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Abstract

Self-Supervised Transformer Models are the backbone of much of the recent1

progress in deep learning. However, these models require their inputs to be tok-2

enized, and tokenization strategies for continuous data like audio and vision are3

often based on simple heuristics such as fixed sized convolutions or discrete clus-4

tering. For speech and audio models in particular, the high resolution of waveforms5

(16,000 samples/second or more) presents a significant challenge, as several times6

more tokens are used per word than in textual language modeling. In this work,7

we introduce a controllable, fully-self-supervised technique to dynamically merge8

speech representations across time to as low as 5 Hz at 60 bits per second while9

still preserving semantic information. We do this by 1) extracting noisy bound-10

aries through analyzing correlations between mask spans and model losses and 2)11

iteratively improving these representations with a novel agglomeration technique.12

Using these new feature representations, we successfully train SyllableLM, a Neu-13

ral Codec Language Model (NCLM) competitive with current SoTA NCLMs on14

a range of common benchmarks with a 30x reduction in pretraining compute, 5x15

reduction in inference compute, and 2.5x reduction in bitrate.16

1 Introduction17

Self-Supervised Learning (SSL) seeks to learn powerful, abstract representations of data without18

external labels. These representations can then be used in downstream tasks to achieve high perfor-19

mance even when modest amounts of supervised fine-tuning data are available. In audio and speech20

processing, a key motivation for this learning paradigm is the fact that young children learn to listen21

and speak well before they can read or write. While current textual language models [52, 59, 9] can22

compose highly realistic text, the research community has not yet developed similarly performant23

models that learn solely from spoken language. An increasing focus has coalesced around Generative24

Spoken Language Modeling (GSLM) [34], which sets out to achieve this goal.25

The most successful of these approaches are autoregressive decoder transformer models [53] such as26

AudioLM [8] and TWIST [26], which operate on tokens learned through quantizing the output of27

SSL encoder models [28, 14]. However, these self-supervised tokenizations are much denser than28

their textual counterparts with the token rates typically between 25 and 50 tokens per second for29

speech models, as opposed to the typical human speaking rate of 2-5 words per second. The long30

context lengths that result from high temporal resolution tokenizations in speech models substantially31

impair both pretraining and inference speed, and it is additionally unclear to what extent modeling32

speech with a high granularity harms more abstract semantic understanding.33

Very recently, there has been significant progress in extracting coarser speech unit representations34

from raw audio. In particular, SD-HuBERT [12] distills HuBERT [28] using only audio with a DINO-35

like distillation objective, and VG-HuBERT [45, 46] uses a contrastive loss against cross-modal36
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Figure 1: Left-Top: The loss prediction matrix C, where brighter is higher likelihood placed on the
teacher label. A time-aligned transcript is on the bottom, and predicted cluster unit boundaries span
vertically as dashed-lines. Left-Bottom: A Mel-Spectrogram of the input waveform with an example
masked timespan in gray. The losses on tokens at timesteps covered by the solid blue and dotted red
spans are mapped to their corresponding rows and columns in C as described in Section 3.1. Right:
Visual of our agglomeration procedure. We train a student to match intermediate teacher features
pooled over regions generated by pseudo-syllable-boundaries. We use a min-cut algorithm to extract
boundaries, and then apply K-Means and Agglomerative clustering to obtain discrete units.

visual inputs. We continue and significantly improve upon this line of research, resulting in the37

first syllable-like units suitable for high-quality GSLM. Specifically, we demonstrate breakthrough38

improvements in textual reconstruction from low-bitrate units of SSL models, reducing the word-39

error-rate (WER) from 37% using SD-HuBERT units to 7%, and more than halving realized bitrate40

of previous SpeechLM units from 175Bps to as low as 60Bps. We additionally find that our units41

correlate strongly with syllables both in boundary detection and in cluster quality.42

Furthermore, we evaluate the effects of training SpeechLMs on these new units and obtain state-of-43

the-art results across a wide-variety of metrics, competitive with or outperforming AudioLM (350M44

parameters) and all TWIST model sizes (125M-13B parameters) with fewer parameters and fewer45

GPU-Hours. We commit to making our code open-source and plan to release our tokenizer and46

SpeechLM parameters. Our contributions are as follows:47

1. We propose a novel training-free algorithm named LossPred that reveals noisy syllabic-48

like segmentation of unannotated speech signals by analyzing the loss of a pretrained49

self-supervised model (e.g. HuBERT) across different masking spans.50

2. We propose a novel bootstrapping framework for speech unit quantization named SylBoost51

that achieves SotA unsupervised syllabic segmentation, categorization, and low-bitrate52

unit-to-audio resynthesis.53

3. Using quantized SylBoost units as a basis for tokenization, we train SyllableLM, a generative54

spoken language model that outperforms or matches AudioLM and TWIST on a range of55

tasks while being 30x faster to train, 5x faster for inference, and having a 2.5x reduction in56

unit bitrate.57

2 Related Work58

Self-Supervised Encoder Models There has been a great amount of work in learning high-level59

representations from data by reconstructing corrupted inputs across speech [3, 28, 6], audio [24], text60

[20, 15], and vision [10, 27]. To navigate the lack of simple discrete targets in speech, much work61

has been placed in finding high-quality targets, such as iterative clustering [28] and by predicting the62

feature representations of a teacher network based on a running average of student model weights63

[5, 6]. An alternate but similar line of work has been placed into learning low-bitrate units for the64

task of resynthesis [19, 58, 56, 33, 60, 21], which include losses focused on reconstruction and use65

an information bottleneck to enforce compression.66

Applications of Neural Codecs The discrete units generated by these self-supervised encoders are67

versatile and fundamental to much of the recent progress in speech research such as Text-To-Speech68
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[54, 29, 50, 47], joint audio-text foundation models [57, 13, 38], unsupervised speech recognition69

[4], discrete unit resynthesis [48, 19, 58], text-to-audio [32, 1, 17], and generative spoken language70

modeling [8, 26, 34]. Each of these methods operates on audio units exclusively greater than or equal71

to 25Hz, which has been a frequently cited area for future work to improve on [26]. Recent work72

[22] has also explored training speech encoder models with coarser units as targets.73

Extracting Semantic Units from Raw Data Also relevant to our work are several approaches,74

particularly in vision and audio, that generate emergent semantic clusterings from self-supervised75

transformer [53] models. In particular, the DINO approach in Caron et al. [10] observes object76

representations in attention maps through student-teacher distillation. Similar techniques have been77

also applied to audio to discover emergent syllable boundaries [12, 46]. These behaviors can vary78

heavily with small changes in pretraining strategy as explored in Darcet et al. [18]. Merging similar79

features has also been shown to produce significant vision model speedups such as in Bolya et al. [7].80

Most similar to our work, Algayres et al. [2] extracted coarse continuous representations for GSLM,81

however these results trail behind NCLM-based approaches.82

3 Learning Self-Supervised, Syllable-Like Representations from Raw Speech83

In this section, we describe the bootstrapping process by which we extract low-bitrate speech units.84

We first describe LossPred, our algorithm to analyze outputs of self-supervised speech model loss85

functions to generate initial unit boundaries. Following this, we define SylBoost, an agglomeration86

procedure to iteratively refine these boundaries with student-teacher distillation. We also propose a87

new algorithm for the efficient extraction of boundaries from feature self-similarity matrices to fix88

the bottleneck slowing down VG-HuBERT and SD-HuBERT extraction.89

3.1 LossPred: Extracting Syllable-like Segmentation from Relations in HuBERT’s Loss90

HuBERT has previously been shown to learn phone-like units with its K-means clusterings [28] which91

have formed the basis of subsequent works on GSLM and unsupervised ASR [4, 34, 26]. However,92

other work [42, 43] has shown that the representations learned by these models also correlate with93

higher level structure such as words, despite these structures not immediately appearing during94

clustering. Our goal in this section is to propose a method that can be applied to a pre-trained95

HuBERT model in order to automatically extract unit boundaries at the level of syllables or words,96

rather than phones. Although we apply our method to HuBERT, we expect that it could also be97

applied to other SSL speech models that utilize a similar loss function such as WavLM [11] or98

wav2vec2.0 [3]. The crucial commonality between these models is that they all utilize a masked99

language modeling (MLM) training objective, whereby input speech tokens are randomly masked100

and the model is trained to predict the masked inputs conditioned on the unmasked inputs.101

We ground our intuition with the following thought experiment: If the input tokens corresponding102

to an entire word were replaced with mask tokens, we would expect the HuBERT model loss at103

these timesteps to be relatively high, as HuBERT would have to jointly predict word identity and104

the underlying acoustics to predict the missing span. On the other hand, if only the latter portion105

of a word were masked out, infilling this masked region given the word prefix may be easier by106

comparison. With this, if we iteratively shift a contiguous mask over a span of tokens and look at the107

loss, we would suspect to see a strong decrease in the loss throughout the timesteps corresponding to108

a masked semantic unit (word, syllable, or otherwise) as the beginning or end of the unit was partially109

revealed to the model. In our experiments, we find that semantic units extracted by this method tend110

to be syllable-like (both via inspection, and also confirmed experimentally in our segmentation and111

clustering experiments) and so we focus on these units for the rest of the paper.112

We consider the setting of having a pretrained HuBERT teacher model and a HuBERT student model113

trained to predict the quantized contextualized representations generated by the teacher at layer L, as114

described in Hsu et al. [28]. Formally, given an input waveform W , we extract the teacher labels used115

to train the student by passing W unmodified into the frozen HuBERT teacher and then quantizing the116

contextualized representations of layer L with K-Means. We denote these teacher labels as Y{1...T},117

where T is the number of tokens outputted by the CNN feature encoder stage of HuBERT. During118

pretraining, the student model is given a corrupted version of W where tokens after CNN extraction119

at select times are replaced with a learned ‘mask’ embedding. We denote these tokens input to the120
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student as XM
{1...T} where M = {t1, . . . tm} is a contiguous span of masked timesteps. The student121

is then trained to predict these teacher labels at masked timesteps using a cross-entropy loss, which122

we denote as EXM

t for the loss on Yt, t ∈ M given XM :123

EXM

t := − log p(Yt | XM ) (1)

We look at the losses of the student model at the end of pretraining, and define the loss prediction124

matrix C with mask span size parameter s to capture the raw probabilities of the losses that would125

result from all possible temporal locations of the mask span M :126

Cr,c ∈ RT×T
+ =


p(Yt | XM ) | M = {r + 1, r + 2, . . . r + s} if r < c, |r − c| ≤ ⌊ s

2⌋,
p(Yt | XM ) | M = {r − 1, r − 2, . . . r − s} if r > c, |r − c| ≤ ⌊ s

2⌋,
0 otherwise.

We separately calculate the upper and lower triangles of C, relating to the observed waveform being127

before the mask and after the mask respectively. In the upper triangle, each entry Cr,c at row r128

column c is equal to p(Yt | XM ) given that the mask span in XM starts just after time r. Inversely,129

in the lower triangle, Cr,c is equal to p(Yt | XM ) given that the mask span in ends just before130

time r. We use a span size s = 50 corresponding to 1 second as this duration is long enough to131

mask the majority of spoken words, and calculate the upper triangle based on the first 25 tokens132

of the mask span, and the lower triangle based on the last 25. We choose to use a span of tokens133

instead of masking all information after a timestep to prevent global information such as speaker134

information available to the model changing with respect to mask location. However, this limits us to135

only generating a diagonal span of probabilties as seen in 1. To extract k regions with boundaries136

B = {b1 = 1 < b2 < . . . < bk = T + 1} from C, we adopt the min-cut algorithm discussed in Peng137

et al. [46], treating C as the input feature-similarity matrix:138

B := argmin
{b1=1<b2...<bk+1=T+1}

k∑
t=1

bt+1−1∑
i=bt

T∑
j=1

(Ci,j + Cj,i)− 2
bt+1−1∑
i,j=bt

Ci,j

bt+1−1∑
i=bt

T∑
j=1

(Ci,j + Cj,i)−
bt+1−1∑
i,j=bt

Ci,j

(2)

By choosing k to be proportional to the length of the utterance, we can control the sample rate of our139

boundaries. We explore modifying this parameter in-depth throughout our experiments.140

LossPred is expensive to run due to having repeat forward passes for sliding windows. To make this141

efficient, we extract multiple masked spans simultaneously with a gap between spans of three seconds.142

This results in roughly 200 forward passes of the student model to calculate C on an arbitrarily-sized143

audio. We also preprocess the audio using a unsupervised voice activity dection model [51].144

3.2 SylBoost: Bootstrapping Pesudo-Syllabic Units with Iterative Distillation145

Given the initial boundaries predicted by LossPred, we follow the paradigm of noisy-student-teacher146

learning [55] to iterate and extract better representations. Our goal is to “sharpen” the syllabic147

organization in the feature space of an input student model that initially results from LossPred, as148

seen on the right of Figure 1. We choose a pretrained HuBERT [28] or Data2Vec2 [6] to initialize our149

student and teacher models, with the teacher model parameters held constant.150

For a set of hypothesized speech segment boundaries B = {b1 = 1 < b2 < . . . < bk+1 = T + 1},151

we group together all temporal tokens between two boundaries into disjoint groups Gi = {t | bi ≤152

t < bi+1}. For notation, we let Ht map from t to its corresponding group: t ∈ GHt
. We apply our153

loss to the features at layer L, which we select based on syllabic correlation as explored in detail in154

Pasad et al. [43]. This results in student features X(L)
{1...T} ∈ Rd and teacher features Y (L)

{1...T} ∈ Rd155

where d is the feature dimension.156

Then the loss, which is applied to each token of the student model, is the mean squared error between157

the student features X(L)
t and the mean of the teacher features in the token’s corresponding group:158

Z :=
1

T

T∑
t=1

X
(L)
t − 1

|GHi
|

∑
s∈GHi

Y (L)
s


2

(3)
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This results in a model with a mean-squared-error feature similarity matrix as depicted in the right159

side of Figure 1. We then extract boundaries using a cut algorithm described later in Sec. 3.3, although160

the cut algorithm from Peng et al. [46] also works. With this, we can generate new pseudolabels and161

iterate the process again to extract better boundaries, which we perform twice.162

3.3 Efficient Extraction of Unit Boundaries with SylBoost163

To extract boundary indices from learned feature representations Peng et al. [46] proposed adapting164

the mincut approach in Malioutov and Barzilay [35]. However, for speech this approach is slow in165

practice and difficult to parallelize, bottlenecking our ability to extract boundaries in bulk across the166

large corpora necessary for downstream language modeling. Inspired by the SylBoost objective, we167

propose a more efficient approach for extraction: given k+1 potential boundaries, we seek to choose168

groups that minimize the sum of the distances from each unit to the mean of its assigned group:169

B := argmin
{b1=1<b2...<bk+1=T+1}

k∑
i=1

bi+1−1∑
j=bi

X
(L)
j − 1

bi+1 − bi

bi+1−1∑
l=bi

X
(L)
l

2

(4)

We further restrict the setting by choosing a maximum group length of G tokens, where we choose170

G = 50 to correspond to one second of tokens, as syllables or words longer than this are fairly rare.171

With this, we can then split our algorithm into 1) calculating a distance array D ∈ RT×G, where Dt,g172

is the cost of the group of length g ending at token t and then 2) solving the minimal interval cover173

from this distance array with dynamic programming. An efficient implementation using PyTorch174

[44] on CUDA [40] runs in O(k) data-aware sequential steps.175

4 Syllable-LM: Speech Unit Language Modeling Over Syllable-Like Units176

4.1 Language Model177

GSLM [34] defines a pipeline for modeling raw audio as three stages: 1) Audio-to-unit Tokenization,178

2) Running a decoder transformer model on these units, and 3) Decoding the tokens back into a179

waveform. Like AudioLM and TWIST, we use an autoregressive transformer decoder language180

model to approximate p(xt | xt−1, . . . , x1) given an input token sequence x1, . . . , xT . We refer to181

this model as SpeechLM. We train it on clusters which we extract by mean pooling features at layer182

L, chosen as before, over their boundary groups, followed by K-Means and Agglomerative Clustering183

to a desired number of discrete units. Like TWIST, we prepend a <BOS> token and make no other184

special changes. Due to current prevalence of this architecture, we refer to [26] for additional details.185

4.2 Resynthesis and the Vocoder186

For resynthesis, we adopt the interleaved decoding strategy from Song et al. [50] to output the187

mHuBERT units from TWIST [26], obtaining a waveform by cascading this output into their provided188

mHuBERT-to-speech vocoder. This interleaving strategy demonstrates superior performance in high-189

difficulty settings compared to other Neural Codec Lanaugae Models like VALL-E [54], and so we190

use it for all resynthesis experiments. Although the cascading procedure may produce additional191

errors, we choose this approach for the following reasons:192

1. Text-to-speech systems like VALL-E traditionally start by converting text units into phones193

using rule-based strategies to improve quality. This indicates that traditional unit-to-speech194

resynthesis methods might be challenging for our low-bitrate units.195

2. This pipeline allows for fast experimentation as we can precompute the mHuBERT 25hz196

units once for all training runs.197

3. Using the same Vocoder allows for fairer comparisons against TWIST.198

To interleave our units, we sort on the start-timestep of every pseudo-syllable unit and mHuBERT-unit199

in ascending order. To decrease the odds of mHuBERT units appearing before the pseudo-syllable200

unit corresponding to the same ground truth syllable due to errant SylBoost boundaries, we subtract201

0.08s (the length of two mHuBERT frames) from each pseudo-syllable start time before sorting. For202

the rest of the pipeline, we follow [50] with our syllables as a drop-in replacement for phones. We note203
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Table 1: Unsupervised Syllable Boundary Detection and Clustering Accuracy on LibriSpeech [41]
Test. For F1 scores, the superscript is tolerance threshold in ms. All other metrics use 50ms. Higher
is better.

Approach Backbone Training F150 F120 Pr. Re. R CPur SPur

Feat-Sim[43] HuBERT no 47.3 24.7 46.6 48.0 54.5 28.0 30.0
LossPred (Ours) HuBERT no 59.6 31.4 54.9 66.7 56.3 - -

SD-HuBERT[12] HuBERT yes 66.1 32.2 64.9 67.4 70.7 43.2 45.0
SylBoost (Ours) HuBERT yes 70.9 40.1 70.8 71.4 75.1 28.9 47.8
SylBoost (Ours) Data2Vec2 yes 73.2 44.6 72.1 74.4 76.9 33.6 54.9

that although our interleaved resynthesis model slows down generation compared to TWIST, most204

model parameter scaling happens in the SpeechLM. For example, the TWIST paper still observes205

scaling improvements at 13B parameters while current SOTA TTS models such as [29] operate well206

with fewer than 1B parameters.207

We then generate continuations for a sample by 1) Extracting syllable-unit and mHuBERT units from208

the sample, 2) Sampling syllable-unit continuations from the SpeechLM, 3) Continuing mHuBERT209

units with our interleaved model conditioned on sample mHuBERT units, sample syllable-units, and210

continued syllable-units, and 4) Resynthesizing these into speech using the vocoder.211

5 Experiments212

5.1 Training Datasets213

We train our tokenizer using LibriSpeech [41], which contains 960 hours of audio books. We noticed214

that the agglomeration procedure described in 3.2 converges before all data is used, and so we215

randomly subsample LibriSpeech to a 100 hour train set and train for five epochs and two iterations216

for all experiments. We train our SpeechLMs using all of LibriLight [30], which provides roughly217

55k hours of speech. As a note on fair comparison, although AudioLM uses exactly this split of218

LibriLight, TWIST collects an additional 100k hours of data, totaling to 155k hours.219

5.2 Model Details220

We implement using the OPT [59] flavor of models and default to using 12 layers, an embedding221

dimension of 768, and learned positional embeddings for both our SpeechLM and our Interleaved-222

Vocoder-LM. This totals to 90M non-embedding parameters, the same as TWIST-125M. We also223

experiment with a larger 24 layer 1024 dimension model totaling to 300M non-embedding parameters,224

the same as AudioLM and TWIST-350M. For all pretraining experiments we randomly crop files to225

25 seconds, use a batch size of 80000 tokens, and train for 200k steps, which amounts to the same226

compute as in TWIST. To make our approach entirely textless, we do not use TWIST initialization.227

Additional hyperparameters and hardware details are in Appendix A.2.228

5.3 Tokenizer Experiments229

By varying the number of boundaries input to our cut algorithm at each stage in the agglomeration230

pipeline, we can arbitrarily control our rate of temporal tokenization. We evaluate three main unit-231

rates at 8.33Hz, 6.25Hz, and 5.00Hz, the latter which matches the empirical rate of SD-HuBERT232

units on LibriSpeech dev-clean. Combining unit-rates with changing the number of clusters generated233

by K-Means and Agglomeration gives us fine-grained control of the model bitrate. We note that234

although SD-HuBERT applies a cut algorithm, this is done after thresholding low-magnitude features235

that emerge from pretraining. As a result, we find that we cannot control the frequency of SD-236

HuBERT units by changing parameters of its mincut algorithm becuase additional cuts result in237

close-to-identical representations that map to the same quantized clusters.238

From prior work, we compare against the AudioLM tokenizer w2v-BERT [14], and the tokenizer239

from TWIST which is an open-source HuBERT model pretrained for an additional iteration on a large240

and diverse set of multilingual data, henceforth mHuBERT. Both of these tokenizers operate at 25Hz241
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Table 2: Unit Resynthesis. WER/CER results on 4-10 second examples on LibriSpeech [41] test-clean.
Hz and Bitrate are measured post Run-Length-Encoding (RLE) on LibriSpeech dev-clean.

Model Changes Hz #Units BPS WER↓ CER↓
SD-HuBERT [12] 5.0 4096 60 37.3 22.7
SylBoost (HuBERT) +Our Clustering 5.0 4096 60 18.5 10.2
SylBoost (D2V2) +Use Data2Vec2 5.0 4096 60 12.8 6.4
SylBoost (D2V2) +Increase #Units 5.0 16384 70 9.1 4.3
SylBoost (D2V2) +Tune unit-rate, #Units 8.33 2048 91 8.0 3.7
SylBoost (D2V2) +Tune unit-rate, #Units 6.25 8192 81 7.0 3.2
mHuBERT (upper bound) [26] 19.5 500 175 6.3 2.5

Table 3: Main SyllableLM results. We evaluate on sWUGGY (In-Vocab, All, Out-of-Vocab), sBLIMP
from ZeroSpeech [39], and tStoryCloze from Hassid et al. [26]. Higher is better. *Estimated.

#Data GPU- sWUGGY Semantics

Model Params #Units Hz BPS Toks Hours All IV OOV sBL. tSC

Phone Topline 90M 70 12.5 76 2.5B 70 81.4 95.2 67.7 68.8 80.6
Syllable Topline 90M 28k 5.0 74 1B 70 79.5 93.1 65.9 69.3 76.6

AudioLM [8] 300M 1k 25 250 5B 2.9k* 71.5 83.7 59.3 64.7 -
TWIST [26] 300M 500 19.5 175 9B 295 70.6 80.3 61.0 56.2 69.9
TWIST 1.3B 500 19.5 175 9B 1.1k* 71.8 81.1 62.3 57.0 70.6
TWIST 7B 500 19.5 175 9B 5.9k* 72.7 83.6 61.8 59.0 74.1
TWIST 13B 500 19.5 175 9B 10k* 73.9 84.1 63.7 59.2 76.4

TWIST-CI 90M 500 19.5 175 3.9B 84 69.7 79.8 59.7 55.5 69.0
BPE [49] 90M 4k 9.8 118 2B 84 61.8 66.7 56.8 54.5 56.2

SyllableLM 90M 2k 8.3 91 1.6B 70 72.2 81.7 62.6 62.4 71.4
SyllableLM 90M 8k 6.25 81 1.2B 75 72.1 82.2 61.9 62.9 70.2
SyllableLM 90M 16k 5.0 70 1B 82 67.6 76.9 58.3 63.2 69.0
SyllableLM 300M 8k 6.25 81 1.2B 290 72.2 82.2 62.0 63.7 75.4

followed by Run Length Encoding, which deduplicates repeated units. We additionally reimplement242

Byte Pair Encoding as done in Shen et al. [49] on the deduplicated mHuBERT units, resulting in the243

lowest bitrate encoding of speech outside of our model. We grid search and find that the minimum244

bitrate from BPE is obtained from 4k-16k units and choose 4k units for all experiments (Shen et al.245

[49] originally operated on 50Hz units, meaning that the 117bps rate obtained here is also new).246

Because we want to use a 50Hz base encoder to match SD-HuBERT and have fine-grained boundary247

control during syllable segmentation, we cannot use the 25hz mHuBERT encoder from TWIST.248

Unfortunately, this means that the quality of the base encoder may be a confounding factor in our249

SpeechLM evaluation. We choose Data2Vec2-base [6] as a middleground for training SpeechLMs on250

syllable-like units because we find its quality enables lower bitrates than HuBERT, but it is older and251

trains on less-data than mHuBERT from TWIST, and it has 6x fewer parameters than w2v-BERT,252

used by AudioLM. We suspect that applying newer encoders like w2v-BERT 2 from Communication253

et al. [16] could enable even better performance, which we leave to future work. We initialize254

Data2Vec2 SylBoost from the same HuBERT loss boundaries as discussed in 3.1.255

5.4 Results: Evaluating Unit Quality256

We evaluate the quality of our semantic units with two approaches 1) measuring correspondence257

with syllables and 2) running speech resynthesis followed by ASR. To measure correspondence with258

syllables, we use the development and test sets of LibriSpeech [41] and follow the approach from259

Peng et al. [46], extracting timesteps for phones on using the Montreal Forced Aligner [36] and then260

converting these phones into syllables with a rule-based method [25]. We evaluate the quality of261

syllable boundary detection with a ground truth boundary marked as hit if a proposed boundary is262

present within a tolerance threshold. We report F1, Precision, Recall, and R score. We ablate F1263

scores with tolerance windows of 20ms and 50ms. Given boundaries, we also evaluate the purity of264
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Table 4: Boundary detaction with
different initialization using Hu-
BERT on LS dev-clean

Model F1 Pr. Re.

Similarity 46.7 48 45
-Iter 1 51.1 50 52
-Iter 2 50.4 51 50

Loss-Corr 60.1 53 68
-Iter 1 67.1 67 68
-Iter 2 70.2 70 70

Table 5: Controllability of unit
rate measured on LibriSpeech
dev-clean boundary detection.
D2V2, 50ms threshold. P:Phone,
S:Syllable, W:word

Hz F1-P F1-S F1-W

8.33 72.0 63.5 56.8
6.25 65.2 71.8 66.0
5.0 58.7 73.0 71.8
4.3 54.3 73.2 74.0

Table 6: Holding number of
units and unit rate constant.
ZeroSpeech development set.

Hz #T sWU. sBL.

8.33 4k 72.9 61.8
6.25 4k 69.3 63.3
5.00 4k 65.7 62.8

8.33 2k 72.1 62.0
8.33 4k 72.9 61.8
8.33 8k 72.9 61.2

our clusters with 4096 units, with Syllable Purity measuring the probability that a syllable is mapped265

to its most corresponding cluster unit, and Cluster Purity measuring the probability that a cluster is266

mapped to its most corresponding syllable unit.267

Even if units do not correspond with syllables, they can still be of great use to SpeechLMs if they268

can resynthesize back into speech that matches the original text. Additionally, training a resynthesis269

model provides a stronger description of the semantic information contained in units than purity270

metrics, which are especially problematic because SD-HuBERT does not provide a unit at every271

timestep while our methods do, possibly making cluster and syllable purity evaluation unreliable.272

To evaluate resynthesized speech, we follow AudioLM and measure Word Error Rate (WER) and273

Character Error Rate (CER) on the set of 4-10 second segments from LibriSpeech test-clean. For274

ASR, we follow VALL-E [54] and use the public HuBERT-base CTC ASR model provided by [28].275

Table 1 shows our syllabic correspondence results against the prior-state-of-the-art SD-HuBERT [12]276

and the HuBERT-based feature similarity strategy from [46]. Applying our LossPred followed by277

agglomeration strategy on either HuBERT or Data2Vec2 improves performance across-the-board278

except for in cluster purity. Although it LossPred SD-HuBERT in performance, it pushes the boundary279

for syllable recognition using HuBERT without additional training. We justify using LossPred as a280

bootstrapping source instead of a HuBERT similarity metric [46, 43] in Table 4, which we discuss281

more in Appendix A.4. Improvement across iterations and with different loss initialization can be282

found in Table 4. We explore the effects of changing the unit rate on boundary predictions in Table 5.283

We compare against prior SpeechLMs and demonstrate the step-by-step changes used to improve284

unit cluster re-synthesis quality as compared to SD-HuBERT in table 2. We observe over a 50%285

decrease in WER and CER by applying our method using the SD-HuBERT base parameters. We286

further decrease WER by a third by using Data2Vec2, and from there by modifying the unit sample287

rate and number of clusters can reach as low as 2048 clusters and a WER of 7%. These results288

demonstrate by far the lowest bitrate we are aware of for ‘reasonable-quality’ self-supervised-unit289

resynthesis. Resynthesis for all models we train is done back into mHuBERT-25Hz units, bounding290

potential quality at a WER of 6.3%.291

5.5 Results: Generative Spoken Lanauage Modeling292

The end-to-end GSLM pipeline is deep, and so it is essential to have metrics to independently293

evaluate different stages. To evaluate our SpeechLM stage, we follow Lakhotia et al. [34] and use294

the ZeroSpeech [39] sWUGGY and sBLIMP evaluation. The sWUGGY dataset tasks the model295

with outputting a higher perplexity on similar but fake spoken words (e.g. brick vs blick). Similarly,296

the sBLIMP dataset checks syntactic correctness (e.g. the dog sleeps vs the dogs sleeps). We also297

evaluate the SpeechLM on the tSC set from Hassid et al. [26], which operates like the ZeroSpeech298

metrics on a spoken version of the StoryCloze dataset [37] with the last sentence in negative samples299

randomly chosen. For all metrics we follow prior work and output the mean perplexity per token.300

The results for SpeechLM metrics are in 3. We reimplement a 90M parameter model using the301

TWIST mHuBERT units without textually-pretrained initialization (Cold-Init in the TWIST paper)302

on our data split for an all-else-held equal comparison on unit type. We also train on BPE units as303

described in 5.3, the next-lowest bitrate units outside of our model. For textual toplines, we train304

on corresponding LibriLight text transcripts from Kang et al. [31] and convert text to phones and305
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syllables using the same methods as in Section 5.4. We find that training with each of our syllable306

units improves perfromance across-the-board on sBLIMP and tSC versus comparably-sized models307

and is competitive against larger models. In fact, with under 90 hours of training, SyllableLM308

outperforms even the 13B parameter TWIST on sBLIMP. We also beat AudioLM on the full split309

of sWUGGY with 30x less GPU compute and TWIST model sizes up to 1.3B parameters. On tSC,310

we observe that SyllableLM large approaches performance of the textual topline, outperforming all311

models except for TWIST 13B. Due to compute requirements, we are unable to scale further.312

Table 7: Continuation Metrics. We measure
PPX@Oracle-VERT and VERT@Oracle-
PPX as implemented in Lakhotia et al. [34]

Model PPX@O-V VERT@O-P

TWIST 300M 205 ±24 24.0 ±1.0
TWIST 1.3B 175 ±14 22.6 ±1.2

8.33Hz 2k 90M 159 ± 8 15.1 ±0.9
6.25Hz 8k 90M 139 ±12 20.1 ±0.7
5.00Hz 16k 90M 131 ±11 15.2 ±1.0
6.25Hz 8k 300M 116 ± 7 15.8 ±0.9

We notice a decrease in sWUGGY quality with our313

5.0Hz units, which we suspect is in part caused by314

the short length of the dataset audios making input to-315

kenization excessively short. We further ablate these316

differences in table 6. We also find that BPE, despite317

having the lowest bitrate outside of our approach,318

does not approach the quality gains created by our319

syllable-like units.320

To measure the quality of end-to-end continuations,321

we use the VERT@O-PPX and PPX@O-VERT met-322

rics proposed in Lakhotia et al. [34], which are shown323

to be the automatic metrics correlating best with hu-324

man meaningfulness judgements. VERT@O-PPX measures the diversity of output at the sampling325

temperature where the perplexity of generated audio transcriptions matches that of the ground truth326

text, and PPX@O-VERT performs the inverse. Like Lakhotia et al. [34], we generate 10-second327

continuations from 1000 randomly sampled 3-second crops from LibriSpeech test-clean, and measure328

results using their provided environment and parameters. We report these in Table 7 with two sigma329

error bars, outperforming TWIST 300M and 1.3B.330

6 Limitations331

Though speech is a very general medium, there are a number of challenges in adapting our methods332

to generate low-bitrate units angled towards other audio tasks or other domains such as vision.333

Our LossPred technique assumes that the semantic units to learn are separable across time, one-334

dimensional, and contiguous. In audio tasks or settings with multiple speakers, sounds or words335

can occur simultaneously and can’t be separated across the time dimension. Images and video336

are multi-dimensional, not allowing a trivial sliding window approach. Images and video can also337

have partially occluded or overlapping objects, violating continuity. Furthermore, it is still unclear338

whether our longer units will be better at scaling to larger datasets, such as the 4.5M hours used by339

Communication et al. [16]. For example, our semantic units may be losing out on useful paralinguistic340

features like tone whose impact is only salient on non-audiobooks or at scale. It is also important to341

note that large textual language models can have harmful effects, such as enabling the generation of342

misinformation in mass. Although generative spoken language models have not yet caught up to their343

textual counterparts, it is still necessary to be aware of potential misuses that could arise in the future.344

7 Conclusion345

We introduce a new method to tokenize speech for use in GSLMs. We do this by proposing a method346

to elicit syllabic organization in pretrained speech encoder models, bootstrapping a feature-space347

agglomeration algorithm from a static analysis of correlations in off-the-shelf teacher and student348

model losses across time. We demonstrate the success of our technique both in having strong349

associations with syllables and as an extremlely low-bitrate codec for speech resynthesis. Using this350

tokenization strategy, we successfully train SyllableLM, a SpeechLM that out-performs comparable351

state-of-the-art approaches across a diverse range of metrics with a significant inference speedup.352

We further ablate several design decisions such as quantitization strategy, loss initialization, and353

the effects of controllability for downstream usecases. Compression is a crucial aspect of learning,354

and we hope that these significant improvements in the unsupervised learning of low-bitrate speech355

units can serve as a foundation for approaches towards understanding spoken language and general356

representation learning.357
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A Appendix / supplemental material560

A.1 Randomly Sampled Example Segmentations561

We provide randomly sampled example segmentations from the LibriSpeech [41] dev-clean set.562

All models are the second iteration of Data2Vec2, which we use for our SyllableLM experiments563

in Section 5.5. Top: Feature Self-Similarity matrix, darker green is closer. Segmented cuts span564

vertically in blue from the top, ground truth boundaries span vertically in red at the bottom. Bottom:565

time-aligned Mel-Spectrogram. We call attention to the interesting behavior of global correspondences566

appearing when words or syllables are repeated. Best viewed zoomed in.567

8.33Hz 6.25Hz 5.0Hz
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A.2 Hardware And Hyperparameters568

We implement all experiments using NVIDIA A40 46GB GPUS with a Intel Xeon Gold 6226R CPU569

@ 2.90GHz. Estimated speeds are made using these results as well as scaling from Zhang et al. [59].570

Hyperparameters for pretraining our models are below. We note that the Batch Size is in terms of571

tokens, which means that higher unit rates will have fewer seconds of raw audio per batch to keep572

GPU compute roughly equal per model.573

Table 8: Speech pre-training hyper-parameters.
SyllableLM Base SyllableLM Large

Layers 12 24
Embed Dim 768 1024
MLP Dim 3072 4096
GPUs 2 4
Learning rate 2× 10−4 2× 10−4

Adam β1 / β2 0.9 / 0.98 0.9 / 0.98
Weight decay 0.01 0.01
Learning rate schedule Linear Decay Linear Decay
Dropout 0.1 0.1
LayerDrop 0.0 0.0
Warmup updates 8,000 16,000
Batch size (tokens) 80,000 80,000
Updates 200,000 200,000
Position Embeddings Learned Learned

A.3 Speedup574

Table 9: Inference speed results, measured in Real-Time-Factor, the processed seconds per second.
We use 32 Batches with 25 seconds of audio each, which matches the length of our training data. 1
GPU, 16 Cores. Standard error less than 1 sec/sec

Encoder Real-Time-Factor ↑
SD-HuBERT [12] 368
HuBERT+MinCut [46] 88
HuBERT+MinSum 3.3 488

SpeechLM, 100M, Cached Units

TWIST 7.8k
Ours 6.25Hz 8k 34.7k

A.4 Discussion: Other Bootstrapping Strategies575

Of course, there already exist several strategies for unsupervised syllable and word segmentation such576

as Fuchs and Hoshen [23] and Pasad et al. [43] that could be used to bootstrap our first pseudolabels.577

We find however in our experiments that these approaches, which are calculated using the similarity or578

dissimilarity of HuBERT embeddings across time, converge to a lower quality in bootstrapping than579

our proposed method. We suspect that this may be caused by the fact that although the representations580

of these models correlate with boundaries, there is no modeling in the pretraining loss pushing the581

representations to linearly separate across semantic differences. Meanwhile, the loss is forced to582

change across semantic boundaries due to the difficulty of language modeling, albeit noisily.583
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A.5 Sample Continuations584

Below are sample continuations generated with temperature sampling parameter chosen to best match585

Oracle VERT diversity scores. We provide continuations of roughly 3 seconds of audio, sampled586

randomly from LibriSpeech test-clean. This text is given as output by our HuBERT ASR Model from587

[28], with transcription errors present and with no additional modifications. The source text is bolded,588

and sometimes cuts off mid-word, which can behave differently per sample based on unit rate and589

quantization artifacts.590

Model Continuation
TWIST 300M HE FILLED FOR AND FOUND THE WIZARD’S BLACK

CLOTH THE SQUIRE WAS QUITE DEVOTED TO CAR-
RYING IT IN THE PARKS I COULD TELL YOU THAT HE
RATHER LOVED ALL THE WIZARDS IN THE MATTER
OF HONEST FIGUROUS TEMPERED MEN THEN IMMEDI-
ATELY AND BECAUSE HE DID

TWIST 1.3B HE FILLET FOR AND FOUND THE WIZARD’S BLACK
CLOTH THE SQUIRE WAS QUICK IN MOVEMENT A
WHEEL OF HIS JOURNEY MADE HIM THE IMPRESSION
OF HARE’S BLOODSHED THERE WAS NO HELP FOR IT
HE SURMISED AND HE DID SO

SyllableLM 2k 8.33Hz 90M HE FILLED FOR AND FOUND THE WIZARD’S BLACK
CLOTH THE SQUIRE WAS GLAD THAT HIS LAD HAD
NOT RETURNED TO KING LENO FOR IT IS PROBABLE
THAT HE WOULD HAVE BECOME SO UNWELL THAT HE
COULD NOT HAVE SPOKEN

SyllableLM 8k 6.25Hz 300M HE FILT FOR AND FOUND THE WIZARD’S BLACK
CLOTH THE SQUIRE WAS HALF WAY DOWN THE PATH
WITH THE WIZARD BUT HE STOPPED SHORT BEFORE
THE GATE CLUTCHED HIS FISTS SEIZED HIS GOWN AND

Model Continuation
TWIST 300M WHEN THEY WERE OUTSIDE UM SIMPLY LATCHED

THE DOOR AND STARTED UP THE STAIRS AND EVEN
WENT INTO THE LITTLE HOUSE AROSE IN THE SETTING
SUN SET FORTH THE PLACES WHERE PEOPLE LIVED
FROM MON HONEYSUCKLE HANNEY

TWIST 1.3B WHEN THEY WERE OUTSIDE UM SIMPLY LATCHED
THE DOOR AND STARTED UP THE TURNPIKE OL HAT
DON KILL ME THE SLING DE IN YORN ME WEAVING
OUT CHARLEYS SENSE EXAMINED WHAT HE MADE
EXAMINES

SyllableLM 2k 8.33Hz 90M WHEN THEY WERE OUTSIDE UM SIMPLY LATCHED
THE DOOR AND STARTED WALKING IN THEY WERE
TOO OLD TO CARE MUCH ABOUT GOING HOME THEIR
RELATIVES LEFT

SyllableLM 8k 6.25Hz 300M WHEN THEY WERE OUTSIDE UM SIMPLY LATCHED
THE DOOR AND STARTED SLOWLY DOWN THE CORRI-
DOR AND MISSUS BAKER WALKED BESIDE THEODORA
THEY WERE NEAR THE OUTER DOOR WHERE
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Model Continuation
TWIST 300M DO BE OR NOT TO BE THAT IS THE QUESTION

WHETHER TIS NOBODY SIBL LINE IN OTHER SHIRTS
OR CHOCOLATE NOS MICOTTON BUTTER WHAT WE
WERE DO WE SEE THESE HITS WE’VE GOT THE GHOST
HERE THEY’RE LOOKING

TWIST 1.3B DO BE OR NOT TO BE THAT IS THE QUESTION
WHETHER TIS NO GOOD EITHER THAN TO GO
THROUGH THE JUDGMENT OF GAUL AND YOUR DOC-
TRINES THE LORD YOUR GOD AND YOUR GOSPEL IN
RESPECT OF THE POWER OF THIS

SyllableLM 2k 8.33Hz 90M DO BE OR NOT TO BE THAT IS THE QUESTION
WHETHER TIS NO OTHER THAN ESO’S OWN DESTINY
YOU SEE IT IS A LA MISTER PRIOR THAT THIS IS THE
CASE

SyllableLM 8k 6.25Hz 300M DO BE OR NOT TO BE THAT IS THE QUESTION
WHETHER TIS NO REGRET OR NO PLEASURE THAT
MAY BE RUSHED INTO ACTION AT ONCE WITH THE
GREATEST EAGERNESS OF IMPULSE AND ELASTICITY
OF HEART

Model Continuation
TWIST 300M HE IS CALLED AS YOU KNOW THE APOSTLE OF THE

INDIAN KING WHO IS SO GLORIOUS AND ACTING WHY
IS THE OTHER PRINCE NOT BELIEVED BY HIM IN EVERY
FAITH THAT IS FREE WILL EXCEPT WHEN HE

TWIST 1.3B HE IS CALLED AS YOU KNOW THE APOSTLE OF
THE INDIES SAW WHAT HAD PASSED THROUGH
HIM LATER IN ANOTHER BOOK AMONG THOSE WHO
HAD ENGRAVED IT THIS VOLUME MISTER PICKWICK
THOUGHT IT RIGHT NOT TO INSULT YOU

SyllableLM 2k 8.33Hz 90M HE IS CALLED AS YOU KNOW THE APOSTLE OF THE
INVIDISIBLE BEFORE THEY RECEIVED THE GRACE OF
GODAD CHRIST THEN HAD IN THE FAITH OF HIS SON

SyllableLM 8k 6.25Hz 300M HE IS CALLED AS YOU KNOW THE APOSTLE OF THE
INDIES HE IS THE FORERUNNER OF TEACHING AND
FAR BEYOND IT HE IS THE EXACT SCIENTIST WHO
MEASURES THE MOVE

591
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instructions for how to replicate the results, access to a hosted model (e.g., in the case683

of a large language model), releasing of a model checkpoint, or other means that are684

appropriate to the research performed.685
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nature of the contribution. For example688
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to reproduce that algorithm.690
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the dataset).696
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Question: Does the paper report error bars suitably and correctly defined or other appropriate750

information about the statistical significance of the experiments?751

Answer: [No]752

Justification: All datasets experimented on contain at least several thousand examples,753

meaning that experimental significance results would be redundant and insignificant relative754

to their metrics. Because of this, we follow prior published work for each experiment and755

do not report these significance metrics. We also do not have the GPU resources to attempt756

significance errors across multiple training runs or random seeds, as even our smallest757

models taking 80 hours to train.758
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• The answer NA means that the paper does not include experiments.760

• The authors should answer "Yes" if the results are accompanied by error bars, confi-761

dence intervals, or statistical significance tests, at least for the experiments that support762

the main claims of the paper.763

• The factors of variability that the error bars are capturing should be clearly stated (for764

example, train/test split, initialization, random drawing of some parameter, or overall765

run with given experimental conditions).766

• The method for calculating the error bars should be explained (closed form formula,767

call to a library function, bootstrap, etc.)768

• The assumptions made should be given (e.g., Normally distributed errors).769

• It should be clear whether the error bar is the standard deviation or the standard error770

of the mean.771

• It is OK to report 1-sigma error bars, but one should state it. The authors should772

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis773

of Normality of errors is not verified.774

• For asymmetric distributions, the authors should be careful not to show in tables or775

figures symmetric error bars that would yield results that are out of range (e.g. negative776

error rates).777

• If error bars are reported in tables or plots, The authors should explain in the text how778

they were calculated and reference the corresponding figures or tables in the text.779

8. Experiments Compute Resources780

Question: For each experiment, does the paper provide sufficient information on the com-781

puter resources (type of compute workers, memory, time of execution) needed to reproduce782

the experiments?783

Answer: [Yes]784

Justification: We mention our system setup in the Appendix in A.2. We include GPU hours785

used for all main SpeechLM results, and make experiments significantly cheaper than prior786

work like Borsos et al. [8], Hassid et al. [26].787

Guidelines:788

• The answer NA means that the paper does not include experiments.789

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,790

or cloud provider, including relevant memory and storage.791

• The paper should provide the amount of compute required for each of the individual792

experimental runs as well as estimate the total compute.793

• The paper should disclose whether the full research project required more compute794

than the experiments reported in the paper (e.g., preliminary or failed experiments that795

didn’t make it into the paper).796

9. Code Of Ethics797

Question: Does the research conducted in the paper conform, in every respect, with the798

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?799

Answer: [Yes]800
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Justification: All datasets used for training and experiments use open-source and licensed801

data. We do not use Human Judges. We focus purely on generating semantic continuations,802

making our approach entirely orthogonal to generating realistic data that can mimic speaker803

voices such as Wang et al. [54]804

Guidelines:805

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.806

• If the authors answer No, they should explain the special circumstances that require a807

deviation from the Code of Ethics.808

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-809

eration due to laws or regulations in their jurisdiction).810

10. Broader Impacts811

Question: Does the paper discuss both potential positive societal impacts and negative812

societal impacts of the work performed?813

Answer: [Yes]814

Justification: Generative Spoken Language Models have not yet caught up to their textual815

counterparts, however it is still important to note that with increased scaling and methods816

research GSLM systems may eventually be able to reach parity with today’s systems in817

terms of quality. Because of this, we address the ethical considerations of generative models818

in ??819

Guidelines:820

• The answer NA means that there is no societal impact of the work performed.821

• If the authors answer NA or No, they should explain why their work has no societal822

impact or why the paper does not address societal impact.823

• Examples of negative societal impacts include potential malicious or unintended uses824

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations825

(e.g., deployment of technologies that could make decisions that unfairly impact specific826

groups), privacy considerations, and security considerations.827

• The conference expects that many papers will be foundational research and not tied828

to particular applications, let alone deployments. However, if there is a direct path to829

any negative applications, the authors should point it out. For example, it is legitimate830

to point out that an improvement in the quality of generative models could be used to831

generate deepfakes for disinformation. On the other hand, it is not needed to point out832

that a generic algorithm for optimizing neural networks could enable people to train833

models that generate Deepfakes faster.834

• The authors should consider possible harms that could arise when the technology is835

being used as intended and functioning correctly, harms that could arise when the836

technology is being used as intended but gives incorrect results, and harms following837

from (intentional or unintentional) misuse of the technology.838

• If there are negative societal impacts, the authors could also discuss possible mitigation839

strategies (e.g., gated release of models, providing defenses in addition to attacks,840

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from841

feedback over time, improving the efficiency and accessibility of ML).842

11. Safeguards843

Question: Does the paper describe safeguards that have been put in place for responsible844

release of data or models that have a high risk for misuse (e.g., pretrained language models,845

image generators, or scraped datasets)?846

Answer: [NA]847

Justification: The current quality of GSLM systems trails far behind language models in848

terms of their capabilities for misuse, and this work instead focuses toward the direction of849

discovering better representation learning algorithms. All output audio comes from a single850

speaker, and our approach is orthogonal to voice conversion methods.851

Guidelines:852

• The answer NA means that the paper poses no such risks.853
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• Released models that have a high risk for misuse or dual-use should be released with854

necessary safeguards to allow for controlled use of the model, for example by requiring855

that users adhere to usage guidelines or restrictions to access the model or implementing856

safety filters.857

• Datasets that have been scraped from the Internet could pose safety risks. The authors858

should describe how they avoided releasing unsafe images.859

• We recognize that providing effective safeguards is challenging, and many papers do860

not require this, but we encourage authors to take this into account and make a best861

faith effort.862

12. Licenses for existing assets863

Question: Are the creators or original owners of assets (e.g., code, data, models), used in864

the paper, properly credited and are the license and terms of use explicitly mentioned and865

properly respected?866

Answer: Yes867

Justification: All works used have licenses that do not require citing and are available for868

both research and commercial use. We properly cite every dataset used when mentioned in869

our work.870

Guidelines:871

• The answer NA means that the paper does not use existing assets.872

• The authors should cite the original paper that produced the code package or dataset.873

• The authors should state which version of the asset is used and, if possible, include a874

URL.875

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.876

• For scraped data from a particular source (e.g., website), the copyright and terms of877

service of that source should be provided.878

• If assets are released, the license, copyright information, and terms of use in the879

package should be provided. For popular datasets, paperswithcode.com/datasets880

has curated licenses for some datasets. Their licensing guide can help determine the881

license of a dataset.882

• For existing datasets that are re-packaged, both the original license and the license of883

the derived asset (if it has changed) should be provided.884

• If this information is not available online, the authors are encouraged to reach out to885

the asset’s creators.886

13. New Assets887

Question: Are new assets introduced in the paper well documented and is the documentation888

provided alongside the assets?889

Answer: [Yes]890

Justification: All models created and trained are standard transformer models, which have891

been robustly documented for ease-of-use. Our model parameters can be dropped in to892

existing model pipelines such as that of Zhang et al. [59] on online distribution services893

such as https://huggingface.co/894

Guidelines:895

• The answer NA means that the paper does not release new assets.896

• Researchers should communicate the details of the dataset/code/model as part of their897

submissions via structured templates. This includes details about training, license,898

limitations, etc.899

• The paper should discuss whether and how consent was obtained from people whose900

asset is used.901

• At submission time, remember to anonymize your assets (if applicable). You can either902

create an anonymized URL or include an anonymized zip file.903

14. Crowdsourcing and Research with Human Subjects904
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Question: For crowdsourcing experiments and research with human subjects, does the paper905

include the full text of instructions given to participants and screenshots, if applicable, as906

well as details about compensation (if any)?907

Answer: [NA]908

Justification: The paper does not involve crowdsourcing nor research with human subjects.909

Guidelines:910

• The answer NA means that the paper does not involve crowdsourcing nor research with911

human subjects.912

• Including this information in the supplemental material is fine, but if the main contribu-913

tion of the paper involves human subjects, then as much detail as possible should be914

included in the main paper.915

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,916

or other labor should be paid at least the minimum wage in the country of the data917

collector.918

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human919

Subjects920

Question: Does the paper describe potential risks incurred by study participants, whether921

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)922

approvals (or an equivalent approval/review based on the requirements of your country or923

institution) were obtained?924

Answer: [NA]925

Justification: The paper does not involve crowdsourcing nor research with human subjects.926

Guidelines:927

• The answer NA means that the paper does not involve crowdsourcing nor research with928

human subjects.929

• Depending on the country in which research is conducted, IRB approval (or equivalent)930

may be required for any human subjects research. If you obtained IRB approval, you931

should clearly state this in the paper.932

• We recognize that the procedures for this may vary significantly between institutions933

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the934

guidelines for their institution.935

• For initial submissions, do not include any information that would break anonymity (if936

applicable), such as the institution conducting the review.937

25


	Introduction
	Related Work
	Learning Self-Supervised, Syllable-Like Representations from Raw Speech
	LossPred: Extracting Syllable-like Segmentation from Relations in HuBERT's Loss
	SylBoost: Bootstrapping Pesudo-Syllabic Units with Iterative Distillation
	Efficient Extraction of Unit Boundaries with SylBoost

	Syllable-LM: Speech Unit Language Modeling Over Syllable-Like Units
	Language Model
	Resynthesis and the Vocoder

	Experiments
	Training Datasets
	Model Details
	Tokenizer Experiments
	Results: Evaluating Unit Quality
	Results: Generative Spoken Lanauage Modeling

	Limitations
	Conclusion
	Appendix / supplemental material
	Randomly Sampled Example Segmentations
	Hardware And Hyperparameters
	Speedup
	Discussion: Other Bootstrapping Strategies
	Sample Continuations


