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Abstract

Continual learning faces a crucial challenge of catastrophic forgetting. To address
this challenge, experience replay (ER) that maintains a tiny subset of samples
from previous tasks has been commonly used. Existing ER works usually focus
on refining the learning objective for each task with a static memory construction
policy. In this paper, we formulate the dynamic memory construction in ER as a
combinatorial optimization problem, which aims at directly minimizing the global
loss across all experienced tasks. We first apply three tactics to solve the problem
in the offline setting as a starting point. To provide an approximate solution
to this problem in the online continual learning setting, we further propose the
Global Pseudo-task Simulation (GPS), which mimics future catastrophic forgetting
of the current task by permutation. Our empirical results and analyses suggest
that the GPS consistently improves accuracy across four commonly used vision
benchmarks. We have also shown that our GPS can serve as the unified framework
for integrating various memory construction policies in existing ER works.

1 Introduction

Data in real world is non-stationary and keeps changing. Adapting new knowledge while maintaining
the old skills learned from previous data is an idealism for intelligent systems. However, deep
artificial neural networks suffer from catastrophic forgetting of old behaviors as the learning of new
tasks keeps overwriting the past [30, 32, 33, 41, 34]. To combat this issue, numerous novel algorithms
have been designed in continual learning in recent years [37, 13, 28, 8, 20, 2, 27]. Amongst them,
the experience replay (ER) methods have been attested as one of the few methods that consistently
achieve strong results across different continual learning setups [6, 11, 46, 21]. In the ER, a slightly
relieved continual learning setting is considered, where a learner stores a subset of old examples from
previous tasks in a fixed-sized memory and jointly trains the memory with the upcoming task.

Most existing ER-based works put rigorous efforts in refining the local learning objective to update
the model parameters on one task at a time. In the methods, they stick to a single static memory
construction policy, which is prone to failing in the long task sequence. For example, selecting
random data examples from experienced tasks for the memory buffer can effect good generalization
at the very beginning, but the forgetting rate would soon climb up when the tasks sequence becomes
longer, as some class representations are totally squeezed out from the memory [11]. This major
drawback has inspired us to explore the optimal memory construction with a dynamic policy.

In this work, we formulate the memory construction problem in ER as a combinatorial optimization
problem. Unlike previous memory construction methods [1, 3, 15], we explicitly optimize the global
objective, i.e., the minimum loss of the final model on all observed tasks, by finding the best memory
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configuration strategy. As a starting point, we approach this problem in an offline setting, where we
can go through the task sequence for multiple trials independently. By utilizing three tactics, we
reduce the intractable search space to a significantly smaller one. Specifically, for each task, we blend
random and class-balanced memories according to a parameter, the switching point. Then, we use
the binary search to find switching points in O(T log |M|), where T is the total number of tasks and
|M| is the size of the memory buffer.

Based on the offline solution, in the online continual learning setup,2 we propose our method Global
Pseudo-task Simulation (GPS) as an approximate solution to the problem. The GPS mimics
the catastrophic forgetting pattern for the current task by creating future pseudo-tasks, and finds
approximate switching points based on the pseudo-task simulation. We examine a few simulation
methods and find permutation is the favorable way to synthesize pseudo-tasks.

We conduct experiments on four widely used vision benchmarks. Our results have shown that the
GPS achieves higher accuracy compared to baselines, especially when we have a long task sequence.
In addition, our empirical analysis verifies that the dynamic memory construction by using GPS is
close to the offline solution. Meanwhile, GPS can be easily applied to other ER variants [6, 9] to
further improve their performance.

2 Preliminary and Notations

Continual Learning In continual learning, the model f(θ) experiences a stream of data points
(xi, yi) ∼ Pi from a sequence of tasks ti, where i ∈ T = {1, ..., T}, and Pi is an unknown i.i.d.
distribution of task ti. Without experience replay, the model f(θ) is optimized on one task at a
time following the task sequence under the tight constraint that the examples from previous tasks
cannot be accessed [38]. We denote θi as the parameter of f(·) after training task ti, and we refer
to the function g(·) that updates θi for each task ti as the local updating method. Once the local
updating method is determined, θT can be derived recursively by θi = g(θi−1, Pi) from θ0, which is
the initialization point.

After sequentially training T tasks, the objective of continual learning is to achieve the minimum
loss across all observed tasks with the final model in the end. We write the summed global loss LG

as in Eqn. (1), where θT is the final parameter after T tasks and l(·) is the cross-entropy loss. For
convenience, we also denote the global loss for a single task i as LG

i = E(xi,yi)∼Pi
ℓ(yi, f(xi; θT )).

LG =

T∑
i=1

E(xi,yi)∼Pi
ℓ(yi, f(xi; θT )) (1)

Experience Replay Previous works [13, 38, 46] have proposed a series of local updating methods to
optimize the global objective. Amongst them, one effective way is experience replay (ER) from [11].
Experience replay relieves a bit on the tight constraint in continual learning by adding a fixed-sized
memory bufferM to store a limited subset of seen examples.

We denote the memory after training task ti asMi. The modified local updating method g treats the
memory as another input, and jointly optimizes examples of the current task and examples stored
in the memory, with a factor λ on the loss of memory examples as shown in Eqn. (2). Thus, θi is
iteratively updated by θi = g(θi−1, Pi,Mi−1).

g(θ, P,M) = argmin
θ
{Lt(θ, P ) + λLt(θ,M)} (2)

Lt(θ, P ) = E(x,y)∼P ℓ(y, f(x; θ)) (3)
Both empirical results [11, 6] and theoretical analysis [21] have suggested that the local updating
method g of experience replay is effective on reducing the global loss LG. If not specially specified,
we refer to local updating method g as Eqn. (2) in the following text.

3 Problem Formulation: Dynamic Memory Construction

Most previous works based on ER regard the global loss LG as a function of g with a static memory
construction strategy forM. They utilize various techniques like regularization [6, 9] or memory

2We use online as opposed to the multi-trial offline setup, while we still use the multi-pass training here.
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Figure 1: Using three tactics on the S-CIFAR-10 dataset to solve the dynamic memory construction
problem in the offline setting. The equal memory heuristic and the base policy assumption reduce the
search space. The switching point existence enables the binary search. For each task, we split the
memories into a random part (ER-Res) and a class-balanced part (ER-Ring-Full) according to the
switching point.

sampling [1] to further refine the local updating method g. Unlike them, we view the global loss
LG as a function of the memoryM, and explicitly minimize LG by optimizing the memory without
modifying the local updating methods in Eqn. (2).

Following the setup of ER, we propose dynamic memory construction, which aims at finding the
best memory construction M to optimize the global objective LG, as defined in Eqn. (1). This
combinatorial optimization problem is expressed by the Eqn. (4), where we minimize the global
objective by considering the memoryMi after task ti as variables.

min
{Mi}i∈T

LG({Mi}i∈T ) (4)

We denote the part inMi storing the examples of task tj asMi,j . There are four intrinsic constraints
for the optimization problem. In all constraints, i, j, i′ ∈ T .

• Mi is the union of memories {Mi,j}j∈T . The collection {Mi,j}j∈T is mutually disjoint.

• No future examples in the memory, i.e.,Mi,j = ∅ when i < j.

• The size of memory is the same across the training procedure from t1 to tT , denoted as |M|.

• As we cannot access previous examples that are not stored in the memory, once the set for
task tj in the memory is constructed after training task tj , its size will not increase. Thus,
the memory set for task j inMi is always a subset of that inMi′ given j ≤ i′ < i.

4 An Offline Solution: Reduce the Search Space

In order to reduce the intractable search space ofMT quantitatively, we first consider the dynamic
memory construction problem in an offline setup as the starting point for analyzing the realistic online
setting. In the offline setup, we can go through the task sequence for multiple trials independently, but
we are still strictly not allowed to access previous examples that are not inM in each trial. We take
three tactics to reduce the search space, referred to as the equal memory heuristic, the base policy
assumption and the switching point existence. Fig. 1 illustrates how we apply three tactics to the
S-CIFAR-10 dataset. Based on these tactics, we provide an approximate solution to the problem.
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4.1 Equal Memory Buffer for Each Task

We first take the equal memory heuristic from [11], which has shown that an equal size of memory
buffer for each observed task is effective to avoid catastrophic forgetting.3 Based on this tactic, we
add |Mi,j | = |M|/i, where i ≥ j, to the previous constraints list. Given a fixed size of eachMi,j ,
instead of optimizingMi from previous observed tasks jointly, we can independently optimize each
Mi,j and constructMi fromMi,j . To this end, we replace the optimization objective Eqn. (4) by a
simplified version Eqn. (5), takingMi,j as variables.

min
{Mi,j}i,j∈T

LG({Mi,j}i,j∈T ) (5)

However, given the equal memory heuristic, the search space in Eqn. (5) is still very large. For each
task tj , suppose the total number of examples for task tj is nj and nj > |M|,Mi,j has more than( |M|
|M|/i

)
different constructions.

4.2 Mix of Base Policies

To further reduce the search space in Eqn. (5), we introduce two base policies, ER-Res and ER-Ring-
Full [11]. For a given task ti, ER-Res builds a memory by random samples, while ER-Ring-Full
builds a memory by selecting the same number of samples from each class.

We take the base policy assumption, where we deem that the memories having the same size and
taking the same base policies are the same. It implies that even though two memory buffers contain
different data examples, they are still identified as the same as long as they meet these two rules.

This assumption ignores randomness of data selection within the same policy. It is backed up by
analysis in DER [6], which shows the standard deviation of accuracy on different benchmarking
datasets is quite small (∼0.5) when using the same policy with a relatively large |M|. Based on the
assumption, we separateMi,j into two disjoint parts and take the mixed policy, whereMres

i,j and
Mring-full

i,j represent two parts inMi,j , namely the former taking the ER-Res and the latter taking ER-
Ring-Full policies, respectively. For completeness, we extend the subset constraint toMres

i,j ⊆Mres
i′,j ,

Mring-full
i,j ⊆Mring-full

i′,j , where j ≤ i′ < i.

Previous studies of ER [11] have shown the randomness (ER-Res) is crucial in a large memory, while
guaranteeing the equal representation of each class (ER-Ring-Full) is crucial under a tiny memory.
As the number of tasks grows, the size of memory for each task ti becomes smaller. Under a mixed
policy, it is natural to first shrink the ER-Res part of the memory and then shrink the ER-Ring-Full
part of the memory. By doing so, givenMres

j,j andMring-full
j,j , we can determineMres

i,j andMring-full
i,j

accordingly for each i > j. We denote the size ofMring-full
j,j as aj and derive the size ofMres

j,j as
(|M|/j)− aj . Substituting the collection of sets {Mi,j}i,j∈T by an integer variable aj , we therefore
further simplify the optimization objective, as in Eqn. (6).

min
{aj}j∈T

LG({aj}j∈T ) (6)

where each aj has |M|/j different choices, significantly smaller than the search space forMi,j in
Eqn. (5). Notice that the memory construction for the last task tT is not required. Thus, the total
search space equals to |M|T−1/(T − 1)!, which is still large.

4.3 Existence of a Switching Point

For the memory allocation after each task tj , there exists a gold point aj = sj that assigns exactly the
required ring-full memory to keep the best balance ofMring-full

i,j andMres
i,j for the following task ti. If

the ring-full memory size is not large enough, we lose the power of forcing an equal representation
of classes as the task sequence grows. Conversely, if the ring-full memory is more than enough, we
sacrifice the randomness when the task number is still small. To this end, we assume sj is a unique
switching point, i.e., there exists a switching point sj for each aj , which satisfies the monotonicity

LG({a′j} ∪ {ai}i∈T /{j}) > LG({aj} ∪ {ai}i∈T /{j}), a′j < aj < sj or sj < aj < a′j (7)

3For simiplicity of the formulation, we assume each task has the same number of classes inM.
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Notice that the global loss of task tj should depend closely on what data we store and replay for
task tj , but very loosely on what data we store and replay for other tasks. Following this intuition,
though it is hard to verify a specific point satisfies the condition of Eqn. (7) for all combinations of
{ai}i∈T /{j}, we can simplify the switching point condition to

LG
j (a

′
j) > LG

j (aj), a′j < aj < sj or sj < aj < a′j (8)

Given the switching point existence, though we still have the same search space, instead of a linear
search, we can apply a binary search algorithm to reduce the time complexity to O(T log |M|).
During the binary search, if we search by comparing against the exact left and right integer of the
point, i.e., comparing the loss computed by aj +1, aj − 1 and aj , the large variance of sampling may
cause the algorithm to exit unexpectedly. To increase the robustness of the algorithm, we take a search
stride ϵ, where we compare the loss computed by aj + ϵ, aj − ϵ and aj . The stride is determined by
the benchmark and the size |Mj |. The detailed binary search algorithm for sj can be found in our
Appendix A.

This assumption is valid for over 85% of the cases from the observations in Fig. 1 (for the S-CIFAR-10
dataset) and Appendix B (for other benchmarks). For each aj (i.e., |Mring-full

j,j |) in the figures, the
global loss LG initially decreases monotonically and then increases monotonically as aj grows.
Rarely but possible, due to the variance of sampling, we cannot find the switching point sj . In such
cases, we will choose aj with the minimum loss amongst the values we searched.

5 Global Pseudo-task Simulation (GPS)

The offline solution of dynamic memory construction requires going through the task sequence for
O(T log |M|) times to find {sj}j∈T , which violates the online continual learning setup. To circum-
vent this issue, we propose Global Pseudo-task Simulation (GPS), which provides an approximate
solution {s̃j}j∈T to the problem by simulating the future training process under the online setup.
Specifically, we simulate the local updating process Eqn. (2) by creating pseudo-future tasks.

5.1 Objective Function for Simulation

Perfectly simulating the future is a mission impossible in continual learning [21]. As we have no
information about the future tasks, the distribution of the pseudo-future tasks we create could be quite
different from the distribution of the real future ones. To find each approximated switching point s̃j
more precisely, we intend to use more real tasks and less pseudo-future tasks as possible. As we are
required to allocate examples of task tj to a non-empty setMj,j right after training the task tj , we
solve s̃j by a simulation process from θj to θT , without future modifications. In theory, we could
overwrite the previous switching point sj by a more accurate simulation after task ti, i > j. However,
one risk of overwriting the sj is that we may not have enough examples of task tj in the memory to
support the reallocation brought by the new switching point, since more examples of task tj cannot
be accessed anymore except the ones stored inMj,j . Another drawback comes from the drastically
increased simulation complexity if we take the overwriting mechanism.

To this end, we modify the offline objective function Eqn. (6) to the online simulation objective
Eqn. (9), where θ̃j:i is the simulated θi from the real θj , for i > j.

s̃j = argmin
aj

E(xj ,yj)∼Pj
ℓ(yj , f(xj ; θ̃j:T )) (9)

Note that θ̃j:T is derived recursively from θ̃j:i = g(θ̃j:(i−1), P̃i, ˜Mi−1), initialized with θ̃j:j = θj . P̃i

is the task distribution of the synthesized pseudo-tasks t̃i, and M̃i is the simulated pseudo-memory
after training the pseudo-task t̃i. In the online setup, we cannot access the previous tasks as well as
the future tasks. Thus, we will not evaluate the summed global objective LG. Following the offline
Eqn. (8), we evaluate on LG

j , the global objective of task tj .

5.2 Synthesizing Pseudo-tasks

The goal of our pseudo-task simulation is to find sj precisely, i.e., s̃j ≈ sj . Concretely, instead
of accurately simulating the future training process, we use synthesized pseudo-tasks to mimic the
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forgetting patterns of task tj caused by the future tasks. To achieve this aim, we believe if the real task
sequence holds certain properties, it is essential for pseudo-tasks to hold the same set of properties to
mimic the same forgetting pattern.

We find most of the existing widely used vision CL benchmarks [6, 25, 43] hold two properties: 1)
similar learning difficulty of individual tasks; 2) limited zero-shot transfer ability. The experimental
validation of these properties is in Appendix C. To induce the same level of catastrophic forgetting, we
expect a pseudo-task t̃j to have similar difficulty as its real counterpart tj in the future, measured by the
accuracy in an identical end-to-end training setup [34]. To avoid the similarity between tasks to lead to
little forgetting after training on pseudo-tasks, pseudo-tasks should also have low zero-shot accuracy
with the model trained on the current task. If pseudo-tasks can achieve high zero-shot accuracy with
the model trained on the current task, the similarity between tasks could result in very little forgetting
after training on the pseudo-tasks, hindering our purpose of mimicking the catastrophic forgetting.
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Figure 2: The Global Pseudo-task Simulation pro-
cess to solve aj after training task tj .

Based on these two properties, we synthesize
pseudo-future tasks from the task tj by apply-
ing different permuting seeds to its input xj to
create a series of future tasks {t̃j+1, ..., t̃T }. We
achieve this by permuting the pixels of each im-
age on image datasets, i.e., a fresh permutation
would be generated and applied to all images
within a synthesized task [54].

Besides permutation, we have also considered
two other synthesizing techniques that lack a
certain property we discussed for comparison.
One is rotation, where we rotate the image in-
puts of the task tj gradually by 15 degrees to
create pseudo-future tasks [6]. The other is blur-
ring, where we apply the Gaussian blurring into
the image using a 5× 5 filter with growing stan-
dard deviation. Rotation creates pseudo-tasks
with similar difficulties as the real tasks, but the
zero-shot transfer ability is far too good. Blur-
ring creates pseudo-tasks with limited zero-shot
transfer ability, yet the task difficulty is increas-
ing along the pseudo-task sequence.

5.3 Construct Pseudo-memories

Fig. 2 visualizes the process of pseudo-task training and pseudo-memory construction. During the
simulation process after task tj , we try different aj with a binary search and pick the best one as s̃j
based on the online objective Eqn. (9).

We start from M̃j , which is the same as the realMj . The construction for M̃i (i > j) is different for
real tasks and pseudo-tasks. For real tasks tj′ , j′ ∈ {1, ..., j}, M̃i,j′ is the realMi,j′ determined for
a given aj′ , as we discussed in § 4.2. Note that the approximated switching points {s̃j′}j′∈{1,..,j−1}

for the previous j − 1 tasks are solved before s̃j . For pseudo-tasks t̃j′ , j′ ∈ {j + 1, ..., i}, M̃i,j′ is
constructed by randomly selecting |M|/i pseudo-data from t̃j′ .

5.4 Other Implementation Details

For the efficiency of simulation, the number of examples of the synthesized pseudo-tasks we use in
the simulation is equal to |M|. As the simulation quickly converges on a small number of examples,
we train fewer epochs for each task compared with the real training process. Besides, when the
number of tasks T are large or unknown, we extend GPS by simulating a fixed-sized sliding window
of future tasks for the sequence, e.g., simulating 10 pseudo-future tasks for each task. Also, during
the local update of each task ti, for a smooth transition, we allow the current training task ti to take
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Table 1: Accuracy of GPS using different simulation techniques and baselines on four vision
benchmarks. ER-Oracle shows the performance of the offline solution as described in § 4. Reported
numbers are all averaged over 5 runs.

Method Simulation P-MNIST S-CIFAR-10 S-CIFAR-100 TinyImageNet
|M| 1000 200 2000 2000

ER-Res - 86.55±0.48 92.01±0.80 81.38±0.51 57.50±0.54

ER-Ring-Full - 84.33±0.65 91.53±0.56 81.16±0.65 54.73±0.32

ER-Hybrid - 86.84±0.35 92.06±0.89 81.47±0.23 57.97±0.44

GPS Permutation 87.93±0.21 92.77±0.39 82.46±0.33 59.26±0.31

Rotation 85.38±0.20 91.61±0.49 81.50±0.42 57.45±0.33

Blurring 86.03±0.31 91.96±0.38 81.49±0.46 56.85±0.27

ER-Oracle Offline 88.26±0.15 93.09±0.35 82.88±0.31 60.56±0.23

up to |M|/i the size of the memory without changingMi,j for any previous task tj .4 We also put
the detailed algorithm for GPS in Appendix A.

6 Experiments

6.1 Experimental Setup

Datasets We carry out evaluations on four widely used vision benchmarks in continual learning,
P-MNIST, S-CIFAR-10, S-CIFAR-100 and TinyImageNet [43, 6, 25]. P-MNIST was proposed in
[18]. It contains 10 tasks where the first task is the MNIST dataset [23] while the later ones are
constructed by permuting each image in MNIST with an unique permutation seed. The S-CIFAR-10
is constructed by splitting CIFAR-10 [17] into 5 sequential tasks where each task contain 2 classes
and 12,000 images [22, 6]. Similarly, we split CIFAR-100 [17] into 10 tasks where each one contains
10 classes and 6,000 images to construct S-CIFAR-100. The TinyImagenet [48] is a subset of
ImageNet [14] with 200 classes. We split it into 10 consecutive tasks with 20 classes per task.

Architectures For P-MNIST, we apply a fully connected network with two hidden layers. Each
comprises 100 ReLU units. For S-CIFAR-10, S-CIFAR-100 and TinyImageNet, we use Resnet18
following [6] and [13].

Baselines The baselines we used in experiments include ER-Res, ER-Ring-Full and ER-Hybrid [11].
ER-Hybrid is a mix of ER-Res and ER-Ring-Full, where the memory construction strategy would
switch from the former to the latter once observing only one sample of some class is left inM. We
also compare to non-ER methods: online EWC (oEWC) [44], iCaRL [37], A-GEM [10] and GSS [3].

Training Details: Our training all use stochastic gradient descent (SGD) with a learning rate of
0.1. We use λ = 1 in the local updating method Eqn. (2). For P-MNIST, we train 5 epochs for
each task while increasing the number of epochs to 50 for S-CIFAR-10, 100 for both S-CIFAR-100
and TinyImageNet regarding their data complexity, as done by works [6, 43]. For P-MNIST and
S-CIFAR-10, we set the batch size as 10. For S-CIAFR-100 and TinyImageNet, batch size is set to
50. Following the implementation of ER [11], we set the same batch size for training the current
task and the memory. Note the permutation seeds we use for simulation in P-MNIST are different
from the ones used in P-MNIST itself to avoid peeping into test datasets. More training details and
hyperparameter values can be found in the Appendix F.

6.2 Main Results

In Table 1, we compare GPS to ER baselines and the offline oracle on the four vision benchmarks.
We also compare GPS using different simulation techniques.

4We release our code at https://github.com/liuyejia/gps_cl
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Figure 3: (a). Global loss of task t3 from the S-CIFAR-100 benchmark w.r.t. different configurations
ofM3,3 (or M̃3,3). The Offline and Rotation curves use the right y-axis, while the Permutation and
Blurring curves use the left y-axis. The blue stars mark the switching points. (b). The loss of task t3
after training future tasks. (c). Accuracy of GPS and baselines on long sequence P-MNIST.

GPS using permutation performs better GPS using permutation shows improved accuracy
compared to ER baselines. Its performance is close to the performance of the offline oracle solution,
which implies it is a good approximation. We can also see that GPS using permutation performs
better than using rotation and blurring, in terms of both accuracy and stability. The results support
our hypotheses on the properties that synthesized tasks should bear, i.e., similar level difficulties to
previous tasks and limited zero-shot transfer ability.

Dynamic memory construction provides stability Besides, we notice that the offline ER oracle,
and GPS using different simulation techniques, are more stable than ER baselines as they achieve
lower standard deviation on most of the evaluated benchmarks. We attribute this to the reduced
interference from random seeds as we take the global objective into explicit consideration.

6.3 Analysis of Simulation Methods

To further understand why permutation works better than other simulation techniques, we analyze the
task t3 of the S-CIFAR-100 benchmark. To make fair comparisons with the offline oracle, we train
the pseudo-tasks with the same amount of training data and training epochs here. We plot the curve
of global loss w.r.t. the ratio of ER-Ring-Full in the memoryM3,3 (or pseudo memory M̃3,3), and
the forgetting curve of task t3 after training future tasks (or future pseudo-tasks), as in Fig. 3.

We can see that the rotation induces less forgetting (lower loss) than the real tasks (offline cases)
along the sequence, as shown in Fig. 3(b), as rotation creates tasks sequences that bear good zero-shot
transfer from the previous tasks. The pseudo-task sequence created by rotation is therefore too easy
such that the switching point of the curve is close to 0, as shown in the Fig. 3(a), which implies it is
similar to an ER-Res static policy. As for the blurring, the forgetting curve first climbs slowly, as it
allows some zero-shot transfer from the previous tasks. And then, the loss increases dramatically
since the task difficulty goes up. Its pattern of forgetting is quite different from the real tasks (offline
case) as shown in the Fig. 3(b).

We also observe that the GPS using permutation has the closest switching point to the offline compared
to the rest. Though permutation creates pseudo-task sequence that result in higher losses than the
real task sequence, the pattern of forgetting is similar. We compute the L1-norm of the offline
sampling ratios vs. permuting-simulated sampling ratios, which are 0.9, 0.7, 1.2, 1.2 for P-MNIST,
S-CIFAR-10, S-CIFAR-100 and TinyImageNet, respectively. The method selects sampling ratios for
other benchmarks as good as that for the P-MNIST, which implies the similarity of pseudo-tasks is
not the major factor for the enhanced results.5.

6.4 Long Task Sequence

We extend the 10-task P-MNIST benchmark to 20 and 40 tasks to create longer task sequences, and
make the same comparison on GPS, ER-Oracle and three ER baselines in Fig. 3(c).

5In the following text, we refer to “GPS using permutation" as GPS.
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Table 2: (a). Time cost (in minutes) of training vs. simulation for P-MNIST and S-CIFAR-10. (b).
Accuracy of GPS when incorporating existing ER variants, DER++ [6] and HAL[9], comparing to
other methods. For these two ER variants, we use a memory size of 1000 on P-MNIST and a memory
size of 2000 on the TinyImageNet.

Short Seq # Tasks Training Simulation

P-MNIST 10 26.32 2.30
S-CIFAR-10 5 545.56 10.02
S-CIFAR-100 10 1187.93 137.63
TinyImageNet 10 2418.20 209.98

Long Seq # Tasks Training Simulation

P-MNIST 20 55.29 6.21
P-MNIST 40 108.17 13.37

(a)

P-MNIST TinyImageNet

oEWC 69.21±2.92 20.81±0.95

iCaRL - 38.77±3.68

GSS 86.34±4.28 -
A-GEM 77.36±1.28 25.30±0.87

OGD 81.52±2.21 -

HAL 87.69±0.34 -
GPS+HAL 88.23±0.03 -

DER++ 91.14±0.22 60.67±1.08

GPS+DER++ 91.64±0.16 61.01±0.98

(b)

Longer task sequence requires more careful memory construction The offline solution, i.e.,
ER-Oracle, outperforms the baseline policies by ∼5% accuracy when T = 40. We attribute the
performance gain to the global objective oriented memory construction. Clearly, for our global
objective oriented memory construction, longer task sequence means larger search space of memory
construction. Notice for ER baselines in Fig. 3(c), the standard deviations are larger than those on
shorter task sequences, which implies that the larger space of memory construction choices makes a
larger performance gap between the worst and the best memory construction.

We also see that GPS solves the problem significantly better than the baselines. Interestingly, GPS
still achieves close performance to the offline solution when the task sequence is long.

6.5 Simulation Time Cost

We show how many extra time, i.e., pseudo-task generation and pseudo-task training time, GPS adds
to the standard ER training. We compute the time cost of the standard ER training vs. the extra time
from GPS in Table 2(a).

GPS is time efficient We take the asynchronous simulation, which applies a binary search to
determine s̃j sequentially in O(T log |M|) sweeps. Suppose simulating the training of each pseudo-
task takes a unit time, each sweep is in O(T ). Then, the total simulation process is in O(T 2 log |M|),
which is dependent on the memory buffer size and the number of simulation training epochs. To
ensure efficiency, we train pseudo-tasks with fewer epochs. We disclose those values for each dataset
in Appendix F. When the task sequence is short, from Table 2(a), we can see the simulation time is
over ten times less than the standard training time. When the task sequence is long, we can see the
simulation cost grows linearly w.r.t. the number of tasks, as we restrict the search window from T − j
to 10 to prevent the simulation cost increasing quadratically.

6.6 Exploration of Other Local Updating Methods

We show the performance of adopting other local updating methods from the existing ER variants
besides Eqn. (2), together with GPS. The exemplar base policies we take are from the DER++
and HAL. DER++ leverages knowledge distillation in the episodic memory construction. More
specifically, the DER++ stores both the network output logits of examples and their ground truth
labels in the memory. HAL selects pivotal learned data points besides random samples to store in the
memory. We change the local updating method from Eqn. (2) to the local updating method used in
DER++ or HAL respectively to transplant them into GPS, without any other modifications to the
algorithm.

GPS integrates well with advanced ER variants From Table 2(b), we can see the performance of
DER++ and HAL has been further improved by taking the optimized memory construction forM
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by GPS, which implies the ability of GPS as a framework to incorporate advanced memory-based
continual learning methods. Besides, as the state-of-the-art method DER++ outperforms other
non-ER methods, GPS+DER++ naturally outperforms them.

7 Related Works

Continual Learning Enabling an intelligent agent to learn progressively and adaptively without
forgetting old knowledge is a long-standing objective in AI [49, 39]. To combat the catastrophic
forgetting problem [30, 18], a few methods have been proposed in continual learning [12, 2, 13].
They usually can be categorized into three classes. One is the regularization-based methods, which
introduce an additional regularization term in the loss function to consolidate old behaviors when
learning new tasks [20, 44, 53, 8, 19, 36, 15]. One is the replay methods, which store a tiny amount
of old examples in a size-bounded memory or condense previous knowledge in a generative model to
generate pseudo samples [26, 46, 1, 9, 6, 11, 40, 1, 24, 47, 51, 7, 35]. The data stored in the buffer
would be revisited and trained together with each current training task. The third is the parameter
isolation methods, which usually allocate additional neural resources for new knowledge without
constraints on the model size [42, 29, 45, 52]. The memory cost of these methods would therefore
scale with the number of tasks.

The ER Family Experience replay falls into the replay method category, which takes a fixed-sized
buffer to store old examples. Existing experience replay variants have adopted the same setup as ER,
and focus on refining the local updating method, i.e. how to optimally update model parameters by
joint training of current task and examples in memory. The advanced techniques used to improve
local updating step include additional regularization [9], knowledge distillation [5, 6] and selective
memory sampling [1, 35]. Distinct to vanilla ER or its variants, which implicitly minimize the global
loss of the final model parameters by designing a powerful local updating method, our work focus on
directly optimizing the global objective function by creating pseudo-tasks to mimic the catastrophic
forgetting for the current task.

8 Conclusion

In this paper, we propose the dynamic memory construction optimization problem for continual
learning under the experience replay setup. The problem aims at finding the best memory construction
strategy to optimize the global objective function in continual learning. We simplify the problem
to a small space by taking three tactics, and find a solution in time complexity O(T log |M|) in
an offline setup. We then officially introduce our Global Pseudo-task Simulation (GPS), which
provides an approximate solution to the simplified problem under the realistic online setup by
creating pseudo-tasks to mimic the future catastrophic forgetting pattern for the current task. Our
empirical results have shown our approach outperforms baselines and can improve the accuracy of
existing ER variants [9, 6].

Future Studies We focus on the task- and domain-incremental in this work. Some future improve-
ments could be extending Global Pseudo-task Simulation to the class-incremental (class-IL) setup.
There are two potential challenges under this setup. 1) the task identity is known. This could be
achieved by triggering the simulation after experiencing a certain amount of data points instead of a
task. 2) though the ER-Res and ER-Ring-Full mixed policies are good enough under task and domain
IL, we might involve a complex mixture policies to find the offline oracle under class-IL, where new
assumptions are required.

Further, we hope our work could inspire the community to design new datasets closer to the real-world
setting. For example, when task sequences have specific zero-shot transfer patterns. In such cases,
we might first infer the zero-shot transfer pattern from a few data points and then inject the bias into
the simulation process.
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