture Method Task-agnostic
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77
Ours with cosine 43.09 ± 0.95 31.16 ± 0.78 20.03 ± 0.93

CIFAR-100 ResNet18 Ours 51.95 ± 0.56 36.36 ± 1.06 22.99 ± 0.39
Ours with cosine 51.78 ± 0.92 37.06 ± 1.12 22.77 ± 0.57

Tiny-Imagenet ResNet32 Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29
Ours with cosine 22.26 ± 0.60 16.96 ± 0.16 11.94 ± 0.41

Table 10: Task-aware accuracy (%) of methods between different similarity measurement formulas.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
Ours with cosine 75.63 ± 0.46 79.35 ± 0.86 83.05 ± 0.36

CIFAR-100 ResNet18 Ours 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
Ours with cosine 80.72 ± 1.09 84.01 ± 1.02 85.91 ± 0.85

Tiny-Imagenet ResNet32 Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44
Ours with cosine 52.68 ± 0.53 58.37 ± 0.90 62.59 ± 0.81

Table 11: Task-aware accuracy (%) of our methods without using knowledge distillation module.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

CIFAR-100 ResNet18 Ours 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
Ours w/o KD 75.91 ± 0.85 73.91 ± 0.51 71.98 ± 1.24

C.7 AN EXAMPLE OF WHETHER TO USE KNOWLEDGE DISTILLATION MODULE.

According to Table 12, Table 13 and Table 14, applying knowledge distillation to each layer method
results in minimal changes in the model’s parameter space. Conversely, without using knowledge
distillation method leads to significant differences. The following three tables depict the accuracy(%)
obtained from utilizing the ResNet32 model under the same conditions for five tasks on the CIFAR-
100 dataset. It can be observed that our method sometimes achieves better performance after training
on new tasks than after the initial training.

Table 12: Task-aware accuracy (%) of our method using knowledge distillation module for every
layer.

Task-ID Task1 Task2 Task3 Task4 Task5 Overall
Task1 78.2 0 0 0 0 78.2
Task2 78.0 68.1 0 0 0 73.1
Task3 77.6 63.1 68.7 0 0 69.8
Task4 74.4 59.8 62.0 64.7 0 65.2
Task5 74.2 60.9 53.5 65.0 63.0 63.3

Table 13: Task-aware accuracy (%) of our method.
Task-ID Task1 Task2 Task3 Task4 Task5 Overall
Task1 78.2 0 0 0 0 78.2
Task2 75.3 74.2 0 0 0 74.8
Task3 74.8 76.6 75.2 0 0 75.5
Task4 75.3 76.3 75.7 76.0 0 75.8
Task5 74.2 75.3 75.5 77.2 76.1 75.7

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Task-aware accuracy (%) of our method without using knowledge distillation module.
Task-ID Task1 Task2 Task3 Task4 Task5 Overall
Task1 78.2 0 0 0 0 78.2
Task2 70.1 77.7 0 0 0 73.9
Task3 61.0 73.0 72.7 0 0 68.9
Task4 54.8 69.0 65.8 84.6 0 68.5
Task5 52.3 59.5 58.9 78.4 81.7 66.2

C.8 EXPERIMENTS ON THE VALIDATION OF EFFECTIVENESS WITH TASK DIVERSION MODULE.

In order to validate the effectiveness of our proposed task diversion method, we compared it with an
approach that does not perform deep-level minimization of similarity. This approach involves using
maximization of similarity at all layers for model fusion. Our findings indicate that our method yields
better results as the complexity of the task increases.

The entry labeled "Ours w/o task diversion" in the Table 15 and 16 signifies that each layer of
the deep network model employs maximization of similarity matching, signifying the absence of
task-specific parameter diversion during model fusion. As evidenced by the results, our approach
incorporates the minimization of similarity matching in the final layer, facilitating channel diversion
for task segregation and consequently ensuring protection across distinct tasks. Consequently, under
equivalent conditions, our method consistently outperforms approaches solely relying on matching
the channels with high similarity.

Table 15: Task-agnostic accuracy (%) of methods on the validation of effectiveness with task diversion
module.

Dataset Architecture Method Task-agnostic
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 43.42 ± 0.58 30.62 ± 1.08 20.31 ± 0.77
Ours w/o task diversion 41.73 ± 0.41 29.94 ± 0.89 18.02 ± 0.97

CIFAR-100 ResNet18 Ours 51.95 ± 0.56 36.36 ± 1.06 22.99 ± 0.39
Ours w/o task diversion 51.13 ± 0.43 35.70 ± 0.88 21.49 ± 0.54

Tiny-Imagenet ResNet32 Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29
Ours w/o task diversion 20.80 ± 0.46 15.31 ± 0.75 10.68 ± 0.53

Table 16: Task-aware accuracy (%) of methods on the validation of effectiveness with task diversion
module.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

CIFAR-100 ResNet32 Ours 76.10 ± 0.33 81.12 ± 0.90 83.19 ± 0.35
Ours w/o task diversion 75.54 ± 1.37 79.38 ± 1.02 81.43 ± 1.51

CIFAR-100 ResNet18 Ours 81.10 ± 0.80 84.90 ± 0.36 86.49 ± 0.55
Ours w/o task diversion 80.17 ± 0.35 83.60 ± 0.86 84.15 ± 0.96

Tiny-Imagenet ResNet32 Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44
Ours w/o task diversion 50.26 ± 0.66 55.07 ± 1.18 60.98 ± 1.15

C.9 EXPERIMENTS ON USING MINIMUM SIMILARITY MATCHING ON DIFFERENT LAYERS.

In order to determine the most effective layers for performance improvement through minimizing
similarity matching, we conducted extensive comparative experiments with the ResNet32 model.
Specifically, we tested the impact of the final layer, last two layers, last three layers, and last four
layers. Remarkably, we observe very similar results across these configurations.

According to Table 17 and 18, we observe that when minimizing similarity matching for the final
two, three, and four layers, the ultimate results are comparable to those obtained by minimizing
similarity matching for a single layer. However, in the majority of cases, the performance is lower
than when minimizing similarity matching for just one layer. Therefore, based on the results of our
previous comparative experiments, we opted to minimize similarity matching for the final layer.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 17: Task-agnostic accuracy (%) of methods on using minimum similarity matching on different
layers.

Dataset Architecture Method Task-agnostic
5 splits 10 splits 20 splits

Tiny-Imagenet ResNet32

Ours 22.21 ± 0.39 16.75 ± 0.21 12.21 ± 0.29
Ours 2layers 22.05 ± 0.60 16.43 ± 0.38 11.40 ± 0.21
Ours 3layers 21.65 ± 0.87 16.65 ± 0.37 11.44 ± 0.31
Ours 4layers 21.61 ± 0.79 16.66 ± 0.17 11.54 ± 0.27

Table 18: Task-aware accuracy (%) of methods on using minimum similarity matching on different
layers.

Dataset Architecture Method Task-aware
5 splits 10 splits 20 splits

Tiny-Imagenet ResNet32

Ours 52.42 ± 0.59 57.84 ± 1.15 63.37 ± 0.44
Ours 2layers 52.41 ± 0.58 56.10 ± 0.59 61.01 ± 0.58
Ours 3layers 51.80 ± 0.81 56.60 ± 0.31 60.85 ± 1.07
Ours 4layers 52.20 ± 0.53 56.84 ± 0.22 61.33 ± 0.67

According to Table 17 and 18, we observe that when minimizing similarity matching for the final
two, three, and four layers, the ultimate results are comparable to those obtained by minimizing
similarity matching for a single layer. However, in the majority of cases, the performance is lower
than when minimizing similarity matching for just one layer. Therefore, based on the results of our
previous comparative experiments, we opted to minimize similarity matching for the final layer.

C.10 IMPACT STATEMENTS

We propose a novel pathway protection-based continual learning approach. Our method is under the
condition of data-free, which has significant implications for data privacy protection. The introduction
of a novel method in our research represents a significant technological advancement. In future work,
this innovation can potentially improve the performance of Large Language Model (LLM) under the
circumstance of streaming tasks.

C.11 DEVICES

In the experiments, we conduct all methods on a local Linux server that has two physical CPU
chips (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz) and 32 logical kernels. All methods are
implemented using Pytorch framework and all models are trained on GeForce RTX 2080 Ti GPUs.

26

	Introduction
	Related Work
	Preliminary
	Problem Statement
	Graph matching for deep network fusion.
	The sparsity of deep network.

	Methodology
	Graph-not-Matching for Continual Learning
	Optimization

	Results and Discussion
	Settings
	Different deep network architectures on CIFAR-100 dataset.
	Different datasets based on ResNet18 architecture.
	Experimental testing of forgetting rates for different methods.
	Ablation Studies

	Conclusion
	Theoretical Supports
	Analysis
	Some methods related to graph matching
	Adaptive algorithm
	The overall framework of LwI
	Analysis of time complexity

	Implementation Details
	Evaluation
	Experiments details
	Architecture details
	Datasets splits details
	Baselines

	More experiments
	Discussion about Table 1
	Experiments analysis in Table 1
	Experiments on Tiny-Imagenet dataset using ResNet32.
	Experiments on CIFAR-100 dataset using AlexNet.
	Experiments on different similarity measurement formulas.
	Experiments on without using knowledge distillation module.
	An example of whether to use knowledge distillation module.
	Experiments on the validation of effectiveness with task diversion module.
	Experiments on using minimum similarity matching on different layers.
	Impact Statements
	Devices

