

RETHINKING LLM HUMAN SIMULATION: WHEN A GRAPH IS WHAT YOU NEED

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly used to simulate humans, with applications ranging from survey prediction to decision-making. However, are LLMs strictly necessary, or can smaller, domain-grounded models suffice? We identify a large class of simulation problems in which individuals make choices among discrete options, where a graph neural network (GNN) can match or surpass strong LLM baselines despite being three orders of magnitude smaller. We introduce **Graph-basEd Models for Human Simulation** (GEMS), which casts discrete choice simulation tasks as a link prediction problem on graphs, leveraging relational knowledge while incorporating language representations only when needed. Evaluations across three key settings on two simulation datasets show that GEMS achieves comparable or better accuracy than LLMs, with far greater efficiency, interpretability, and transparency, highlighting the promise of graph-based modeling as a lightweight alternative to LLMs for human simulation.

1 INTRODUCTION

The use of large language models (LLMs) to simulate human attitudes and behaviors has recently attracted significant attention, driving new subfields of research (Gao et al., 2024; Anthis et al., 2025), conference workshops (SocialSim’25, 2025) and panels (Hwang et al., 2025), and even startups (Expected Parrot, 2025; Artificial Societies, 2025). Recent work has explored LLM human simulation under various names, including generative agents (Vezhnevets et al., 2023; Park et al., 2024), survey prediction (Rothschild et al., 2024; Holtdirk et al., 2025), human simulation (Manning et al., 2024; Wang et al., 2025b; Li et al., 2025; Kolluri et al., 2025; Kang et al., 2025), digital twins (Toubia et al., 2025), pluralistic alignment (Zhao et al., 2024; Feng et al., 2024; Yao et al., 2025), or as foundation models for human cognition and behavior (Binz et al., 2025; Xie et al., 2025).

What ties these efforts together is their common reliance on LLMs. LLMs offer advantages in simulating humans: natural language understanding that supports a wide range of prompts describing context and tasks; broad knowledge of human behavior acquired through large-scale pretraining; and language generation capabilities that span open-ended reasoning and discrete choice. Yet, this raises a central question: is an LLM *always* necessary, or are there settings where simpler, domain-grounded models may suffice if not yield further advantages, such as efficiency, interpretability, and transparency?

The present work. We identify a large class of simulation problems where graph neural networks (GNNs)—orders of magnitude smaller than LLMs—match or surpass strong LLM-based methods. While GNNs are not suited for open-ended generation, we show that they either outperform or match performance of LLMs on *discrete choice simulation*, predicting an individual’s choice over a set of options given situational context. This class of problems encompasses many popular tasks studied in LLM human simulation literature (Section 3.1).

We formulate discrete choice simulation as a link prediction problem on a graph (Figure 1), with nodes corresponding to individuals and choices, and develop a GNN-based framework for this problem. We refer to our overall approach as **Graph-basEd Models for Human Simulation** (GEMS). Unlike prior work that casts the task as next-token prediction in an LLM, GEMS emphasizes learning from relational structures while drawing on language representations *only* when necessary. We evaluate GEMS on three key settings of discrete choice simulation tasks: (1) missing responses (i.e., imputation), (2) new individuals, and (3) new questions. We compare GEMS to a series of

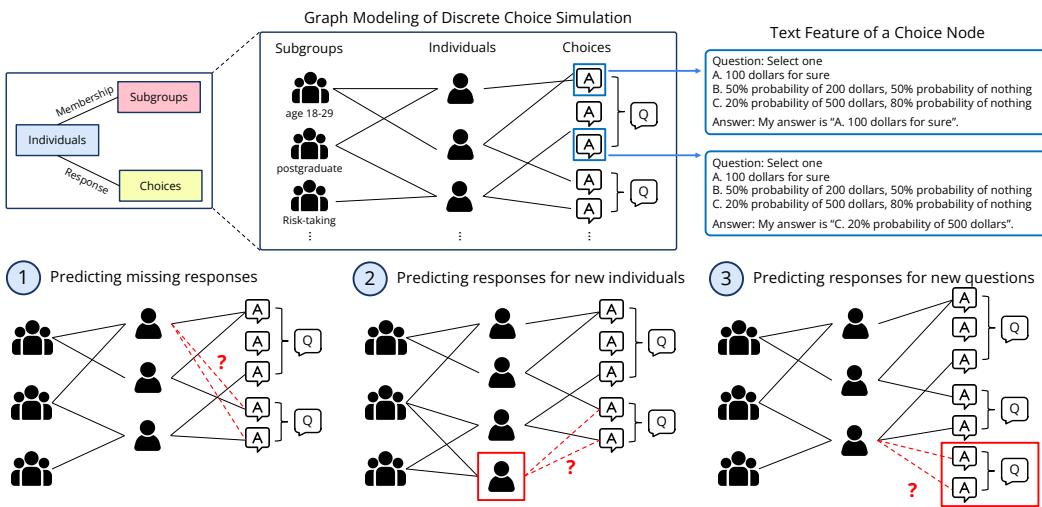


Figure 1: In our GEMS framework, we construct a heterogeneous graph for discrete choice simulation tasks (**Top**) where the goal is to predict the option chosen by an individual human user in response to a context or question. Under three widely-studied sub-settings (**Bottom**), we show that our GNN-based method achieves accuracy comparable to the best LLM-centric approaches.

LLM baselines—zero-shot, few-shot, chain-of-thought prompting, and supervised fine-tuning—on two datasets for human behavior simulation, OPINIONQA (Santurkar et al., 2023) and TWIN-2K (Toubia et al., 2025). In the first two settings, GEMS achieves comparable or better performance, without using *any* language representations. In the final setting where we encounter a new question that necessitates textual information to make any predictions, leveraging a lightweight LLM-to-GNN embedding projection (Sheng et al., 2025) achieves comparable performance.

GNNs that match LLM performance open up new opportunities. First, GEMS has $\sim 10^3$ fewer parameters and up to 10^2 times less training compute, allowing researchers without as much compute to participate in human simulation research and enabling models to scale to larger datasets. Second, GEMS learns an embedding of each individual and option, enabling us to study similarities between individuals or between options (Figure 4) and understand where the model’s predictions come from, as a simple dot product of node embedding pairs. Third, LLMs suffer from opaque pretraining data, leading to contamination risks (Deng et al., 2024) and biases that impair simulation quality (Cheng et al., 2023; Bisbee et al., 2024) while GEMS minimizes these issues by training GNNs from scratch on transparent, domain-specific data.

Contributions. Our work makes the following contributions:

- 1. Graph-based formulation of human simulation.** We show that a wide class of LLM human simulation tasks can be cast as a link prediction problem on a graph and develop an appropriate GNN architecture for this problem (Section 4).
- 2. Competitive performance over three sub-tasks.** We demonstrate that our approach (GEMS) matches strong LLM baselines in three important settings: predicting (1) missing responses (i.e., imputation), (2) responses of new individuals, and (3) responses for new questions (Section 5).
- 3. Objectives beyond accuracy.** We illustrate that GNNs offer several advantages over LLMs at comparable performance, including efficiency, interpretability, and transparency (Section 6).

2 RELATED WORK

As interest in human simulation has risen sharply in the past few years, LLMs have remained by far the predominant approach, with work often only testing LLM methods and references to this area including “LLM” in its title (e.g., “LLM social simulation” Anthi et al. (2025), “LLM-simulated data” Hwang et al. (2025)). Alongside this growth, work has examined potential pitfalls of LLM-based simulation (Bai et al., 2025; Kapania et al., 2025), including social biases (Cheng et al., 2023) and misportrayals (Wang et al., 2025a). A large class of LLM-based human simulation reduces to

108 predictions among discrete choices, typically cast as next-token prediction for the LLM. A popular
 109 example is predicting survey responses (Santurkar et al., 2023), where the task is to predict the
 110 correct token (e.g., ‘A’) matching the observed human response. Prior work has explored prompting
 111 strategies (Dominguez-Olmedo et al., 2023), including few-shot prompting (Hwang et al., 2023) and
 112 prompt engineering (Kim & Yang, 2025), as well as conditioning on open-ended narratives (Park
 113 et al., 2024; Moon et al., 2024; Rahimzadeh et al., 2025). Recently, fine-tuning has emerged as a
 114 promising alternative, either on community-specific text corpora (Chu et al., 2023; He et al., 2024;
 115 Li et al., 2024; Feng et al., 2024) or directly on human response data (Cao et al., 2025; Suh et al.,
 116 2025; Binz et al., 2025; Xie et al., 2025; Kolluri et al., 2025).

117 Yet the task remains selecting from a small, fixed set of tokens. Given this finite label space, is
 118 language modeling the best approach? We build on this observation and, in GEMS, emphasize the
 119 *relational* structure underlying human choices. This approach exploits similar relational dependen-
 120 cies as graph-based recommender systems, where user-item preferences are represented as edges
 121 (Ying et al., 2018; Fan et al., 2019; He et al., 2020), but have been absent in the LLM-centric hu-
 122 man simulation literature. Ours is the first work to clarify where graph-based modeling can achieve
 123 performance comparable to LLMs in human simulation and to provide direct comparisons against
 124 LLM baselines. Please see Appendix B for an extended discussion of related work.

125 3 PROBLEM DEFINITION

127 3.1 DISCRETE CHOICE SIMULATION TASKS

129 We focus on discrete choice simulation tasks, where an individual is presented with a question and
 130 a set of options to choose from, and the goal is to predict which option they will choose. This
 131 class of problems encompasses several popular simulation tasks, including predicting survey re-
 132 sponses, where the question is the survey question and the options are the answer options (Santurkar
 133 et al., 2023; Zhao et al., 2024; Feng et al., 2024); social science experiments, where the question
 134 is the stimuli and the options are the outcome response scale or labels (Hewitt et al., 2024; Park
 135 et al., 2024); game scenarios, where the question is the game setting description and options are the
 136 available actions (“give \$5 to opponent”) (Xie et al., 2024); or voting, where the question asks the
 137 individual to vote among candidates or on a proposed policy and the options are the candidates or
 138 level of support, respectively (Yu et al., 2024; Kreutner et al., 2025; von der Heyde et al., 2025).

139 **Terminology.** Given an individual u and a question q , with answer options $\mathcal{A}(q)$, our goal is to
 140 predict u ’s response $y_{uq} \in \mathcal{A}(q)$. Each individual has *individual features*: in human simulation
 141 tasks, these often include, but are not limited to, demographic variables. We use individual features
 142 to define *subgroups*, which are groups of individuals sharing one or more features. We also have
 143 *question features* and *option features*. Since we focus on simulation tasks where LLMs have been the
 144 dominant approach, these features are often text, i.e., the text of the question and of each option, but
 145 our framework is not restricted to text-only features. We define a *choice* as a pair (q, a) of question
 146 q and answer option $a \in \mathcal{A}(q)$; its *choice feature* is the concatenation of the question text and option
 147 text. We observe a set of prior responses \mathcal{Y} , which consists of responses from *seen* individuals (i.e.,
 148 those with at least one response in \mathcal{Y}) and *seen* questions (i.e., those with at least one response in
 149 \mathcal{Y}). However, we do not observe responses between all pairs of seen individuals and questions.

150 3.2 TASK SETTINGS

151 We consider three settings of simulating human behavior over discrete choice options widely studied
 152 in previous LLM simulation work (Figure 1).

154 **(1) Missing responses (Imputation).** Given a *seen* individual u with individual features and prior
 155 responses in \mathcal{Y} , and a *seen* question q with question and option features and prior responses in \mathcal{Y} ,
 156 predict y_{uq} , where $y_{uq} \notin \mathcal{Y}$. Prior LLM work studies few-shot prompting and few-shot fine-tuning
 157 for this setting (Hwang et al., 2023; Zhao et al., 2024; Kim & Yang, 2025; Kolluri et al., 2025).

158 **(2) New individuals.** Given a *new* individual u , where we observe their individual features but not
 159 any prior responses, predict u ’s responses to seen questions. This setting has been investigated in
 160 several simulation works (Santurkar et al., 2023; Moon et al., 2024; Kang et al., 2025; Li et al.,
 161 2025) and is also of interest to pluralistic alignment (Feng et al., 2024; Yao et al., 2025) and group
 162 response estimation (Suh et al., 2025; Cao et al., 2025).

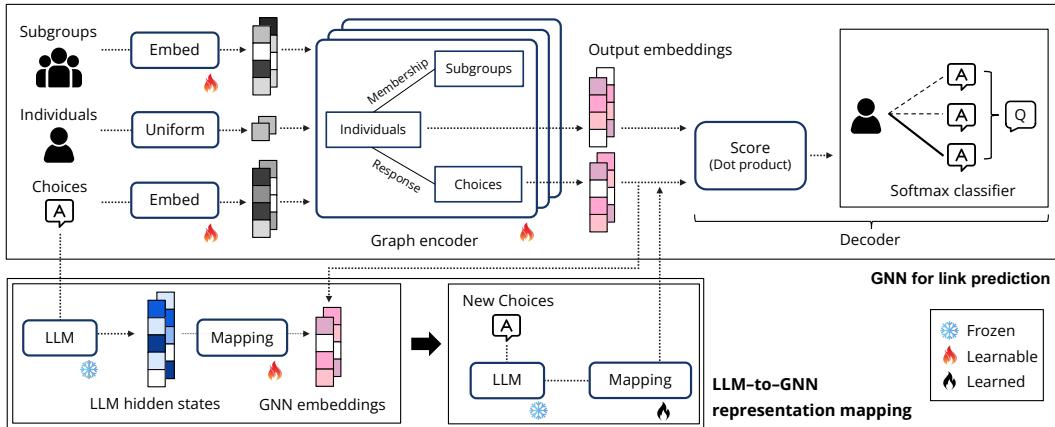


Figure 2: Overall architecture. From the relational structure only, graph encoder learns representations of individual nodes and choice nodes that are subsequently consumed by a dot-product and softmax classifier for response prediction (**Top**). Additionally, from pairs of choice nodes’ text feature (LLM hidden states) and GNN output embedding, an LLM-to-GNN representation mapping is learned and used when a new question is presented at setting 3 (**Bottom**).

(3) New questions. Given a *new* question q , where we observe its question and option features but not any prior responses, predict the responses of seen individuals to q . This setting is useful for simulating newly designed items in survey research (Rothschild et al., 2024) or testing generalization to a new simulation setting (Binz et al., 2025; Xie et al., 2025).

4 GEMS: GRAPH-BASED MODELS FOR HUMAN SIMULATION

4.1 GRAPH REPRESENTATION OF THE TASK

We represent the task as a heterogeneous graph \mathcal{G} with three types of nodes: subgroups \mathcal{S} , individuals \mathcal{U} , and choices \mathcal{C} . Choice nodes are structured as a disjoint union $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \dots \cup \mathcal{C}_n$, where \mathcal{C}_q is the set of choice nodes for question q and n is the total number of questions. We include two bidirectional relations: membership and response. Membership edges $E_{\mathcal{U}\mathcal{S}}$ with an adjacency matrix $\mathbf{A}_{\mathcal{U}\mathcal{S}} \in \{0, 1\}^{|\mathcal{U}| \times |\mathcal{S}|}$ connect each individual to the relevant subgroups. Response edges $E_{\mathcal{U}\mathcal{C}}$ with an adjacency matrix $\mathbf{A}_{\mathcal{U}\mathcal{C}} \in \{0, 1\}^{|\mathcal{U}| \times |\mathcal{C}|}$ record which choice an individual chose as a response to a question. Because each question requires selecting one choice, the row-wise sum of $\mathbf{A}_{\mathcal{U}\mathcal{C}}$ is at most n .

4.2 GNN ARCHITECTURE

Given this graph formulation, we define GEMS as a link prediction model trained end-to-end. As illustrated in Figure 2, an encoder performs relation-aware message passing to produce node embeddings for subgroups, individuals, and choices, and the decoder performs link prediction from the node embeddings. To generalize to *new questions* (Setting 3) whose choice nodes have no edges at test time, we additionally learn an LLM-to-GNN projection that maps choice nodes’ text features (frozen LLM hidden states) to representations in the GNN embedding space.

Input node features. Individual nodes \mathcal{U} are non-identifiable, thereby assigned a uniform feature $Z_{\mathcal{U}} = \mathbf{1}_{|\mathcal{U}|}$. For subgroup nodes \mathcal{S} , we learn input node features via a learnable table $Z_{\mathcal{S}} \in \mathbb{R}^{|\mathcal{S}| \times d_{\mathcal{S}}}$, with a feature dimension $d_{\mathcal{S}}$. For choice nodes \mathcal{C} , we also maintain a learnable input feature table $Z_{\mathcal{C}} \in \mathbb{R}^{|\mathcal{C}| \times d_{\mathcal{C}}}$ with a feature dimension $d_{\mathcal{C}}$, not using any textual information.

Graph encoder. We adopt standard heterogeneous graph extensions of GNNs, e.g., RGCN, GAT, GraphSAGE (Schlichtkrull et al., 2018; Veličković et al., 2018; Hamilton et al., 2017). Let $z_w^{(0)}$ be the input feature for node w from $Z_{\mathcal{U}}$, $Z_{\mathcal{S}}$, or $Z_{\mathcal{C}}$. An L -layer graph encoder computes

$$z_w^{(\ell+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \left[\text{AGG}_r \phi_r^{(\ell)}(z_w^{(\ell)}, z_v^{(\ell)}) \right] + \phi_{\text{self}}^{(\ell)}(z_w^{(\ell)}) \right), \quad \ell = 0, \dots, L-1 \quad (1)$$

216 where $\mathcal{R} = \{\mathcal{U} \xrightarrow{\phi_r^{(\ell)}} \mathcal{S}, \mathcal{S} \rightarrow \mathcal{U}, \mathcal{U} \rightarrow \mathcal{C}, \mathcal{C} \rightarrow \mathcal{U}\}$ are types of two bidirectional relations (membership
 217 and response), $\phi_r^{(\ell)}$ is a relation-specific message passing, $\phi_{\text{self}}^{(\ell)}$ is a self-loop, AGG_r is a per-relation
 218 aggregation over neighbors $\mathcal{N}_r(w)$, and σ is a non-linear activation function. We present the details
 219 of each function for different GNNs in Appendix E. After the final layer L , we apply a node-type-
 220 specific linear projection to $z_w^{(L)}$ to obtain the output embedding $z_w^O \in \mathbb{R}^{d_{\text{GNN}}}$ where d_{GNN} is the
 221 dimension of GNN output embeddings.

222 **Link prediction decoder.** The final GNN decoder consists of a dot-product score function and
 223 softmax classifier. For an individual $u \in \mathcal{U}$ and a question q with a set of choice nodes $\mathcal{C}_q \subseteq \mathcal{C}$, the
 224 score between the individual and each choice $c \in \mathcal{C}_q$ is obtained as $\text{Dot}(u, c) = (z_u^O)^\top z_c^O$. These
 225 scores are then converted to a distribution over choices, with a learnable temperature τ :

$$227 \quad p(c | u, q) = \frac{\exp(\text{Dot}(u, c) / \tau)}{\sum_{c' \in \mathcal{C}_q} \exp(\text{Dot}(u, c') / \tau)}. \quad (2)$$

229 **LLM-to-GNN representation mapping.** In Setting 3 (new questions), the choice nodes for the new
 230 question are isolated in the graph since we do not have any responses for that question yet, and have
 231 no learned features in the table $Z_{\mathcal{C}}$. Therefore, the graph encoder cannot produce the output em-
 232 bedding for new choice nodes. To make them scorable, we generate a substitute embedding directly
 233 from its text features by learning an LLM-to-GNN representation mapping on seen questions. For a
 234 choice c , the mapping takes a language representation of the choice’s text features (a frozen LLM’s
 235 hidden state $h_{\text{LLM}}(c) \in \mathbb{R}^{d_{\text{LLM}}}$) then outputs $z'_c = \mathbf{W}_{\text{proj}} h_{\text{LLM}}(c) \in \mathbb{R}^{d_{\text{GNN}}}$, where d_{LLM} and d_{GNN} are
 236 dimensions of LLM hidden states and GNN output embeddings, respectively.

237 The projection is trained on seen choice nodes by matching z'_c to the output node embedding z_c^O ,
 238 inspired by previous work (Sheng et al., 2025; Zhang et al., 2019). At inference for a new question
 239 q , we compute z'_c for each $c \in \mathcal{C}_q$ and plug these into the decoder in place of z_c^O . We note that this
 240 mapping is only needed in Setting 3; Settings 1–2 use the output embeddings z_c^O directly.

242 4.3 TRAINING OBJECTIVE

243 **Link prediction.** Following self-supervised link prediction (Kipf & Welling, 2016; Berg et al.,
 244 2017), we train by exposing a subset of train edges to the graph encoder and supervising the model
 245 to reconstruct the rest. At each train step we randomly mask response edges from $E_{\mathcal{U}\mathcal{C}}$, with a
 246 masking strategy defined in Section 5 per setting. For example, say we masked a response edge
 247 (u, c) for an individual u and a choice c where c belongs to a question $q(c)$. The decoder generates
 248 a probability $p(c | u, q(c))$ by Equation (2). We aim to minimize the cross-entropy loss

$$249 \quad \mathcal{L}_{\text{CE}} = - \sum_{(u, c) \in \text{masked}} \log p(c | u, q(c)) \quad (3)$$

252 \mathcal{L}_{CE} requires no explicit negative sampling: the masked response edge (u, c) is the positive edge,
 253 while (u, c') for all $c' \in \mathcal{C}_{q(c)} \setminus \{c\}$ act as implicit negatives through the softmax normalization.

254 **LLM-to-GNN mapping.** For setting 3 (new question), we learn a linear mapping \mathbf{W}_{proj} by solving

$$256 \quad \mathcal{L}_{\text{proj}} = \sum_{c \in \mathcal{C}_{\text{train}}} \left\| \mathbf{W}_{\text{proj}} h_{\text{LLM}}(c) - z_c^O \right\|_2^2 + \alpha \left\| \mathbf{W}_{\text{proj}} \right\|_2^2 \quad (4)$$

258 where $\mathcal{C}_{\text{train}}$ is the set of choice nodes available during training, h_{LLM} is a frozen LLM’s hidden state
 259 for a text feature of a choice node c , and z_c^O is the output embedding of an L -layer graph encoder. α
 260 is a hyperparameter of a ridge regression selected by the prediction accuracy on the validation set.

261 5 EXPERIMENTS

263 5.1 EXPERIMENTAL SETUP

265 **Datasets.** We evaluate on two simulation datasets: (1) OPINIONQA (Santurkar et al., 2023), com-
 266 prising responses from 76K individuals to 500 questions spanning various social topics (e.g., po-
 267 litical attitudes, media consumption); and (2) TWIN-2K (Toubia et al., 2025), a 150-item battery
 268 including economic preferences, cognitive biases, and personality traits, administered to 2K indi-
 269 viduals. Examples of questions and choices are provided in Appendix C. Dataset split schemes are
 described per setting below; graph statistics appear in Appendix D.

Evaluation metric. We evaluate performance using accuracy as our metric, comparing the individual’s true choice that they selected to the highest-probability choice predicted by the model. Specifically, for a test response edge (u, c) with a question $q(c)$ that c belongs to, the model’s prediction is correct if $c = \operatorname{argmax}_{c' \in C_{q(c)}} p(c'|u, q(c))$ (Equation 2) and incorrect otherwise. Accuracy is the average of correctness over all test response edges.

Compared methods. We compare GEMS against five LLM-based baselines (three prompting, two fine-tuning) and include a proxy of lower/upper performance bound. Exact prompt examples for each of the baselines are in Appendix H.

1. Zero-shot prompting: Prompt with individual features, following Santurkar et al. (2023).
2. Few-shot prompting: Prompt with individual features and the individual’s prior responses, following Hwang et al. (2023); Kim & Yang (2025). Not applicable in Setting 2 when no prior responses are available at test.
3. Agentic CoT prompting: A chain-of-thought (CoT) framework consisting of a reflection agent and a prediction agent (Park et al., 2024).
4. Supervised fine-tuning (SFT): Fine-tune an LLM to predict the answer token given individual features (Cao et al., 2025; Suh et al., 2025; Yao et al., 2025; Kolluri et al., 2025).
5. Few-shot fine-tuning (Few-shot FT): Fine-tune an LLM with individual features plus the individual’s prior response (Zhao et al., 2024). Like few-shot prompting, not applicable in Setting 2.
6. Random (lower bound): Uniformly sample a choice from the question’s available options.
7. Human retest (upper bound): When available from dataset authors, report test-retest accuracy. It is the probability that the same individual repeats the same choice when re-asked the same question after a fixed time interval (e.g., two weeks).

For main experiments we adopt three language models, LLaMA-2-7B, Mistral-7B-v0.1, Qwen3-8B (Touvron et al., 2023; Jiang et al., 2023; Yang et al., 2025). We also present additional inference results (Dubey et al., 2024; Qwen et al., 2025; OpenAI, 2025) at Appendix F.

5.2 SETTING 1: MISSING RESPONSES (IMPUTATION)

Table 1: Accuracy of imputing missing responses. Numbers indicate mean test accuracy with standard deviation from 3 train/val/test random splits with different seeds. k indicates number of in-context examples. For each dataset, bold marks the best accuracy per GEMS and LLM-based methods; underline marks the runner-up. Human retest for OPINIONQA is not available.

Methods	k	OPINIONQA			TWIN-2K		
		LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B	LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B
Random			27.87			35.05	
Human retest			Not available			81.72	
Zero-shot		29.18 ± 0.15	34.63 ± 0.19	39.38 ± 0.20	41.49 ± 0.31	42.47 ± 0.27	52.06 ± 0.38
Few-shot	3	38.54 ± 0.21	42.52 ± 0.06	42.21 ± 0.08	41.44 ± 0.88	48.25 ± 0.73	54.10 ± 0.51
	8	37.91 ± 0.65	45.78 ± 0.56	43.66 ± 0.59	43.40 ± 0.99	51.26 ± 0.84	56.08 ± 1.01
Agentic CoT	3	32.19 ± 0.25	41.37 ± 0.47	47.63 ± 0.17	33.13 ± 1.57	50.14 ± 0.93	57.89 ± 1.80
	8	28.80 ± 0.15	38.43 ± 0.31	47.97 ± 0.36	Context Limit	48.76 ± 0.53	60.20 ± 1.28
SFT		49.41 ± 0.12	50.56 ± 0.14	48.84 ± 0.14	61.23 ± 0.13	61.85 ± 0.13	61.49 ± 0.15
Few-shot FT	3	55.59 ± 0.11	56.31 ± 0.10	55.09 ± 0.14	63.51 ± 0.15	63.91 ± 0.16	62.61 ± 0.19
	8	55.98 ± 0.12	56.76 ± 0.13	55.61 ± 0.13	65.86 ± 0.17	66.36 ± 0.13	65.27 ± 0.16
GEMS	RGCN			56.89 ± 0.12		66.36 ± 0.13	
	GAT			56.40 ± 0.10		66.01 ± 0.14	
	SAGE			57.00 ± 0.12		66.62 ± 0.12	

Setup. We follow the split scheme of Zhao et al. (2024): each dataset is first split at an individual level into 35/5/60% train/validation/test individuals. For each individual held out for validation/test, 40% of their responses are also available during training, while 60% are held out for evaluation. LLM fine-tuning prompts and train graphs are built upon all responses from 35% train individuals and 40% responses from validation/test individuals, having an equal amount of information to train. Validation and test are done on 60% held-out responses for validation/test individuals.

At each training step of GEMS, 50% of response edges in the train graph are randomly masked and used as supervision edges, while all membership edges and unmasked train response edges serve as message passing edges. At validation/test, the entire train graph is used for message passing to predict held-out edges (60% responses from held-out individuals). For LLM few-shot prompts we test 3 or 8 in-context examples, selected from training data by the highest cosine similarity of text embeddings, following Liu et al. (2021); Hwang et al. (2023). Please refer to Appendix E for additional details, e.g., text embedding models and hyperparameter.

Results. Table 1 reports test accuracy. GEMS matches or outperforms the strongest LLM-based methods, 8-shot fine-tuning. Performance of LLM-based methods generally improves with more sophisticated prompt design and compute, from zero-shot prompting to few-shot fine-tuning; however, GEMS attains comparable accuracy without using any textual features, relying solely on a learnable feature table over choices and subgroups. We attribute this to the relational structure that alone provides sufficient signal about what the choice has, even in the absence of standalone semantic information. Taken together, these results highlight the value of relational structure for accurate prediction, and make graph modeling with an explicit relational inductive bias a compelling alternative to supervision in the textual modality.

5.3 SETTING 2: NEW INDIVIDUALS

Table 2: Accuracy of predicting responses from new, unseen individuals. Numbers indicate mean test accuracy with standard deviation from 3 train/val/test random splits with different seeds. For LLM baselines, few-shot methods are not applicable since we lack any prior responses for new individuals.

Methods		OPINIONQA			TWIN-2K		
		LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B	LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B
Random			27.87			35.05	
Zero-shot		29.15 ± 0.15	34.40 ± 0.13	38.97 ± 0.16	41.57 ± 0.39	43.03 ± 0.50	51.79 ± 0.27
Agentic CoT		18.44 ± 0.47	33.84 ± 0.31	39.53 ± 0.22	21.91 ± 0.82	45.30 ± 0.34	53.45 ± 0.43
SFT		49.35 ± 0.15	50.49 ± 0.17	48.87 ± 0.16	61.29 ± 0.22	61.85 ± 0.19	61.38 ± 0.22
GEMS	RGCN		50.50 ± 0.12			62.39 ± 0.14	
	GAT		50.36 ± 0.14			62.22 ± 0.14	
	SAGE		50.73 ± 0.11			62.50 ± 0.19	

Setup. The split is also done at an individual level: 35% train, 5% validation, and 60% test individuals. In contrast to setting 1 where we hold out 60% responses from each validation/test individual, here we hold out all responses. This disables LLM few-shot prompting at validation and test phases and requires prediction from only individual features. We also modify GEMS training to teach the model how to make predictions for new individuals. At each training step, we randomly select 50% of training individuals, mask all of their response edges to use as supervision edges, and use all membership edges and unselected training individuals’ response edges for message passing.

Results. Table 2 reports test accuracy. GEMS remains competitive with the strongest LLM-centric baseline, SFT. Trends mirror that of Setting 1: (i) zero-shot prompting and CoT exceed a random baseline and benefit from stronger LLMs but fall behind SFT, and (ii) fine-tuning narrows performance gaps across LLM families. We note that in GEMS, new individuals only have membership edges to subgroup nodes based on their individual features; furthermore, since their input node features are simply $1_{|\mathcal{U}|}$, their entire predictive signal comes from their subgroup neighbors. By masking out all response edges for 50% individuals during training, we force the learnable subgroup feature Z_S to encode representations that generalize to new individuals, precisely what is needed for the new individual setting. LLM-based methods can acquire similar knowledge by iteratively seeing pairs of individual features and responses, but at a substantially higher computational cost.

5.4 SETTING 3: NEW QUESTIONS

Setup. We split at the question level into 70/10/20% train/validation/test, following Suh et al. (2025). Validation/test questions are entirely unseen during train; even at test time their choice nodes are isolated in the graph and only text features are available. Responses to train questions from all individuals are used to fine-tune LLMs or to construct the train graph. At validation/test, responses to train questions are reused as in-context examples or as message-passing edges.

378
 379
 380
 381
 Table 3: Accuracy of predicting human responses to new, unseen questions. Numbers indicate
 mean test accuracy with standard deviation from 3 train/val/test random splits with different seeds.
 For GEMS, within a row each column indicates the performance with different LLM hidden states.
 Details about extraction of LLM hidden states can be found at Appendix E.

Methods	k	OPINIONQA			TWIN-2K		
		LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B	LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B
Random			27.87			35.05	
Zero-shot		29.15 ± 0.57	35.60 ± 2.91	38.84 ± 1.08	40.03 ± 2.45	41.30 ± 3.69	50.94 ± 2.76
Few-shot	3	37.93 ± 2.24	42.49 ± 3.16	42.74 ± 2.87	42.09 ± 3.38	47.88 ± 1.93	54.02 ± 4.19
	8	37.98 ± 1.62	42.81 ± 3.39	44.05 ± 2.65	41.15 ± 2.77	47.93 ± 2.30	55.09 ± 2.50
Agentic CoT	3	31.46 ± 2.92	40.20 ± 1.60	45.90 ± 3.57	32.16 ± 3.66 Context Limit	49.67 ± 3.61	56.18 ± 2.74
	8	27.15 ± 1.42	37.45 ± 4.94	46.18 ± 3.70		48.24 ± 5.43	58.08 ± 2.83
SFT		44.12 ± 2.30	47.86 ± 0.95	43.95 ± 0.87	55.85 ± 1.21	56.21 ± 0.96	56.24 ± 1.42
Few-shot FT	3	49.83 ± 1.53	51.77 ± 1.09	49.59 ± 0.84	58.07 ± 1.86	59.86 ± 1.52	59.99 ± 1.33
	8	50.11 ± 1.97	51.83 ± 1.47	50.00 ± 1.00	59.87 ± 1.35	60.84 ± 1.40	60.48 ± 1.79
GEMS	RGCN	48.94 ± 1.71	50.13 ± 1.85	49.07 ± 1.48	56.24 ± 3.65	60.37 ± 2.47	59.59 ± 4.42
	GAT	46.87 ± 1.78	49.25 ± 2.46	48.52 ± 2.13	52.00 ± 1.52	56.57 ± 1.95	57.38 ± 2.44
	SAGE	47.29 ± 1.89	49.84 ± 1.98	49.09 ± 1.80	54.06 ± 4.47	58.56 ± 2.43	60.03 ± 3.88

395
 396 GEMS is trained in two stages. In the first stage, we train the GNN using the link prediction objective
 397 (Equation 3) to learn representations of individual and choice nodes in the train graph. To this end,
 398 we initially hold out a small fraction (5%) of response edges from the train graph, which we call
 399 “transductive validation edges”. At each training step, the remaining response edges in the graph
 400 are partitioned into 50% supervision edges and 50% message-passing edges. At the checkpoint with
 401 the best accuracy on the transductive validation edges, we extract the GNN’s output embeddings for
 402 choice nodes $\mathcal{C}_{\text{train}}$. In the second stage, we train a projection to map LLM hidden states of $\mathcal{C}_{\text{train}}$ text
 403 features to the GNN’s output embedding space extracted in stage 1 (Equation 4). At test time, we
 404 make predictions for new questions using the projected embeddings of their choices, as described in
 405 Section 4.2.

406 **Results.** Table 3 reports mean accuracy. GEMS equipped with the LLM-to-GNN mapping attains
 407 competitive performance. Although GEMS does not outperform fine-tuning LLM (few-shot FT),
 408 we show that a lightweight LLM-to-GNN mapping significantly outperforms LLM prompting and
 409 closely follows fine-tuning performance. This performance is achieved with LLM hidden states –
 410 GNN output embedding pairs from 500 (OPINIONQA) or 150 (TWIN-2K) questions. We also ob-
 411 serve that the choice of LLM affects GEMS: accuracies achieved with GEMS correlate with those of
 412 the corresponding LLM-based baselines, indicating that gains from stronger LLMs translate through
 413 the mapping, consistent with prior observations (Sheng et al., 2025). Taken together, explicitly mod-
 414 eling the relational structure enables encoding meaningful representations of human choices, even
 415 generalizable to new questions.

416 6 DISCUSSION ON ADVANTAGES OF GNNs

417 We have shown that GNNs achieve comparable accuracy to strong LLM baselines on a large class
 418 of simulation tasks with discrete choices. This brings several practical advantages: efficiency and
 419 scalability, interpretability, and greater transparency, stemming from the relational inductive bias of
 420 graphs and the simplicity of our graph encoder-decoder architecture.

422 **Efficiency and scalability.** As summarized in Figure 3, GEMS attains accuracy comparable to
 423 the best LLM-based methods with $\sim 10^2 \times$ less compute and $\sim 10^3 \times$ fewer parameters (see Ap-
 424 pendix E.7). GEMS remains tractable as dataset size grows. For example, extrapolating from Fig-
 425 ure 3, fine-tuning a single LLM on datasets orders of magnitude larger (e.g., SUBPOP (Suh et al.,
 426 2025)) would require on the order of 10^3 GPU-hours, whereas GEMS trains within a few hours and,
 427 under comparable compute, outperforms LLM-based methods.

428 We attribute this efficiency to the fit between GNNs and the relational structure at the core of discrete
 429 choice simulation tasks. Prompt formulations for LLM (Section 5.1) capture at most 1-hop structure
 430 and do not naturally express higher-order dependencies such as $u \leftrightarrow c \leftrightarrow u'$ (co-selection of a choice
 431 between individuals) or $c \leftrightarrow u \leftrightarrow c'$ (correlated choices mediated by a user). In contrast, GNNs
 encode these relations explicitly by multi-hop message passing.

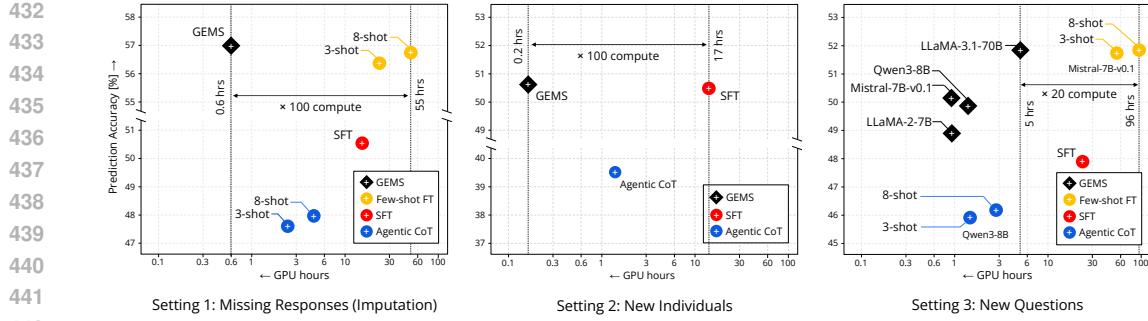


Figure 3: Prediction accuracy vs. GPU-hours (A100-80GB) on the OPINIONQA dataset by task setting and method. Zero-/few-shot prompting accuracies fall below the plotted y-range. For LLM-based methods, we report the best result across three LLMs (LLaMA-2-7B, Mistral-7B-v0.1, and Qwen3-8B). For GEMS, we report the best result across three models (RGCN, GAT, and SAGE) for setting 1 & 2, and report across different LLMs for setting 3. See Appendix E for details.

Interpretability. GEMS makes predictions in a computationally simple and interpretable way: as a dot product between individual and choice embeddings. In contrast, it is less direct how LLMs combine the description of the individual, question text, and answer options to predict how the individual will respond to the question. Furthermore, we can directly inspect GEMS’s embeddings (Figure 4). First, we find that the representations of certain individual features naturally emerge in the embedding space, as the first and second principal components. Second, embeddings of individual nodes show substantial heterogeneity among individuals within the same subgroup, revealing the diversity of individuals beyond their demographics. Third, we find that GEMS encodes nuanced meanings underlying questions and options. In particular, the similarity between two choices with different wordings is reflected as similarity between their embeddings: for example, saying that “reducing illegal immigration” is “a top priority” and “addressing climate change” is “not too important”, while the LLM hidden states tend to be overly focused on surface wording similarity (e.g., all “a top priority” are clustered regardless of the topic). Please refer to Appendix F for details.

Transparency and trust. LLMs are often trained on undisclosed pretraining data, which creates contamination concerns where evaluation data (e.g., past behavioral studies) may have appeared in the LLMs’ training (Deng et al., 2024). Furthermore, LLMs have been shown to display social biases in simulation, such as leaning towards certain groups’ opinions (Santurkar et al., 2023), stereotyping (Cheng et al., 2023), or underestimating variance (Bisbee et al., 2024). Finally, prompting-based LLMs are sensitive to prompt format (Lu et al., 2022; Sclar et al., 2024), with many formatting decisions involved in simulation tasks (e.g., order of few-shot examples, format of describing an individual’s demographics). All of these issues—opaque training, social biases, and prompt sensitivity—challenge the trustworthiness of LLM-based human simulations. In contrast, GEMS is trained from scratch on task-specific graphs, removing issues of contamination or learning social biases from unknown training data. Furthermore, there is no issue of ordering examples, since the individual is connected to all of their previously selected choices and GNN aggregation is invariant to the order of neighbors (Hamilton et al., 2017). Prompt formatting is only relevant to GEMS when the LLM-to-GNN projection is needed; even then, we find that it exhibits lower variance under prompt perturbations due to the training of the projection matrix.

7 CONCLUSION

We introduce GEMS framework to model a large class of LLM human simulation tasks as a link prediction problem on a graph. GEMS learns the relational structure of choices, and uses a lightweight LLM-to-GNN projection only when necessary. Across multiple settings and datasets originally introduced for LLM human simulation, GEMS matches the strongest LLM-based methods. Beyond simulation performance, GEMS offers clear benefits: superior compute and memory efficiency with $\sim 100\times$ less GPU hours and $\sim 1,000\times$ fewer parameters, and a simple decoding that supports inspection and interpretability. Taken together, we suggest: *for human simulation tasks on discrete choices, a graph is what you need.*

486 8 USE OF LLM AND REPRODUCIBILITY STATEMENT
487488 Following the submission guidelines, we note that we used generative AI (ChatGPT) to (1) help
489 locate related work and relevant domains, (2) find potential bugs in the experiment code implemen-
490 tations, and (3) edit writing for potential grammatical mistakes. All ideation, methodological design,
491 experiments, and analyses are conducted by the authors.492 We document implementation details for GEMS and all LLM baselines in Appendix E and data
493 preprocessing in Appendix D. We release the training code in an anonymized repository¹. Because
494 the experiments use individual-level data governed by data use agreements with the original curators,
495 we do not redistribute the raw datasets. Upon acceptance, we will provide the full pipeline, including
496 step-by-step instructions for obtaining access to the data from the providers and the preprocessing
497 code.498
499 REFERENCES
500501 Jacy Reese Anthis, Ryan Liu, Sean M Richardson, Austin C Kozlowski, Bernard Koch, James
502 Evans, Erik Brynjolfsson, and Michael Bernstein. Llm social simulations are a promising research
503 method. *arXiv preprint arXiv:2504.02234*, 2025.504 Artificial Societies Artificial Societies. Artificial societies — company profile. <https://www.ycombinator.com/companies/artificial-societies>, 2025. Accessed: 2025-09-
505 21.506 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
arXiv:1607.06450*, 2016.507 Xuechunzi Bai, Angelina Wang, Ilia Sucholutsky, and Thomas L Griffiths. Explicitly unbiased large
508 language models still form biased associations. *Proceedings of the National Academy of Sciences*,
509 122(8):e2416228122, 2025.510 Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
511 Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
512 Relational inductive biases, deep learning, and graph networks. *arXiv preprint arXiv:1806.01261*,
513 2018.514 Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
515 *arXiv preprint arXiv:1706.02263*, 2017.516 Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno,
517 Peter Dayan, Can Demircan, Maria K Eckstein, Noémi Éltető, et al. A foundation model to
518 predict and capture human cognition. *Nature*, pp. 1–8, 2025.519 James Bisbee, Joshua D. Clinton, Cassy Dorff, Brenton Kenkel, and Jennifer M. Larson. Synthetic
520 replacements for human survey data? the perils of large language models. *Political Analysis*,
521 2024.522 Yong Cao, Haijiang Liu, Arnav Arora, Isabelle Augenstein, Paul Röttger, and Daniel Hershcovich.
523 Specializing large language models to simulate survey response distributions for global popula-
524 tions. *arXiv preprint arXiv:2502.07068*, 2025.525 Pew Research Center. Issues and the 2024 election. <https://www.pewresearch.org/politics/2024/09/09/Issues-and-the-2024-election/>, September 9 2024.
526 Accessed: YYYY-MM-DD.527 Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Lлага: Large language
528 and graph assistant. *arXiv preprint arXiv:2402.08170*, 2024.529 Myra Cheng, Tiziano Piccardi, and Diyi Yang. Compost: Characterizing and evaluating caricature
530 in llm simulations. In *EMNLP*, 2023.531
532
533
534
535
536
537
538
539
1¹https://anonymous.4open.science/r/gnn_iclr_2026_private-8611/

540 Eric Chu, Jacob Andreas, Stephen Ansolabehere, and Deb Roy. Language models trained on media
 541 diets can predict public opinion. *arXiv preprint arXiv:2303.16779*, 2023.

542

543 Chunyuan Deng, Yilun Zhao, Yuzhao Heng, Yitong Li, Jiannan Cao, Xiangru Tang, and Arman Co-
 544 han. Unveiling the spectrum of data contamination in language models: A survey from detection
 545 to remediation. *arXiv preprint arXiv:2406.14644*, 2024.

546

547 Ricardo Dominguez-Olmedo, Moritz Hardt, and Celestine Mendler-Dünner. Questioning the survey
 548 responses of large language models. *arXiv preprint arXiv:2306.07951*, 2023.

549

550 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 551 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 552 *arXiv preprint arXiv:2407.21783*, 2024.

553

554 Expected Parrot Expected Parrot. Expected parrot. <https://www.expectedparrot.com/>,
 555 2025. Accessed: 2025-09-21.

556

557 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
 558 networks for social recommendation. In *The world wide web conference*, pp. 417–426, 2019.

559

560 Shangbin Feng, Taylor Sorensen, Yuhan Liu, Jillian Fisher, Chan Young Park, Yejin Choi, and Yulia
 561 Tsvetkov. Modular pluralism: Pluralistic alignment via multi-LLM collaboration. In *Proceedings
 562 of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 4151–4171,
 563 November 2024.

564

565 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
 566 *arXiv preprint arXiv:1903.02428*, 2019.

567

568 Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong
 569 Li. Large language models empowered agent-based modeling and simulation: a survey and per-
 570 spectives. *Humanities and Social Sciences Communications*, 11(1259), 2024.

571

572 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 573 *Advances in neural information processing systems*, 30, 2017.

574

575 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
 576 Simplifying and powering graph convolution network for recommendation. In *Proceedings of the
 577 43rd International ACM SIGIR conference on research and development in Information Retrieval*,
 578 pp. 639–648, 2020.

579

580 Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-
 581 nessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
 582 learning. *arXiv preprint arXiv:2305.19523*, 2023.

583

584 Zihao He, Minh Duc Chu, Rebecca Dorn, Siyi Guo, and Kristina Lerman. Community-cross-
 585 instruct: Unsupervised instruction generation for aligning large language models to online com-
 586 munities. *arXiv preprint arXiv:2406.12074*, 2024.

587

588 Luke Hewitt, Ashwini Ashokkumar, Isaias Ghezae, and Robb Willer. Predicting results of social
 589 science experiments using large language models. Technical report, Stanford University and New
 590 York University, August 2024.

591

592 Tobias Holtdirk, Dennis Assenmacher, Arnim Bleier, and Claudia Wagner. Addressing systematic
 593 non-response bias with supervised fine-tuning of large language models: A case study on german
 594 voting behaviour. Technical report, Center for Open Science, 2025.

595

596 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 597 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

598

599 Zhengyu Hu, Yichuan Li, Zhengyu Chen, Jingang Wang, Han Liu, Kyumin Lee, and Kaize Ding.
 600 Let's ask gnn: Empowering large language model for graph in-context learning. *arXiv preprint
 601 arXiv:2410.07074*, 2024.

594 Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
 595 Leskovec. Prodigy: Enabling in-context learning over graphs. *Advances in Neural Information
 596 Processing Systems*, 36:16302–16317, 2023.

597 Angel Hsing-Chi Hwang, Michael S Bernstein, S Shyam Sundar, Renwen Zhang, Manoel
 598 Horta Ribeiro, Yingdan Lu, Serina Chang, Tongshuang Wu, Aimee Yang, Dmitri Williams, et al.
 599 Human subjects research in the age of generative ai: Opportunities and challenges of applying
 600 llm-simulated data to hci studies. In *Proceedings of the Extended Abstracts of the CHI Confer-
 601 ence on Human Factors in Computing Systems*, pp. 1–7, 2025.

602 EunJeong Hwang, Bodhisattwa Prasad Majumder, and Niket Tandon. Aligning language models to
 603 user opinions. *arXiv preprint arXiv:2305.14929*, 2023.

604 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 605 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 606 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

607 Minwoo Kang, Suhong Moon, Seung Hyeong Lee, Ayush Raj, Joseph Suh, and David Chan. Deep
 608 binding of language model virtual personas: a study on approximating political partisan misper-
 609 ceptions. In *Second Conference on Language Modeling*, 2025.

610 Shivani Kapania, William Agnew, Motahare Eslami, Hoda Heidari, and Sarah E Fox. Simulacrum
 611 of stories: Examining large language models as qualitative research participants. In *Proceedings
 612 of the 2025 CHI Conference on Human Factors in Computing Systems*, pp. 1–17, 2025.

613 Jaehyung Kim and Yiming Yang. Few-shot personalization of llms with mis-aligned responses. In
 614 *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
 615 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 616 11943–11974, 2025.

617 Junsol Kim, James Evans, and Aaron Schein. Linear representations of political perspective emerge
 618 in large language models. In *The Thirteenth International Conference on Learning Representa-
 619 tions*, 2025.

620 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 621 arXiv:1412.6980*, 2014.

622 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint
 623 arXiv:1611.07308*, 2016.

624 Akaash Kolluri, Shengguang Wu, Joon Sung Park, and Michael S. Bernstein. Finetuning llms for
 625 human behavior prediction in social science experiments, 2025.

626 Maximilian Kreutner, Marlene Lutz, and Markus Strohmaier. Persona-driven simulation of
 627 voting behavior in the european parliament with large language models. *arXiv preprint
 628 arXiv:2506.11798*, 2025.

629 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 630 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 631 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 632 ciples*, pp. 611–626, 2023.

633 Ang Li, Haozhe Chen, Hongseok Namkoong, and Tianyi Peng. Llm generated persona is a promise
 634 with a catch. *arXiv preprint arXiv:2503.16527*, 2025.

635 Cheng Li, Mengzhuo Chen, Jindong Wang, Sunayana Sitaram, and Xing Xie. Culturellm: In-
 636 corporating cultural differences into large language models. *Advances in Neural Information
 637 Processing Systems*, 37:84799–84838, 2024.

638 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
 639 makes good in-context examples for gpt-3? *arXiv preprint arXiv:2101.06804*, 2021.

640 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 641 arXiv:1711.05101*, 2017.

648 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
 649 prompts and where to find them: Overcoming few-shot prompt order sensitivity. In *Proceedings*
 650 *of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 651 *Papers)*, pp. 8086–8098, 2022.

652 Benjamin S Manning, Kehang Zhu, and John J Horton. Automated social science: Language models
 653 as scientist and subjects. Technical report, National Bureau of Economic Research, 2024.

655 Suhong Moon, Marwa Abdulhai, Minwoo Kang, Joseph Suh, Widya Dewi Soedarmadji, Eran Behar,
 656 and David Chan. Virtual personas for language models via an anthology of backstories. In
 657 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 658 19864–19897, 2024.

659 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.

660 Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel
 661 Morris, Robb Willer, Percy Liang, and Michael S Bernstein. Generative agent simulations of
 662 1,000 people. *arXiv preprint arXiv:2411.10109*, 2024.

663 PewResearch. America trends panel waves. Retrieved February 06, 2025, from <https://www.pewsocialtrends.org/dataset>, 2018.

664 Yao Qu and Jue Wang. Performance and biases of large language models in public opinion simulation. *Humanities and Social Sciences Communications*, 11(1):1–13, 2024.

665 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 666 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 667 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 668 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 669 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 670 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 671 URL <https://arxiv.org/abs/2412.15115>.

672 Vahid Rahimzadeh, Erfan Moosavi Monazzah, Mohammad Taher Pilehvar, and Yadollah
 673 Yaghoobzadeh. Synthia: Synthetic yet naturally tailored human-inspired personas. *arXiv preprint*
 674 *arXiv:2507.14922*, 2025.

675 Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
 676 Huang. Representation learning with large language models for recommendation. In *Proceedings*
 677 *of the ACM web conference 2024*, pp. 3464–3475, 2024.

678 David M Rothschild, James Brand, Hope Schroeder, and Jenny Wang. Opportunities and risks of
 679 llms in survey research. *Available at SSRN*, 2024.

680 Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto.
 681 Whose opinions do language models reflect? In *International Conference on Machine Learning*,
 682 pp. 29971–30004. PMLR, 2023.

683 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
 684 Welling. Modeling relational data with graph convolutional networks. In *European semantic web*
 685 *conference*, pp. 593–607. Springer, 2018.

686 Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
 687 sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
 688 formatting. In *The Twelfth International Conference on Learning Representations*, 2024.

689 Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang Wang, and Tat-Seng Chua. Language
 690 representations can be what recommenders need: Findings and potentials. In *ICLR*, 2025.

691 Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David I Adelani, Jian Gang Ngu, Daniel
 692 Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, et al.
 693 Global mmlu: Understanding and addressing cultural and linguistic biases in multilingual eval-
 694 uation. *arXiv preprint arXiv:2412.03304*, 2024.

702 SocialSim'25. Social simulation with llms @ colm 2025. <https://sites.google.com/view/social-sims-with-llms>, 2025. Accessed: 2025-09-21.
 703
 704

705 Joseph Suh, Erfan Jahanparast, Suhong Moon, Minwoo Kang, and Serina Chang. Language model
 706 fine-tuning on scaled survey data for predicting distributions of public opinions. In *Proceedings*
 707 *of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 708 *Papers)*, pp. 21147–21170, July 2025.

709 Yuanfu Sun, Zhengnan Ma, Yi Fang, Jing Ma, and Qiaoyu Tan. Graphicl: Unlocking graph learning
 710 potential in llms through structured prompt design. *arXiv preprint arXiv:2501.15755*, 2025.
 711

712 Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
 713 Graphgpt: Graph instruction tuning for large language models. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp.
 714 491–500, 2024.
 715

716 Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
 717 sentiment in large language models. *arXiv preprint arXiv:2310.15154*, 2023.

718 Olivier Toubia, George Z Gui, Tianyi Peng, Daniel J Merlau, Ang Li, and Haozhe Chen. Twin-2k-
 719 500: A data set for building digital twins of over 2,000 people based on their answers to over 500
 720 questions. *Marketing Science*, 2025.

721 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 722 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 723 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

724 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 725 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 726 2018.

727 Alexander Sasha Vezhnevets, John P Agapiou, Avia Aharon, Ron Ziv, Jayd Matyas, Edgar A
 728 Duéñez-Guzmán, William A Cunningham, Simon Osindero, Danny Karmon, and Joel Z Leibo.
 729 Generative agent-based modeling with actions grounded in physical, social, or digital space using
 730 concordia. *arXiv preprint arXiv:2312.03664*, 2023.

731 Leah von der Heyde, Anna-Carolina Haensch, and Alexander Wenz. Vox populi, vox ai? using
 732 large language models to estimate german vote choice. *Social Science Computer Review*, pp.
 733 08944393251337014, 2025.

734 Angelina Wang, Jamie Morgenstern, and John P Dickerson. Large language models that replace
 735 human participants can harmfully misportray and flatten identity groups. *Nature Machine Intelligence*,
 736 pp. 1–12, 2025a.

737 Duo Wang, Yuan Zuo, Fengzhi Li, and Junjie Wu. Llms as zero-shot graph learners: Alignment
 738 of gnn representations with llm token embeddings. *Advances in Neural Information Processing*
 739 *Systems*, 37:5950–5973, 2024.

740 Lei Wang, Zheqing Zhang, and Xu Chen. Investigating and extending homans' social exchange
 741 theory with large language model based agents. In *Proceedings of the 63rd Annual Meeting of the*
 742 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9762–9777, 2025b.

743 Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
 744 attention network for recommendation. In *Proceedings of the 25th ACM SIGKDD international*
 745 *conference on knowledge discovery & data mining*, pp. 950–958, 2019a.

746 Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
 747 filtering. In *Proceedings of the 42nd international ACM SIGIR conference on Research and*
 748 *development in Information Retrieval*, pp. 165–174, 2019b.

749 Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
 750 supervised graph learning for recommendation. In *Proceedings of the 44th international ACM*
 751 *SIGIR conference on research and development in information retrieval*, pp. 726–735, 2021.

756 Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based rec-
 757 ommendation with graph neural networks. In *Proceedings of the AAAI conference on artificial*
 758 *intelligence*, volume 33, pp. 346–353, 2019.

759

760 Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye, Shiyang Lai, Kai Shu, Jindong Gu, Adel Bibi,
 761 Ziniu Hu, David Jurgens, et al. Can large language model agents simulate human trust behavior?
 762 *Advances in neural information processing systems*, 37:15674–15729, 2024.

763

764 Yutong Xie, Zhuoheng Li, Xiyuan Wang, Yijun Pan, Qijia Liu, Xingzhi Cui, Kuang-Yu Lo, Ruoyi
 765 Gao, Xingjian Zhang, Jin Huang, et al. Be. fm: Open foundation models for human behavior.
 766 *arXiv preprint arXiv:2505.23058*, 2025.

767

768 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 769 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 770 *arXiv:2505.09388*, 2025.

771

772 Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network representation
 773 learning with rich text information. In *IJCAI*, volume 2015, pp. 2111–2117, 2015.

774

775 Binwei Yao, Zefan Cai, Yun-Shiuan Chuang, Shanglin Yang, Ming Jiang, Difyi Yang, and Junjie
 776 Hu. No preference left behind: Group distributional preference optimization. In *The Thirteenth*
 777 *International Conference on Learning Representations*, 2025.

778

779 Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
 780 In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 7370–7377, 2019.

781

782 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 783 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the*
 784 *24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–
 785 983, 2018.

786

787 Chenxiao Yu, Zhaotian Weng, Yuangang Li, Zheng Li, Xiyang Hu, and Yue Zhao. A large-scale
 788 empirical study on large language models for election prediction. *CoRR*, 2024.

789

790 Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and Hongzhi Yin. Xsimgcl:
 791 Towards extremely simple graph contrastive learning for recommendation. *IEEE Transactions on*
 792 *Knowledge and Data Engineering*, 36(2):913–926, 2023.

793

794 Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Attributed network embedding via
 795 subspace discovery. *Data Mining and Knowledge Discovery*, 33(6):1953–1980, 2019.

796

797 Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
 798 on large-scale text-attributed graphs via variational inference. *arXiv preprint arXiv:2210.14709*,
 799 2022.

800

801 Siyan Zhao, John Dang, and Aditya Grover. Group preference optimization: Few-shot alignment
 802 of large language models. In *The Twelfth International Conference on Learning Representations*,
 803 2024.

804

805 Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang, Liangjie
 806 Zhang, Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural
 807 network in sponsored search. In *Proceedings of the Web Conference 2021*, pp. 2848–2857, 2021.

808

809

810 A LIMITATIONS, POTENTIAL RISKS, AND ETHICAL CONSIDERATIONS
811812 A.1 LIMITATIONS
813814
815 **Limitations of the graph construction.** In Figure 1, we encode individual features via subgroup
816 nodes and connect individual nodes to subgroup nodes with membership edges. The formulation is
817 flexible: it admits different subgroup granularities (e.g., intersectional groups), alternative features
818 (e.g., psychometrics test results), or even peer-to-peer topology that links individuals by social ties
819 as in social recommendation (Fan et al., 2019). However, in the datasets used here, only demo-
820 graphic attributes were available as individual features. Exploring alternative graph constructions
821 with richer features and analyzing their effects is an important future work.
822823 **Limitations of dataset coverage.** Experiments use OPINIONQA and TWIN-2K, both U.S.-centric
824 datasets whose questions and options reflect the design principle of dataset curators. Generalization
825 to other countries or languages is untested. We note, however, that GEMS primarily learns from
826 relational structure and uses language representations only when necessary (Setting 3), making it
827 less sensitive to the interface language than LLM-based simulation methods. By contrast, prior
828 works document that LLM performance can vary substantially by language; this has been shown in
829 public opinion simulation across countries (Qu & Wang, 2024) as well as in multilingual benchmarks
(Singh et al., 2024). Accordingly, GEMS may offer robustness when linguistic variation is large,
830 though this claim should be validated empirically with non-English contexts.
831832 **Limitations of performance comparisons.** Our LLM-based methods are fine-tuned up to $\sim 10B$
833 parameters. Larger models may further improve with fine-tuning. However, our experimental results
834 show that after SFT or few-shot fine-tuning, performance gaps across LLMs narrow (Table 1, 2, 3),
835 indicating that GEMS would remain competitive to fine-tuning larger LLMs. Also, our compute
836 figures (GPU hours, parameter counts) are not definitive in the sense that they vary with hardware,
837 quantization, implementation of kernels, and more. To support more informed comparison, we
838 present the implementation details in Appendix E.
839840 **Interpretability claims.** Dot-product decoding based on output node embeddings makes the me-
841 chanics of prediction transparent (scores factor as similarities), but they are not causal explanations.
842 Qualitative inspection may risk being misread as normative judgments about groups. Therefore, we
843 suggest using them as diagnostic tools, complemented by ablations and sensitivity analyses, rather
844 than as causal accounts.
845846 A.2 POTENTIAL RISKS AND ETHICAL CONSIDERATIONS
847848 **Privacy.** The graph in Figure 1 is constructed from de-identified individual features and response
849 histories provided under the original data providers’ terms of use (PewResearch, 2018; Toubia et al.,
850 2025). We neither collect nor store direct identifiers (e.g., names, addresses, phone numbers), and all
851 analyses are performed on anonymized records. To reduce identification risk, we report aggregate
852 metrics (e.g., mean test accuracy) and do not release person-identifiable outputs. For future work,
853 we recommend treating individual-level data as sensitive, especially when it may include personal
854 identifiers or pertains to high-stakes domains (e.g., health), and adhering to applicable regulations,
855 institutional review, and data-security best practices.
856857 **Misuse for high-stakes decisions.** Even when prediction accuracy is high, simulated responses
858 must not replace human participants for decisions affecting rights or access (e.g., hiring, credit,
859 medical triage). Use is inappropriate for targeted surveillance or differential treatment of protected
860 classes. Encoding people via demographic membership edges can inadvertently reinforce stereo-
861 types or obscure within-group heterogeneity; over-reliance on subgroup signals risks reproducing
862 historical biases rather than revealing true relations. Therefore, we are against any deployment
863 without governance, informed consent, and human oversight aligned with ethical guidelines.
864865 B EXTENDED RELATED WORK
866867 We continue the discussion of related work in Section 2.
868

864 **Graph-based recommenders and GNNs.** Relational inductive biases are central to graph rec-
 865 commenders that represent user–item interactions as edges (Battaglia et al., 2018). From GC-MC
 866 (Berg et al., 2017), GNNs explicitly leverage higher-order connectivity, including PinSage (Ying
 867 et al., 2018), NGCF (Wang et al., 2019b), and simplified designs like LightGCN (He et al., 2020);
 868 knowledge-graph–aware models capture attribute/item relations (Wang et al., 2019a); complemen-
 869 tary directions capture session and social structures (Wu et al., 2019; Fan et al., 2019) or harness
 870 contrastive signals on graphs (Wu et al., 2021; Yu et al., 2023). These successes suggest that human
 871 attitudes and behaviors are inherently relational. GEMS draws on these insights but targets a domain
 872 currently dominated by LLM: text-based discrete choice human simulations.

873 **Text-attributed graphs (TAGs).** TAGs integrate node and relation’s text attributes with graph topol-
 874 ogy, letting models enjoy complementary signals. Early work injected text features into matrix-
 875 factorization formulations or constructed word–document graphs (Yang et al., 2015; Yao et al.,
 876 2019). More recently, an LLM-to-GNN interplay has emerged: (i) LLM as encoder/feature gen-
 877 erator, using an LLM as an encoder whose embeddings serve as GNN inputs (Zhu et al., 2021);
 878 (ii) alternating, EM-style training that decouples text and graph modules while co-training them via
 879 variational objectives (Zhao et al., 2022); and (iii) prompting LLMs to generate descriptions or ex-
 880 planations that enrich node attributes (He et al., 2023). A complementary line of work conditions
 881 LLMs on graph structure through prompting and in-context learning, including PRODIGY (Huang
 882 et al., 2023), AskGNN (Hu et al., 2024), and GraphICL (Sun et al., 2025). Related efforts project
 883 graphs directly into an LLM’s token space or align GNN embeddings with token embeddings so
 884 that an LLM can reason over graph tokens (Tang et al., 2024; Chen et al., 2024; Wang et al., 2024).
 885 In recommender systems, the inverse mapping uses LLM representations within learned graph /
 886 collaborative-filtering spaces or co-trains them with GNNs (Ren et al., 2024; Sheng et al., 2025).
 887 Collectively, these works underscore the complementarity of language and graph signals. GEMS
 888 leverages these insights for human simulation on discrete choice tasks, emphasizing relational struc-
 889 ture while drawing on language representations when they are strictly necessary.

890 C DATASET DETAILS

891 C.1 OPINIONQA

892 OPINIONQA (Santurkar et al., 2023) is a curated subset of the American Trends Panel (ATP)
 893 (PewResearch, 2018). It comprises 500 contentious questions drawn from 14 ATP survey waves,
 894 selected for large inter-group response differences. For each anonymized participant, information
 895 across 9 demographic traits (age, gender, race or ethnicity, highest level of education, annual income,
 896 Census Bureau regions, religion, political affiliation, and political ideology) and their response to
 897 survey questions are available. Survey items span a wide range of social topics, including race, pol-
 898 itics, age-specific attitudes, media consumption, and views on the future of AI. Owing to its breadth
 899 and diversity, OPINIONQA has become a popular dataset for LLM-based human simulation or plu-
 900 ralistic preference alignment research (Hwang et al., 2023; Kim & Yang, 2025; Feng et al., 2024;
 901 Zhao et al., 2024; Moon et al., 2024; Suh et al., 2025; Kolluri et al., 2025). Here we present three
 902 example questions from the dataset.

903 Question Example: OpinionQA (1)

904 Question: Which of the following would you say you prefer for getting news?

- 905 A. A print newspaper
- 906 B. Radio
- 907 C. Television
- 908 D. A social media site (such as Facebook, Twitter or Snapchat)
- 909 E. A news website or app

918
919**Question Example: OpinionQA (2)**920
921
922

Question: In the future, what kind of an impact do you think the military will have in solving the biggest problems facing the country?

923
924
925
926
927

- A. A very positive impact
- B. A somewhat positive impact
- C. A somewhat negative impact
- D. A very negative impact

928
929
930
931
932
933
934
935
936
937
938
939
940**Question Example: OpinionQA (3)**

Question: For each, please indicate if you, personally, think it is acceptable. Casting an actor to play a character of a race or ethnicity other than their own

- A. Always acceptable
- B. Sometimes acceptable
- C. Rarely acceptable
- D. Never acceptable
- E. Not sure

C.2 TWIN-2K

Twin-2K (Toubia et al., 2025) is a four-wave, nationally representative U.S. panel fielded in January – February 2025 on Prolific for LLM human simulation. Each participant completed questions spanning demographic information, personality scales, cognitive ability tests, economic preference, heuristics-and-biases experiments, etc. Among all questions from Twin-2K, we filtered for multiple-choice questions by removing short answer questions, resulting in 150 questions total. The authors release the full dataset publicly to support broader social-science research.

Question Example: Twin-2K (1)

Choose an option.

- A. I don't feel like a failure
- B. I feel that I have failed more than the average person
- C. As I look back on my life, all I can see is a lot of failures
- D. I feel I am a complete failure as a person

Question Example: Twin-2K (2)

You have recently graduated from university, obtained a good job, and are buying a new car. A newly designed seatbelt has just become available that would save the lives of 95% of the 500 drivers a year who are involved in a type of head-on-collision. (Approximately half of these fatalities involve drivers who were not at fault.) The newly designed seatbelt is not yet standard on most car models. However, it is available as a \$500 option for the car model that you are ordering. How likely is it that you would order your new car with this optional seatbelt?

- A. very unlikely
- B. unlikely
- C. somewhat unlikely
- D. somewhat likely
- E. likely
- F. very likely

972
973**Question Example: Twin-2K (3)**974
975

Antonym: Select the word that is most nearly the opposite in meaning to DEARTH

976

- A. birth
- B. brevity
- C. abundance
- D. splendor
- E. renaissance

977
978
979
980
981**D GRAPH STATISTICS**982
983**D.1 OPINIONQA**984
985
986
987
988
989
990
991

We followed the dataset filtering process of Zhao et al. (2024). Beginning with 76K participants in OPINIONQA dataset, filtering to those who answered at least 30 questions yields 19K individuals, 284 survey questions, and 695K (individual, question, choice) triples. 284 survey questions have total 1,103 choices, indicating that each survey question has 3.88 available choices on average. As can be seen from the number of individual nodes 19K much larger than the number of choice nodes 1,103, choice nodes have an order of large node degree compared to individual nodes.

992
993
994
995

To define subgroup nodes (Figure 1), we employ the 9 demographic attributes used in previous works (Santurkar et al., 2023): age, gender, race or ethnicity, highest level of education, annual income, Census regions, religion, political affiliation, and political ideology. This results in 48 subgroup nodes as follows:

996

Age : 18-29, 30-49, 50-64, 65+

997

Race or ethnicity : White, Black, Hispanic, Asian, Other

998

Gender : Male, Female, Other

999

Education : Less than high school, High school graduate, Some college, no degree, Associate’s degree, College graduate / some postgrad, Postgraduate

1000

Annual income : Less than \$30,000, \$30,000–\$50,000, \$50,000–\$75,000, \$75,000–\$100,000, \$100,000 or more

1001

Region : Northeast, Midwest, South, West

1002

Religion : Protestant, Roman Catholic, Mormon, Orthodox, Jewish, Muslim, Buddhist, Hindu, Atheist, Agnostic, Other, Nothing in particular

1003

Political affiliation : Republican, Democrat, Independent, Something else

1004

Political ideology : Very conservative, Conservative, Moderate, Liberal, Very liberal

1005

Since the number of individual nodes (19K) is much larger than the number of choice nodes (1,103), choice nodes have a much higher average degree.

1006

1007

1008

1009

1010

1011

1012

1013

We note that there can be different constructions of subgroup nodes, either by considering additional individual features (e.g., marital status, risk-taking preference, etc.) or intersectional attributes as a single subgroup node (e.g., construct a subgroup node representing ‘age 18-29 male’). Future work can design their own subgroup nodes tailored to the specific need, and our construction is easily generalizable in those settings.

1014

1015

1016

1017

TWIN-2K

TWIN-2K dataset includes both multiple choice and short answer questions. To align with our focus on discrete choice human simulation tasks, we exclude short-answer items, yielding 150 multiple-choice questions. Because nearly all of the 2,000 participants responded to most multiple choice questions, no individuals were removed by the minimum-30-responses criterion. The dataset authors (Toubia et al., 2025) collect demographics using the same categories as Santurkar et al. (2023): we reuse the identical 48 subgroup definitions as in OPINIONQA. The resulting graph contains 48 subgroup nodes, 2,000 individual nodes, 539 choice nodes, and 297K response edges.

1018

1019

1020

1021

1022

1023

1024

1025

1026

E IMPLEMENTATION DETAILS

1027

1028 This section details the implementation of the GNN (Section 4.2) and the LLM baselines (Sec-
1029 tion 5.1). We first present the general GNN training configuration in Appendix E.1, followed by
1030 the learnable input embedding tables in Appendix E.2. Next, we instantiate the generic encoder
1031 in equation 1 with three architectures—RGCN, GAT, and GraphSAGE—in Appendices E.3 to E.5,
1032 respectively. Appendix E.6 describes the setup for the LLM-based methods. Finally, Appendix E.7
1033 compares the model size of LLMs and GEMS GNNs.

1034

E.1 GNN TRAINING CONFIGURATION

1035

1036 We implement GNNs based on PyTorch Geometric (Fey & Lenssen, 2019). All trainable compo-
1037 nents of the GNN (learnable input embedding tables, graph encoder, and decoding temperature) are
1038 optimized with AdamW optimizer (Loshchilov & Hutter, 2017) using a learning rate of 5×10^{-4}
1039 and weight decay of 10^{-3} . We use a cosine annealing learning rate scheduler and apply gradient
1040 clipping with a max norm of 0.1.

1041 Each GNN is trained for 500 epochs with a patience of 20 (i.e., how many epochs the model would
1042 continue training after the validation loss stopped from decreasing). In Section 6, the reported GNN
1043 training time is measured from the beginning of the training until the termination by exceeding
1044 patience. An epoch consists of $50n$ steps, where n is the number of training graphs. Concretely,
1045 each training graph is sampled 50 times per epoch with independently re-drawn edge masks that split
1046 train response edges into message-passing edges and supervision edges. This resampling reduces
1047 overfitting to a fixed edge partition and consistently improves validation accuracy.

1048 **Setting 3 (Predicting Responses for New questions).** After the GNN is fully trained, we learn
1049 an LLM-to-GNN mapping as described in equation 4. The mapping is obtained by solving ridge
1050 regression with regularization strength α . Rather than a cross-validation, we choose α by directly
1051 maximizing validation prediction accuracy on held-out validation questions. In Section 6, the train-
1052 ing time of LLM-to-GNN mapping is calculated as the time to extract LLM hidden states from
1053 textual features of choice nodes, since solving the ridge regression takes negligible amount of time.
1054 In practice, $\alpha \in [50, 800]$ performs best.

1055

E.2 LEARNABLE INPUT FEATURE TABLE

1056

1057 In Section 4.2, we denote a learnable input feature table for subgroup nodes \mathcal{S} as $Z_{\mathcal{S}} \in \mathbb{R}^{|\mathcal{S}| \times d_{\mathcal{S}}}$ and
1058 choice nodes \mathcal{C} as $Z_{\mathcal{C}} \in \mathbb{R}^{|\mathcal{C}| \times d_{\mathcal{C}}}$. We set $d_{\mathcal{S}} = 16$ and $d_{\mathcal{C}} = 128$ for all settings on the OPINIONQA
1059 dataset, and $d_{\mathcal{S}} = 8$ and $d_{\mathcal{C}} = 64$ for all settings on the Twin-2K dataset.

1060

E.3 RELATIONAL GRAPH CONVOLUTION (RGCN)

1061

1062 We use a 2-layer RGCN (Schlichtkrull et al., 2018). Following the feature table dimension in E.2,
1063 input dimensions are $(16, 1, 128)$ for (subgroup, individual, choice) nodes on OPINIONQA dataset
1064 and $(8, 1, 64)$ on Twin-2K dataset. All hidden layers use the choice node’s input dimension, i.e., 128
1065 for OPINIONQA and 64 for Twin-2K.

1066 In equation 1, we present the general graph encoder forward pass as

1067
$$z_w^{(\ell+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \left[\text{AGG}_r \phi_r^{(\ell)}(z_w^{(\ell)}, z_v^{(\ell)}) \right] + \phi_{\text{self}}^{(\ell)}(z_w^{(\ell)}) \right), \quad \ell = 0, \dots, L-1 \quad (5)$$

1068 For RGCN, we use ReLU as the non-linear activation σ and a mean pooling for AGG_r for all
1069 relations r . Following the standard RGCN implementation, a relation-specific message passing is

1070
$$\phi_r^{(\ell)}(z_w^{(\ell)}, z_v^{(\ell)}) = \frac{1}{|\mathcal{N}_r(w)|} \mathbf{W}_r^{(\ell)} z_v^{(\ell)}, \quad (6)$$

1071 where the learnable $\mathbf{W}_r^{(\ell)}$ maps from the layer- ℓ embedding of the node v to the layer- $(\ell+1)$ em-
1072 bedding dimension of node w ; the factor $|\mathcal{N}_r(w)|^{-1}$ provides degree normalization for relation r .

1080 Similarly, self-loops use a learnable matrix $\mathbf{W}_{\text{self}}^{(\ell)}$
 1081
 1082 $\phi_{\text{self}}^{(\ell)}(z_w^{(\ell)}) = \mathbf{W}_{\text{self}}^{(\ell)} z_w^{(\ell)}.$ (7)
 1083

1084 Additionally, we apply post-activation LayerNorm (Ba et al., 2016) and dropout with rate 0.5 at all
 1085 layers of the graph encoder.

1086 E.4 GRAPH ATTENTION NETWORK (GAT)

1088 The equation 1 is implemented with a multi-head Graph Attention Network (Veličković et al., 2018)
 1089 as

1091
$$z_w^{(\ell+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \left[\parallel_{h=1}^{H_\ell} \sum_{v \in \mathcal{N}_r(w) \cup \{w\}} \alpha_{wv,r}^{(\ell,h)} \Theta_{t,r}^{(\ell,h)} z_v^{(\ell)} \right] \right), \quad \ell = 0, \dots, L-1, \quad (8)$$

 1092
 1093

1094 where \parallel denotes concatenation across heads, h indicates the head index ranging from 1 to the number
 1095 of heads in the ℓ -th layer (H_ℓ), and the attention coefficient α for the layer- ℓ head- h relation- r from
 1096 the source node v to the target node w is
 1097

1098
$$\alpha_{wv,r}^{(\ell,h)} = \text{softmax}_{v \in \mathcal{N}_r(w) \cup \{w\}} \left(\text{LeakyReLU} \left(\mathbf{a}_{s,r}^{(\ell,h)\top} \Theta_{s,r}^{(\ell,h)} z_w^{(\ell)} + \mathbf{a}_{t,r}^{(\ell,h)\top} \Theta_{t,r}^{(\ell,h)} z_v^{(\ell)} \right) \right) \quad (9)$$

 1099

1100 where $\mathbf{a}_{s,r}^{(\ell,h)}$ and $\mathbf{a}_{t,r}^{(\ell,h)}$ are learnable source and target scoring vectors, $\Theta_{s,r}^{(\ell,h)}$ and $\Theta_{t,r}^{(\ell,h)}$ are learnable
 1101 source and target feature transformation matrix, and LeakyReLU is a LeakyReLU function
 1102 with a negative slope of 0.2 as in the default implementation of PyTorch Geometric. Softmax is
 1103 performed over all neighboring nodes of w defined by the relation r and w itself.

1104 We use a 2-layer GAT. Following the input table dimension in E.2, input feature dimensions are
 1105 (16, 1, 128) for (subgroup, individual, choice) nodes on the OPINIONQA dataset and (8, 1, 64) on
 1106 Twin-2K. All hidden layers use the choice node’s input dimension (128 for OpinionQA, 64 for Twin-
 1107 2K) with 4 heads in the first layer (per-head size 32) and 1 head in the second layer (per-head size
 1108 128), keeping the hidden size unchanged across layers.

1109 We set $\sigma = \text{ReLU}$, and apply post-activation LayerNorm (Ba et al., 2016). We also apply dropout
 1110 at rate 0.4 to the normalized attention coefficients α and at rate 0.5 to the post-activation node
 1111 embeddings between layers.

1114 E.5 GraphSAGE

1116 We instantiate the generic graph encoder in equation 1 with a GraphSAGE operator (Hamilton et al.,
 1117 2017). For each relation $r \in \mathcal{R}$ and given a target node w , we first compute a relation-specific
 1118 mean-pooled neighbor message

1119
$$m_{w,r}^{(\ell)} = \text{MEAN}_{v \in \mathcal{N}_r(w)} (\Theta_r^{(\ell)} z_v^{(\ell)}), \quad (10)$$

 1120

1121 where $\Theta_r^{(\ell)}$ is a learnable matrix that maps the layer- ℓ embedding of a source node v to the layer-
 1122 $(\ell+1)$ embedding space of the target node for relation r . Messages from all relations are summed
 1123 and combined with a learnable root (self) transformation $\Theta_{\text{self}}^{(\ell)}$. Subsequently, the embedding is
 1124 L2-normalized and passed through a non-linear activation:

1126
$$z_w^{(\ell+1)} = \sigma \left(\text{Normalize} \left(\Theta_{\text{root}}^{(\ell)} z_w^{(\ell)} + \sum_{r \in \mathcal{R}} m_{w,r}^{(\ell)} \right) \right), \quad (11)$$

 1127
 1128

1129 We set $\sigma = \text{ReLU}$, apply post-activation LayerNorm (Ba et al., 2016) at every layer, and use dropout
 1130 with rate 0.5 on the post-activation node embeddings between layers.

1132 We use a 2-layer GraphSAGE. Following the input feature dimensions in Appendix E.2, input sizes
 1133 are (16, 1, 128) for (subgroup, individual, choice) nodes on OPINIONQA and (8, 1, 64) on Twin-2K.
 All hidden layers use the choice-node width, i.e., 128 for OPINIONQA and 64 for Twin-2K.

1134
1135

E.6 LLM

1136
1137
1138
1139
1140
1141
1142
1143

For all LLM prompting experiments, we used $2 \times$ NVIDIA A100 80GB (SXM4) and vLLM framework (Kwon et al., 2023). For selecting in-context examples in few-shot prompting and Agentic CoT, we encode each question text with `gemini-embedding-001` embedding model and compute cosine similarities between the target question and candidate in-context example questions. Following Hwang et al. (2023), the selected examples are ordered by ascending cosine similarity, from least to most similar. To ensure consistent information access across methods, in-context examples are drawn exclusively from the training set and not from the validation set (Sections 5.2, 5.4).

1144
1145
1146
1147
1148
1149
1150

For all LLM fine-tuning methods, we used $4 \times$ NVIDIA A100 80GB (SXM4) and built on Llama-cookbook codebase. Each run trained for three epochs using the model’s default precision, and we selected the checkpoint with the lowest validation loss. We largely followed hyperparameter setting of Suh et al. (2025), tuning the learning rate over $\{1e-4, 2e-4, 4e-4\}$ and settled on $2e-4$. Training used LoRA (Hu et al., 2022) with rank 8, $\alpha=32$, and dropout 0.05, applied to the attention query and value matrices. We optimized with Adam optimizer (Kingma & Ba, 2014) and the effective batch size was fixed to 256 by setting per-GPU batches and gradient accumulation steps to fit memory.

1151
1152
1153
1154
1155
1156
1157
1158
1159

E.7 MODEL PARAMETERS

In this section, we report parameter counts for GEMS and the LLMs, following the implementation details in the previous sections. For LLMs fine-tuned with LoRA, the trainable parameter count equals the number of LoRA adapter parameters, much smaller than the total parameter count. Because both training and inference still require loading the full model, we use total parameter count when comparing the model size. The size of the GNN (GEMS) varies between datasets because we select the hidden dimension per dataset, as noted above.

1160
1161
1162
1163
1164
1165
1166
1167
1168

Table 4: Number of parameters for each model. K, M, and B stand for 10^3 , 10^6 , 10^9 , respectively.

# parameters	LLM			GEMS (RGCN)	
	Model	LLaMA-2-7B	Mistral-7B-v0.1	Qwen3-8B	-
Dataset		-		OPINIONQA	TWIN-2K
Trainable		4.19 M	3.41 M	3.83 M	420 K
Total		6.61 B	7.24 B	8.19 B	111 K

1169
1170

F ADDITIONAL EXPERIMENT RESULTS

1171
1172
1173
1174

F.1 EMBEDDING VISUALIZATION

1175
1176
1177
1178
1179
1180

Figure 4 visualizes LLM hidden states and GNN embeddings for four example questions in OPINIONQA dataset. Each question asks how high a priority the federal government should give to an issue: (B) reducing illegal immigration, (C) reducing economic inequality, (D) addressing climate change, and (F) reducing gun violence, with four response options ranging from ‘top priority’ to ‘should not be done.’ This results in 16 choice nodes in total. All plots show the first two principal components of principal component analysis (PCA).

1181
1182
1183
1184
1185
1186
1187

Embedding structure of choice nodes. The top left panel plots the LLM hidden states for the 16 choice nodes: points cluster by option, producing four clusters one per option but not clearly indicating what semantic meaning each choice has. The top right panel shows choice nodes’ output node embeddings after the first training stage described in Section 5.4. Here, choices for three questions (C, D, F) are located along a common one-dimensional trajectory in the PCA plane, whereas the choices for question B align along a distinct trajectory. From this observation, we can infer that three questions (C, D, F) are closely related while one question (B) sits on a slightly different social issue dimension, which is consistent with prior observation from survey researchers (Center, 2024).

1188
 1189 **Embedding structure of individual nodes.** The remaining panels plot GNN output node embed-
 1190 dings of individual nodes, with colors indicating an individual feature per panel (annual income,
 1191 political ideology, age, or gender). The PCA axes exhibit interpretable variation: PC1 aligns most
 1192 strongly with political ideology feature and PC2 with income. Yet, points within any given subgroup
 1193 remain dispersed, indicating substantial within-group heterogeneity. We note that the prediction is
 1194 made by taking dot-product between each individual node embedding and the four choice node
 1195 embeddings, followed by the softmax for multinomial distribution over options.

1196 F.2 PREDICTION WITH DIFFERENT LLMs

1197 In this section, we report LLM inference results across multiple models. We expand the evaluation to
 1198 additional LLMs on the predicting missing responses setting of the OPINIONQA dataset to examine
 1199 performance differences by model family and size. Consistent with Tables 1 to 3, larger and more
 1200 recent models generally perform better, with the largest gains appearing under the Agentic-CoT
 1201 method where reasoning ability is most critical. This trend is most pronounced for Qwen3, a rea-
 1202 soning model family. While we did not conduct extensive fine-tuning (SFT or few-shot fine-tuning)
 1203 on larger models due to computational constraints (Section 6), we hypothesize that GEMS would
 1204 remain competitive with fine-tuned large LLMs, as fine-tuning tends to compress between-model
 1205 variance in accuracy (Section 5).

1206
 1207 **Table 5:** An extended evaluation of LLMs. Here we report the values on a setting 1 (missing
 1208 responses) to compare the performance differences of LLMs before fine-tuning.

Methods Release date	k	LLaMA-2-7B July 2023	LLaMA-2-70B July 2023	LLaMA-3.1-8B July 2024	LLaMA-3.1-70B July 2024	Mistral-7B-v0.1 Sep. 2023	Mistral-Small-24B-250I Jun. 2025	Qwen2.5-7B Sep. 2024	Qwen3-8B Apr. 2025	Qwen3-32B Apr. 2025	GPT-OSS-20B Aug. 2025
Setting 1 (Missing responses), OPINIONQA											
Random						27.87					
Zero-shot		29.15	36.47	38.71	43.45	35.60	41.79	40.07	38.84	40.42	35.71
	3	37.93	40.76	44.04	46.04	42.49	45.85	42.56	42.74	43.53	42.18
Few-shot	5	39.41	43.26	44.22	47.35	44.43	45.82	41.40	42.69	46.04	44.53
	8	37.98	40.34	42.26	44.55	42.81	45.27	42.53	44.05	44.28	41.47
	13	37.78	42.45	43.24	49.66	44.03	46.41	42.49	44.03	46.72	42.50
	3	32.19	43.66	42.80	49.32	41.37	46.01	43.82	47.63	47.57	44.42
Agentic CoT	5	30.72	45.82	42.96	49.55	38.92	48.22	43.58	47.92	48.40	45.90
	8	28.80	42.63	42.15	47.72	38.43	46.24	41.04	47.97	48.44	41.94
	13	28.05	45.34	42.81	48.06	38.37	48.67	39.83	48.88	50.70	44.03

1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242

1243

1244

1245 **Topic:** How much of a priority should the following be for the federal government to address...

1246 Question B: reducing illegal immigration

1247 Question C: reducing economic inequality

1248 Question D: addressing climate change

1249 Question F: reducing gun violence

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

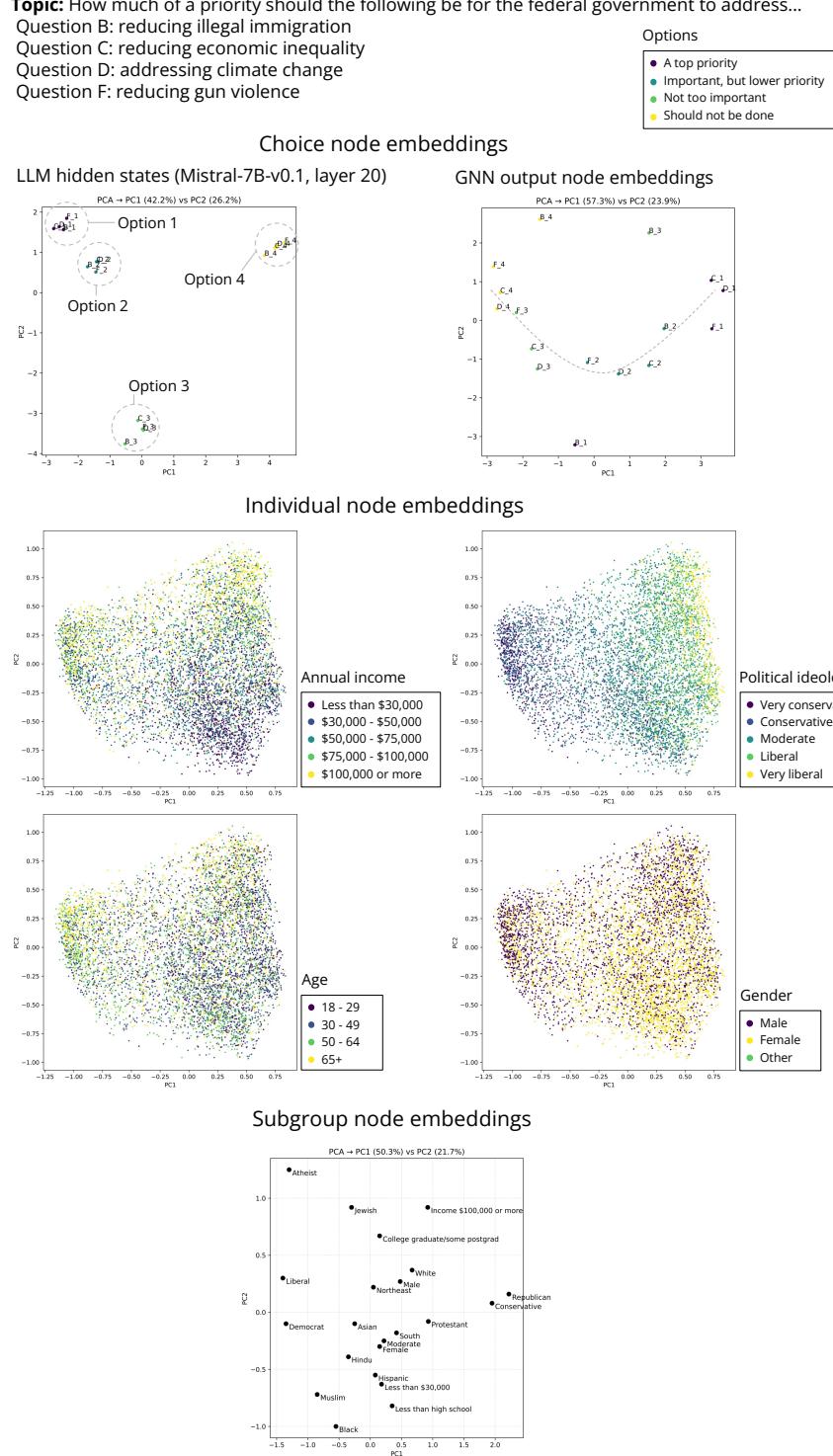


Figure 4: Visualization of LLM hidden states and GNN node embeddings on the first and second components of principal component analysis.

1296 **G ABLATIONS**
12971298 **G.1 EFFECT OF HIDDEN STATES ACROSS LAYERS**
1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

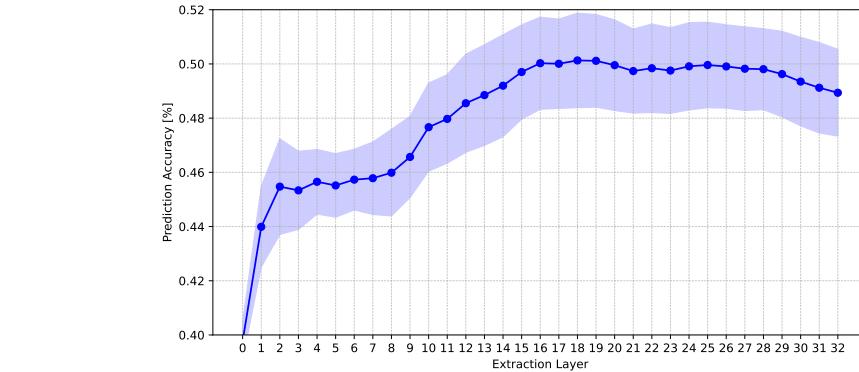


Figure 5: Mean and standard deviation of prediction accuracy on setting 3 (new questions) of OPINIONQA dataset when extracting hidden states from different layers of Mistral-7B-v0.1 (Table 3). Layer 0 is the post-embedding activation and layer 32 is the final pre-LM head activation (the model has 32 layers).

1318

Figure 5 shows GEMS accuracy on OPINIONQA dataset with different layers of LLM (Mistral-7B-v0.1) to extract the hidden state from. In practice, we choose the layer that maximizes accuracy on validation questions. Consistent with prior works on probing and interpretability (Kim et al., 2025; Tigges et al., 2023), middle-to-late layers generally provide the most semantically useful and transferable language representations.

1324

1325 **G.2 EFFECT OF THE NUMBER OF LLM–GNN REPRESENTATION PAIRS**
1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

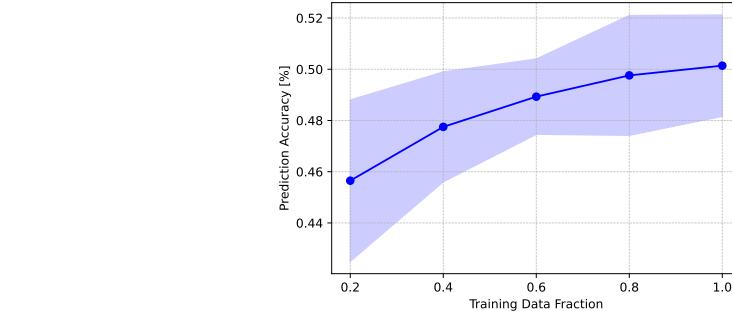


Figure 6: Mean and standard deviation of prediction accuracy on Setting 3 (new questions) of the OPINIONQA dataset using hidden states from layer 18 of Mistral-7B-v0.1. The x -axis denotes the fraction of choice nodes in the training graph used to fit the LLM-to-GNN projection in Equation (4). Accuracy improves as more paired examples are used, indicating that sufficient supervision is required to learn a map from LLM hidden states to the GNN output embedding space.

1343

Learning the LLM-to-GNN representation mapping requires paired examples of an LLM hidden state and its corresponding GNN output node embedding. Because this mapping lacks a linguistic prior, performance may degrade sharply when trained on too few pairs. We validate this with an ablation that fits the mapping using only 20%, 40%, 60%, and 80% of the available pairs (fractions taken over choice nodes C_{train} in Equation (4)) and evaluate on the new question setting. As shown in Figure 6, reducing the number of pairs leads to a rapid drop in accuracy, showing the sample size sensitivity of the mapping.

1350 **H PROMPTS TO LLM**

1351

1352

1353

1354 We present example prompts for LLM prompting and fine-tuning in the following order:

1355

1356

1357 **Zero-shot prompt:** Provide an individual’s features (demographics) in text form, followed by the
 1358 question. The feature list is determined by available attributes; we primarily use the nine attributes
 1359 defined in Appendix D. When an individual feature is missing (e.g., age is unknown), we omit it in
 1360 the prompt rather than explicitly stating its absence (e.g., “Age: unknown”).

1361 **Few-shot prompt** (with variable k in-context examples): Provide the individual’s features, fol-
 1362 lowed by k prior responses to related questions (see Appendix G for how we select related ques-
 1363 tions). Append the target question at the end.

1364 **Agentic CoT prompt:** We directly adopt from Park et al. (2024) with minimal modifications. The
 1365 method consists of two stages. First, the individual’s features and prior responses are given to an
 1366 *expert reflection* module, which produces concise observations about the person’s stances. Second,
 1367 these observations, together with the individual’s context, are passed to a prediction module that
 1368 outputs a an answer in the JSON format.

1369

1370

1371 All examples use synthetic profiles and responses, not real individuals, to protect privacy (Ap-
 1372 pendix A). For fine-tuning, we apply cross-entropy loss to the single answer token immediately
 1373 following the input prompt. We note that GPT-OSS (OpenAI, 2025) and Qwen-3 (Yang et al., 2025)
 1374 use distinct response formats and detail the required tokenization and formatting in Appendix I.

1375

1376

1377

1378 **Prompt Example: Zero-shot**

1379

1380 **System**

1381 Respond to the following question by choosing one of the available options, and strictly
 1382 answering with the option letter (e.g., ‘A’, ‘B’, etc.). Do not provide any additional text or
 1383 explanation.

1384 **User**

1385 Answer the following question as if your personal information is as follows:

1386 Personal identification number: 12345.0

1387 Age: 50-64

1388 Race or ethnicity: White

1389 Gender: Female

1390 Education level: Some college, no degree

1391 Income level: less than \$30,000

1392 Region of residence: West

1393 Religion: Nothing in particular

1394 Political party affiliation: Independent

1395 Political ideology: Moderate

1396 Question: Thinking about the nation’s economy, how would you rate economic conditions
 1397 in this country today?

1398 A. Excellent

1399 B. Good

1400 C. Only fair

1401 D. Poor

1402 Answer:

1404
1405**Prompt Example: Few-shot ($k = 2$)**1406
1407
1408
1409**System**

Respond to the following question by choosing one of the available options, and strictly answering with the option letter (e.g., 'A', 'B', etc.). Do not provide any additional text or explanation.

1410
1411**User**

Answer the following question as if your personal information is as follows:

Personal identification number: 12345.0

Age: 50-64

Race or ethnicity: White

Gender: Female

Education level: Some college, no degree

Income level: less than \$30,000

Region of residence: West

Religion: Nothing in particular

Political party affiliation: Independent

Political ideology: Moderate

1422
1423
1424

Question: How much, if at all, do you think the following proposals would do to reduce economic inequality in the U.S.? Expanding government benefits for the poor

A. A great deal

B. A fair amount

C. Not too much

D. Nothing at all

Answer:

1429
1430
1431**Assistant**

A. A great deal

1432
1433
1434**User**

Question: How much, if at all, do you think some people work harder than others contributes to economic inequality in this country?

A. Contributes a great deal

B. Contributes a fair amount

C. Contributes not too much

D. Contributes not at all

Answer:

1440
1441
1442**Assistant**

A. Contributes a great deal

1443
1444
1445**User**

Question: Thinking about the nation's economy, how would you rate economic conditions in this country today?

A. Excellent

B. Good

C. Only fair

D. Poor

1451
1452

Answer:

1453
1454
1455

1456

1457

1458 **Prompt Example: Agentic CoT - 1. Reflection module ($k = 2$)**

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500 **Prompt Example: Agentic CoT - 1. Reflection module output (truncated)**
1501
1502 **Assistant**
1503 **Observations & Reflections on the Participant's Societal Stances**
1504
1505 1. **Political identity**
1506 - Identifying as an *independent* with a *moderate* ideology indicates a willingness to
1507 cross party lines on key issues.
1508 - Such a position often correlates with a preference for incremental, evidence-based reforms
1509 rather than ideological extremes.
1510
1511 2. **Attitude towards economic inequality**
...
1512

1512 **Prompt Example: Agentic CoT - 2. Prediction module**

1513 **User**

1514 [Participant's information]

1515 Age: 50-64

1516 Race or ethnicity: White

1517 ...

1518 [Participant's prior responses]

1519 Question: How much, if at all, do you think the following proposals would do to reduce
1520 economic inequality in the U.S.? Expanding government benefits for the poor

1521 ...

1522 [Expert social scientist's observations/reflections]

1523 **(Generated observations/reflections from the expert from step 1)**

1524 =====

1525 What you see above is a participant information. Based on the information, I want you to
1526 predict the participant's survey responses. All questions are multiple choice where you must
1527 guess from one of the options presented. As you answer, I want you to take the following
1528 steps:

1529 Step 1) Describe in a few sentences the kind of person that would choose each of the response
1530 options. ("Option Interpretation")

1531 Step 2) For each response option, reason about why the Participant might answer with the
1532 particular option. ("Option Choice")

1533 Step 3) Write a few sentences reasoning on which of the option best predicts the participant's
1534 response ("Reasoning")

1535 Step 4) Predict how the participant will actually respond in the survey. Predict based on the
1536 information and your thoughts, but ultimately, DON'T overthink it. Use your system 1 (fast,
1537 intuitive) thinking. ("Response")

1538 Here is the question:

1539 =====

1540 Question: Thinking about the nation's economy, how would you rate economic conditions
1541 in this country today?

1542 A. Excellent
1543 B. Good
1544 C. Only fair
1545 D. Poor

1546 =====

1547 Output format - output your response in json, where you provide the following:

1548 {“Response”: “<your predicted response option letter>”}

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566 I NOTES ON GPT-OSS AND QWEN3 TRAINING

1568 In this section, we outline the differences in input preprocessing for GPT-OSS (OpenAI, 2025) and
 1569 Qwen-3 (Yang et al., 2025), which arise from their distinct response formats.

1571 **GPT-OSS.** GPT-OSS employs the Harmony response format to support advanced context engi-
 1572 neering. Each generation typically begins with an analysis channel <|channel|>analysis,
 1573 where the model produces an internal chain-of-thought not exposed to end-users, and concludes
 1574 with a final channel (<|start|>assistant<|channel|>final<|message|>), which
 1575 contains the user-facing response.

1576 During baseline experiments before fine-tuning, to measure the model’s existing predictive capa-
 1577 bility, we place no constraints on generation: the model is free to produce both analysis and final
 1578 content, and we parse the output from the final channel to evaluate accuracy.

1579 During fine-tuning, however, we constrain the output to directly generate the answer in the final
 1580 channel. This step improves predictive accuracy while avoiding social bias that could result from
 1581 fine-tuning on model-generated chain-of-thoughts, which may yield correct answers through un-
 1582 grounded reasoning about individuals. In this setup, we append the channel header explicitly to
 1583 indicate the model that final answer should be generated, and apply next-token prediction loss to the
 1584 final answer token. An example training input prompt is shown below:

```
1585 <|start|>developer<|message|># Instructions
1586
1587 Respond to the following question by choosing one of the available
1588 options, and strictly answering with the option letter (e.g., 'A', 'B',
1589 etc.). Do not provide any additional text or explanation.
1590 <|end|><|start|>user<|message|>Answer the following question as if your
1591 personal information is as follows:
1592
1593 Personal identification number: 12345.0
1594 Age: 50-64
1595 Race or ethnicity: White
1596 Gender: Female
1597 Education level: Some college, no degree
1598 Income level: less than $30,000
1599 Region of residence: West
1600 Religion: Nothing in particular
1601 Political party affiliation: Independent
1602 Political ideology: Moderate
1603 Question: Would you say the following was a reason or was not a reason
1604 why there were guns in your household when you were growing up? For
1605 protection
1606 A. Yes, was a reason
1607 B. No, was not a reason
1608 Answer:<|end|><|start|>assistant<|channel|>final<|message|>
```

1610 As shown on the example, the tokenization step involves appending special tokens indicating the
 1611 final channel. Given the input prompt, the model generates probability distribution over available
 1612 options in the next token. Cross entropy loss is applied at that token position to fine-tune the model.

1613 **Qwen-3.** Similarly, Qwen-3 introduces a thinking a mode designed to let the model do more step-
 1614 by-step reasoning (chain-of-thought) before generating a final answer. During baseline experiments
 1615 before fine-tuning, we place no constraints on generation and this allows model to perform thinking
 1616 (wrapped by <think>...</think>). During fine-tuning, we constrain the output to directly
 1617 generate the answer by appending the empty thinking (<think>\n\n</think>) explicitly to
 1618 indicate the model for direct answer generation.