Controllable Emphasis with zero data for text-to-speech

Arnaud Joly, Marco Nicolis, Ekaterina Peterova, Alessandro Lombardi, Ammar Abbas,
Arent van Korlaar, Aman Hussain, Parul Sharma, Alexis Moinet, Mateusz Lajszczak,
Penny Karanasou, Antonio Bonafonte, Thomas Drugman, Elena Sokolova

Amazon, United Kingdom

{jarnaud, nicolism}@amazon.co.uk

Abstract

We present a scalable method to produce high quality empha-
sis for text-to-speech (TTS) that does not require recordings or
annotations. Many TTS models include a phoneme duration
model. A simple but effective method to achieve emphasized
speech consists in increasing the predicted duration of the em-
phasised word. We show that this is significantly better than
spectrogram modification techniques improving naturalness by
7.3% and correct testers’ identification of the emphasized word
in a sentence by 40% on a reference female en-US voice. We
show that this technique significantly closes the gap to methods
that require explicit recordings. The method proved to be scal-
able and preferred in all four languages tested (English, Span-
ish, Italian, German), for different voices and multiple speaking
styles.

Index Terms: text-to-speech, emphasis control

1. Introduction

Salient constituents in utterances, typically expressing new in-
formation, are intonationally focalized, bringing them to the
informational fore. While the interaction between informa-
tion structure and its acoustic correlates is nuanced and com-
plex (see [1] for an overview), we follow [2] and much re-
lated work in characterizing narrow focus as affecting a single
word/constituent, as opposed to broad/wide focus affecting the
entire event denoted by the sentence. Consider the following
examples from [2]:

(€))] Who fried an omelet?

What did Damon do to an omelet?
What did Damon fry?

What happened last night?

Damon fried an omelet.

o o o

(1e) is uttered with wide focus when it answers (1d), an out-
of-the-blue context, and with a narrow focus when uttered as
an answer to (la-c): specifically subject focus in (1a), verb fo-
cus in (1b), object focus in (1c). The objective of this paper is
to understand how we can provide “narrow focus” word-level
emphasis controllability for multiple voices and languages (1)
without quality degradation, (2) without annotation, (3) without
recordings and (4) if possible without model re-training.

While context awareness of TTS system has vastly im-
proved (see [3], [4] among others), automated output does not
always assign the correct intonation to cases like (le), given
preceding context . Several commercial TTS system thus al-
low users to tweak the automated output by manually assigning
emphasis (which we use as an umbrella term for narrow or con-
trastive focus) to a selected word.

A popular approach consists in recording a smaller dataset
featuring the desired emphasis effect in addition to the main
‘neutral’ recordings, and having the model learn the particular
prosody associated with the emphasized words (see [5, 6, 7, 8]
for recent examples). We build one such model as our upper
anchor, as detailed in section 2.1

While this technique works well for the speaker for which
’emphasis recordings’ are available, it does not directly scale
to new speakers or different languages. An alternative tech-
nique adopted with varying degrees of success consists in an-
notating existing expressive recordings for emphasis [9, 10,
11]; while this makes recordings not needed, scaling to new
voices/languages is still expensive and time consuming, given
the need for extensive annotation. Automatic annotation [12,
13, 14] could alleviate the issue, but these emphasis detectors
rely on annotated data and there are no evaluation showing the
generalization across datasets. In addition, given differing de-
grees of expressivity in different recordings, this approach is
bound to work unevenly across different voices.

Recent developments in TTS research allow for explicit
control of specific speech features (e.g. duration [15], [16], du-
ration and pitch [17], etc.), thus providing the right tools to ex-
plicitly control acoustic features associated with emphasis in a
voice-agnostic fashion, with no need for targeted recordings or
annotations. Direct modification of speech features is of course
an old idea in the field: for example, techniques based on TD-
PSOLA [18] did allow for direct signal modification, but at a
high cost in terms of quality / signal distortions [19]. A more
modern incarnation of the idea is to directly modify the mel-
spectrogram before vocoding. We adopt the latter approach as
our baseline, as detailed in Section 2.4.

The very detailed study in [2] measured twelve acoustic fea-
tures of focalized and non-focalized constituents and concluded
that the top four dimensions characterizing focalization in En-
glish are as follows: (1) duration + silence (syllables duration
longer for focalized words and silence longer before/after focal-
ized word), (2) mean FO (higher), (3) maximum FO (higher), and
(4) maximum intensity (higher). Other studies have largely con-
firmed the importance of these dimension cross-linguistically
though ranking may differ (see e.g. [1] on German, where
vowel lengthening ranked 8th out of 19 dimensions consid-
ered (unclear whether authors also considered silence associ-
ated with duration changes as in [2]). The issue of whether
all four (or more) dimensions mentioned above are necessary
to trigger the perception of emphasis has received somewhat
marginal attention in the linguistics literature on the topic and
is generally rather inconclusive (see e.g. [20] for the claim that
an f0 rise is neither a necessary nor a sufficient condition for the
perception of focus in Swedish).

The central claim we advance in this paper is that modelling



a duration increase of the phonemes belonging to the word tar-
geted by emphasis (see below for details) suffices in most cases
to trigger the perceptual impression of prominence. We show
in section 3 that when the emphasis is perceptually particularly
convincing, the model has implicitly learned to add silence be-
fore the syllable carrying main stress in the emphasized word,
and {0 in the syllable carrying main stress shows a rising con-
tour. We conclude that while this approach does not work per-
fectly in all cases, it may not be necessary to directly control all
relevant acoustic dimensions to model emphasis, because mod-
els will tend to automatically correlate such dimensions, given
context.

The cross-linguistic impact of this finding is broad: we ex-
pect most European languages to be amenable to the approach
detailed in this paper. We report below positive results for En-
glish, German, Italian, Spanish.

The paper is organized as follows: section 2 introduces our
TTS architecture, the baselines and it details our approach. In
Section 3, we describe our evaluation methodology and empiri-
cal results both on English and other tested languages, providing
cross-linguistic validity to our approach. Section 4 reports our
conclusions and directions for future work.

2. Methods
2.1. Non-attentive TTS architecture

Our base TTS architecture (see Figure 1) is non-attentive with
disjoint modelling of duration and acoustics. It is similar to
DURIAN+ from [21], which is inspired by DURIAN [22] and
FASTSPEECH [23]. The acoustic model aims to predict the mel-
spectrogram sequence associated to a phoneme sequence. It
consists of a TACOTRON2 [24] phomeme encoder, a phoneme-
to-frame upsampler which is smoothed with a Bi(directional)-
LSTM [25]. We train the acoustic model with oracle phoneme
durations, also known as phoneme-to-frame alignment [26], ex-
tracted from the training data. In parallel, we train a duration
model which will predict at inference time the duration of each
phoneme given the phoneme sequence. The duration model as
in [21, 27] consists of a stack of 3 convolution layers with 512
channels, kernel size of 5 and a dropout of 30%, a Bi-LSTM
layer and a linear dense layer. To produce speech, we vocode
the mel-spectrograms frame using a universal vocoder [28].

N N Phoneme
Phonemes Duration predictor —— qyrations

J

Phoneme-to-frame
Upsampler

Phoneme encoder | [~ Decoder [— Mel-spectrogram

Figure 1: Non-attention-based TTS architecture with external
duration modelling.

2.2. Datasets

All datasets mentioned in this paper are internal datasets
recorded for the purpose of TTS voice creation. With the ex-
ception of the two-hour dataset mentioned in the next section
in conjunction with the female-0 voice, no dataset was specifi-
cally recorded with the intention of obtaining emphatic speech.
As pointed out below, different voices differ in terms of overall
expressivity, as a results of the data used to train the model.

2.3. Emphasis through recordings

For our upper-bound system, we augmented our data with about
2hrs of additional recordings (of the female-0 voice), where the
voice talent would read a sentence multiple times, each time
with a different word emphasized. We modified the architec-
ture of the TTS-system described in figure 1, by adding a word-
level binary flag encoder (see Figure 2) both in the duration and
acoustic models. The word level flag is upsampled to phoneme
level: each phoneme in the utterance is thus effectively marked
as either belonging to an emphasized word or not. It is then
concatenated to the phoneme embedding that is the input to
the phoneme encoder. This allows the model to create features
combining both phoneme and emphasis level information. The
model will imitate the provided recordings by modifying the
prosody for the target word, and implicitly for the neighboring
words. We will refer this approach as FLAG-EMPH.
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Figure 2: TTS model with data driven word-level flag emphasis
control with external duration modelling.

2.4. Emphasis through speech mel-spectrogram modifica-
tion

Most TTS generation systems are divided into two stages: (1)
generation of Mel-spectrogram from a phoneme sequence, (2)
creation of the waveform with a vocoder. Our baseline sys-
tem MEL-EMPH produces word level emphasis by modifying
the generated mel-spectrograms before vocoding by increasing
the duration by a factor aune; = 1.25 and by increasing loud-
ness amplitude by a factor Vi,e; = 1.15. These values were
selected empirically as moderate emphasis level.

Increasing the loudness is obtainable by multiplicative scal-
ing Viner of the mel-spectrogram frames. Duration control
is achievable by modifying the upsampling factor from frame
level (80 Hz) to waveform sample-level (24 kHz) [28, 29]. Each
frame consists of 50 ms and are shifted by 12.5ms. For a
speech at 24 kHz, it corresponds to an upsampling by 300.
Modifying this number by a;,e; allows to control the duration.

2.5. Emphasis through model duration control

The proposed approach called Duration Dilatation emphasis
(DD-EMPH) provides emphasis by modifying the duration of
each phoneme before creating a mel-spectrogram. With non-
attentive models, we have extracted the duration modelling
from the mel-spectrogram generation. Our central claim is that
it is possible to produce emphatic speech by lengthening the
duration d,, of each phoneme p by a constant app factor:

dp = [appd,], (D

where [ ] is the ceiling operator, which make sure that length-
ening happened when aopp €]1.0,1.5]. In this paper, we will
use o € {1.25,1.5}. This approach can be applied to any non
attentive TTS system, where the acoustic model is driven by the
duration model.



By modifying the phoneme duration, we force the model
to generate a modified sequence of mel-spectrograms. Our as-
sumption is that it leads perceptually to emphasise the word.
This approach is done only at inference time and does not re-
quire re-training.

We are aware that further improvements are achievable by
carefully differentiating among different phoneme classes (see
[30] for a linguistically grounded approach to duration mod-
elling). However, current duration models appear to be able to
correctly generalize, even in the absence of fine-grained sub-
categorizations. For example, while stops and affricates are
obviously not very good candidates for lengthening, simply
modifying durations in the acoustic model uniformly for all
phonemes does not give rise to any artifacts, plausibly because
the training data obviously does not contain any instance of
"long stop/affricate’ to be learned.

3. Empirical analysis
3.1. Evaluation methodology

We evaluate two aspects of TTS with emphasis control: (1)
the acoustic quality of the generated speech given the empha-
sis control, (2) the adequacy of the control policy, ie whether
naive native listeners can correctly identify which word was the
one emphasized by our models.

We leveraged MUSHRA [31] whenever recordings are
available and preference tests otherwise. For the MUSHRA
test, we asked 24 listeners to “rate the naturalness between 0
and 100 of the presented voices considering that one word in-
dicated in the text should sound emphasized”. For preference
test, we asked at least 50 listeners to pick the voice they prefer
considering one word as indicated in the text should sound em-
phasised”. For these tests, we will show APref. the average
fraction of listeners who voted for DD-EMPH against the other
specified systems.

To assess identifiability, we asked 24 internal high perfor-
mance internal professional listeners to identify which words
are emphasised over 50 utterances, and computed the average
fraction of time that the emphasized word was properly recog-
nized as the most emphasised. Note that the listeners are not
aware of which words are emphasised in this test.

We tested our approaches on a private internal dataset con-
taining 7 voices in 4 locales in 3 styles with amount of record-
ings shown in Table 1. Voices were evaluated with native speak-
ers with questions and utterances in the target language.

Table 1: Available training data per voice.

Voice Recordings [h]

en-US  female-0 exp.
en-US  male-0 conv.

24 h highly expressive
6 h conversational
+ 22h neutral

en-US  female-1 neutral 31 h neutral
en-US  female-1 exp. 12 h highly expressive
es-US  female-2 neutral 29 h neutral
es-US  female-3 neutral 28 h neutral

es-US  female-3 expressive 24 h highly expressive
de-DE  female-4 neutral 44 h neutral
it-IT female-5 conv. 6.6 h conversational

+ 26 h neutral

3.2. Emphasis TTS system based on recordings

In this section, we would like to compare two models: the base-
line MEL-EMPH and FLAG-EMPH, which is based on record-
ings. For this experiments, we recorded 1486 utterances for the
reference voice “female-0 exp.”. It correspond to a bit less of 2
hours of recordings with a single word that is emphasised. The
voice talent is requested to bring narrow and focus emphasis on
the emphasised word.

‘We observe in Figure 3 that having FLAG-EMPH improves
over MEL-EMPH by 12.7% over the MEL-EMPH baseline. We
tried to reduce the amount of data needed to produce high qual-
ity emphasis and observed in Figure 4 that it would need at least
1000 recorded utterances.
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Figure 3: FLAG-EMPH improves naturalness over MEL-EMPH
with p < 0.0001 according to a Friedman test. Average
MUSHRA score are 64.6 for MEL-EMPH, 72.8 for FLAG-
EMPH and 78.1 for Recordings.
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Figure 4: FLAG-EMPH requires at least 1000 utterance to pro-
duce high quality emphasis for the voice female-0-exp. Aver-
age MUSHRA score of FLAG-EMPH are 69.1 for 500 utter-
ances, 71.3 for 1000 utterances and 71.5 for 1486 utterances
with p < 0.0001 according to a Friedman test.

3.3. Dive deep on Emphasis TTS without recordings with
DD-EMPH

For our reference voice “female-0 exp.”, we observe on Fig-
ure 5 that DD-EMPH with app = 1.5 improves emphasis
naturalness over MEL-EMPH by 7.3%. The mel-spectrogram
modifications of MEL-EMPH degrades the quality and prosody
compared to DD-EMPH, which integrates the duration modifi-
cation within the neural TTS architecture. With DD-EMPH, the
acoustic model is able to adapt the prosody based on seen ex-
amples in the training set to match the requested phoneme dura-
tion. Note that for this voice, reducing the factor app to 1.25 of
DD-EMPH to match MEL-EMPH (see Figure 6) still shows 3%
performance improvement for DD-EMPH over MEL-EMPH.
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Figure 5: DD-EMPH with app = 1.5 improves naturalness
over MEL-EMPH with p < 0.0001 according to a Friedman
test. Average MUSHRA score are 65.8 for MEL-EMPH, 70.6
for DD-EMPH and 74 for Recordings.
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Figure 6: DD-EMPH with app = 1.25 improves naturalness
over MEL-EMPH with p < 0.0001 according to a Friedman
test. Average MUSHRA score are 64.2 for MEL-EMPH, 66.1
for DD-EMPH and 79.3 for Recordings.

When comparing to the MUSHRA results presented for
DD-EMPH (see Figure 5) and FLAG-EMPH (see Figure 3),
FLAG-EMPH shows an extra absolute improvement of 5.4% (=
12.7%—17.3%) on top of DD-EMPH. The preference test shown
in Table 2 confirms that if emphasis data are available, mod-
elling emphasis with an encoder significantly improves perfor-
mance.

Table 2: FLAG-EMPH is strongly preferred over DD-EMPH
(aDD = 1.5).

Voice A Pref.
—25.6%

p-value

< 0.001

en-US  female-0 exp.

We observe on Table 3 that word emphasis identifiability
for this voice is improved with DD-EMPH (app = 1.5) over
MEL-EMPH by 40% on the en-US voice. This is due to two
effects: (1) the duration with DD-EMPH is further increase by
a factor 0.25, (2) the acoustic model is adapting the prosody to
match the increased length by making that word stand out more.

We also tried for MEL-EMPH to further increase the word
emphasis naturalness and identifiability by increasing the fac-
tor to mer = 1.5 from 1.25 and loudness to Viep = 1.3
from 1.15. A preference test between the two showed strong
preference for the initial set of parameters (ame;r = 1.25 and
V' = 1.15). Identifiability was increased at the cost of audio
quality and naturalness.

Table 3: Identifiability test: Emphasised words are more identi-
fiable with DD-EMPH (app = 1.5) than with MEL-EMPH.

Voice MEL-EMPH DD-EMPH
en-US  female-0 exp. 43% 60%

3.4. Reproducibility study

We run a reproducibility study on 6 additional voices divided
across 4 locales with results shown on Table 5. We observe that
DD-EMPH is strongly preferred for the voices trained on more
expressive data. As pointed out above, our model is able to
associate duration changes with other acoustic measures of em-
phasis when the training data is very expressive, providing the
model a sufficient number of cases of emphatic speech. When
the training data for the target voice are neutral, performance
is degrading. When listening to the samples, we observe that
emphasised word with DD-EMPH on models trained on neutral
data makes the word sound long and somewhat unnatural. In
other words, the model is making the duration change but is not
making any additional association with pitch contour changes
and does not add any additional silence as in the cases discussed
in Section 3

3.5. Acoustic analysis of a case of DD-EMPH

This section aims to explain why an approach based solely on
duration modification, specifically making all phonemes in a
word longer by a certain factor, would produce perfectly em-
phasized words in most cases. We focus on the analysis of a
single case, as representative of many other similar ones. We
used the Praat software [32] to compare three acoustic dimen-
sions (duration, pitch, energy) for the word traditionally when
emphasized by our model and when produced without empha-
sis (see Figure 7), as part of the sentence and it’s traditionally
one of the experiences we naturally try to avoid. We observed
that the duration is as expected longer for the emphasised ver-
sion. Pitch and intensity are however quite similar in both cases
and, if anything, maximum pitch and higher intensity are in fact
slightly higher for the non-emphasized version of the word, as
detailed in table 4. This suggests that a rise in pitch or energy
are not absolutely necessary for the perception of emphasis (see
[20] for a similar conclusion on Swedish with respect to pitch).
Notice though that the difference between minimum and max-
imum pitch is slightly higher for the emphasized word, which
relates to the particular pitch contour obtained for the word.

The model however appears to have in fact implicitly
learned two aspects of emphatic speech that it was not explicitly
trained on:

1. The role of silence preceding the syllable carrying primary
stress (see [2]): a silence preceding this syllable is clearly vis-
ible when the word is emphasized (figure 7b), but not when
the word is not (figure 7a).

2. The contour of fO shows a clear rise in figure 7b, but is essen-

tially flat in figure 7a. Moreover, the pitch gets to a L point
much faster in the case of emphasis. We take this contour to
instantiate well-known H*+L contour, associated with nar-
row focus in classical studies like [33], [34] and much subse-
quent work.

We conclude that the model has implicitly associated duration

lengthening with emphasis in this case (and many similar ones).
We present data below suggesting that our approach is particu-



larly successful on voices build from highly expressive record-
ings, while it does not work as well on voices built from "neu-
tral’” recordings. Evidently, in order for the model to be able to
implicitly associate emphasis and phoneme lengthening, there
needs to be a sufficient number of such cases in the training
data. This is borne out in the case of highly expressive data, but
not in the case of neutral data.

An additional point confirming this hypothesis is that the
model appears to work sub-optimally in the case of unstressed
monosyllabic words (prepositions, determiners, etc.). These are
unlikely candidates for emphasis and essentially absent in em-
phasized form in training data. The model is thus incapable of
associating duration lengthening and emphasis in such cases. It
is worth noting that monosyllabic words that are more likely to
occur as emphasized in training data work as expected under
our approach (for example the word not).

Our study shows that even if not all properties usually as-
sociated with focus are present in the signal, emphasis is still
perceived. We suggest that increased phoneme duration, a rise-
fall in pitch contour and a short silence before the emphasized
portion of speech suffice to convincingly trigger the perception
of emphasis.

Table 4: Numerical values for energy and pitch for the word
traditionally when emphasized and non-emphasized.

Emphasis No emphasis Measure
153.4Hz 169.2Hz  mean pitch
118.4Hz 127.1Hz  minimum pitch
229.9Hz 236.0Hz maximum pitch
69.6 dB 70.5dB  mean-energy intensity
75.5dB 75.8dB  maximum intensity

Table 5: Preference tests comparisons between DD-EMPH with
app = 1.5 and MEL-EMPH emphasis.

Voice A Pref. p-value
en-US  male-0 conv. 22.6% < 0.001
en-US  female-1 neutral 0.8% 0.700
en-US  female-1 exp. 4.0% < 0.001
es-US  female-2 neutral —6.3% 0.002
es-US  female-3 neutral 1.2%  0.500
es-US  female-3 expressive 9% < 0.001
de-DE  female-4 neutral —24.4% < 0.001
it-IT female-5 conv. —-11.4% < 0.001

To compensate for this effect, we decided to reduce for
these voices the app of DD-EMPH to 1.25 to be comparable to
MEL-EMPH. As shown on Table 6, it significantly improves the
preference of DD-EMPH over MEL-EMPH for these voices. We
believe that this is due to speech quality degradation brought by
the speech signal processing technique.

3.6. Does DD-EMPH emphasis improve over no emphasis?

So far, we have made the assumption that modifying the speech
produced with DD-EMPH does not degrade speech quality and
has some positive effect on the produced speech. In Table 7,
we show that DD-EMPH is preferred by the listeners to no-
empbhasis for 4 voices.
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Figure 7: Pitch (red), intensity (green), waveform (grey) for the
word traditionally in two versions of the sentence ”and it’s tra-
ditionally one of the experiences we naturally try to avoid.” In
the zone A, we are observing a longer phoneme duration result-
ing in a longer closure and a hard stop.

Table 6: Preference tests comparisons between DD-EMPH with
app = 1.25 and MEL-EMPH emphasis

Voice A Pref.  p-value
en-US  female-1 exp. 52% < 0.001
es-US  female-2 neutral 5.3% < 0.001
es-US  female-3 neutral 1.9% 0.060
de-DE  female-4 neutral 6.8% < 0.001
it-IT female-5 conv. 1.8% 0.070

4. Conclusions

We have shown that it is possible to build a controllable word
emphasis system without requiring recordings, annotation or re-
training, and without degrading quality. We have leveraged the
decoupling of duration and acoustic models in a non-attentive
deep learning TTS model to bring emphasis by dilating dura-

1.842



Table 7: Preference tests between DD-emph and no emphasis.

Voice app A Pref. p-value
en-US female-O exp. 1.5 11.4% < 0.001
en-US male-Oconv. 1.5 5.6% 0.006
en-US female-1exp. 1.25 7.0% < 0.001
es-US  female-3exp. 1.5 9.0% < 0.001

tion (DD-EMPH) of target emphasised words. Our DD-EMPH
approach improves quality by 7.3% and identifiability by 40%
over the mel-spectrogram modification baseline (MEL-EMPH).
It is scalable in multiple voices, locales and styles. We believe

this

approach is applicable for non attentive TTS system where

the acoustic model is driven by a duration model.
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