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Abstract

Background: Robust segmentation on magnetic resonance images (MRI) is key to as-
sessing brain growth, which is critical to the health and development of children. Machine
learning has enabled breakthroughs in automatic brain MRI segmentation, albeit mainly
for adults. Given the significant growth and dramatic anatomical variability of the brain
during the first years of life, accurate delineation of the developing brain is more challeng-
ing. Objective: We present a U-Net based automatic segmentation pipeline to robustly
segment brain structures on both neonatal and child MR images of children born preterm
with enhanced robustness of data input. Methods: A total of 300 T1-weighted images
were included: 100 early-in-life, 100 term equivalent age (TEA), and 100 8-year (median age
at MRI: 32 weeks, 40.3 weeks, and 8.2 years respectively). Each image was accompanied
with manually segmented annotations that cover cerebrum, cerebellum, and brainstem. We
broke up each 3D image volume along the sagittal axis to 256 2D slices of 256x256 matri-
ces. The U-Net model took as input a single slice, and returned a multi-class prediction
denoting the mask of each label. The resultant 256 slices were then re-constructed back to
a 3D scan. Our model was trained on a 60/20/20 training/validation/testing split across
the age range for 200 epochs. Results: When compared to the manually segmented la-
bels, our pipeline achieved an average DICE coefficient of 97.78% (95.40%-98.47%), 94.85%
(89.58%-97.91%), and 94.84% (88.39%-97.12%) for cerebrum, cerebellum, and brainstem
respectively, and outperformed InfantFS and FreeSurfer, applied to the same data. More
importantly, our model had a robust performance across different age groups, demonstrat-
ing its applicability to a much wider age range than other existing state-of-the-art methods,
as well as robust performance on an independently acquired external cohort. Conclusions:
Our U-Net based pipeline allows accurate segmentation of brain structures across the first
years of life. It is a flexible, robust, and automated tool to assess total and regional brain
volumes and growth for studying healthy children and children with medical conditions.
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1. Introduction

Brain growth in the early years of life is critical to the health and development of both
healthy children and children with medical conditions (Cayam-Rand et al., 2021). Robust
segmentation techniques allow the measurement of brain structural volumes on magnetic
resonance images (MRI) and the assessment of brain growth (Thompson et al., 2020);
(Cayam-Rand et al., 2021); (Fetit et al., 2020b). However, though generally considered as
the gold standard, manual segmentation is labour-intensive and time-consuming, which sig-
nificantly limits its applicability, especially in larger studies. Automatic segmentation of the
developing brain in the first several years of life is challenging, due to (1) dramatic changes
of brain tissue contrast on MRI from neonatal period to childhood, (2) significant anatom-
ical variability contributed by increases in gyrification and volumes, and (3) morphological
abnormalities preceded by brain injuries, such as severe ventriculomegaly.

A number of automatic segmentation approaches have been developed that allow brain
tissue classification (Prastawa et al., 2005); (Xue et al., 2007); (Weisenfeld and Warfield,
2009); (Shi et al., 2011); (Wang et al., 2014); (Wang et al., 2015); (Zhou et al., 2019); (Fetit
et al., 2020a) or specific structural delineation (Nishida et al., 2006); (Gousias et al., 2013);
(Makropoulos et al., 2014); (Zöllei et al., 2020) in infants. Through machine learning initia-
tives, breakthroughs in automatic segmentation techniques have been made, however they
were mainly designed for adult brain MRI (Fischl, 2012). The application of deep learning
has been increasingly recognized in segmenting the developing brain (Mostapha and Styner,
2019); (Zöllei et al., 2020); (Liu et al., 2021). Although some of these methods provide accu-
rate segmentations to infant brain images acquired within a certain age range (Fetit et al.,
2020b); (Zöllei et al., 2020); (Liu et al., 2021), they are not readily applicable to segment
brain images of school-aged children. Moeskops and colleagues presented a segmentation
method using multi-scale convolutional neural network (CNN) and demonstrated excellent
accuracy in multiple datasets (Moeskops et al., 2016). However, this method was not tested
on images with severe brain anatomical abnormality. In addition, for models trained on
a small dataset, overfitting can be a problem, preventing the method from being able to
provide accurate brain segmentations for children outside of the training dataset.

In this study, we present a U-Net based automatic segmentation pipeline to segment
brain structures on both neonatal and child brain MRIs from as early as 27 weeks of
gestation to school age in children born very preterm, while also adding in key steps to
enhance robustness of data input. We compare our results to FreeSurfer and InfantFS with
suggested parameters, on the same datasets. Finally, we apply this approach to segment the
brain of another independent cohort where severe anatomical abnormalities were present,
and manually segmented labels were available to test its robustness and generalizability.

2. Methods

2.1. Participants, MRI, and Gold-Standard Brain Segmentation Labels

234 (122 males) very preterm neonates (birth gestation: 24 to 32 weeks) admitted to the
NICU at British Columbia’s Women’s Hospital, Canada (2006–2012) were enrolled in a
prospective longitudinal cohort study. 208 neonates acquired early MRI at median post-
menstrual age (PMA) of 32 weeks [IQR=30.4–33.6]; 188 at term-equivalent age (TEA)
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(median PMA 40.3 weeks, IQR=38.9-42.0); and the first 133 children of this cohort com-
pleted the school-age MRI (median age at MRI 8.2 years, IQR=8.1–8.4). Neonatal and
8-year images were acquired with previously reported parameters (Chau et al., 2009) and
(Cayam-Rand et al., 2021).

Segmentations of the brain were performed on early-life, TEA and 8-year T1-weighted
images using methods described previously (Guo et al., 2015). Thorough manual revisions
were done on the cerebrum (Cayam-Rand et al., 2021), cerebellum (Garfinkle et al., 2020),
and brainstem (Guillot et al., 2020) labels to ensure accurate delineation of the structures.

The Clinical Research Ethics Board at University of British Columbia and BC Children’s
and Women’s Hospitals approved the study. Written informed consent was obtained from
parent/legal guardian, and informed assent from each participating child at 8 years.

2.2. Pre-processing Steps

We first restructured the dataset to be of uniform shape and orientation. All image slices
were aligned to the sagittal plane. Although not all scans were captured in the same
orientation, given the isotropic voxel size of the raw scans, no data were lost when changing
the axes, and retraining the model against other axes is permitted. Next, to achieve a
uniform dimension across all axes among all scans, we symmetrically zero-padded each raw
scan to achieve the same shape of (256,256,256). Lastly, we scaled the intensity values of
each scan to the range of 0-1. We then applied z-score normalization to the entire dataset
to minimize the impact of outliers. The mean and standard deviation used for the z-score
normalization were computed from training dataset only, but applied to the entire dataset.

2.3. Model Architecture

Our model is a pure U-NET (Ronneberger et al., 2015) based CNN model for brain seg-
mentation. It consists of a U-shaped architecture that uses convolutional layers to build
down and condense the input, followed by multiple upsampling layers, which make the final
output have the same shape as the input. A key consideration in this project was to reduce
the number of inputs. Thus, our model only requires a 3D scan as input, and outputs a 3D
mask depicting multiple brain regions, removing any direct dependency on the subject age.

Additionally, the authors acknowledged that any model built on the 3D scan alone will
have an underlying reliance/bias related to scan parameters, e.g. slice thickness in the
training set. To overcome this without introducing any potential data-loss, each scan was
broken down into a set of 2D slices (i.e., a 3D scan of shape 256x256x256 was split into 256
2D slices of shape 256x256), and the model was trained on each 2D slice separately. The
predicted masks for all 256 2D slices were then re-constructed back into a 3D volume which
holds the final multi-label mask of the subject scan. This structure enhances the robustness
of the model by eliminating biases related to scan parameters, such as slice thickness and
scan volume/size. Training on 2D scans also allows the model to better learn patterns
from similar slices of different subjects (including across age groups), which can be harder
to achieve by training on entire 3D scans. Lastly, training a model in 2D space requires
significantly less computation and data, permitting better convergence and stabilization.

Model Parameters: The model was implemented with Python v2.7.12, using Ten-
sorflow v1.15.0, and trained on a CentOS v7.6 VM with 170GB RAM, 16 threads, and a
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Tesla V100 32vGB GPU. A 5-layer U-Net model was used to prevent overfitting. Batch
Normalization was added as a regularizer to help the model train & converge better. Adam
was used as the optimizer, along with a batch size of 32 and a learning rate of 1e-5. The
SparseCategoricalCrossEntropy loss function was selected to allow for pixel-level learning.
The model was set to train for 200 epochs, with EarlyStopping set based on the validation
loss. Illustration of the model architecture can be found in Figure 1.

Figure 1: Machine Learning Model Architecture. Each 2D slice is passed through several
convolutional layers followed by the same number of upsampling layers, and will end with an
outputted 2D slice of the same shape as the input. The final output image has 4 dimensions
depicting the prediction of each label: background, Cerebrum, Cerebellum, and Brainstem.

2.4. Post-Processing Steps

The model occasionally made very questionable predictions, e.g. predicting a region far
away from the patient’s skull. We added a step to circumvent such issues. The largest
predicted region was identified as a 3D blob, and labels of any blob not connected to the
largest blob and whose center lied further than 40 pixels from the closest edge of the largest
blob were removed. More details can be found under Appendix A.

2.5. Evaluation Metrics

The 3D Dice Similarity Coefficient (DSC) (Zou et al., 2004) and the Hausdorff distance
(HD) (Taha and Hanbury, 2015) were used to assess the quality of the segmentation predic-
tions. The 3D DSC is a widely-used metric for evaluating spatial overlap between objects,
and reflects the “closeness” between two objects. The HD however, measures the maximal
contour distance between two objects, and is more sensitive to outliers. They provide com-
plementary information that help paint a more complete picture of the model performance.

The segmentation accuracy of each brain region label was evaluated independently to
better determine how well the model performed for each region. Details regarding DSC and
HD can be found under Appendix B and C.
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(a) Results of our model predictions (b) Results of the FreeSurfer tool

(c) Results of our model predictions (d) Results of the FreeSurfer tool

Figure 2: Visualization of results across age groups. Each black dot represents an individual
scan. The boxes represent the bounds of each label, with the bisecting line at the mean.

2.6. Comparison with the FreeSurfer Platform

FreeSurfer is a well established platform for brain segmentation (Fischl, 2012). We seg-
mented our test dataset using FreeSurfer and compared with our method. As our dataset
spans from 27 weeks gestation to 8 years of age, InfantFS (Zöllei et al., 2020) was used on
images under the age of 2 while FreeSurfer was used for 8-year images.

2.7. Cross Validation on another Dataset of an Independent Cohort

The generalizability of our method was evaluated on an independent Preterm Care (PC)
cohort where the cerebrum labels were available. This cohort includes 179 neonates born at
24-32 weeks’ gestation with serial brain MRI acquired at early life (median PMA at MRI:
32.9 weeks) and at TEA (median PMA: 41.3 weeks) on a Siemens 3T Tim Trio scanner at
SickKids Hospital, Canada. 3D T1-weighted images were acquired using a FLASH sequence
(TR: 36ms, TE: 9.2ms, 1mm isotropic). Ventriculomegaly was identified in 30 neonates of
whom six had manually segmented labels, and were used to further evaluate our model.
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Table 1: U-Net based Model Accurately Predicts Brain Labels across Age Groups

A: 3D DICE Coefficients

Cerebrum Cerebellum Brainstem

preterm
Our model 97.46% (95.40-98.16) 92.36% (89.58-94.85) 92.79% (88.39-95.11)
InfantFS 82.69% (71.84-88.24) 76.65% (64.96-85.40) 75.44% (68.49-79.62)

at-term
Our model 98.19% (97.59-98.47) 95.31% (92.45-96.99) 94.42% (91.86-95.33)
InfantFS 87.42% (84.21-88.95) 82.59% (78.27-86.55) 79.58% (77.14-83.94)

8-year
Our model 97.70% (97.22-98.03) 96.88% (92.08-97.91) 96.24% (95.17-97.12)
FreeSurfer 82.78% (78.69-84.51) 85.78% (81.38-88.26) 60.94% (58.13-63.82)

PC preterm Our model 91.24% (88.23-95.38) - -

PC at-term Our model 92.24% (84.38-96.70) - -

B: 3D Hausdorff Distance

Cerebrum Cerebellum Brainstem

preterm
Our model 07.38 (05.10-11.70) 03.04 (01.73-05.83) 02.99 (01.41-07.28)
InfantFS 10.75 (09.38-13.38) 06.50 (05.00-17.97) 08.14 (06.16-11.36)

at-term
Our model 08.59 (05.10-14.49) 03.10 (02.24-06.48) 03.04 (02.00-05.48)
InfantFS 13.28 (11.83-15.33) 07.30 (06.08-08.12) 07.30 (06.08-08.60)

8-year
Our model 20.27 (18.06-22.41) 05.32 (03.00-08.54) 03.68 (02.24-06.08)
FreeSurfer 18.71 (15.39-21.21) 14.88 (13.30-16.55) 29.52 (21.77-34.73)

PC preterm Our model 12.39 (07.87-18.11) - -

PC at-term Our model 16.15 (13.08-19.52) - -

3. Experiments & Results

3.1. Training Parameters

Three hundred scans and labels, split evenly for early life, term and 8 years of age were
randomly selected from our database, with 100 from each group. An even distribution of
data, a 60/20/20 split was applied across each group to create 180 training, 60 validation,
and 60 test points. The validation set was used purely as a parameter to detect early-
stopping, while the test dataset was held-out for final evaluation. The model was set to
train for up to 200 epochs, and early-stopping took effect at 83 epochs.

3.2. Evaluation of the Dice Similarity Coefficients

On a held-out test set, the trained model achieved an average DSC of 97.78% (95.40%-
98.47%) for predicting the cerebrum label, 94.85% (89.58%-97.91%) for the cerebellum
label, and 94.84% (88.39%-97.12%) for the brainstem label. Details can be found in Table
1a, Figure 2a. The model, understandably, performed better on the cerebrum as it is much
larger, giving the machine learning model more data to train on. However, the cerebellum
& brainstem label segmentations still performed objectively well. More importantly, our
model performed similarly well across age groups. There is roughly a 1%, 4% and 4% delta
between the averages of the cerebrum, cerebellum and brainstem labels respectively.
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To better visualize the model predictions, a random slice from the scans that achieved
the median DSC in each age group are plotted in Figure 3.

3.3. Evaluation of Hausdorff Distances

The model achieved, on average, a Hausdorff Distance (HD) of 12.08 (5.10-22.41) for pre-
dicting the cerebrum label, 3.82 (1.73-8.54) for the cerebellum label, and 3.24 (1.41-7.28)
for the brainstem label. More details can be found in Table 1b and Figure 2c.

Unlike the DSC, the HD is not normalized and scales with the overall scan volume. On
average, the brain volume of an at-term scan and that of an 8-year scan are 1.91 and 9.55
times to that of a preterm scan. However, the average HD measured on the term and 8-year
scans grew by only 1.20 and 2.76 times, indicating that the model performance is in fact
improving on larger scans - an effect which is visible when looking at the DSC as well.

3.4. Evaluating against an Independent Cohort

The presented model was then evaluated using data from an independent cohort, Preterm
Care (PC) Cohort, which consisted of 6 scans of neonates with ventriculomegaly, where the
only label available was the cerebrum. The 6 scans were split between preterm and at-term
subjects. The model was able to achieve an average DSC of 91.74% (84.38%-96.70%), and
an average HD of 14.27 (7.87-19.52). The breakdown of the model performance on each age
group can be found under Table 1.

3.5. Comparison to InfantFS and FreeSurfer

The same test dataset was segmented by InfantFS and FreeSurfer. The preterm and at-
term scans were segmented by InfantFS, while the 8-year scans were segmented by the adult
version of FreeSurfer. On test data, the InfantFS/FreeSurfer tool achieved an average DSC
of 84.30% (71.84%-88.95%) for predicting the cerebrum label, 81.67% (64.96%-88.26%) for
the cerebellum label, and 71.99% (58.13%-83.94%) for the brainstem labels, respectively.
When compared to the segmentations of our model, the InfantFS/FreeSurfer predictions
were, on average, 13-23% lower in DSC. More detailed analysis of the InfantFS/FreeSurfer
predictions can be found in Figure 2b.

Similarly, InfantFS/FreeSurfer achieved a lower performance on the HD, with an average
of 14.25 (9.38-21.21) on the cerebrum label, 9.56 (5.00-17.97) on the cerebellum label, and
14.99 (6.08-34.73) on the brainstem label. Comparing these values across the age groups,
the average HD grew by 1.3 times between the preterm and at-term age groups, and 4.0
times between the at-term and 8-year age groups. This shows that the InfantFS/FreeSurfer
tool performs more equally across the age groups, however still under-performs our model
(Table 1b and Figure 2d).

4. Discussion

This paper presents a U-Net based pipeline that can robustly and accurately segments
multiple structures of the developing brain in very preterm children (born 24-32 weeks
gestation) on both their neonatal and school-age images. Our model outperformed the
FreeSurfer/InfantFS tools across the age spectrum. It is noteworthy that our model achieved
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(a) preterm
DSC:97.44%, HD:6.2

(b) at-term
DSC:97.77%, HD:12.0

(c) 8-year
DSC:97.22%, HD:19.5

(d) PC preterm
DSC:90.12%, HD:18.1

(e) PC at-term
DSC:95.65%, HD:13.1

Figure 3: Visualization of the scans that achieved the median DICE coefficient in each age
group. The labels are as follows: red is the ground-truth for all labels, green is the predicted
cerebrum, blue is the predicted cerebellum, and yellow is the predicted brainstem.

very similar segmentation accuracy for images from the three age groups, demonstrating its
general applicability to brains of large anatomical variability. Furthermore, our model can
robustly segment brain images with severe anatomical abnormality (e.g. severe ventricu-
lomegaly).

Our pipeline employs preprocessing steps that centre the brain and normalize image
intensity to minimize bias from outliers on model training. Training on 2D slices elimi-
nates biases introduced by scan parameters, such as slice thickness, permits better pattern
learning, and is much less computationally demanding. While our model unifies the size
of the data through symmetrically zero-padding the scan without altering the resolution.
The model was trained on MRI scans alone, and the authors are confident to expand the
model to predict more classes (i.e. more regions & sub-regions), as well as a wider age
demographic. Our code and model will be made freely available (open source) on Github,
with plans to release a Dockerized version as well.
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ders, and Ivana Išgum. Automatic segmentation of mr brain images with a convolutional
neural network. IEEE transactions on medical imaging, 35(5):1252–1261, 2016.

Mahmoud Mostapha and Martin Styner. Role of deep learning in infant brain mri analysis.
Magnetic resonance imaging, 64:171–189, 2019.

Mitsuhiro Nishida, Nikolaos Makris, David N Kennedy, Mark Vangel, Bruce Fischl, Kalpa-
thy S Krishnamoorthy, Verne S Caviness, and P Ellen Grant. Detailed semiautomated
mri based morphometry of the neonatal brain: preliminary results. Neuroimage, 32(3):
1041–1049, 2006.

Marcel Prastawa, John H Gilmore, Weili Lin, and Guido Gerig. Automatic segmentation of
mr images of the developing newborn brain. Medical image analysis, 9(5):457–466, 2005.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/

abs/1505.04597.

Lin Shi, Defeng Wang, Winnie CW Chu, Geoffrey R Burwell, Tien-Tsin Wong, Pheng Ann
Heng, and Jack CY Cheng. Automatic mri segmentation and morphoanatomy analysis
of the vestibular system in adolescent idiopathic scoliosis. Neuroimage, 54:S180–S188,
2011.

Abdel Aziz Taha and Allan Hanbury. An efficient algorithm for calculating the exact
hausdorff distance, 2015.

Deanne K Thompson, Lillian G Matthews, Bonnie Alexander, Katherine J Lee, Claire E
Kelly, Chris L Adamson, Rod W Hunt, Jeanie LY Cheong, Megan Spencer-Smith, Jef-
frey J Neil, et al. Tracking regional brain growth up to age 13 in children born term and
very preterm. Nature communications, 11(1):1–11, 2020.

Li Wang, Feng Shi, Gang Li, Yaozong Gao, Weili Lin, John H Gilmore, and Dinggang Shen.
Segmentation of neonatal brain mr images using patch-driven level sets. NeuroImage, 84:
141–158, 2014.

Li Wang, Yaozong Gao, Feng Shi, Gang Li, John H Gilmore, Weili Lin, and Dinggang
Shen. Links: Learning-based multi-source integration framework for segmentation of
infant brain images. NeuroImage, 108:160–172, 2015.

Neil I Weisenfeld and Simon K Warfield. Automatic segmentation of newborn brain mri.
Neuroimage, 47(2):564–572, 2009.

10

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597


Automatic U-Net based Segmentation Pipeline for Neonatal and Child Brain MRI

Wen Xue, Lars Zender, Cornelius Miething, Ross A Dickins, Eva Hernando, Valery
Krizhanovsky, Carlos Cordon-Cardo, and Scott W Lowe. Senescence and tumour clear-
ance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128):656–
660, 2007.

Sihang Zhou, Dong Nie, Ehsan Adeli, Jianping Yin, Jun Lian, and Dinggang Shen. High-
resolution encoder–decoder networks for low-contrast medical image segmentation. IEEE
Transactions on Image Processing, 29:461–475, 2019.

Lilla Zöllei, Juan Eugenio Iglesias, Yangming Ou, P Ellen Grant, and Bruce Fischl. Infant
freesurfer: An automated segmentation and surface extraction pipeline for t1-weighted
neuroimaging data of infants 0–2 years. Neuroimage, 218:116946, 2020.

Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany, Michael R Kaus,
Steven J Haker, William M Wells III, Ferenc A Jolesz, and Ron Kikinis. Statistical
validation of image segmentation quality based on a spatial overlap index1: scientific
reports, 2004.

11



Mashouri Haghpanah Osia Sheng Guillot Garfinkle McAllister Brudno Guo

Appendix A. Outlier Correction Post-processing Step

One of the key post-processing steps performed in this paper was for outlier correction. This
occurred when the model predicted certain regions that were quite far from the subject’s
skull, thus being an invalid prediction. Such cases are very obvious to identify visually,
however we wanted to automate the identification & correction of such issues to help make
the pipeline smoother.

Such a step would be trivial to perform on an adult dataset, as adult skull sizes are
generally the same size (or close enough). However, due to the fact that our age demographic
ranges from preterm neonates all the way up to 8-years of age, there is such a significant
amount of variability to the skull size. This makes it very hard to estimate where the skull
is, and by extension where the boundary of ”valid” predictions would be.

Our solution was a fairly elegant one. We simply viewed the full 3D predicted mask and
marked the largest ”blob” as our main object, and marked any other 3D ”blob” that was
unconnected to this main object and was over 40 pixels away radially (edge-to-edge) as an
invalid prediction. A visual representation of this step can be seen under Figure 4.

This one step helped stabilize our evaluation metrics significantly. Although the DICE
coefficients did not change by much (since the ”invalid” predictions were often just a few
stray pixels), it did heavily impact our Hausdorff distance, resulting in a 3-4x reduction
there.

Figure 4: A 2D visual representation of how the outlier correction operates. All ’blobs’ that
are non-connected to the primary ’blob’ and are over 20% further radially get marked as
an outlier, and unset

Appendix B. Dice Similarity Coefficient

The Dice Similarity Coefficient (DSC) can be formally defined as:

DSC =
2 | GT ∩ PM |
| GT | + | PM |

x100 (1)

In the above formula, GT and PM are the ground-truth and prediction model respec-
tively. A DSC of 0 indicates that there is no overlap between GT and PM, while a maximum
value of 100 indicates that the different masks perfectly overlap.
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Appendix C. Hausdorff Distance

The Hausdorff Distance (HD) is a measure of the maximal contour distance between two
objects. More formally:

d(x → y) = max(dx→y
i ), i = 1...Nx (2)

HD(GT,PM) = max[d(GT → PM), d(PM → GT )] (3)

where GT and PM are the ground-truth and prediction model respectively.

HD is the greatest of all distances from a 3D point (voxel) in GT to the closest voxel in PM.
A smaller HD indicates that the predicted and ground-truth brain masks are more similar,
while a larger Hausdorff distance indicates that the two masks have a greater number of
differences between them.

13


	Introduction
	Methods
	Participants, MRI, and Gold-Standard Brain Segmentation Labels 
	Pre-processing Steps
	Model Architecture
	Post-Processing Steps
	Evaluation Metrics
	Comparison with the FreeSurfer Platform
	Cross Validation on another Dataset of an Independent Cohort

	Experiments & Results
	Training Parameters
	Evaluation of the Dice Similarity Coefficients
	Evaluation of Hausdorff Distances
	Evaluating against an Independent Cohort
	Comparison to InfantFS and FreeSurfer

	Discussion
	Outlier Correction Post-processing Step
	Dice Similarity Coefficient
	Hausdorff Distance

