Published as a conference paper at ICLR 2024

GRAPHCARE: ENHANCING HEALTHCARE PREDIC-
TIONS WITH PERSONALIZED KNOWLEDGE GRAPHS

Pengcheng Jiang* Cao Xiao! Adam Cross' Jimeng Sun*
*University of Illinois Urbana-Champaign ~ TGE HealthCare  *OSF HealthCare

ABSTRACT

Clinical predictive models often rely on patients’ electronic health records (EHR),
but integrating medical knowledge to enhance predictions and decision-making
is challenging. This is because personalized predictions require personalized
knowledge graphs (KGs), which are difficult to generate from patient EHR data.
To address this, we propose GRAPHCARE, a framework that uses external KGs
to improve EHR-based predictions. Our method extracts knowledge from large
language models (LLMs) and external biomedical KGs to build patient-specific
KGs, which are then used to train our proposed Bi-attention AugmenTed (BAT)
graph neural network (GNN) for healthcare predictions. On two public datasets,
MIMIC-IIT and MIMIC-IV, GRAPHCARE surpasses baselines in four vital health-
care prediction tasks: mortality, readmission, length of stay (LOS), and drug rec-
ommendation. On MIMIC-III, it boosts AUROC by 17.6% and 6.6% for mortality
and readmission, and F1-score by 7.9% and 10.8% for LOS and drug recommen-
dation, respectively. Notably, GRAPHCARE demonstrates a substantial edge in
scenarios with limited data. Our findings highlight the potential of using external
KGs in healthcare prediction tasks and demonstrate the promise of GRAPHCARE
in generating personalized KGs for promoting personalized medicine.

1 INTRODUCTION

The digitization of healthcare systems has led to the accumulation of vast amounts of electronic
health record (EHR) data that encode valuable information about patients, treatments, etc. Machine
learning models have been developed on these data and demonstrated huge potential for enhancing
patient care and resource allocation via predictive tasks, including mortality prediction (Blom et al.,
2019; Courtright et al., 2019), length-of-stay (LOS) estimation (Cai et al., 2015; Levin et al., 2021),
readmission prediction (Ashfaq et al., 2019; Xiao et al., 2018), and drug recommendations (Bhoi
et al., 2021; Shang et al., 2019b).

To improve predictive performance and integrate expert knowledge with data insights, clinical
knowledge graphs (KGs) were adopted to complement EHR modeling (Chen et al., 2019; Choi et al.,
2020; Rotmensch et al., 2017). These KGs represent medical concepts (e.g., diagnoses, procedures,
drugs) and their relationships, enabling effective learning of patterns and dependencies. However,
existing approaches mainly focus on simple hierarchical relations (Choi et al., 2017; 2018; 2020)
rather than leveraging comprehensive relationships among biomedical entities despite incorporating
valuable contextual information from established biomedical knowledge bases (e.g., UMLS (Bo-
denreider, 2004)) could enhance predictions. Moreover, large language models (LLMs) such as
GPT (Brown et al., 2020; Chowdhery et al., 2022; Luo et al., 2022; OpenAl, 2023) pre-trained on
web-scale biomedical literature could serve as alternative resources for extracting clinical knowl-
edge given their remarkable reasoning abilities on open-world data. There is a substantial body
of existing research demonstrating their potential use as knowledge bases (Lv et al., 2022; Petroni
et al., 2019; AlKhamissi et al., 2022).

To fill the gap in personalized medical KGs, we propose to leverage the exceptional reasoning abili-
ties of LLMs to extract and integrate personalized KG from open-world data. Our proposed method
GRAPHCARE (Personalized Graph-based HealthCare Prediction) is a framework designed to gen-
erate patient-specific KGs by effectively harnessing the wealth of clinical knowledge. As shown
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Figure 1: Overview of GRAPHCARE. Above: Given a patient record consisting of conditions, procedures
and medications, we generate a concept-specific KG for each medical concept, by knowledge probing from
a LLLM and subgraph sampling from an existing KG; and we perform node and edge clustering among all
graphs (§3.1). Below: For each patient, we compose a patient-specific graph by combining the concept-specific
KGs associated with them and make the graph temporal with sequential data across patient’s visits (§3.2). To
utilize the patient graph for predictions, we employ a bi-attention augmented graph neural network (GNN)
model, which highlights essential visits and nodes with attention weights (§3.3). With three types of patient
representations (patient-node, patient-graph, and joint embeddings), GRAPHCARE is capable of handling a
variety of healthcare predictions (§3.4).

in Figure 1, our patient KG generation module first takes medical concepts as input and generates
concept-specific KGs by prompting LLMs or retrieving subgraphs from existing graphs. It then clus-
ters nodes and edges to create a more aggregated KG for each medical concept. Next, it constructs
a personalized KG for each patient by merging their associated concept-specific KGs and incorpo-
rating temporal information from their sequential visit data. These patient-specific graphs are then
fed into our Bi-attention AugmenTed (BAT) graph neural network (GNN) for diverse downstream
prediction tasks.

We evaluated the effectiveness of GRAPHCARE using two widely-used EHR datasets, MIMIC-III
(Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2020). Through extensive experimentation,
we found that GRAPHCARE outperforms several baselines, while BAT outperforms state-of-the-art
GNN models (Velickovi¢ et al., 2017; Hu et al., 2019; Rampasek et al., 2022) on four common
healthcare prediction tasks: mortality prediction, readmission prediction, LOS prediction, and drug
recommendation. Our experimental results demonstrate that GRAPHCARE, equipped with the BAT,
achieves average AUROC improvements of 17.6%, 6.6%, 4.1%, 2.1% and 7.9%, 3.8%, 3.5%, 1.8%
over all baselines on MIMIC-III and MIMIC-1V, respectively. Furthermore, our approach requires
significantly fewer patient records to achieve comparable results, providing compelling evidence for
the benefits of integrating open-world knowledge into healthcare predictions.

2 RELATED WORKS

Clinical Predictive Models. EHR data has become increasingly recognized as a valuable resource
in the medical domain, with numerous predictive tasks utilizing this data (Ashfaq et al., 2019; Bhoi
et al., 2021; Blom et al., 2019; Cai et al., 2015). A multitude of deep learning models have been
designed to cater to this specific type of data, leveraging its rich, structured nature to achieve en-
hanced performance (Shickel et al., 2017; Miotto et al., 2016; Choi et al., 2016c;a;b; Shang et al.,
2019b; Yang et al., 2021a; Choi et al., 2020; Zhang et al., 2020; Ma et al., 2020b;a; Gao et al., 2020;
Yang et al., 2023b). Among these models, some employ a graph structure to improve prediction
accuracy, effectively capturing underlying relationships among medical entities (Choi et al., 2020;
Su et al., 2020; Zhu & Razavian, 2021; Li et al., 2020; Xie et al., 2019; Lu et al., 2021a; Yang et al.,
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2023b; Shang et al., 2019b). However, a limitation of these existing works is that they do not link
the local graph to an external knowledge base, which contains a large amount of valuable relational
information (Lau-Min et al., 2021; Pan & Cimino, 2014). We propose to create a customized knowl-
edge graph for each medical concept in an open-world setting by probing relational knowledge from
either LLMs or KGs, enhancing its predictive capabilities for healthcare.

Personalized Knowledge Graphs. Personalized KGs have emerged as promising tools for improv-
ing healthcare prediction (Ping et al., 2017; Gyrard et al., 2018; Shirai et al., 2021; Rastogi & Zaki,
2020; Li et al., 2022). Previous approaches such as GRAM (Choi et al., 2017) and its successors
(Ma et al., 2018; Shang et al., 2019a; Yin et al., 2019; Panigutti et al., 2020; Lu et al., 2021b)
incorporated hierarchical graphs to improve predictions of deep learning-based models; however,
they primarily focus on simple parent-child relationships, overlooking the rich complexities found
in large knowledge bases. MedML (Gao et al., 2022) employs graph data for COVID-19 related
prediction. However, the KG in this work has a limited scope and relies heavily on curated features.
To bridge these gaps, we introduce two methods for creating detailed, personalized KGs using open
sources. The first solution is prompting (Liu et al., 2023) LLMs to generate KGs tailored to medical
concepts. This approach is inspired by previous research (Yao et al., 2019; Wang et al., 2020a; Chen
et al., 2022; Lovelace & Rose, 2022; Chen et al., 2023; Jiang et al., 2023), showing that pre-trained
LMs can function as comprehensive knowledge bases. The second method involves subgraph sam-
pling from established KGs (Bodenreider, 2004), enhancing the diversity of the knowledge base.

Attention-augmented GNNs. Attention mechanisms (Bahdanau et al., 2014) have been widely
utilized in GNNs to capture the most relevant information from the graph structure for various tasks
(Velickovic et al., 2017; Lee et al., 2018; Zhang et al., 2018; Wang et al., 2020b; Zhang et al., 2021a;
Knyazev et al., 2019). The incorporation of attention mechanisms in GNNs allows for enhanced
graph representation learning, which is particularly useful in the context of EHR data analysis (Choi
etal., 2020; Lu et al., 2021b). In GRAPHCARE, we introduce a new GNN BAT leveraging both visit-
level and node-level attention, edge weights, and attention initialization for EHR-based predictions
with personalized KGs.

3 PERSONALIZED GRAPH-BASED HEALTHCARE PREDICTION

In this section, we present GRAPHCARE, a comprehensive framework designed to generate person-
alized KGs and utilize them for healthcare predictions. It operates through three general steps:

Step 1: Generate concept-specific KGs for every medical concept using LLM prompts and by sub-
sampling from existing KGs. Perform clustering on nodes and edges across these KGs.

Step 2: For each patient, merge relevant concept-specific KGs to form a personalized KG.

Step 3: Employ the novel Bi-attention Augmented (BAT) Graph Neural Network (GNN) to predict
based on the personalized KGs.

3.1 STEP 1: CONCEPT-SPECIFIC KNOWLEDGE GRAPH GENERATION.

Denote a medical concept as e € {c,p,d}, where ¢ = (c1,¢2,...,Cc|), P = (P1,D2, -, P|p|)> and
d = (dy,ds, ...,d|q|) correspond to sets of medical concepts for conditions, procedures, and drugs,
with sizes of |c|, |p|, and |d|, respectively. The goal of this step is to generate a KG G¢ = (V¢,£°)
for each medical concept e, where V¢ represents nodes, and £¢ denotes edges in the graph.

Our approach comprises two strategies: (1) LLM-based KG extraction via prompting: Utiliz-
ing a template with instruction, example, and prompt. For example, with an instruction “Given a
prompt, extrapolate as many relationships as possible of it and provide a list of updates”, an example
“prompt: systemic lupus erythematosus. updates: [systemic lupus erythematosus is, treated with,
steroids]...” and a prompt “prompt: tuberculosis. updates:”, the LLM would respond with a list of
KG triples such as “[tuberculosis, may be treated with, antibiotics], [tuberculosis, affects, lungs]...”
where each triple contains a head entity, a relation, and a tail entity. Our curated prompts are de-
tailed in Appendix D.1. After running  times, we aggregate' and parse the outputs to form a KG
for each medical concept, G 1 \p,) = (VELM(X)7 SELM(X)). (2) Subgraph sampling from existing

To address ethical concerns with LLM use, we collaborate with medical professionals to evaluate the ex-
tracted KG triples, which minimizes the risk of including any inaccurate or potentially misleading information.
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KGs: Leveraging pre-existing biomedical KGs (Belleau et al., 2008; Bodenreider, 2004; Donnelly
et al., 2006), we extract specific graphs for a concept via subgraph sampling. This involves choosing
relevant nodes and edges from the primary KG. For this method, we first pinpoint the entity in the
biomedical KG corresponding to the concept e. We then sample a x-hop subgraph originated from
the entity, resulting in G, () = (Vsub(ﬁ), Sjub(ﬁ)). We detail the sampling process in Appendix

D.2. Consequently, for each medical concept, the KG is represented as G¢ = GiLM(X) U G:ub(ﬁ).

Node and Edge Clustering. Next, we perform clustering of nodes and edges based on their sim-
ilarity, to refine the concept-specific KGs. The similarity is computed using the cosine similarity
between their word embeddings. We apply the agglomerative clustering algorithm (Miillner, 2011)
on the cosine similarity with a distance threshold §, to group similar nodes and edges in the global
graph G = (G, G2, ..., GeUel+IpI+1dD) of all concepts. After the clustering process, we obtain
Cy:V =V andCe : € — & which map the nodes V and edges £ in the original graph G to
new nodes V' and edges &£ ', respectively. With these two mappings, we obtain a new global graph
G = (V',&), and we create a new graph G'¢ = (V'¢,£¢) c G’ for each concept. The node
embedding HY € RIV'I** and the edge embedding H? € RI€'1*% are initialized by the averaged
word embedding in each cluster, where w denotes the dimension of the word embedding.

3.2 STEP 2: PERSONALIZED KNOWLEDGE GRAPH COMPOSITION

For each patient, we compose their personalized KG by merging the clustered KGs of their
medical concepts. We create a patient node (P) and connect it to its direct EHR nodes in the
graph. The personalized KG for a patient can be represented as Gpay = (Vpat;Epat), Where
Voar = PU{Ve Ve Vel and = e U {4, &, .. %}, with {e),eq,..., .}
being the medical concepts directly associated with the patient, w being the number of concepts,
and € being the edge connecting P and {ey, es, ..., e, }. Further, as a patient is represented as a
sequence of J visits (Choi et al., 2016a), the visit-subgraphs for patient ¢ can be represented as
{Gi71, Gj,,g, veey GiJ} = {(VZ‘J, 8;’71), (V@Q, 8,‘72), ceny (V@J, (‘/‘1‘7])} for visits {331, T2y euny J,‘J} where
Viii € Vpats) and &;j C Epasy for 1 < j < J. We introduce Eiper for the interconnected-
ness across these visit-subgraphs, defined as: Einer = {(vijx < Vi w)|Vijk € VijsVijr g €
Vi j # §', and (v 5 <> v 5o p) € 8/}. This set includes edges (v; ;jr <> v; ;. x) that con-
nect nodes v; ;. and v; j/ - from different visit-subgraphs G; ; and G j» respectively, provided
that there exists an edge (v; jr <> v;j/ k) in the global graph G’. The final representation of the
patient’s personalized KG, G ;). integrating both the visit-specific data and the broader inter-visit

connections, is given as: Gy (i) = (73 U szl V;,j’ eV (szl 5';7]) U &mer).

3.3 STEP 3: BI-ATTENTION AUGMENTED GRAPH NEURAL NETWORK

Given that each patient’s data encompasses multiple visit-subgraphs, it becomes imperative to devise
a specialized model capable of managing this temporal graph data. Graph Neural Networks (GNNs),
known for their proficiency in this domain, can be generalized as:

h*t =5 (W”)AGGREGATE”) (h}jﬂk' c /\/(k)) n b(l)) 7 W

where hgﬂ) represents the updated node representation of node k at the (I + 1)-th layer of the

GNN. The function AGGREGATE (") aggregates the node representations of all neighbors A (k) of
node k at the I-th layer. W) and b)) are the learnable weight matrix and bias vector at the I-th
layer, respectively. o denotes an activation function. Nonetheless, the conventional GNN approach
overlooks the temporal characteristics of our patient-specific graphs and misses the intricacies of
personalized healthcare. To address this, we propose a Bi-attention Augmented (BAT) GNN that
better accommodates temporal graph data and offers more nuanced predictive healthcare insights.

Our model. In GRAPHCARE, we incorporate attention mechanisms to effectively capture relevant
information from the personalized KG. We first reduce the size of node and edge embedding from the
word embedding to the hidden embedding to improve model’s efficiency. The dimension-reduced
hidden embeddings are computed as follows:

hijx = Wohy 1 +by hijeeas s = Web{ o0 + br 2)
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where W,,, W, € R¥X4, b,,b,, € R? are learnable vectors, hg’i’jyk),hzf_j’k)ﬁ(i’j,_k,) € RY are
input embedding, h; ; x, h(; j x)(i,j7,k) € R are hidden embedding of the k-th node in j-th visit-
subgraph of patient, and the hidden embedding of the edge between the nodes v; ;1 and v; jp/,
respectively. ¢ is the size of the hidden embedding.

Subsequently, we compute two sets of attention weights: one set corresponds to the subgraph as-
sociated with each visit, and the other pertains to the nodes within each subgraph. The node-level
attention weight for the k-th node in the j-th visit-subgraph of patient 7, denoted as «; ; 1, and the
visit-level attention weight for the j-th visit of patient 7, denoted as f3; ;, are shown as follows:

QG G 1y O M = Softmax(Wagi,j + ba),

Bits - Biy = ATTanh(wj G; + bg), where A= [Ar, ..., An], (3)
where g; ; € RM is a multi-hot vector representation of visit-subgraph Gi ;s indicating the nodes
appeared for the j-th visit of patient ¢ where M = |V’| is the number of nodes in the global graph
G'. G; e RNxM represents the multi-hot matrix of patient ¢’s graph GG; where N is the maximum
visits across all patients. W, € RM*M w; ¢ RM b, € RM and by € R” are learnable
parameters. A € R¥ is the decay coefficient vector, .J is the number of visits of patient i, A; € A

where \; = exp (—y(J — 7)) when j < J and 0 otherwise, is coefficient for the visit j, with decay
rate -, initializing higher weights for more recent visits.

Attention initialization. To further incorporate prior knowledge from LLMs and help the model
converge, we initialize W, for the node-level attention based on the cosine similarity between the
node embedding and the word embedding ws of a specific term for the a prediction task-feature pair
(e.g., “terminal condition” for mortality-condition. We provide more details on this in Appendix C).
Formally, we first calculate the weights for the nodes in the global graph G by W, = (hy, -
wit)/(||hunll2 - [|wie||2) where h,,, € HY is the input embedding of the m-th node in G, and w,),
is the weight computed. We normalize the weights s.t. 0 < w,, < 1,V1 <m < M. We initialize
W, = diag(ws, ..., wps) as a diagonal matrix.

Next, we update the node embedding by aggregating the neighboring nodes across all visit-
subgraphs incorporating the attention weights for visits and nodes computed in Eq (3) and the
weights for edges. Based on Eq (1), we design our convolutional layer BAT as follows:

(+1) _ ! MORHUING 0} I
by ) =0 | WO > @Gy B B o R e Bk e | DY
j'eJ,k'eN (k)U{k}

Node aggregation term Edge aggregation term
(4)

where o is the ReLU function, W) € R?%¢ b)) ¢ R are learnable parameters, w%) c RIEI

is the edge weight vector at the layer [, and w%k wy € W%) is the scalar weight for the edge

embedding h( T (i, k) In Eq (4), the node aggregation term captures the contribution of the

attention-weighted nodes, while the edge aggregation term represents the influence of the edges
connecting the nodes. This convolutional layer integrates both node and edge features, allowing the
model to learn a rich representation of the patient’s EHR data. After several layers of convolution,

we obtain the node embeddmgs h( )k of the final layer (L), Wthh are used for the predictions:

h{** = MEAN Z Z h{")) — MEAN ZZ]IU #hi),

j=1k=1 j=1k=1
graph MLP(h p'Lt) Znode MLP<h’P> Z_]omt _ MLP(h pat @h”p) (5)

where J is the number of visits of patient 4, K; is the number of nodes in visit j, h; Grat denotes the
patient graph embedding obtained by averagmg the embeddmgs of all nodes across visit- subgraphs
and the various nodes within each subgraph for patient 7. h? represents the patient node embedding
computed by averaging node embeddings of the direct medical concept linked to the patient node.
]1A k€ {0,1} is a binary label indicating whether a node v; ;1 corresponds to a direct medical

concept for patient 7. Finally, we apply a multilayer perception (MLP) to either hi > hP, or the

concatenated embedding (hS"** @ hP) to obtain logits z&"*"", z1°d° or Z1°™ respectively. We
discuss more details of the patlent representation learning in Appendlx E.
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Table 1: Statistics of pre-processed EHR datasets. #”: ’the number of”, ”/patient”: “per patient”.

#patients ~ #visits  #visits/patient  #conditions/patient  #procedures/patient  #drugs/patient
MIMIC-III 35,707 44,399 1.24 12.89 4.54 33.71
MIMIC-IV 123,488 232,263 1.88 21.74 4.70 43.89

3.4 TRAINING AND PREDICTION

The model can be adapted for a variety of healthcare prediction tasks. Consider a set of samples
{(z1), (1, 22), ..., (x1,22,...,2¢)} for each patient with ¢ visits, where each tuple represents a
sample consisting of a sequence of consecutive visits.

Mortality (MT.) prediction predicts the mortality label of the subsequent visit for each sample,
with the last sample dropped. Formally, f : (21, 22,...,2¢—1) — ylx:] where y[z;] € {0,1} is a
binary label indicating the patient’s survival status recorded in visit ;.

Readmission (RA.) prediction predicts if the patient will be readmitted into hospital within o
days. Formally, f : (21,2, ...,2-1) = y[7(z:) — 7(z4=1)],y € {0, 1} where 7(z;) denotes the
encounter time of visit ;. y[7(x¢) — 7(x¢—1)] equals 1 if 7(z;) — 7(2¢—1) < o, and O otherwise.
In our study, we set o = 15 days.

Length-Of-Stay (LOS) prediction (Harutyunyan et al., 2019) predicts the length of ICU stays
for each visit. Formally, f : (z1,22,...,2;) — ylx] where y[z;] € R is a one-hot vector
indicating its class among C' classes. We set 10 classes [0, 1, ..., 7, 8, 9], which signify the stays of
length < 1 day (0), within one week (1,...,7), one to two weeks (8), and > two weeks (9).

Drug recommendation predicts medication labels for each visit. Formally, f : (z1,z2,...,2;) —
y[x¢] where y[x;] € R**|4l is a multi-hot vector where |d| denotes the number of all drug types.

We use binary cross-entropy (BCE) loss with sigmoid function to train binary (MT. and RA.) and
multi-label classification (Drug.) classification tasks, while we use corss-entropy (CE) loss with
softmax function to train multi-class (LOS) classification tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Data. For the EHR data, we use the publicly available MIMIC-IIT (Johnson et al., 2016) and
MIMIC-IV (Johnson et al., 2020) datasets. Table 1 presents statistics of the processed datasets. To
build concept-specific KG (§3.1), we utilize GPT-4 (OpenAl, 2023) as the LLM for KG generation,
and utilize UMLS-KG (Bodenreider, 2004) as an existing biomedical KG for subgraph sampling,
which has 300K entities and 1M relations. x = 3 and x = 1 are set as parameters. We employ the
GPT-3 embedding model to retrieve the word embeddings of the entities and relations.

Baselines. Our baselines include GRU (Chung et al., 2014), Transformer (Vaswani et al., 2017),
RETAIN (Choi et al., 2016c), GRAM (Choi et al., 2017), Deepr (Nguyen et al., 2016), StageNet
(Gao et al., 2020), AdaCare (Ma et al., 2020a), GRASP (Zhang et al., 2021b), SafeDrug (Yang
etal., 2021b), MICRON (Yang et al., 2021a), GAMENet (Shang et al., 2019b), and MoleRec (Yang
et al., 2023b). AdaCare and GRASP are evaluated only on binary prediction tasks given their com-
putational demands. For drug recommendation, we also consider task-specific models SafeDrug,
MICRON, GAMENet, and MoleRec. Our GRAPHCARE model’s performance is examined under
five GNNs and graph transformers: GAT (Velickovi¢ et al., 2017), GINE (Hu et al., 2019), EGT
(Hussain et al., 2022), GPS (Rampések et al., 2022) and our BAT. We do not compare to models
such as GCT (Choi et al., 2020) and CGL (Lu et al., 2021a) as they incorporate lab results and clin-
ical notes, which are not used in this study. Implementation details are discussed in Appendix C.

Evaluation Metrics. We consider the following metrics: (a) Accuracy - the proportion of correctly
predicted instances out of the total instances; (b) F1 - the harmonic mean of precision and recall; (c)
Jaccard score - the ratio of the intersection to the union of predicted and true labels; (d) AUPRC
- the area under the precision-recall curve, emphasizing the trade-off between precision and recall;
(e) AUROC - the area under the receiver operating characteristic curve, capturing the trade-off
between the true positive and the false positive rates. (f) Cohen’s Kappa - measures inter-rater
agreement for categorical items, adjusting for the expected level of agreement by chance in multi-
class classification.
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Table 2: Performance comparison of four prediction tasks on MIMIC-III/MIMIC-IV. We report the aver-
age performance (%) and the standard deviation (in bracket) of each model over 100 runs for MIMIC-III and
25 runs for MIMIC-IV. The best results are highlighted for both datasets.

Task 1: Mortality Prediction Task 2: Readmission Prediction

Model MIMIC-1II MIMIC-1V MIMIC-III MIMIC-1V

AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC
GRU 11.8(0_5) 61.3(0_9) 4.2(0_1) 6940(0_8) 68.2(0.4) 65'4(0.8) 66-1(0_1) 66.2(0_1)
Transformer 10.1(0_9) 57.2(1_3) 3.4(0_4) 65‘1(1_2) 67‘3(0_7> 63‘9(1_1) 65.7(0_3) 65.3(0_4>
RETAIN 9.6(0.6) 59.4(1.5) 3.8(0.4) 64.8(1.6) 65.1(1.0) 64.1(0.7) 66.2(0.3) 66.3(0.2)
GRAM 1147 60409 443 66707 67208 64304 66100  66.30.3
Deepr 13.2(1‘1) 60.8(0/1) 4.2(4),2) 6849(0_9) 68.8(()_9) 66.5((]‘4) 65.6(0_1) 65.4([)2)
AdaCare 11.1(0_4) 58.4(1_4) 4.6(0_3) 69‘3(0_7) 68.6(0_6) 65.7(0_3) 65.9(0_0) 66.1(0_0)
GRASP 9.9(1_1) 59.2(1_4) 4.7(0_]) 68.4(1_0) 69‘2(0_4) 66‘3(0_6) 66.3(0_3) 66.1(0_2)
StageNet 12403y  61.500.7) 4.20.3) 69.60.8) 69.3006) 66.7(0.) 66.1(0.1 66.2(0.1)

GRAPHCARE  w/ GAT 14.308) 67.8(1.1) 5.1(0.1) 71.8(1.0) (. 4) )
w/GINE 14404 6730s 5701 72001 7130s 68004 68305 67504
w/ EGT 15.5(().5) 69.1(“)) 6.2(‘).2) 7143(0_7) (0.1 ] .2) ) )
w/ GPS 15.3(0_9) 68.8(0_8) 6.7(0_2) 72‘7(0_9) 71~9((1.6) 68.5 0.6) 69.1(0_4) 67.9(0_4)
w/BAT  16.7(05 70305y 6.703 73.1(0s5 73.404) 69705 69.603 68.50.4)

Task 3: Length of Stay Prediction

Model MIMIC-IIT MIMIC-1IV

AUROC Kappa  Accuracy Fl-score AUROC Kappa  Accuracy Fl-score
GRU 78.3(0.1)  26.2(0.2) 40303y 34905 78701y 26001y 3520.1) 31602
Transformer 78.3(0.2) 25.4(044) 40.1(0.3) 34.8(0_2) 78.3(0.3> 25.3(0.4) 34.4(0_2) 31.4(043)
RETAIN 78.2(0.1) 26).1(0.4) 40.6(0.3) 34.90.4) 78900.3) 26.302) 35702  32.00.2
GRAM 7820.1) 26303 404004y 34502 78802 26104 35402  31.90.3)
Deepr 77.900.1) 25.3(0.4) 40~1(0.6) 35.0(0.4) 79.5(0_3) 26.4(0_2) 35.8(0.3) 32.3(0.1)
StageNet 78.3(0_2) 24.8(0_2) 39‘9(02) 34.4(0_4) 79‘2(0_3> 26‘0(0_2) 35.0(0.2) 31.3(0_3)

GRAPHCARE w/ GAT 79.40.3) 2822 41.9(0.2) 36.10.4y 80.3(0.3)  28.4(0.4) 36.2(0.1) 33.3(0.3)
w/ GINE  79.2(g.9) 28.3(0.3) 41.5(0.3) 36.00.4) 79.90.2) 27.5(0.3) 36.3(0.3) 32.8(0.2)
w/EGT  80.3(0.3) 28.8¢0.2) 42804 36305 80502 28703 36702  33.50.1)
w/ GPS 80.90.3) 28.8(0.4) 43.000.3) 36.80.4) 80.703 28804 36.703 33903
w/BAT = 81403 29504 43204 37502 81702 29803 37303 34203

Task 4: Drug Recommendation

Model MIMIC-III MIMIC-1V

AUPRC AUROC Fl-score Jaccard AUPRC AUROC Fl-score Jaccard
GRU 77.0(0_1) 94.4(0_0) 62.3(0.3) 4748(0_‘5) 74.1(0_1) 94.2(0.1) 60.2(0_2) 44.0(0_4)
Transformer 76.10.1)  94.2¢0.0) 62.100.4) 47104y 713001 93401 55.9(0.2) 40.49.1)
RETAIN Tl 94400 63702 48802 74201 94300 60301 45001
GRAM 76701 94201 62903 47903 4302 94201 6010 4530
Deepr 74.3(().1) 93.7({”)) 60.3((]‘4) 4447(0_3) 73.7(0_1) 94.2((]‘1) 59.1(0_4) 43.8(04)
StageNet T4.40.1) 93.0(0.1) 61.4(0_3) 45.8(0.4) 74.4(0_1) 94.2(0_0) 60.2(0.3) 45.4(0.9)
SafeDrug 68.1(0_3) 91.0(0_1) 46‘7(04) 31‘7(0_3) 66‘4(0_5> 91‘8(0_2) 56.2(0_4) 44.3(0_3)
MICRON TT4po 946001 63204 48304 Tddor 94301 59308 4410
GAMENet T6.400) 94201 62104 47204 4201 94201 6040q 45303
MoleRec 69.8(4)_1) 92.0(4)_1) 58.1((].1) 4341(0_3) 68.6(0_1) 92.1(0_1) 56.3(0_4) 40.6([)_3)

GRAPHCARE w/ GAT 78.5(().2) 94.8(0(1) 64.4((]‘3) 492(04) 74.7(0_5) 94.4((]‘3) 604(0;) 45.7(0(4)
W/GINE  78.2(1 94701 63604 47903 74803 94601 60.60s 46.10.4
W/ EGT  79.6(02 95.300) 06402 49604 75404 95001 61603 47303
w/GPS 79905 95501 06203 49804 75905 94901 621ps  46.8(.4
w/BAT  80.2(02 95501 66802 49703 77101 95402 63903 4814s

4.2 EXPERIMENTAL RESULTS

As demonstrated in Table 2, GRAPHCARE consistently outperforms existing baselines across all
prediction tasks for both MIMIC-III and MIMIC-IV datasets. For example, when combined with
BAT, GRAPHCARE exceeds StageNet’s best result by +14.3% in AUROC for mortality prediction
on MIMIC-III. Within our GRAPHCARE framework, our proposed BAT GNN consistently performs
the best, underlining the effectiveness of the bi-attention mechanism. In the following, we analyze
the effects of incorporating the personalized KG and our proposed BAT in detail.

4.2.1 EFFECT OF PERSONALIZED KNOWLEDGE GRAPH

Effect of EHR Data Size. To examine the impact of training data volume on model performance,
we conduct a comprehensive experiment where the size of the training data fluctuates between
0.1% and 100% of the original training set, while the validation/testing data remain constant.
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LOS Prediction Drug Recommendation

Performance metrics are averaged over
10 runs, each initiated with a different
random seed. The results, depicted in
Figure 2, suggest that GRAPHCARE ex-
hibits a considerable edge over other

models when confronted with scarce ; - chaw .
training data. For instance, GRAPH- /4 Stagenet '
CARE, despite being trained on a mere ! T e
0.1% of the training data (36 patient R

samples), accomplished an LOS predic- . L. .
tionp acc)urac Cg mparable to tff)e best Figure 2: Performance by EHR training data sizes. Values
Y p on the x-axis indicate % of the entire training data. The dotted

baseline StageNet that trained on 2.0% .
lines separate three ranges: [0.1, 1], [1, 10] and [10, 100] (%).
of the training data (about 720 patient P ges: | L ] [ 1)

samples). A similar pattern appears in drug recommendation tasks. Notably, both GAMENet and
GRAM also show a certain level of resilience against data limitations, likely due to their use of
internal EHR graphs or external ontologies.
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nates how varying sizes of KGs influence the effi- !

cacy of GRAPHCARE. We test GPT-KG (generated ~ °° A 09 _—t

by GPT-4), UMLS-KG (sampled from UMLS), o A 07
and GPT-UMLS-KG (a combination). Key obser- s o 0s e ||
vations include: (1) Across all KGs, as the size ,; el s e ||
ratio of the KG increases, there is a correspond- . e 5GPk 0r e oG
ing uptick in GRAPHCARE’s performance. (2) The - =i PN
amalgamated GPT-UMLS-KG consistently outper- e e w0 m €T e e T
forms the other two KGs. This underscores the Los-F1 Drug Rec. - F1
premise that richer knowledge bases enable more e ! A A
precise clinical predictions. Moreover, it demon-  os S 09 T
strates GPT-KG and UMLS-KG could enricheach o, fea == o~ =&
other with unseen knowledge. (3) The degree ,, =s& e

of KG contribution varies depending on the task e o Py

at hand. Specifically, GPT-KG demonstrates a e | mm i " L _
stronger influence over mortality and LOS predic- - = ook N = Pk
tions compared to UMLS-KG. Conversely, UMLS-  ° = » % » = ° @ e e e

KG edges out in readmission prediction, while Figure 3: Performance by different KG sizes.
both KGs showcase comparable capabilities in We test on three distinct KGs: GPT-KG, UMLS-
drug recommendations. (4) Notably, lower KG ra- KG, and GPT-UMLS-KG. For each, we sample
tios (from 0.1 to 0.5) are associated with larger sub-KGs using varying ratios: [0.0,0.1,0.3,0.5,
standard deviations, which is attributed to the re- 0.7,0.9, 1.0] while ensuring the nodes correspond-
duced likelihood of vital knowledge being encom- ing to EHR medical concepts remain consistent

d within th 1 led sub-K across samples. The distributions are based on 30
passed within the sparsely sampled sub-KGs. runs on the MIMIC-III with different random seeds.

4.2.2 EFFECT OF BI-ATTENTION AUGMENTED GRAPH NEURAL NETWORK

Table 3 provides an in-depth ablation study on the proposed GNN BAT, highlighting the profound
influence of distinct components on the model’s effectiveness.

The data reveals that excluding node-level attention («) results in a general drop in performance
across tasks for both datasets. This downturn is particularly pronounced for the drug recommen-
dation task. Regarding visit-level attention (3), the effects of its absence are more discernible in
the MIMIC-1V dataset. This is likely attributed to MIMIC-IV’s larger average number of visits per
patient, as outlined in Table 1. Given this disparity, the ability to discern between distinct visits
becomes pivotal across all tasks. Moreover, when considering tasks, it’s evident that the RA. task is
particularly vulnerable to adjustments in visit-level attention (/3) and edge weight (wx). This under-
lines the significance of capturing visit-level nuances and inter-entity relationships within the EHR
to ensure precise RA. outcome predictions. Regarding attention initialization (A#tnlnit), it emerges
as a crucial factor in priming the model to be more receptive to relevant clinical insights from the
get-go. Omitting this initialization shows a noticeable decrement in performance, particularly for



Published as a conference paper at ICLR 2024

Table 3: Variant analysis of BAT. We measure AUROC for MT. and RA. prediction, and F1-score for the tasks
of LOS prediction and drug recommendation. «, 8, wr, and Attninit are node-level, visit-level attention, edge

weight, and attention initialization, respectively. We report the average performance of 10 runs for each case.

MIMIC-III MIMIC-1V
Case Variants MT. RA. LOS Drug. MT. RA. LOS Drug.
#0 w/ all 70.3 69.7 37.5 66.8 73.1 68.5 34.2 63.9
#1 w/o « 68‘7“)_6 68.5¢1_2 36.7“)_8 64.6¢2_2 72.2“)_9 67.8“)_7 33.1¢1_1 61.6¢2_3
#2 w/o ﬁ 69.9“),4 68.7¢1.0 37.2“),3 66.5“)‘3 72.1¢1.0 67.0¢1,5 33.5“).7 63.2“),7
#3 w/o WR 69.8“)_5 68.4&1‘3 36.8“)'7 66.31'0‘5 72.9“)2 67.91'0‘6 33.7“)5 63~1¢0.8
#4 w/o Attnilnit 69.5J’0A8 69.2¢U.5 37.2“)3 65.5](1‘3 72-5¢0.6 68.1“)‘4 34.1“),1 62~4J,1A5
#5 w/o #(1,2,3,4) 67.4¢2A9 68.1¢1_6 36‘0i1~5 64~0L2A8 71.7¢1A4 67.5¢1A0 32.9¢1_3 60‘5¢3A4

drug recommendations. This suggests that by guiding initial attention towards potentially influential
nodes in the personalized KG, the model can more adeptly assimilate significant patterns and make
informed predictions.

4.3 INTERPRETABILITY OF GRAPHCARE.
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Figure 4: Example showing a patient’s personalized KG with importance scores (Appendix F) visualized. For
better presentation, we hide the nodes of drugs. The red node represents the patient node. Nodes with higher
scores are @&EKEH and larger. Edges with higher scores are dafker and thicker. Subgraph (a) shows a central area
overview of this personalized KG, and other subgraphs show more details with a focused node highlighted.

Figure 4 showcases an example of a personalized KG for mortality prediction tied to a specific pa-
tient (predicted mortality 1), who was accurately predicted only by our GRAPHCARE method, while
other baselines incorrectly estimated the outcome. In Figure 4a, important nodes and edges con-
tributing to mortality prediction, such as “deadly cancer”, are emphasized with higher importance
scores. This demonstrates the effectiveness of our BAT model in identifying relevant nodes and
edges. Additionally, Figure 4b shows the direct EHR nodes connected to the patient node, enhanc-
ing interpretability of predictions using patient node embedding. Figure 4c and 4d show KG triples
linked to the direct EHR nodes “bronchiectasis” and “pneumonia”. These nodes are connected to
important nodes like “mortality”, “respiratory failure”, “lung cancer”, and “shortness of breath”
indicating their higher weights. In Figure 4e, the “lung cancer” node serves as a common connector
for “bronchiectasis” and “pneumonia”. It is linked to both “mortality” and “deadly cancer”, high-
lighting its significance. Removing this node had a noticeable impact on the model’s performance,
indicating its pivotal role in accurate predictions. This emphasizes the value of comprehensive health
data and considering all potential health factors, no matter how indirectly connected they may seem.

5 CONCLUSION

We presented GRAPHCARE, a framework that builds personalized knowledge graphs for enhanced
healthcare predictions. Empirical studies show its dominance over baselines in various tasks on two
datasets. With its robustness to limited data and scalability with KG size, GRAPHCARE promises
significant potential in healthcare. We discuss ethics, limitations, and risks in Appendix A. Our code
is available at https://github.com/pat-jj/GraphCare.
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A ETHICS, LIMITATIONS, AND RISKS

In this study, we introduce a novel framework, GRAPHCARE, which generates knowledge graphs
(KGs) by leveraging relational knowledge from large language models (LLMs) and extracting infor-
mation from existing KGs. This methodology is designed to provide an advanced tool for healthcare
prediction tasks, enhancing their accuracy and interpretability. However, the ethical considerations
associated with our approach warrant careful attention. Previous research has shown that LLMs
may encode biases related to race, gender, and other demographic attributes (Sheng et al., 2020;
Weidinger et al., 2021). Furthermore, they may potentially generate toxic outputs (Gehman et al.,
2020). Such biases and toxicity could inadvertently influence the content of the knowledge graphs
generated by our proposed GRAPHCARE, which relies on these LLMs for information extraction.
Furthermore, the issue of privacy has emerged as a paramount concern associated with LLM usage
(Lund & Wang, 2023).

We explain the limitations of GRAPHCARE and describe the measures we have implemented to
counteract or mitigate these ethical concerns as follows.

A.1 PREVENTING TOXIC BEHAVIORS AND ENSURING PATIENT PRIVACY

Primarily, the LLM within GRAPHCARE is exclusively utilized to extract knowledge associated
with medical concepts. This focused usage drastically reduces the chances of inheriting wider so-
cial biases or manifesting toxic behaviors intrinsic to the parent LLMs. Furthermore, we ensure
that no patient data is introduced into any open-source software. This measure fortifies patient con-
fidentiality and negates the possibility of injecting individual biases into the knowledge graphs. This
commitment is further elucidated in Figure 5.

| Data Preparation Stage (no patient data used) |

Conditions Procedures Drugs
(e.g., ICDICM) (e.g., ICD9PROC) (e.g., ATC)
Medical “fever” “cough” ... “injection” “Ibuprofen”

concepts I | | | | | |

LLM Prompting

Concept-
wise Graph

Knowledge graph is stored for each medical concept

| Local Model Training Stage (no LLM used) |

Compose the patient’s

Query the graph storage p alized knowledge graph Training

with medjcal concepts

5@
Patient Data

Figure 5: High-level View of GRAPHCARE for Clarification on Ethical Considerations. GRAPHCARE
consists of two general stages: data preparation and local model training. During data preparation, the LLM
solely extracts knowledge graphs associated with medical concepts, without accessing any patient’s data. At
the local model training stage, personalized knowledge graphs for patients are constructed using the knowledge
graphs corresponding to medical concepts found in the patient’s EHR, without any engagement of the LLM. A
local graph storage serves as both the repository for the procured medical concept-wise KGs and the mechanism
for querying KGs for personalized KG compositions.
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A.2 COUNTERACTING THE ADVERSE EFFECTS OF LLM HALLUCINATIONS

The predictive efficacy of GRAPHCARE is intrinsically tied to the veracity of knowledge graph
triples sourced from LLMs. Hence, hallucinations within LLMs can detrimentally skew the per-
formance of the model. To counterbalance this, we collaborate with a medical professional (MD)
to scrutinize the accuracy of LLM-derived triples and expunged content that might be detrimen-
tal (further details are provided in Appendix D.1). Leveraging domain expert knowledge on triple
evaluation and selection greatly minimizes the negative impacts of LLM hallucinations, ensuring a
high-quality knowledge probing from LLM.

A.3 APPLICATION

It’s important to emphasize that GRAPHCARE is primarily intended for research purposes. This
means that while it offers insights and can provide valuable information, it has not been certified
or endorsed for clinical or diagnostic use. Any implementation or interpretation of GRAPHCARE
should be undertaken with the clear understanding of its experimental nature.

While GRAPHCARE serves as an advanced tool for healthcare prediction tasks, it should not replace
or undermine the expertise of medical professionals. We strongly advise against relying solely on
its predictions for healthcare decisions. Medical doctors possess extensive training and clinical
experience, and their judgment should always be prioritized over automated systems. Patients and
healthcare providers should use the information from GRAPHCARE as supplementary and should
always consult with healthcare professionals before making any medical decisions.

B EHR DATASET PROCESSING

In this paper, we use MIMIC-III and MIMIC-IV datasets. Both datasets are under PhysioNet Cre-
dentialed Health Data License 1.5.0° We employ PyHealth (Yang et al., 2023a) to process these
two datasets. PyHealth has an EHR dataset pre-processing pipeline that standardizes the datasets,
organizing each patient’s data into several visits, where each visit contains unique and specified fea-
ture lists. For our experiments, we create feature lists composed of conditions and procedures for
Length of Stay (LOS) prediction and drug recommendations. For the prediction tasks of mortality
and readmission, we include the medication (drug) list in addition to the condition and procedure
lists.

Subsequent to the parsing of the datasets, PyHealth also enables the mapping of medical concepts
across various coding systems using the provided code maps. The involved coding systems in this
process are ICD-93, ICD-10*3, CCS®, NDC” and ATC8. In our experiment, we convert 11,736 ICD-
9-CM codes and 72,446 ICD-10-CM codes into 285 CCS-CM codes to capture condition concepts.
Similarly, we map 4,670 ICD-9-PROC codes (a part of ICD-9-CM for procedure coding) and 79,758
ICD-10-PCS codes to 231 CCS-PROC codes for procedure concepts. For drug concepts, we convert
1,143,020 NDC codes into 269 level-3 ATC codes. This mapping process enhances the training
speed and predictive performance of the model by reducing the granularity of medical concepts.

C IMPLEMENTATION DETAILS

In this section, we present the implementation details of GRAPHCARE, aligning it closely with the
methodology described in Section 3, which improves reproducibility and clarity.

2https://physionet.org/content/mimiciii/view-license/1.4/
*https://www.cdc.gov/nchs/icd/icd9cm. htm
*nttps://www.cms.gov/medicare/icd-10/2023-icd-10-cm
Shttps://www.cms.gov/medicare/icd-10/2023-icd-10-pcs
*https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs. jsp
"https://www.accessdata.fda.gov/scripts/cder/ndc/index.cfm
$https://www.who.int/tools/atc-ddd-toolkit/atc-classification
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C.1 IMPLEMENTATION DETAILS OF STEP 1 (§3.1): CONCEPT-SPECIFIC KG GENERATION

Medical concepts c, p, and d. After the EHR data preprocessing illustrated in Appendix B, we
have 285 conditions (|c| = 285), 231 procedures (|p| = 231), and 269 drugs (|d| = 269).

LLM-based KG extraction. We detail this process in Appendix D.1.
Subgraph sampling from existing KGs. We detail this process in Appendix D.2.

The hyperparameter studies regarding (1) LLM prompting times ¥, and (2) x hops from the source
entity are showcased in Table 6, 7, and 8.

Node and Edge Clustering. To analyze the global graph GG, we obtain the word embeddings for
each node and edge. These embeddings have 1536 dimensions and are sourced from the second-
generation GPT-3 model, specifically the t ext —embedding-ada-002°). The model will output
a single vector embedding of the input text regardless of the number of tokens it contains. We use
Scikit-learn 1.2.1 (Pedregosa et al., 2011) to implement agglomerative clustering. We detail the
hyperparameter study (for distance threshold ¢) of clustering in Appendix G.1. = 0.15 was chosen
based on the study.

C.2 IMPLEMENTATION DETAILS OF STEP 2 (§3.2): PERSONALIZED KG COMPOSITION

Visit Processing: Iterate through each visit in the patient’s EHR. For each visit visit;, we have the
medical concepts {concept;,, concept;y, ... }.

Inter-Visit Relationships: Identify and establish connections between nodes across different visits

if they share a relationship in the global graph G'. These connections are represented by the set
Einter, highlighting the continuity and progression in the patient’s medical history.

Final Personalized KG Assembly: Combine all the integrated concept-specific KGs, the patient
node P, and the inter-visit relationships to form the final personalized KG for the patient, Gpq(s)-
This KG encapsulates the entire medical history of the patient, structured in a cohesive and inter-
connected manner.

C.3 IMPLEMENTATION DETAILS OF STEP 3 (§3.3): BAT GNN

Attention Initialization. Keywords we experimented for attention initialization are in Table 4

Table 4: Keyword candidates we attempted for attention initialization. We highlight the keywords we finally
used in the experiments.

Task

Conditions

Procedures

Drugs

MT.

terminal condition,
critical diagnosis,
end-stage,
life-threatening

critical interventions,
life-saving measures,
resuscitation,

emergency procedure

palliative medication,
end-of-life drugs,

life support drugs,
emergency meds

RA. chronic ailment, follow-up procedure, maintenance medication,
postoperative complication, secondary intervention, postoperative drugs,
recurrent, post-treatment, treatment continuation,
readmission-prone treatment review follow-up meds

LOS  acute condition, major surgery, -
severe diagnosis, intensive procedure,
long-term ailment, long recovery intervention,
extended-care diagnosis extended hospitalization

Drug. chronic disease, diagnostic procedure, -

acute diagnosis,
symptomatic,
treatable condition

treatment procedure,
medical intervention,
drug-indicative procedure

*https://openai.com/blog/new—and-improved-embedding-model
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Pateint Representations Study. We detail this in Appendix E.1. Based on the results, we use joint
representation in experiments.

Hyperparameter Study. We detail this in Appendix G.2.
C.4 EXPERIMENT ENVIRONMENTS

Hardware. All experiments are conducted on a machine equipped with two AMD EPYC 7513
32-Core Processors, 528GB RAM, eight NVIDIA RTX A6000 GPUs, and CUDA 11.7.

Software. We implement GRAPHCARE using Python 3.8.13, PyTorch 1.12.0 (Paszke et al., 2019),
and PyTorch Geometric 2.3.0 (Fey & Lenssen, 2019). We employ PyHealth (Yang et al., 2023a) to
pre-process the EHR data (illustrated in Appendix B). We utilize medical code mappings from ICD-
(9/10) to CCS for conditions and procedures, from NDC to ATC (level-3) for drugs. The mapping
files are provided by AHRQ (Elixhauser A, 2016) and BioPortal (Noy et al., 2009). We use Gephi
(Bastian et al., 2009) for knowledge graph visualization.

C.5 TRAINING DETAILS

General Setting. We split the dataset by 8:1:1 for training/validation/testing data, and we use Adam
(Kingma & Ba, 2014) as the optimizer. Based on our hyperparameter study in Appendix G.2, we
set learning rate le-5, weight decay le-5, batch size 4, and hidden dimension 128. All models are
trained via 50 epochs over all patient samples, and the early stopping strategy monitored by AUROC
with 10 epochs is applied.

Features for Different Tasks. We take conditions and procedures as the features for the length-
of-stay prediction and drug recommendation and additionally take drugs as features for mortality
prediction and readmission prediction.

Baseline Models. We use PyHealth (Yang et al., 2023a) pipeline to load the implemented models
with their best reported settings. For GRAPHCARE w/ GPS (Rampaések et al. (2022)), we apply
LapPE (Kreuzer et al. (2021)) as the Laplacian positional encoding, GINE (Hu et al. (2019)) as the
local message-passing mechanism, and Transformer (Vaswani et al. (2017)) for the global attention.

D KNOWLEDGE GRAPH CONSTRUCTION

In this section, we illustrate our solution to construct a biomedical knowledge graph (KG) for each
medical concept by prompting from a large language model (LLM) and sampling a subgraph from
a well-established KG.

D.1 PROMPTING KG FROM LARGE LANGUAGE MODEL

GPT-KG. Figure 6 showcases a carefully designed prompt for the retrieval of a biomedical KG from
a generative LLM. The main goal of this approach is to leverage the extensive knowledge embedded
in the LLM to extract meaningful triples consisting of two entities and a relationship.

In our strategy, we begin with a prompt related to a medical condition, a procedure, or a drug.
The LLM is then tasked with generating a list of updates that extrapolate as many relation-
ships as possible from this prompt. Each update is a triple following the format [ENTITY 1,
RELATIONSHIP, ENTITY 2] where ENTITY 1 and ENTITY 2 should be nouns. Our goal
is to generate these triples in both breadth (a wide variety of entities and relationships related to the
initial term) and depth (following chains of relationships to discover new entities and relationships).
The process continues until we obtain a list with 100 KG triples. This prompting-based approach
provides a structured, interconnected knowledge graph from the unstructured knowledge embedded
in the LLM, which proves especially beneficial for personalized KG generation.

In the experiment, we iterate through the vocabulary of conditions, procedures, and drugs contained
in CCS and ATC (level-3) with their code-name mappings'®!': M : e < e where e® is the

Ohttps://www.hcup-us.ahrq.gov/toolssoftware/ccs
"https://bioportal.bicontology.org/ontologies/ATC
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def ehr_kg_prompting(term, ):

if == "condition":

example = \

Example:

prompt: systemic lupus erythematosus

updates: [[systemic lupus erythematosus, is an, autoimmune condition], [systemic
lupus erythematosus, may cause, nephritis], [anti-nuclear antigen, is a test for,
systemic lupus erythematosus], [systemic lupus erythematosus, is treated with,
steroids], [methylprednisolone, is a, steroid]]

elif == "procedure":

example = \

Example:

prompt: endoscopy

updates: [[endoscopy, is a, medical procedurel, [endoscopy, used for, diagnosisl],
[endoscopic biopsy, is a type of, endoscopyl, [endoscopic biopsy, can detect,
ulcers]]

elif == "drug":

example = \

Example:

prompt: iobenzamic acid

updates: [[iobenzamic acid, is a, drugl, [iobenzamic acid, may have, side effects],
[side effects, can include, nauseal, [iobenzamic acid, used as, X-ray contrast
agent], [iobenzamic acid, formula, C16H13I3N203]]

unn

gpt = GPT()
response = gpt.chat(
v

Given a prompt (a medical condition/procedure/drug), extrapolate as many
relationships as possible of it and provide a list of updates.

The relationships should be helpful for healthcare prediction (e.g., drug
recommendation, mortality prediction, readmission prediction ..)

Each update should be exactly in format of [ENTITY 1, RELATIONSHIP, ENTITY 2]. The
relationship is directed, so the order matters.

Both ENTITY 1 and ENTITY 2 should be noun.

Any element in [ENTITY 1, RELATIONSHIP, ENTITY 2] should be conclusive, make it as
short as possible.

Do this in both breadth and depth. Expand [ENTITY 1, RELATIONSHIP, ENTITY 2] until
the size reaches 100.

{example}

prompt: {term}
updates:

)

# Process the response to triples
= parse(response)

return

Figure 6: Prompting knowledge graphs for medical concepts (EHR terms) from GPT.
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corresponding name for the medical code e. For each term e

, we input it with its category (either
“condition”, ’procedure” or “drug”) to the function ehr_kg_prompting () shown in Figure 6 y
times and compose the graphs of all runs into one, i.e., G¢ = (G U G5 U ... U GY), to obtain more

comprehensive graphs.

Table 5: Expert Evaluation of Knowledge Graph Triples for Medical Concepts. We assess the quality
of triples for randomly selected 50 medical concepts from each coding system (vocabulary). Four metrics:
breadth, depth, faithfulness, and bias are used for the evaluation, each scored on a 1-5 scale. A higher score in-
dicates better performance. Breadth signifies the variety of triples in which the target medical concept features
as an entity. Depth represents the degree of interconnectedness of triples (e.g., given triple ¢1 : (e1, 71, e2) and
to : (e2,72,e3), t2 is an extension of ¢1). Faithfulness quantifies the overall factual accuracy of the triples. We
present both the average score and standard deviation for each metric in our evaluation.

Concept type Conditions Procedures Drugs Concept type Conditions Procedures Drugs

Vocabulary CCSCM  CCSPROC  ATC-3 Vocabulary CCSCM  CCSPROC  ATC-3

Breadth 42404 3.84+03 4.0+£0.2 Breadth 4.6+0.2 45403 4.6+0.2

Depth 4.0+£0.3 39+02 33+£04 Depth 3.8+0.3 39+05 41+£04

Faithfulness 4.54+0.3 47403 45+0.2  Faithfulness 4.84+0.1 49401 46+£0.1
(a) Evaluation of GPT-KG. (b) Evaluation of GPT-UMLS-KG.

We engaged a medical professional collaborating with us to evaluate the KG triples produced by
LLM. The outcomes of this evaluation are presented in Table 5a. As evidenced by the results, the
triples generated by GPT-4 exhibit high quality in terms of their breadth, depth, and faithfulness.

Furthermore, after clustering of nodes / edges with § = 0.15, we futher eliminated 27 out of the
4,626 nodes (clusters) due to their inclusion of inaccurate or potential misleading content, with
the help from medical professionals. This measure resulted in the removal of 3,393 KG triples,
addressing potential ethical concerns. We also asked medical professionals for their help to remove
triples that contain inaccurate, biased, or misleading information, which resulted in the removal of
4,539 triples. This triple filtering process addresses the potential echical concerns.

As a result, we obtained 65,993 non-redundant KG triples with 48,914 unique entities and 8,067
unique relations when we set Y = 3, as shown in Table 6. For future work, we will explore to
use this prompting-based method to construct more task-specific KGs, aiming at providing more
relevant triples especially beneficial to a certain prediction.

D.2 SAMPLING SUBGRAPH FROM EXISTING KG

UMLS-KG. To extract subgraphs for medical concepts from existing well-established biomedical
KG like UMLS (Bodenreider, 2004), we take the following steps:

1. We use text-embedding—-ada-002 to retrieve the word embedding of all entities in
the UMLS KG and all concepts contained in the target medical coding system (CCS-CM,
CCS-PROC in our case) for conditions and procedures. For drugs (ATC-3), we use the
existing ATC-to-UMLS_CUI mapping provided by BioPortal'?.

2. For each medical concept, we search the entity in UMLS that with the most similar word
embeeding, and create a mapping from CCS/ATC concept names to those entities.

3. For each UMLS entity in this mapping, we apply subgraph sampling described in the fol-
lowing Algorithm 1.

In Algorithm 1. We have four arguments - medical concept e (in CCS/ATC), source KG G (UMLYS),
hop limit x and window size €. In brief, we search all the triples containing e for the first hop and
search e triples containing the other entity for each previous-hop triple. When setting x = 2 and
€ = 5, we obtain 265,587 non-redundant KG triples with 137,845 unique entities and 94 unique
relations, as shown in Table 6.

Zhttps://bioportal.biocontology.org/ontologies
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Algorithm 1 Subgraph Sampling

1: procedure SUBGRAPHS AMPLING(medical concept e, KG G, hop limit s, window size €)
2: Initialize an empty list () and an empty graph Ggub( k) = (Vsub( k)’ Qub( K))

3 Add e to Q

4 V:ub(n) sub U {6}

5: forizltomdo

6 Initialize an empty list Qyext

7 for all ent € Q do

8

if i = 1 then
9: Retrieve all triples (ent, rel, ent’) or (ent’, rel, ent) from G
10: else
11: Randomly retrieve e triples (ent, rel, ent’) or (ent’, rel, ent) from G
12: end if
13: Add retrieved triples to Esub(n
14: Vsub m) € Vsub(n) U {ent'}
15: Add ent’ to Qpex
16: end for
17: Q < Qnext
18: end for

19: return Gsub ()
20: end procedure

Table 6: Statistics of GPT-KG (generated through prompting §D.1) and UMLS-KG (extracted through
subgraph sampling §D.2). We report the data in the format of (# unique nodes, # unique edges, # triples).

KG Hyperparameter Condition Procedure Drug Total

GPT-KG x=3 (17780, 3633, 22421) (9636, 1991, 10429) (26922, 4362, 33380) (48914, 8067, 65993)
UMLS-KG k=1 (11895, 40, 17747) (3614, 41, 4158) (6509, 50, 7547) (20466, 66, 29334)
UMLS-KG k=2, e=5 (86143,70, 151294) (68129, 71,98817) (63274, 79, 87267) (137845, 94, 265587)

GPT-UMLS-KG. By integrating concept-specific KGs produced by GPT-4 with those from UMLS,
we constructed the GPT-UMLS-KG. The expert assessment of this amalgamated KG is presented in
Table 5b. Notably, compared to GPT-KG, there is an enhancement in quality across all dimensions,
consistent with our observations in Figure 3.

D.3 KNOWLEDGE GRAPHS AFTER CLUSTERING

Table 7: Statistics of GPT-KG, UMLS-KG, and GPT-UMLS-KG after node/edge clustering.

KG Hyperparameter # Nodes # Edges # Triples
GPT-KG x=3 4599 752 31325
UMLS-KG k=1 3053 40 12421
UMLS-KG k=2, e=5 10805 54 81073
GPT-UMLS-KG =3, k=1 6355 774 40496
GPT-UMLS-KG =3, k=2, e=5 12284 785 104460

In Table 7, we present the KGs following the node/edge clustering process detailed in §3.1, with a
set value of § = 0.15 (as optimized in Appendix G.1). We note a notably low triple union between
GPT-KG and UMLS-KG. This suggests that the knowledge from one can significantly complement
the other. Consequently, GPT-UMLS-KG is poised to outperform either of the two individual KGs.
This inference is empirically supported by our results displayed in Figure 3.

D.4 ANALYSIS ON GPT-UMLS-KG

Table 8 illustrates the impact of the two GPT-UMLS-KG variants on enhancing the performance
of EHR predictions. It is evident that the performance significantly improves when x = 1, while
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Table 8: Comparison of the performance gain from the GPT-UMLS-KG with 1-hop and 2-hop concept-specific
subgraph sampled from UMLS.

MIMIC-III MIMIC-IV
KG MT. RA. LOS Drug. MT. RA. LOS Drug.
GPT-UMLS-KG (y=3, r=1) 703 697 375 668 731 685 342 639

GPT-UMLS-KG (x=3, k=2,e=5) 684 672 354 634 726 66.7 334 622

the performance with £ = 2 sometimes even fails to surpass the baseline performance without any
external knowledge (e.g. outperformed by RETAIN on MIMIC-III drug recommendation task), as
we compare the performance to Table 2. Possible explanations for this outcome:

* The constrained window size (¢) increases the randomness of the triples sampled after the
initial 1-hop, resulting in a proliferation of isolated nodes and the formation of isolated
clusters. This situation poses a considerable challenge for the GRAPHCARE model to ef-
fectively learn from the knowledge graph.

* The increased randomness is very likely to exclude critical triples originating from a source
node, leading to the propagation of irrelevant knowledge triples (noise) that ultimately
detrimentally affect the model’s performance.

Therefore, developing a more effective method to sample more useful triples from existing KGs
becomes one of our future works.

E “PATIENT AS A GRAPH” AND “PATIENT AS A NODE”

Patient as a Graph Patient as a Node
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Figure 7: Comparison of two patient representations in GRAPHCARE. Left: patient as a graph covering the
information in all nodes. Right: patient as a node only connected to the nodes of the direct medical codes (the
larger ones) recorded in the EHR dataset. x; denotes the j-th for patient 7. v; ; x denotes the k-th node of the
J-th visit for patient 7. The connections among nodes are either inner-visit or across-visit.

Figure 7 presents two different patient representations. When viewed as a graph, the patient rep-
resentation aims to encapsulate a comprehensive summary of all nodes, thus providing a broad
overview of information. However, this approach may also include more noise due to its extensive
scope. In contrast, when a patient is represented as a node, the information is aggregated solely from
directly corresponding EHR nodes. This approach ensures a precise match with the patient’s EHR
data, offering a more accurate, albeit narrower, representation. Although this method provides a
more focused insight, it also inevitably discards information from other nodes, thus potentially los-
ing broader contextual data. Therefore, the choice between these two representations hinges on the
balance between precision and the extent of information required. In our experiment, we introduce
a joint embedding composed by concatenating those two embeddings, as a balanced solution.
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Figure 8: Performance of healthcare predictions with three types of patient representations (§3.3): (1)
graph - patient graph embedding obtained through mean pooling of node embedding; (2) node - patient node
embedding connected to the direct EHR node; (3) joint - embedding concatenated by (1) and (2). We use
GPT-KG to perform this analysis.

E.1 PATIENT REPRESENTATION LEARNING.

We further discuss the performance of different patient representations in GRAPHCARE, as depicted
in Figure 8. We calculate the average over 20 independent runs for each type of patient representation
and for each task. Our observations reveal that the patient node embedding presents more stability
as it is computed by averaging the direct EHR nodes. These nodes are rich in precise information,
thereby reducing noise, but they offer limited global information across the graph. On the other
hand, patient graph embedding consistently exhibits the most significant variance, with the largest
distance observed between the maximum and minimum outliers. Despite capturing a broader scope
of information, the graph embedding performs less effectively due to the increased noise. This is
attributed to its derivation method that averages all node embeddings within a patient’s personalized
KG, inherently incorporating a more diverse and complex set of information. The joint embedding
operates as a balanced compromise between the node and graph embeddings. It allows GRAPHCARE
to learn from both local and global information. Despite the increased noise, the joint embedding
provides an enriched context that improves the model’s understanding and prediction capabilities.

F IMPORTANCE SCORE

To provide insights into the GRAPHCARE’s decision-making process, we propose an interpretation
method that computes the importance scores for the entities and relationships in the personalized
knowledge graph. We first compute the entity importance scores as the sum of the product of node-
level attention weights a; ; 1 and visit-level attention weights ; ; (obtained by Eq (3)) over all visits,

and relationship importance scores as the edge weights w(l)< k. k,) summed over all GNN layers:

L-1 J

ent Z Z B(l) 7] . ge’}c’k/ Z WR ) (6)

=1 j=1

where I$% is the importance score of entity & and Ire';C « 1s the importance score of the relation-
ship between entities k£ and &’. To identify the most crucial entities and relationships, we can also
compute the top K entities and relationships with the highest importance scores, denoted as s in
descending order of their importance:

Te ={s|sel™ s>I"’“K)}, 7:‘}1(:{s|561”1 s>IﬂK 1, @)
where I ) and I“"( K) are the K'-th highest importance scores for entities and relationships, re-
spectlvely, % and Trel represent the top K entities and relationships for patient ¢, respectively.

By analyzmg the top entities and relationships, we can gain a better understanding of the model’s
decision-making process and identify the most influential factors in its predictions.

G HYPER-PARAMETER TUNING

Given that our GRAPHCARE utilizes personalized knowledge graphs (KGs) as inputs for health-
care predictions, the representativeness of the constructed graphs becomes critical in the prediction
process. The quality and structure of these KGs can significantly influence the performance of
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our predictive model, underlining the importance of thoroughly investigating the hyperparameters
involved in their construction and subsequent analysis via the BAT GNN model. Therefore, we
meticulously examine both the hyperparameters for KG node/edge clustering and those for our pro-
posed BAT Graph Neural Network (GNN) model. We use GPT-KG as the external knowledge and
use validation set of EHR data for a more efficient parameter searching.

G.1 HYPER-PARAMETERS FOR CLUSTERING

Table 9: Clustering hyperparameter tuning. Tested on GPT-KG.

Mortality Readmission

Threshold 0 # Cluster  \y;ppc AUROC  AUPRC ~ AUROC
0.05 29681 12.2 61.3 65.5 63.5
0.1 14662 13.3 65.2 70.0 67.4
0.15 4599 15.7 69.6 72.6 68.9
0.2 883 13.9 67.8 67.8 66.7

LOS Drug Rec.

Threshold §  # Cluster Fl-score AUROC Fl-score AUROC
0.05 15094 32.8 77.4 62.1 94.2
0.1 7941 34.7 79.7 64.8 94.5
0.15 2755 36.6 80.2 65.2 95.1
0.2 589 34.1 77.9 63.8 94.3

6 =0.05 6=0.15 6 =0.20

Example 1: “fever and night sweats”: Example 2: “brain tumors”:
§=0.05| fever and night sweats, night sweats 6 =0.05 l brain tumors, brain tumor, brain cancer
(size:2) (size:3)
fever and night sweats, night sweats, sweat test, hyperhidrosis brain tumors, brain tumor, glioma, meningioma
§—0.15 and hypohidrosis, decreased sweating, hyperhidrosis, treat oligodendroglioma, bralv cancer,‘nerve ‘tumor, vephroh}astoma
- excessive sweating, excessive sweating, anhidrosis, sweating 6=0.15 med“;1°b135t°T?'b;e“FUflbr°mat°515' of devel?”i;g b;§1zltumor5
(size:16) | disorders, treat sweating disorders, treat hyperhidrosis, heat (size:21) | Chendymoma, glicblastona, astrocytoma, especially glioblastona,
and sweating, sweating, diarrhea or excessive sweating brain cancer originating in ependymal cells, brain cancer
originating in star-shaped cells, brain cancer originating in
oligodendrocytes, tumors in the nervous system, neuroblastoma
fever and night sweats, night sweats, excessive moisture, dry
mouth and mouth diseases, Xerostomia (dry mouth), high humidity,

oral dryness, cold air or humidity, cold air and humidity
humidification, sweat test, drying out, dry eye symptoms
combined with a humidifier, drooling, dry mouth if overused
used for dry mouth, relieve dry skin, hyperhidrosis and
hypohidrosis, add moisture to the air, mouth dryness, moisture

brain tumors, bone metastasis from sarcoma, ductal carcinoma in
situ, bone metastasis from prostate cancer, malignant
transformation, prevention of uterine cancer, bone metastasis
from gastrointestinal stromal tumors (GISTs), secondary
malignancy treatment, risk factors for lung cancer, nonmalignant

humidifier, dry mouth and thirst, the skin dry, dry mouth and breast conditions, cancer of kidney, breast cancer risk
0 =10.20 | throat, decreased sweating, hyperhidrosis, treat excessive § = (.20 | assessment, benign neoplasm of uterus, noncancerous growth
(size:s9) | Sweating, xerostomia, in dry skin treatments, a humidifier, used (size:624) schwannoma, cancer patients and survivors, ureter cancer
for dry eye treatment, excessive sweating, retain moisture, dry : malignant tumors

skin, throat dryness, reduce dry mouth symptoms, dryness, dry
mouth, anhidrosis, dry skin treatments, skin dryness, sweating
disorders, for dry mouth, treat drooling, treat sweating
disorders, treat hyperhidrosis, dry eyes, treat dry mouth, heat
and sweating, dry the skin, sweating, to prevent excess moisture
in affected areas, dryness or flaking of the skin, dryness in
eyes, diarrhea or excessive sweating, humidity and temperature

spread of cancer to bones, risk of endometrial cancer, treat
breast cancer, cure cancer, certain cancer treatments,
metastases, killing cancer cells, an increased risk of prostate
cancer, treating cancer, breast cancer prevention, detection of
ovarian tumors, cancer management

Figure 9: Comparison between the node clustering over GPT-KG and UMLS-KG. Above: we random
sample 80 clusters with each distance threshold ¢ applied. Each figure visually represents the clustering of
words, with color consistency denoting membership to the same cluster. Below: we provide two examples of
the clusters with different 0’s for the given words (“fever and night sweats” and “brain tumors”).

Table 9 presents the performance of GRAPHCARE across four tasks on the MIMIC-III dataset, with
varying agglomerative clustering distance thresholds 6 € {0.05,0.1,0.15,0.2}. We evaluate the

26



Published as a conference paper at ICLR 2024

performance with the GPT-KG. The results reveal that the model achieves optimal performance
when § = 0.15. This outcome can be attributed to the following reasons: when ¢ is small, nodes
of high similarity may be incorrectly classified as distinct, complicating the learning process for the
model. Conversely, if ¢ is large, dissimilar nodes could be inaccurately clustered together, which
further challenges the training process. Examples in Figure 9 further demonstrate our findings.

The examples presented in Figure 9 illustrate the significant influence of the distance threshold § on
the semantic coherence of the clusters. When § = 0.20, the clusters tend to incorporate words that
aren’t strongly semantically related to the given word. For instance, “humidity” is inappropriately
grouped with “fever and night sweats”, and “breast cancer” is incorrectly associated with “brain
tumors”. Conversely, when § = 0.05, the restrictive threshold fails to capture several words closely
related to the given word, such as the absence of “heat and sweating” in the cluster for “fever and
night sweats”, and “glioma” for “brain tumors”.

Striking an optimal balance, when § = 0.15, the resulting clusters exhibit a desirable semantic
coherence. Most words within these clusters are meaningfully related to the given word. This
observation underlines the importance of selecting an appropriate § value to ensure the extraction
of semantically consistent and comprehensive clusters. This is a pivotal step, as the quality of
these clusters has a direct impact on subsequent healthcare prediction tasks, which rely on the KG
constructed through this process.

G.2 HYPER-PARAMETERS FOR THE BI-ATTENTION GNN

Batch Size Hidden Dimension Learning Rate
. .
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Figure 10: Hyper-parameter tuning. We tune each parameter while keeping other hyperparameters fixed
as their default values (batch size: 4, hidden dimension: 128, learning rate: le-5, weight decay: le-5, decay
rate: 0.01, layers: 1). Score denotes the normalized AUROC in the range of [0, 1], which shows the relative
performance of a specific setting compared to others. The best value of each hyperparameter for each task is
labeled as a star.

Task Batch Size Hidden Dimension Learning Rate Weight Decay Decay Rate Layers
Mortality 4 128 le-5 le-5 0.01 1
Readmission 4 128 le-5 le-5 0.01 2
Length-Of-Stay (LOS) 4 128 le-5 le-5 0.03 2
Drug Recommendation 4 128 le-5 le-5 0.03 3

Table 10: Hyper-parameters for the BAT GNN model for different tasks.

For our proposed BAT GNN we tune the following hyper-parameters: batch size in {4, 16, 32, 64},
hidden dimension in {128, 256, 512}, learning rate in {1le-3, le-4, le-5}, weight decay in {le-3,
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le-4, 1e-5}, decay rate + in {0.01, 0.02, 0.03, 0.04} and number of layers L in {1, 2, 3, 4}. We
show the tuning detail in Figure 10. The hyper-parameters employed throughout the experiments
presented in this paper are consolidated and presented in Table 10. For the sake of maintaining a
more fair and balanced comparison, we align the batch size, hidden dimension, learning rate, and
weight decay with those of the baseline models.

H NOTATION TABLE

For clarity, we have attached a notation table here, describing all symbols used in the main paper.

Table 11: Notations and Descriptions in GRAPHCARE

Notation

Description

Notations in Step 1 (§3.1)

e € {c,p,d} A medical concept in {conditions, procedures, drugs}
Ic|, |pl, |d] Sizes of sets of medical concepts
Ge,ye,e° KG, nodes, and edges for each medical concept
[E: ) KG for each medical concept, obtained through prompting LLM Y times
VELM(X>, ELM( ) Nodes and edges in the KG obtained through prompting LLM x times (Appendix D.1)
b ) r-hop subgraph for a concept, obtained thourgh subgraph sampling (Appendix D.2)
V:hb(x,)’ 5:@(%) Nodes and edges in the x-hop subgraph obtained thourgh subgraph sampling
Cy,Cse Clustering mappings for nodes and edges
1 Distance threshold of cosine similarity
G, V, & Global graph composed by all concept-specific KGs, and its nodes and edges
awV.e New global graph, nodes and edges after clustering
w Dimension of the word embedding
HY HR? (Initial) node and edge embeddings

Notations in Step 2 (§3.2)
P

Gpat7 Vpat7 gpat
€
Giy
Vi jk
(Vi 4 ijr 1)

inter

Patient node

Personalized KG for a patient

Edge connecting patient node and the node of medical concepts in patient’s EHR
Visit-subgraph for the j-th visit of the patient ¢

The k-th node in the j-th visit of the patient ¢

The edge between the node v; ; . and v; j/

Interconnected edges across visit-subgraphs

Notations in Step 3 (§3.3)

h(kHl) Updated node representation of node % at (I + 1)-th layer of GNN
o Activation function
w® Learnable weight matrix at [-th layer
AGGREGATE" Function to aggregate node representations
b® Bias vector at [-th layer
N (k) Neighbors of node k
h; i~ Hidden embedding of k-th node in j-th visit-subgraph of patient
hi gk ik Hidden embedding of edge between nodes v; ; , and v; j/ps
vs W, Learnable matrices in R%*¢
b,, b, Learnable vectors in R?

v R
he ik Bk o6 0

Input embeddings of the node and edge

q Size of the hidden embedding
ik, Big Node-level and visit-level attention weights
g, Gi Multi-hot vector and matrix for visit-subgraph and patient’s graph
W, wg Learnable parameters for node-level attention and visit-level attention
b..bg Bias vectors for node-level attention and visit-level attention
A Decay coefficient vector
ol Decay rate
Wit Word embedding of a keyword for task-feature pair
Wy, Computed weight for m-th node in global graph G’
hfi)k Node embeddings of final layer for predictions
hZchpm Patient graph embedding
h? Patient node embedding
llfj,k Binary label indicating direct medical concept
zfraph, zpode, z?iomt Logits from different embeddings after MLP
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