
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

E2LLM: ENCODER ELONGATED LARGE LANGUAGE
MODELS FOR LONG-CONTEXT UNDERSTANDING AND
REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

In the realm of Large Language Models (LLMs), the ability to process long con-
texts is increasingly crucial for tasks such as multi-round dialogues, code genera-
tion, and document summarization. This paper addresses the challenges of achiev-
ing high long-context performance, low computational complexity, and compat-
ibility with pretrained models – collectively termed the “impossible triangle”.
We introduce E2LLM (Encoder Elongated Large Language Models), a novel ap-
proach that effectively navigates this paradox. The method involves splitting long
contexts into chunks, compressing each into soft prompts via a pretrained text en-
coder, and utilizing an adapter to align these representations with a decoder-only
LLM. To further enhance the LLM’s understanding and reasoning capabilities re-
garding the soft prompts, we implement two training objectives: one focused on
reconstructing the encoder output and the other on long-context instruction fine-
tuning. Extensive experiments including Needle in a Haystack and LongBench
reveal that E2LLM not only outperforms eight existing state-of-the-art (SOTA)
methods across various long-context tasks, but also achieves the lowest inference
time and memory usage. Code will be available upon publication.

1 INTRODUCTION

Understanding and reasoning about long context has become essential for LLMs, especially for
tasks like multi-round dialogues (Bai et al., 2024a), (multi)-repository code generation (Zhang et al.,
2023), and (multi)-document summarization (Giorgi et al., 2023) and question answering (Singh
et al., 2021). These tasks often require processing thousands or even millions of tokens to ensure
coherence and accuracy. In addition, to boost the performance of LLMs, techniques that effectively
prompt LLMs to activate the domain-specific knowledge—such as chain-of-thought reasoning (Wei
et al., 2022), in-context learning (Dong et al., 2022), and retrieving relevant documents or historical
conversations (Ding et al., 2024b)—are also pushing the demand for longer context window.

Considerable efforts have been and are still being put into developing models that can increase the
context length of LLMs, aiming at achieving strong performance for longer contexts (T1), while
reducing the training and inference complexity (T2), and at the same time being compatible with
pretrained models (T3). Achieving this compatibility is crucial for effectively leveraging the pre-
trained knowledge contained in these models, allowing for parameter and sample efficiency with-
out necessitating extensive additional training with large datasets. However, achieving all three
targets simultaneously presents a formidable challenge that often leads to some compromises, a
phenomenon we refer to as the “impossible triangle”, as illustrated in Figure 1.

Currently, research in this field has primarily focused on three main avenues: modifying position
embeddings, attention mechanisms, and the long input sequence itself. The first group of meth-
ods, known as length extension, involves adjusting the position embeddings of LLMs to accommo-
date longer context extensions. This typically involves selecting a large base value for RoPE (Su
et al., 2024) and then continuing pretraining or fine-tuning on the target length. While these methods
effectively extend the length of LLMs with minimal model changes (T1&T3), they typically incur
substantial computational costs during both training and inference (T2). For instance, even with
the ability to extend context window to 2M, as seen in LongRoPE (Ding et al., 2024a), enormous
resources are required to train and deploy the model, and inference times can be prohibitively long

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

E2LLM

T1. Performance

T2. Efficiency

T3
. C
om

pa
tib
ili
ty

Length Extension

So
ft

Pr
om

pt
 C

om
pr

es
sio

n
Hard Prompt Compression

Sparse Attention

Figure 1: E2LLM solves all
the challenges of the impos-
sible triangle at the same
time, namely Performance,
Efficiency and Compatibility.

D

E E E

Chunk 1 Chunk 2 Chunk 3

Prompt + Query

Answer
Text Token Chunk Token Chunk Embedding

LoRA

A

Trainable Frozen

E Text Encoder A Adapter D LLM-Decoder Texts

Given the contexts: [chunk token]
Please follow the instruction:
Restate the aforementioned context

Given the contexts: [chunk token]
Please follow the instruction:
Answer the question: {query}

Prompt for the “understanding” task

Prompt for the “reasoning” task

A A

LoRA LoRA LoRA

Figure 2: The E2LLM architecture.

for extended sequences. As opposed to the first group, the second one, dubbed sparse attention,
replaces full attention in LLMs with local attention or a combination of global and local attention.
This approach significantly reduces the quadratic complexity associated with full attention, even
achieving linear complexity in theory (T2). However, a notable concern with sparse attention is its
potential to neglect informative history, as certain tokens may not be attended to during the atten-
tion calculations (T1). Moreover, since LLMs are not originally pretrained with sparse attention,
adapting them to sparse attention may require extensive training or fine-tuning (T3). Different from
the previous two groups that change the LLMs, the third group of strategies directly compresses the
input sequence to reduce its length (T2), which can be further divided into two subcategories. The
first subgroup, known as hard prompt compression—exemplified by methods such as Retrieval-
Augmented Generation (RAG) (Ding et al., 2024b) and LLMLingua (Jiang et al., 2023a)—tends to
process compression and inference in a two-step manner. As a result, any loss of information or
introduction of irrelevant content during the compression stage may adversely affect performance
in the subsequent inference step (T1). Alternatively, the second subgroup considers soft prompt
compression, which summarizes long contexts into embedding vectors (Chevalier et al., 2023; Tan
et al., 2024). However, utilizing LLMs in these approaches to directly generate sentence-level em-
beddings diverges from their original pretraining objective of next token prediction. Consequently,
achieving satisfactory performance in this context often demands rigorous training or fine-tuning to
align the model’s capabilities with the new objective (T3).

In this paper, we propose a novel compression based method named E2LLM (Encoder Elongated
Large Language Models) that adeptly navigates the complexities of the “impossible triangle”.
Specifically, as shown in Figure 2, our method first splits a long context into chunks and com-
presses each chunk into an embedding vector using a pre-trained text encoder (e.g., BERT (Kenton
& Toutanova, 2019)). Then, an adapter aligns the encoder’s output with the input embedding space
of a decoder-only LLM, such that the LLM can understand the embedding vectors resulting from
the encoder. Finally, we set up two training objectives to align the encoder and decoder, including
reconstructing the input text encoded by the encoder (“understanding”) and long-context instruction
fine-tuning (“reasoning”). We postulate that LLMs are inherently rich in knowledge; thus, properly
compressed soft prompts (or the embedding vectors) can succinctly convey adequate information
for LLMs to generate accurate answers. Moreover, since pre-trained encoder models are inherently
crafted to produce sentence embeddings, this design allows E2LLM to capitalize on both pre-trained
encoders and decoders, minimizing the requirement for extensive additional training (T3). Addition-
ally, compressing each original chunk into a vector (i.e., a single chunk token) not only enhances
training and inference efficiency (T2) but also scales up the context length significantly (T1). Indeed,
the theoretical context window equals the product of the sequence lengths of the encoder and the
decoder. The experimental results provide compelling evidence of E2LLM’s superior performance
in long-context scenarios, demonstrating our method’s efficacy in maintaining a delicate balance
between performance, efficiency, and compatibility.

To summarize, the main contributions of our work are:

• We propose E2LLM, a novel long-context modeling framework built on pretrained text encoders
and decoder-only LLMs, effectively addressing the challenges posed by the “impossible triangle”.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We introduce two training objectives, including reconstructing the soft prompt given by the en-
coder and the long-context instruction fine-tuning, enabling the LLM to understand the soft prompt
while reasoning about accurate outputs for long inputs.

• Comprehensive experiments conducted on diverse tasks and datasets demonstrate the efficiency
and practicality of our proposed model and reveal its superiority over eight SOTA baselines.

2 RELATED WORKS

As aforementioned, prevalent methods can be categorized into three groups: modifying the position
embedding (i.e., length extension), the attention mechanism (i.e., sparse attention), and the input
sequence (i.e., prompt compression).

Length Extension: Training LLMs on sequences with limited maximum sequence lengths while
ensuring generalization for longer sequences is challenging. To address this, positional extrapo-
lation and interpolation methods have been proposed. Positional extrapolation extends positional
encoding beyond the training length; for instance, ALiBi (Press et al., 2021) enhances attention with
linear biases that adjust scores based on the distance between key and query positions. Instead,
xPOS (Sun et al., 2023) utilizes relative position embeddings for better attention resolution and ex-
tended lengths. Another approach, CLEX (Chen et al., 2024a), replaces manual design with learned
scaling factors through neural differential equations, effectively overcoming the limitations inher-
ent in traditional positional extrapolation techniques. Positional interpolation, on the other hand,
scales down input position indices and expands context windows to maintain performance across
longer sequences. For example, Chen et al. (2023a) applies linear interpolation to RoPE to align
maximum position indices with pre-training constraints. NTK interpolation (bloc97., 2023) modi-
fies the base of RoPE to adjust the rotational velocity of its dimensions. To combine the strengths
of these approaches, YaRN (Peng et al., 2023) merges linear and NTK interpolation with a ramp
function and temperature factor, mitigating distribution shifts in the attention matrix with longer
inputs. LongRoPE (Ding et al., 2024a) further enhances performance by exploiting two forms of
non-uniformities in RoPE positional embedding via an efficient evolutionary search. Besides mod-
ifying position embeddings, length extension can also be achieved by employing external memory
for long contexts. CEPE (Yen et al., 2024) adheres to the original Transformer architecture, using an
encoder to process lengthy contexts chunk by chunk. The embeddings of tokens within each chunk
given by the encoder are subsequently fed into the LLM through trainable cross-attention layers.

Despite these advancements, most approaches require continual pre-training or fine-tuning to
achieve the desired length, thus entailing a considerable training burden. Additionally, inference
on these extended models can be slow due to the quadratic complexity of full attention. In contrast,
the proposed E2LLM does not alter the original LLM’s length but compresses the input sequence
into chunks of embedding vectors. This allows E2LLM to maintain the efficiency of the original
LLM during both training and inference.

Sparse Attention: This category of methods aims to decrease the inference complexity of LLMs
by manipulating attention mechanisms with novel attention masks, enabling these models to handle
longer sequences. StreamingLLM (Xiao et al., 2024) demonstrates that focusing on the beginning
of the sequence and the most recent tokens within a defined window (i.e., local attention) during
inference maintains performance while significantly reducing computational costs to a linear scale.
However, these training-free methods often fall short in various scenarios (Anagnostidis et al., 2023;
Lou et al., 2024), as they may neglect informative tokens situated in the middle of the sequence. To
improve performance, LM-Infinite (Han et al., 2024) reintroduces top-k tokens from the middle, but
this approach necessitates the computation of all attention scores, thereby increasing computational
demands. As a solution, Lou et al. (2024) propose SparseK attention, which employs an additional
scoring network to assess the importance of each key-value pair and select the top-k pairs. Alterna-
tively, LongLoRA (Chen et al., 2023a) utilizes shifted sparse attention (a variant of local attention)
and fine-tunes LLMs with LoRA (Hu et al., 2021) to adapt to this mechanism. Unfortunately, as
noted by (Tan et al., 2024), there remains a significant gap between sparse and full attention, which
complicates the fine-tuning of pre-trained LLMs to new attention paradigms. In contrast, the E2LLM
approach summarizes long-context input into soft prompt vectors, thereby reducing context length
without altering the full attention mechanism in LLMs.

Prompt Compression: Prompt compression enhances the efficiency of LLM input processing by
either condensing lengthy prompts (hard prompt compression) or learning compact prompt represen-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

tations (soft prompt compression). Hard prompt compression techniques include RAG (Ding et al.,
2024b), LLMlingua (Jiang et al., 2023a), Selective-Context (Li, 2023), and LongLLMLingua (Jiang
et al., 2023b). RAG optimizes input by retrieving only the passages relevant to the query, while
LLMlingua and Selective-Context focus on compressing extensive context without referencing the
query. LongLLMLingua integrates these strategies by utilizing question-aware coarse-to-fine com-
pression to enhance performance. However, these methods separate compression and inference into
distinct steps, leading to potential error propagation that degrades performance. In contrast, E2LLM
is trained end-to-end, effectively mitigating the above issue.

Soft prompt compression, proposed by Mu et al. (2023) and Ge et al. (2023), involves training
LLMs to distill prompts into a more concise set of tokens that encapsulate the original prompt’s
knowledge for future use. Chevalier et al. (2023) extend this by developing AutoCompressor, which
converts longer textual contexts into summary vectors that serve as soft prompts, which expands
the LLM’s context window and reduces computational costs, as examplified in LLoCO (Tan et al.,
2024). However, directly using LLMs to generate sentence-level embeddings diverges from their
original objective of next-token prediction. As a result, achieving satisfactory performance in this
context often requires extensive training or fine-tuning to align the model with the new objective. To
overcome this problem, our E2LLM leverages a pretrained sentence embedding model to represent
prompts, aligning with the original training objectives of embedding models. Additionally, we note
that, concurrently with our work, FocusLLM (Li et al., 2024b) has also adopted a strategy of chunk-
ing long contexts and summarizing each chunk using the hidden states of the local context from all
layers of an LLM. These hidden states are concatenated to serve as the key-value cache for the same
LLM, providing answers to user queries. From the perspective of E2LLM, FocusLLM essentially
employs an LLM as a text encoder, which influences both training and inference efficiency.

3 OUR APPROACH: E2LLM

In this section, we detail the proposed E2LLM framework for understanding and reasoning over long
contexts, which effectively combines the strengths of pretrained text encoders and LLM decoders.

3.1 MODEL ARCHITECTURE

Figure 2 illustrates the architecture of the E2LLM framework, which comprises four key compo-
nents: a Chunker, a Text Encoder Eθ, an Adapter Aϕ, and an LLM Decoder Dη . Here, θ, ϕ, and
η denote the (learnable) parameters specific to each component. For long input contexts, E2LLM
first performs chunking. Each resulting chunk is then processed by the encoder, which captures its
semantics. The adapter facilitates the mapping of the encoder’s outputs into the LLM decoder’s
embedding space, allowing the decoder to interpret these representations effectively. Ultimately, the
decoder utilizes these embeddings as substitutes for the original context and executes two fine-tuning
tasks—“understanding” and “reasoning”—to train the entire framework. It is essential to note that
the choice of models for the encoder and decoder, the method of chunking, and the network archi-
tecture of the adapter can be customized to meet the needs of different domains. E2LLM serves as
a flexible framework, seamlessly integrating these components to effectively manage long contexts
while being capable of leveraging the power of more advanced components when available. We will
now introduce each component in detail, following the data flow during inference in E2LLM.

Chunker: The Chunker is responsible for dividing long contexts into smaller, manageable chunks
while ensuring that the token length of each chunk does not exceed the maximum sequence length
of the text encoder. Similar to RAG, the choice of chunking strategy can impact the overall per-
formance of E2LLM to some extent. Here, we adopt a straightforward yet effective approach: we
first define a chunk size, extract the initial chunk, and then backtrack within this chunk to locate
breakpoints, such as periods or line breaks. Following this, we begin a new chunk at the end of
the previous one and apply the backtracking method again. We repeat this process until all text is
chunked. This method helps to maintain the semantic integrity of the original texts. Note that other
methods such as introducing overlap between chunks can also benefit E2LLM. Additionally, our
experiments in Appendix H.2 indicate that the size of the chunks can influence this performance.
Including excessive context within a single chunk can degrade performance. This occurs primar-
ily because a high compression ratio may render the embedding vector too generic, compromising
specificity. Conversely, an excessively small chunk size can disrupt the semantic integrity of sen-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tences, which can also negatively affect performance. Furthermore, we highlight that the impact of
the chunker in E2LLM is less pronounced when aligning the encoder and decoder, as introduced
in the sequel. In contrast to RAG, where the retriever (encoder) and the generator (decoder) are
two distinct models without alignment, E2LLM benefits from this cohesion. This alignment mini-
mizes the risk of inconsistency in text interpretation, which can arise when models are pretrained on
different corpora and objectives. More discussions on chunk size is provided in Appendix I.2.

Text Encoder E : After chunking, we input each chunk into the text encoder to generate the cor-
responding embedding vector. Notably, most pretrained encoders, such as GTE (Li et al., 2023)
and BGE (Xiao et al., 2023), are trained via contrastive learning. This means the [CLS] token (the
dark gray token in Figure 2), which serves as the embedding vector, typically captures only the dis-
criminative information necessary for differentiating between chunks, while information essential
for the LLM decoder to answer the query may be discarded. To mitigate this limitation, we adopt
low-rank adaptation (LoRA) (Hu et al., 2021) to make text encoder trainable during the alignment
process. This allows the encoder to extract information from the original text within the chunks that
is beneficial for the LLM’s performance.

Adapter A: To facilitate the LLM’s understanding of the chunk-wise semantics derived from the
encoder’s output, we employ an Adapter to map the encoder’s output into the input embedding of the
LLM. Since the hidden dimensions of the text encoder and the LLM decoder may differ, the Adapter
is a vital component. Specifically, we utilize a two-layer Multi-Layer Perceptron (MLP) with the
GELU activation function (Hendrycks & Gimpel, 2016) as the adapter network. This Adapter is
applied to each chunk embedding individually, and we refer to its output as the chunk token, soft
prompt, or summary vector, which are then processed by the subsequent LLM. The Adapter is
initialized randomly and trained from scratch during the alignment phase.

LLM Decoder D: Finally, we concatenate the chunk tokens (the green tokens in Figure 2) and the
text tokens corresponding to the prompt and query, and ask the LLM to generate the answer for the
query. In our experiments, we select Llama2 (Touvron et al., 2023) as the LLM Decoder due to its
popularity in both academic research and industry applications. Additionally, we employ LoRA to
fine-tune the Decoder as part of the alignment process between the encoder and decoder.

3.2 TRAINING TASKS

Now we focus on training the the adapter as well as the LoRA branch of the encoder and the decoder
to enhance the E2LLM’s ability to comprehend lengthy input contexts and effectively reason about
the corresponding answers. To accomplish this, we introduce two distinct training tasks.

The first task is designed to improve the LLM’s understanding of the input. As depicted in Figure 2,
once the LLM receives chunk tokens from the adapter, we prompt it to restate or reconstruct the
input. We refer to this as the “understanding” task. The specific prompt used is “Given the contexts:
[chunk token]\n Please follow the instruction:\nRestate the aforementioned context”. Notably, this
task is self-supervised, allowing us to curate a significant amount of training data to ensure that the
LLM comprehensively grasps the embeddings provided by the adapter. However, in our experi-
ments, we utilize only the input from long-context instruction fine-tuning data for this task. Given
that these inputs are often too lengthy to be fully reconstructed at once, we employ a sliding window
approach, reconstructing the original context in segments based on a few consecutive chunks until
the entire input has been restated.

On the other hand, the second training task enables the LLM to generate answers based on the
chunk tokens (i.e., the long context) and the user’s query. We refer to this as the “reasoning” task,
and the prompt crafted for this purpose is “Given the contexts: [chunk token]\n Please follow the
instruction: \n Answer the question: {query}”.

It is important to note that the “understanding” task serves as an auxiliary task, while our primary
focus remains on the “reasoning” task. We determine the final checkpoints exclusively based on
the validation loss associated with the “reasoning” task. In this context, we do not anticipate that
E2LLM can achieve lossless compression of the context. However, we believe that the LLM decoder
is capable of retaining or comprehending essential information from the context. The LLM operates
as a “suggestion feature” for input methods, leveraging hints to generate meaningful responses. In
this case, the chunk tokens provided by the text encoder serve as these essential hints.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Maximum Context Window: Theoretically, the maximum sequence length of E2LLM equals the
product of the encoder and decoder’s sequence lengths. However, as previously mentioned, setting
the chunk size to match the encoder’s sequence length presents challenges, as it may hinder the
encoder’s ability to retain all pertinent information within a single chunk. Thus, we need to choose
a proper chunk size. As a result, the practical length of E2LLM is determined to be the chunk size
multiplied by the sequence length of the LLM’s decoder. In actuality, we set the maximum chunk
size of 512 characters, which is approximately equivalent to 100 tokens. Hence, the context length
has been expanded by nearly 100 times. When using Llama2-7B as the decoder with a sequence
length of 4,000 tokens, the final context window of E2LLM reaches approximately 400,000.

Time and Space Complexity during Inference: Let us denote the original context length (exclud-
ing the prompt or instruction) as L and the chunk size in E2LLM as C. Therefore, the total number
of chunks becomes L/C. For each chunk, the resulting time and space complexity from the text
encoder is O(C2). Given that there are L/C chunks, the overall complexity for the encoding step
is O(CL). In practice, since all chunks can be processed in parallel, the time complexity can be
further reduced by a constant factor. Subsequently, we pass the L/C chunk tokens to the LLM de-
coder, which yields a complexity of O(L2/C2). In summary, the total time and space complexity is
O(LC +L2/C2). To substantiate the efficiency of E2LLM during inference, we conduct empirical
experiments that assess both inference time and memory usage (cf. Section 4.4). Moreover, we
provide a discussion on the complexity of existing SOTA methods in Appendix A.

3.3 RELATION TO VISION-LANGUAGE MODELS (VLMS)

E2LLM draws inspiration from recent advancements in VLMs, including mini-GPT4 (Zhu et al.,
2024), LLaVA (Liu et al., 2024), Qwen-VL (Bai et al., 2023), and InternVL (Chen et al., 2024b).
These VLMs utilize adapters to align pretrained vision encoders with LLM decoders, enabling the
LLMs to process image tokens outputted by the vision encoders. In this framework, both the vision
encoder and LLM decoder are pretrained independently, offering a flexible approach that allows
for the alignment of high-performing vision and language models, thereby maximizing their capa-
bilities. Notably, VLMs excel at performing OCR (Optical Character Recognition) (Islam et al.,
2017) tasks, effectively recognizing and outputting text present within images. Motivated by the
success of VLMs, we propose that by aligning text encoders (i.e., embedding models) with LLM
decoders using an adapter, LLMs can similarly interpret sentences encoded by the text encoders and
draw inferences based on this comprehension. Furthermore, as both the encoder and decoder in our
approach operate within the same modality, we anticipate that the alignment process will be more
straightforward than that required for models functioning across different modalities, potentially re-
ducing the amount of data needed for alignment. Conversely, the reconstruction task employed in
training E2LLM is self-supervised, enabling us to amass a vast dataset of text to enhance the LLM’s
contextual understanding. In contrast, the alignment task in VLMs relies on supervised image-text
pairs, which are notably more challenging to collect.

4 EXPERIMENTS

In this section, we first evaluate the performance of E2LLM across three key tasks: document QA,
document summarization, and Needle-in-a-Haystack retrieval. We then broaden our assessment
to include its performance on LongBench. Additionally, we examine the training and inference
efficiency of E2LLM and conduct a series of ablation studies to gain further insights.

For comparison, we benchmark E2LLM against eight baselines. These include length extension
techniques (YaRN (Peng et al., 2023) and CEPE (Yen et al., 2024)), sparse attention strategies
(StreamingLLM (Xiao et al., 2024) and LongLoRA (Chen et al., 2023b)), as well as hard and soft
prompt compression methods (RAG (Gao et al., 2024), LongLLMLingua (Jiang et al., 2023b) and
LLoCO (Tan et al., 2024)). All baseline methods are built upon the same foundational model,
Llama2-7B, with the original Llama2-7B included as an additional baseline. We refer readers to
Appendix B for a brief overview of all baselines before delving into the experimental results.

4.1 DOCUMENT SUMMARIZATION AND QUESTION ANSWERING (QA)

We utilize two datasets for summarization—QMSum and GovReport—and three datasets for
QA—Quality, NarrativeQA, and TriviaQA. Detailed information about these datasets can be found
in Appendix C and Table 4. It is noted that Quality and TriviaQA feature shorter lengths compared to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance on Long-Context datasets. The best results are in bold, the second are
underlined, and the third are

::::
wavy

:::::::::
underlined.

Methods
Trainable

Parameters
Context
Window

Extension
Method

QMSum GovReport Quality NarrativeQA TriviaQA
G-mean↑ PPL↓ G-mean↑ PPL↓ F1↑ PPL↓ F1↑ PPL↓ F1↑ PPL↓

Llama2-7B 0M 4K - 11.51 84.92 5.50 9.04 9.38 1,688.10
:::
4.65 2,111.23 12.06 1,956.51

StreamingLLM 0M 4M Sparse Attn. 3.62 220.12 4.51 330.54 2.00 230.72 OOM OOM 14.53 596.87
LongLoRA 140M 100K Sparse Attn. 8.98 14.48 16.35 2.88 7.65 381.32 OOM OOM 19.69 438.25
CEPE 1.31B 128k Len. Exten. 10.77 154.16 4.82 52.32 2.33 1,192.35 OOM OOM - -
YaRN 17M 64K Len. Exten.

::::
12.31

::::
16.22

::::
6.72

::::
2.94 13.80

:::::
31.32 OOM OOM

:::::
20.22 106.43

RAG 0M +∞ Hard Comp. 7.24 19.11 3.89 4.97 10.36 131.50 2.77 59.43 16.40 111.26
LongLLMLingua 0M 40K Hard Comp. 8.93 17.55 4.56 23.53 10.89 51.91 4.53

:::::
31.36 14.01

:::::
76.06

LLoCO 17M 128K Soft Comp. 12.99 46.32 5.73 6.42 14.37 9.44 10.87 16.88 63.21 10.80

E2LLM 16M 400K Soft Comp. 14.61 13.68 18.78 2.75
:::::
12.94 7.94 12.35 13.31 33.37 12.69

* For complete experimental results with more metrics, please refer to the experimental results details section in the Appendix C.

the summarization datasets, while NarrativeQA is notably longer. For our experiments, we employ
the validation sets of each dataset for testing and split the training sets into training and validation
subsets using a 95:5 ratio. For summarization tasks, we evaluate all methods using the Rouge metric,
which compares n-grams of the generated text to those of the reference text, focusing on Rouge-1,
Rouge-2, and Rouge-L for various levels of token overlap. The overall performance is represented
through the geometric mean (G-mean) of these values, with higher scores signifying better qual-
ity in generated summaries. In contrast, for Document QA, we adopt the method from (Shaham
et al., 2023) to measure unigram overlap between generated and reference answers while normal-
izing whitespace, lowercasing, and removing stopwords and punctuation. Precision and recall are
then calculated based on the number of unigram tokens, and the overall performance is assessed
using the F1 score as a token-level metric. Additionally, we compute the perplexity (PPL) of the
correct answer across all datasets as a semantic-level metric, gauging how well a model predicts the
given answer. The results for all baseline methods are presented in Table 5. Following this, we now
discuss the outcomes for each category of methods in detail.

Soft prompt compression: It is apparent that the proposed E2LLM consistently achieves either
the best performance or ranks within the top three across all nine evaluated methods. We fur-
ther show in Appendix C that the performance of E2LLM is insensitive to the context length. The
other soft prompt compression technique, LLoCO, also demonstrates commendable performance,
especially in QA tasks, highlighting the effectiveness of soft prompt compression techniques. How-
ever, LLoCO’s performance declines slightly in summarization tasks, which aligns with observa-
tions in its original publication (see Table 1 in (Tan et al., 2024)). LLoCO leverages AutoCom-
pressor (Chevalier et al., 2023) as its text encoder, operating without additional training. AutoCom-
pressor utilizes Llama2 to generate summary vectors for each chunk, designed to retain only the
information necessary for subsequent chunks while discarding other potentially valuable content, as
highlighted by (Rau et al., 2024). In QA tasks, only the relevant portions of the long context are
required to prompt the LLM for accurate answers, aligning well with AutoCompressor’s training
objectives. In contrast, summarization tasks necessitate an overall understanding of the entire con-
text. Consequently, since the summary vectors produced by AutoCompressor do not encapsulate
all information within each chunk, LLoCO’s performance in summarization is adversely affected.
Unlike LLoCO, E2LLM can train its encoder to be readily adapted for diverse purposes.

Hard prompt compression: Similar to LLoCO, the hard prompt compression method LongLLM-
Lingua also excels in Document QA compared to summarization. The challenge of compressing
long context into 3,000 non-consecutive tokens manifests in two significant ways: (i) the chosen
token count is insufficient for summarizing the full long context; and (ii) the non-consecutiveness
can hinder LLM comprehension, potentially leading to inaccurate answers. Additionally, the per-
formance of this method is sensitive to hyperparameters, such as the chunk or passage size, which is
crucial when selecting relevant passages for the query prior to token selection. These issues are also
prevalent in RAG. Further complicating matters, the bi-encoder utilized in RAG may not retrieve
relevant passages as effectively as the cross-encoder employed in LongLLMLingua. Inconsistencies
can also arise when the retriever (encoder) and the generator (decoder) interpret the same text, as
they are pretrained on different corpora (Li et al., 2024a; Ding et al., 2024b). E2LLM addresses these

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

issues by aligning the encoder and decoder through the adapter, which provides a global semantic
embedding for each chunk and allows the decoder to utilize all chunks as inputs. This approach dif-
fers from selectively choosing some tokens from each chunk, enabling E2LLM to effectively retain
relevant information and consistently surpass both hard prompt compression methods.

Sparse attention: On the flip side, the sparse attention method LongLoRA shows superior per-
formance on summarization tasks but struggles with QA tasks. This disparity can be attributed to
the shift shot attention mechanism utilized in LongLoRA, which allows for overlapping attention
blocks and enhances global information flow—an essential aspect of summarization requiring a
holistic view of all tokens. Nevertheless, the sparse attention mask limits information flow between
two arbitrary tokens. Consequently, when relevant parts of the long context are inaccessible during
Document QA, LongLoRA may fail to deliver accurate answers due to the loss of vital contextual
information. StreamingLLM is training-free and implements a Λ-shaped attention mask that further
limits overall information flow. Without training, models initially designed with full attention strug-
gle to adapt to this mask, diminishing their performance across all datasets. E2LLM addresses these
challenges by employing the original full attention mask rather than resorting to sparse attention
while effectively compressing passages into soft prompts (i.e., semantic summaries). This strategy
enables E2LLM to consistently achieve superior performance compared to sparse attention methods.

Length extension: Lastly, we observe that the length extension method, YaRN, strikes a balance
between QA and summarization, generally finishing third best across all tasks and metrics. Like
E2LLM, it encompasses all relevant information; however, as noted in previous research (Chen
et al., 2023a), attention mechanisms can become dispersed in exceedingly long contexts, diffusing
focus across numerous token positions and achieving performance inferior to E2LLM. CEPE faces
a similar challenge. Moreover, training the cross-attention layers in CEPE usually requires a vast
amount of data (around 20 billion tokens, as suggested in (Yen et al., 2024)). This need arises
because these layers are absent from the original language model (LLM). In our experiments, the
number of tokens for each task is less than 0.1 billion, raising concerns that the cross-attention layers
may not be sufficiently trained. Thus, integrating cross-attention layers into existing LLMs may
pose compatibility issues without access to a substantial dataset for re-training. Additionally, CEPE
operates within a pretraining framework in which the encoder processes a fixed-length segment of
the sequence initially. This segment is then used to predict the remainder of the sequence for the
decoder, effectively functioning as a text completion task. Notably, for TriviaQA, the context length
is often shorter than the encoder’s predefined length, leaving the decoder without any input. This
results in the decoder producing irrelevant answers after training on the TriviaQA data. In contrast,
E2LLM addresses the issue of attention dispersion encountered by length extension methods by not
extending the decoder’s length. Instead, it trains the decoder to interpret the soft prompts generated
by the encoder, thereby enhancing performance.

4.2 NEEDLE IN A HAYSTACK

The Needle-in-a-Haystack benchmark is a framework designed to assess models’ abilities to pin-
point specific information embedded within extensive text. In this context, the term “needle” refers
to a precise fact or statement concealed within a lengthy “haystack” of text, while ”depth” denotes
the needle’s position within that context, measured from the beginning. A depth of 100% indicates
that the needle is situated very close to the answer. For comparison, we have selected five representa-
tive methods from various categories: the original Llama2-7B, YaRN, LongLoRA, LongLLMlingua,
and LLoCO. The methods that require training utilize data collected from all five tasks discussed in
the previous subsection. For detailed experimental settings, please refer to Appendix D. Below, we
present the results of all evaluated methods.

As shown in Figure 3, the proposed E2LLM outperforms all other methods, achieving an overall
score that is 17% higher than the second-best method, YaRN. Importantly, E2LLM is insensitive
to both the length of the context and the depth of the needle, as it treats all context chunks equally. In
contrast, while YaRN ranks second, its recall accuracy declines significantly when the context length
exceeds 4,000 tokens, indicating that its recall capability is limited to the original context. Com-
pared to the original Llama2-7B, YaRN consistently enhances recall across various context lengths,
but Llama2-7B’s training context length limitation hinders its ability to retrieve needles over 4,000
tokens from the retrieval question. On the other hand, sparse attention methods, like LongLoRA,
struggle in recall-intensive tasks, as informative tokens may be masked by sparse attention mech-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

� � ��
�
��
�
��
�
�

�
�
�
	�
�
	�
�

�
�

�

�
��
�

��������������

���	�����

������������
���

��

���

���

���
��

�������������������

�

�

	

�

��

��
��
�

���������
�����������������

�� �� �	
�
�
�
	�
�
	�
�
	�
�

	
�

�
��
�
��
�
��
�
�	
�

���"�#"�����"�

�
��
��
	�
	�

�

�
��
��
��
��
�
�
��
��
��
��
��
��
���

�
�
"�
��
�!
��
�"

��

	��

���

���
���

��	

��

������

���

��������

�������������������

���������	���
������������������

�

�

�
�
�

�
�
�

�
�
�

�

�

�

�

	
�
�

	
�
�

�
�

�

�

�
�
�

��������������

��

�����

���

���
���

��	
������

������
��

���

�������������������

���������

������������������

� � ��
�
��
�
��
�
�

�
�
�
	�
�
	�
�

�
�

�

�
��
�

��������������

��	��	
���

��������������
���
���

���

���
���

�������������������

�����������������
�����������������

� � ��
�
��
�
��
�
�

�
�
�
	�
�
	�
�

�
�

�

�
��
�

��������������

���

��	
���

���������������������������
���

�������������������

������������
������������
���	

� � ��
�
��
�
��
�
�

�
�
�
	�
�
	�
�

�
�

�

�
��
�

��������������

	��

���
���

���

���

��
���

������

���
��	��	��

�������������������

��������
����������������

Figure 3: Pressure test on Needle in a Haystack conducted at 13 lengths (4k to 52k) across 20 depth
percentage ranges (5% to 100%). The average depth score represents the mean score across the
depth axis for each length.

Table 2: Performance on LongBench Benchmark. The best results are in bold, the second are
underlined, and the third are

::::
wavy

:::::::::
underlined.

Methods
Single-Document Multi-Document Summarization Few-shot Synthetic Code

NQA QAS MFQA HQA WQA MSQ GOVR QM MN TREC TQA SAM PC PR LCC RBP

LLama2-7B 8.36 11.96
:::::
25.82 16.67 13.83 8.36 10.51 1.85 14.87 25.11 51.97 17.24 0.11 0.03 48.59 10.70

StreamingLLM 0.25 7.21 8.05 6.46 5.79 4.23 3.03 2.11 6.09 1.02 20.82 2.56 0.12 0.24 6.97 4.23
LongLoRA 10.59 16.27 26.17 26.33 21.49

::::
15.37 10.71 9.30 9.74

:::::
37.00 33.97 9.68 4.01

::::
4.52 30.36 28.34

CEPE 2.69 4.74 10.96 7.12 6.10 5.11
:::::
11.23 7.86 8.67 0.24 21.02 9.53 1.55 0.07 18.84 19.58

YaRN 16.45
::::
18.03 27.90 27.86

::::
24.32 17.17 7.18 10.02 6.84 39.00 55.67

::::
17.61 3.42 2.92 39.29 45.12

RAG 5.37 9.12 20.73 20.70 15.23 8.53 3.83 12.83 3.97 62.25
::::
62.28 21.46

:::
4.25 43.08 12.75

::::
21.31

LongLLMLingua 6.09 11.65 25.73 14.38 8.03 4.81 14.33 9.06
::::
13.44 11.0 8.75 7.24 3.67 2.00 14.26 18.04

LLoCO 13.37 20.60 18.99 37.73 24.68 15.94 2.21
::::
11.46 9.75 19.00 86.38 16.75 7.37 0.55

::::
37.73 18.06

E2LLM
::::
12.78 21.94 16.77

::::
26.45 25.51 12.43 14.55 19.06 15.85 1.52 83.96 25.86 4.50 4.96 27.43 24.47

anisms, resulting in poorer outcomes. Akin to E2LLM, LongLLMLingua also exhibits robustness
against variations in context length and needle depth due to their flexible information retrieval be-
fore generating an answer. However, its effectiveness is sensitive to hyperparameter settings, such
as chunk size; if chunk sizes greatly exceed the needle length, irrelevant information may obscure
the needle, leading to retrieval failures. E2LLM mitigates this issue by processing all chunks in the
decoder. Finally, LLoCO is limited in retrieving needles only when they are proximity to the an-
swer. This limitation stems from the nature of LLoCO’s encoder, AutoCompressor, which generates
summary vectors primarily aimed at predicting the next chunk. As the inserted needle often bears
little relation to the adjacent chunk, it may be filtered out, impairing overall performance.

4.3 LONGBENCH

We further conduct a comprehensive evaluation of various methods using LongBench (Bai et al.,
2024b), which encompasses all major long-text application areas, including single-document QA,
multi-document QA, summarization, few-shot learning, synthetic tasks, and code completion. In
particular, Within the few-shot learning category, we assess TREC for question classification, TQA
(i.e., TriviaQA) for reading comprehension, and SAM for conversation summarization. The syn-
thetic task category includes Passage Retrieval (PR) constructed from English Wikipedia and Pas-
sage Count (PC), which aims to determine the number of unique passages within a given set. For
code completion category, we evaluate LCC for long code completion and RepoBench-P (RBP) for
repository-level code completion. More details are provided in Appendix E. Importantly, we do
not train the models with new data; instead, we utilize the checkpoints obtained from the previous
subsection. The results for LongBench are summarized in Table 2.

Again, E2LLM achieves the best results across all baselines, securing the top rank in six tasks,
the second rank in four tasks, and the third rank in two tasks. In comparison, Yarn trails behind
E2LLM, ranking first in five tasks, second in three tasks, and third in two tasks. It is noteworthy
that while we train all models solely with natural language data, Yarn generalizes well to code data,
yielding strong results for LCC and RBP. However, Yarn’s high training and inference complexity
may limit its practical applicability (see Figure 4). LLoCO ranks third overall, achieving first place
in three tasks, second in four tasks, and third in one task. This reinforces the notion that soft prompt

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

YaRN LongLoRA CEPE LLoCO E2LLM
Methods

104

105

106

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(T
ps

)

15469.21 16002.35

180291.84

318221.83

87669.14

YaRN
LongLoRA
CEPE
LLoCO
E2LLM

(a) Training Throughput (Tps).

1 13 25 37 49 61 73
Sequence Length(K)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Ti
m

e
Co

st
(s

)

LongLoRA
YaRN
RAG
LLoCO
CEPE
StreamingLLM
LongLLMLingua
E2LLM

(b) Inference Time (s).

1 13 25 37 49 61 73
Sequence Length(K)

-1

0

1

2

3

4

5

6

Lo
g

of
 M

em
or

y
U

sa
ge

(G
B)

LongLoRA
YaRN
RAG
LLoCO

CEPE
StreamingLLM
LongLLMLingua
E2LLM

(c) Inference Memory (GB).
Figure 4: Comparison of all methods on training and inference efficiency.

compression approaches are promising for various long-context understanding and reasoning tasks.
E2LLM’s superiority over LLoCO can be attributed to its flexible and lightweight design.

4.4 TRAINING AND INFERENCE EFFICIENCY

We only present the conclusions here due to the page limit; further discussions are in Appendix G.

Training Throughput: We evaluate the training throughput of several methods requiring training,
including YaRN, LongLoRa, CEPE, LLoCO, and E2LLM. As shown in Figure 4a, CEPE, LLoCO,
and E2LLM exhibit significantly higher training throughput compared to YaRN and LongLoRA.
Notably, LLoCO prepares the summary vectors or soft prompts offline, allowing it to fine-tune only
the LLM decoder. In contrast, CEPE’s training of cross-attention layers scales linearly with context
length, which contributes to its superior performance.

Inference Time and Memory: As displayed in Figures 4b and 4c, E2LLM stands out with im-
pressive results, demonstrating the lowest runtime and memory usage, especially for lengthy
sequences at 73K. This efficiency is primarily due to its relatively high compression ratio of ap-
proximately 100 times, which dramatically reduces the number of chunk tokens processed by the
LLM decoder to a size much smaller than the original number of text tokens. In comparison, LLoCO
achieves a compression ratio of 32 times. Additionally, we observe that the runtime behavior of all
methods aligns with the theoretical time complexity outlined in Table 3.

4.5 ABLATION STUDY

Due to page limitations, we present only the conclusions here, with detailed results and discussions
available in Appendix H. (i) It is essential to employ the “understanding” loss and to train both the
encoder and decoder using LoRA. (ii) Incorporating overlap between chunks also proves beneficial
for E2LLM. (iii) E2LLM can benefit from more powerful encoders and decoders, indicating
that newly developed open-source models could further enhance its performance. (iv) We check
E2LLM’s sensitivity to hyperparameters, including the weight of the “understanding” loss, the rank
of LoRA for both the encoder and decoder, and the number of MLP layers in the adapter. Each
of these factors has an optimal value in practice. (v) Finally, we examine the impact of chunk size
on performance. Results presented in Table 11 indicate that performance metrics exhibit relatively
small differences across the various chunk sizes tested in this study. This suggests that the alignment
process in E2LLM effectively mitigates the influence of chunk size on performance. However,
selecting an optimal chunk size can still lead to a slight performance improvement.

5 CONCLUSION

In this paper, we present E2LLM, a novel approach to address the challenges of enhancing long-
context performance in LLMs. It effectively navigates the “impossible triangle” by strategically
splitting long contexts into chunks, compressing them into embedding vectors, and utilizing an
adapter to align these representations with a decoder-only LLM. Two training objectives are em-
ployed to facilitate the understanding of soft prompts by the LLMs, resulting in superior perfor-
mance in long-context scenarios. Experimental findings reveal that E2LLM effectively outperforms
existing approaches in balancing the long-context performance, computational efficiency, and model
compatibility. We believe that E2LLM offers a flexible framework for aligning text encoders and
LLM decoders, with considerable potential for enhancement as more powerful encoders and de-
coders become available.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers. Ad-
vances in Neural Information Processing Systems, 36, 2023.

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su,
Tiezheng Ge, Bo Zheng, et al. Mt-bench-101: A fine-grained benchmark for evaluating large
language models in multi-turn dialogues. 2024a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172.

bloc97. Ntk-aware scaled rope allows llama models to have extended(8k+) context size without any
fine-tuning and minimal perplexity degradation. 2023.

Samuel R Bowman, Angelica Chen, He He, Nitish Joshi, Johnny Ma, Nikita Nangia, Vishakh Pad-
makumar, Richard Yuanzhe Pang, Alicia Parrish, Jason Phang, et al. Quality: Question answering
with long input texts, yes! NAACL 2022, 2022.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. Clex: Continu-
ous length extrapolation for large language models. In The Twelfth International Conference on
Learning Representations, 2024a.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024b.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2023.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. In
Forty-first International Conference on Machine Learning, 2024a.

Yujuan Ding, Wenqi Fan, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meets llms: Towards retrieval-augmented large language models. arXiv
preprint arXiv:2405.06211, 2024b.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. GLM:
General language model pretraining with autoregressive blank infilling. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 320–335, 2022.

11

https://aclanthology.org/2024.acl-long.172

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model. arXiv preprint arXiv:2307.06945, 2023.

John Michael Giorgi, Luca Soldaini, BO WANG, Gary D Bader, Kyle Lo, Lucy Lu Wang, and
Arman Cohan. Open domain multi-document summarization: A comprehensive study of model
brittleness under retrieval. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

Michael Günther, Isabelle Mohr, Daniel James Williams, Bo Wang, and Han Xiao. Late chunk-
ing: contextual chunk embeddings using long-context embedding models. arXiv preprint
arXiv:2409.04701, 2024.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. In 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, pp. 1419–
1436, 2021.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Noman Islam, Zeeshan Islam, and Nazia Noor. A survey on optical character recognition system.
arXiv preprint arXiv:1710.05703, 2017.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023a.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
pression. arXiv preprint arXiv:2310.06839, 2023b.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

Tomas Kovcisky, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 2018.

12

https://arxiv.org/abs/2312.10997

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, Online,
2020.

Mingda Li, Xinyu Li, Yifan Chen, Wenfeng Xuan, and Weinan Zhang. Unraveling and miti-
gating retriever inconsistencies in retrieval-augmented large language models. arXiv preprint
arXiv:2405.20680, 2024a.

Yucheng Li. Unlocking context constraints of llms: Enhancing context efficiency of llms with self-
information-based content filtering. arXiv preprint arXiv:2304.12102, 2023.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023. URL https://arxiv.
org/abs/2308.03281.

Zhenyu Li, Yike Zhang, Tengyu Pan, Yutao Sun, Zhichao Duan, Junjie Fang, Rong Han, Zixuan
Wang, and Jianyong Wang. Focusllm: Scaling llm’s context by parallel decoding. arXiv preprint
arXiv:2408.11745, 2024b.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. Sparser is faster and less is more: Efficient sparse
attention for long-range transformers. arXiv preprint arXiv:2406.16747, 2024.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36, 2023.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2021.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2019.

David Rau, Shuai Wang, Hervé Déjean, and Stéphane Clinchant. Context embeddings for efficient
answer generation in rag. arXiv preprint arXiv:2407.09252, 2024.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding. In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 7977–7989, 2023.

Devendra Singh, Siva Reddy, Will Hamilton, Chris Dyer, and Dani Yogatama. End-to-end training
of multi-document reader and retriever for open-domain question answering. Advances in Neural
Information Processing Systems, 34:25968–25981, 2021.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaud-
hary, Xia Song, and Furu Wei. A length-extrapolatable transformer. In The 61st Annual Meeting
Of The Association For Computational Linguistics, 2023.

Sijun Tan, Xiuyu Li, Shishir Patil, Ziyang Wu, Tianjun Zhang, Kurt Keutzer, Joseph E Gonzalez,
and Raluca Ada Popa. Lloco: Learning long contexts offline. arXiv preprint arXiv:2404.07979,
2024.

13

https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
work best for zero-shot generalization?, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. The Twelfth International Conference on Learning Repre-
sentations, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighof. C-pack: Packaged resources to
advance general chinese embedding. arXiv preprint arXiv:2309.07597, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
encoding. arXiv preprint arXiv:2402.16617, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2471–2484, 2023.

Jihao Zhao, Zhiyuan Ji, Pengnian Qi, Simin Niu, Bo Tang, Feiyu Xiong, and Zhiyu Li.
Meta-chunking: Learning efficient text segmentation via logical perception. arXiv preprint
arXiv:2410.12788, 2024.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based
multi-domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Time and space complexity of various methods.

Methods Time Complexity Space Complexity

Llama2-7B O(L2) O(L2)
StreamingLLM O(L(M +N)) O(L(M +N))

LongLoRA O(L2) O(L2)
CEPE O(L(C/τ + 1/2) + L2/4) O(L(C + 1/2) + L2/4)
YaRN O(L2) O(L2)
RAG O(LC/τ + C2K2) O(LC + C2K2)

LongLLMLingua O(L2) O(L2)
LLoCO O(LC + L2/C2) O(LC + L2/C2)
E2LLM O(LC/τ + L2/C2) O(LC + L2/C2)

A COMPLEXITY OF EXISTING METHODS

The original Llama2-7B and YaRN rely on the quadratic time and space complexity inherent to the
self-attention mechanism. In contrast, StreamingLLM modifies the attention strategy to focus solely
on the initial M starting tokens and N recent tokens, resulting in a linear relationship between time
and space complexity and the context length. Regarding LongLoRA, its inference process employs
a global attention mechanism, leading to time and space requirements equivalent to those of YaRN
and the original Llama2-7B. CEPE divides the context into two segments, with the initial portion
processed through parallelized embedding, represented in the table by the constant τ denoting con-
currency, the subsequent self-attention and cross-attention mechanisms exhibit quadratic and linear
complexities, respectively. RAG involves both the embedding and retrieval processes, establishing
a direct correlation with the chunk size C and the number of retrieved chunks K. An increase in
K results in slower speeds and greater space consumption, albeit with improved performance. For
LongLLMLingua, it incorporates question-aware coarse-grained and fine-grained compression pro-
cesses, which significantly consume time and space resources during the multiple computations of
perplexity. LLoCO exhibit nearly identical time complexity to E2LLM, as both involve encoding
and decoding processes. However, it is important to note that while E2LLM’s encoding process
shares similarities with the embedding process of RAG and can be executed concurrently, LLoCO is
constrained by the AutoCompressor, which operates serially and thus cannot be parallelized. More-
over, the efficiency of both methods is directly tied to C, E2LLM benefits from high compatibility
and can utilize long-context sentence embedding models such as BGE, GTE, and Jina-embedding
as encoders, while LLoCO is limited by the AutoCompressor, restricting the chunk size range to
0-1536.

B OVERIEW OF BASELINE METHODS

The following provides a brief overview of all baselines:

• Llama2-7B (Touvron et al., 2023): This refers to Llama2-7b-Chat1 without additional training or
fine-tuning, serving as the backbone for the other methods.

• YaRN (Peng et al., 2023): YaRN is a position interpolation method designed to effectively extend
the context window of models trained with Rotary Position Embeddings (RoPE) (Su et al., 2024).
This method leverages the advantages of both linear and NTK interpolation. Note that the compu-
tational complexity of YaRN is quadratic in the context length during both training and inferece.
We implement a scale factor of 16 and integrate LoRA (Hu et al., 2021) into the self-attention
module, utilizing a rank of 16. This results in a total of 17 million trainable parameters.

• CEPE (Yen et al., 2024): CEPE employs an encoder-decoder framework designed to efficiently
manage long contexts by breaking them into manageable chunks. The encoder generates embed-
dings for each token within these chunks, which are then fed into the LLM decoder via cross-
attention, in line with the original Transformer architecture. We use LLaMA-MLM-Large2 as

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
2https://huggingface.co/hyen/LLaMA-MLM-Large

15

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/hyen/LLaMA-MLM-Large

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the encoder, with a total of 1.31B trainable parameters. During the warm-up stage, we train the
cross-attention mechanism from scratch, followed by simultaneous training of both the encoder
and cross-attention in the standard training phase. It is important to note that CEPE only presents
a pretraining approach where the encoder initially processes a fixed-length segment of a sequence.
This processed portion is then used to predict the remainder of the sequence for the decoder, func-
tioning as a text completion task. In instances where a sequence is shorter than the predefined
length of the encoder, the decoder is not provided with any input, which limits training flexibility.
Unlike traditional Transformer fine-tuning, where the prompt and response are respectively in-
serted into the encoder and decoder, CEPE operates differently and does not support this method.

• StreamingLLM (Xiao et al., 2024): These approaches are training-free and utilize a Λ-shaped
sparse attention mask, allowing tokens to only attend to the beginning of the sequence and recent
tokens within a defined window. In our implementation of StreamingLLM, we set the start size at
4, while the recent size was set to 2000.

• LongLoRA (Chen et al., 2023b): This method utilizes shifted short attention instead of full at-
tention during training and incorporates Position Interpolation (Chen et al., 2023a) and LoRA for
fine-tuning an LLM to extend its context window. During inference, it reverts to full attention
rather than sparse attention. We set the LoRA rank to 16 and fine-tune the self-attention, embed-
dings, and normalization modules, resulting in 140M trainable parameters.

• RAG (Gao et al., 2024): RAG operates with two core processes: retrieval and generation. During
the retrieval phase, we adopt GTE-Large-en (Li et al., 2023) as the retriever to recall the top-20
relevant context chunks, each with a maximum length of 512 characters, based on cosine similar-
ity. These context chunks then serve as prompts for the large language model (LLM) during the
generation phase. Notably, RAG is training-free, offering flexibility in its application. However,
it is essential to acknowledge that the retriever and the generator are distinct models trained on
different corpora and with different objectives, which may lead to inconsistent interpretations of
the same text (Li et al., 2024a; Ding et al., 2024b).

• LongLLMLingua (Jiang et al., 2023b): This method builds upon the framework established by
LLMLingua (Jiang et al., 2023a) with the goal of identifying and removing non-essential tokens
from prompts. This method begins by selecting passages, denoted as xpassage, that are relevant to
the user query xquery and that maximize the conditional probability p(xpassage|xquery). To achieve
this, it utilizes a large language model (LLM), specifically the quantized Llama-7B-GPTQ, as
a cross-encoder to rank the pairwise relevance of passages. It is important to note that cross-
encoders tend to be significantly more computationally demanding than the bi-encoder retriever
typically employed in RAG, although they offer higher accuracy. Once the relevant passages are
identified, the method proceeds to select the most pertinent tokens xi from each passage, aiming
to maximize the difference in perplexity: PPL(xi|x<i)−PPL(xi|xquery, x<i). This process is also
facilitated by the LLM. Ultimately, the selected tokens, limited to a total of 3000, are provided
to the LLM to formulate an answer to the query. Note that the selected tokens may be non-
consecutive, which can complicate the LLM’s understanding of their semantic meaning.

• LLoCO (Tan et al., 2024): LLoCO utilizes Autocompressors (Chevalier et al., 2023) to encode
long context offline into summary vectors or soft prompts. LLoCO omits the adapter used in
E2LLM since its decoder is the same LLM (i.e., LLama2-7B) as in the encoder AutoCompressor.
As a result, the decoder can effectively understand the summary vectors generated by AutoCom-
pressor after being fine-tuned with LoRA. One advantage of LLoCO is that its text encoder, Auto-
Compressor, considers the interdependencies of long-context chunks autoregressively. However,
this also presents a limitation: the long context can only be processed sequentially, one chunk
after another. By contrast, E2LLM can process all chunks in parallel and is more suitable for long
context. Consistent with other methods, we employ LoRA on self-attention module with a rank
of 16, resulting in the number of trainable parameters to be 17M.

• E2LLM: For our E2LLM, we utilize the GTE-Large-en (Li et al., 2023) as the encoder, which is
fine-tuned using LoRA with a rank parameter set to 8. Additionally, we utilize a two-layer MLP
network with a GeLU (Hendrycks & Gimpel, 2016) activation function as the adapter. As for the
decoder component, we leverage Llama2-7B-Chat, also fine-tuning it through LoRA with a rank
of 8, and the final number of trainable parameters is 16M. Regarding the Adapter, its structure
is designed as a two-layer MLP. The first layer’s input and output neuron numbers correspond
to the embedding dimensions of the encoder and decoder, respectively, with GELU used as the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Dataset Statistics.

Dataset Task Type #Train. Samp.#Eval. Samp.Samp. Len.
QMSum Summarization 1,257 272 14,428.78
GovReport Summarization 10,000 500 11,204.00
Quality DocumentQA 5,046 2,086 6,797.66
NarrativeQA DocumentQA 3,000 200 52,158.88
TriviaQA DocumentQA 10,000 500 1,075.90

activation function. The second layer maintains equal input and output dimensions, aligning with
the decoder’s embedding size.

C MORE DETAILS OF DOCUMENT SUMMARIZATION AND QA DATASETS

In order to evaluate the effectiveness of E2LLM, we leverage five publicly available datasets that
encompass both Summarization and Document Question-Answering (DocumentQA) tasks. The
data statistics are shown in Table 4.

• QMSum3 (Zhong et al., 2021) is a newly devised, human-annotated benchmark designed for the
query-based multidomain meeting summarization task. It comprises an extensive range of query-
summary pairs across 232 meetings in diverse fields. Specifically, we included 1,257 training
samples and used 272 samples for inference. The average length of the samples in this dataset is
14,428.78 tokens.

• GovReport4 (Huang et al., 2021) contains elongated reports by the U.S. Government Account-
ability Offices and the Congressional Research Service, complemented by summaries and ab-
stracts hand-written by experts, which is of the summarization task genre. For training purposes,
10,000 random samples were utilized, and for inference, 500 samples were arbitrarily selected
from the validation sets. The average length of the sampled data is 11,204.00 tokens.

• Quality5 (Bowman et al., 2022) is a DocumentQA dataset comprising 5,046 training samples and
2,086 inference samples with contexts that have an average length of 6,797.66 tokens. Further, we
convert the original single-choice data format of the dataset into the QA format.

• NarrativeQA6 (Kovcisky et al., 2018) is another DocumentQA dataset, primarily extracted from
comprehensive book texts and film scripts from varied sources. The challenge here lies in gener-
ating concise answers from potentially disordered and lengthier texts. We randomly sample 3,000
pieces of data for training, while randomly choosing 200 samples for inference. The average
sample length is 52,158.88 tokens.

• TriviaQA7 (Joshi et al., 2017)is also a high-quality DocumentQA dataset that houses over 650K
question-answer-evidence triples. It includes 95K question-answer pairings authored by trivia
enthusiasts and independently sourced evidence documents. We selected 10,000 and 500 samples
for training and inference respectively, with the average sample length amounting to 1,075.90
tokens.

For the task of Summarization, the performance of all methods is measured using the Rouge (Lin,
2004) metric, which operates by comparing the n-gram of the generated text with that of the refer-
ence text. Specifically, we leverage Rouge-1, Rouge-2, and Rouge-L to assess the overlap between
the single-token, consecutive dual-tokens, and the longest common subsequence (LCS) in the gen-
erated text by LLM and the reference text. We also compute their geometric mean, denoted as
G-mean, and higher values reflect higher quality of the generated summaries.

3https://github.com/Yale-LILY/QMSum
4https://huggingface.co/datasets/ccdv/govreport-summarization
5https://huggingface.co/datasets/emozilla/quality
6https://github.com/google-deepmind/narrativeqa
7https://huggingface.co/datasets/mandarjoshi/trivia_qa

17

https://github.com/Yale-LILY/QMSum
https://huggingface.co/datasets/ccdv/govreport-summarization
https://huggingface.co/datasets/emozilla/quality
https://github.com/google-deepmind/narrativeqa
https://huggingface.co/datasets/mandarjoshi/trivia_qa

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Performance on Long-Context datasets. The best results are in bold, the second are
underlined, and the third are

::::
wavy

:::::::::
underlined.

Methods
Trainable

Parameters
Context
Window

QMSum GovReport Quality NarrativeQA TriviaQA
R1 R2 RL G-mean R1 R2 RL G-mean Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Llama2-7B 0M 4K
:::::
21.90 4.91 14.21 11.51 10.68 2.86 5.46 5.50 6.16 25.46 9.38 3.04 13.52

:::
4.65 6.72

::::
76.66 12.06

StreamingLLM 0M 4M 7.59 1.15 5.43 3.62 7.46 3.39 4.76 4.51 1.50 5.50 2.00 OOM OOM OOM 8.43 76.99 14.53
LongLoRA 140M 100K 13.92 4.82 10.79 8.98 27.04 9.92 16.29 16.35 7.41 9.99 7.65 OOM OOM OOM 13.03 49.28 19.69
CEPE 1.31B 128k 19.22 3.66 17.74 10.77 10.53 1.08

:::
9.89 4.82 1.35 29.89 2.33 1.41 21.31 2.19 - - -

YaRN 17M 64K 21.54
::::
5.34 16.24

:::::
12.31

:::::
12.93

:::
4.13 5.69

:::
6.72

:::::
13.20 19.42 13.80 OOM OOM OOM

:::::
13.53 49.45

:::::
20.22

RAG 0M +∞ 11.45 3.32 10.05 7.24 8.15 1.75 4.14 3.89 5.71 40.17 10.36 0.83 3.41 2.77 8.25 54.35 16.40
LongLLMLingua 0M 40K 16.42 3.56 12.18 8.93 8.63 2.19 5.20 4.56 9.13

::::
26.34 10.89

:::
5.26 30.78 4.53 5.20 77.33 14.01

LLoCO 17M 128K 23.71 5.51
:::::
16.79 12.99 11.69 3.11 5.18 5.73 16.81 15.03 14.37 11.85 11.34 10.87 64.04 64.03 63.21

E2LLM 16M 400K 25.37 6.55 18.75 14.61 33.14 10.75 18.59 18.78 13.44 14.95
:::::
12.94 13.53

::::
13.79 12.35 33.22 34.51 33.37

Table 6: Performance as a function of context length. The best results are in bold, the second are
underlined, and the third are

::::
wavy

:::::::::
underlined.

Method QMSum NarrativeQA

Context Length 0K-6K 6K-12K 12K-18K 18K-24K 24K+ 0-24K 24K-48K 48K-72K 72K-96K 96K+
Metric G-mean PPL G-mean PPL G-mean PPL G-mean PPL G-mean PPL F1 PPL F1 PPL F1 PPL F1 PPL F1 PPL

Llama2-7B 13.05 28.57 11.99 85.35 11.54 84.31 12.56 81.74 10.32 85.60 3.10 75.81 10.71 178.28
:::
7.51 250.81 0.61 2303.08

:::
2.48 2215.08

StreamingLLM 3.27 36.35 4.21 168.63 3.32 224.24 3.26 356.17 2.45 362.41 4.36 79.34 2.53 135.71 OOM OOM OOM OOM OOM OOM
LongLoRA 5.91

::::
12.92 8.13 13.17 8.30 14.65 9.66 15.97 7.44 17.31 3.23 11.93 9.47 12.17 OOM OOM OOM OOM OOM OOM

CEPE 11.66 128.01 10.42 144.34 9.29 161.28 8.21 145.54 6.56 234.24 3.37 3568.12 2.65 2272.04OOM OOM OOM OOM OOM OOM
YaRN

::::
13.57 14.52

::::
12.10

::::
14.02

::::
12.88 17.06 11.49

::::
17.75 6.33

::::
18.90 7.19 13.94 6.59 17.16 OOM OOM OOM OOM OOM OOM

RAG 6.12 17.94 8.72 17.58 9.65 20.95 9.03 19.59 6.24 19.39 2.40 12.98 2.14 41.35 2.55 60.28
:::
2.14 58.32 1.43 57.20

LongLLMLingua 7.73 11.25 9.83 15.12 8.72
::::
16.25 9.08 19.66 8.87 21.55

:::
7.84 26.52 6.23 29.45 3.16

::::
29.96 1.72

:::::
38.53 1.03

:::::
48.53

LLoCO 13.63 34.56 12.78 41.27 13.15 47.45
::::
12.13 47.87

::::
10.03 56.30 10.89

:::::
13.32

:::::
10.67

:::::
15.67 10.88 17.31 11.42 16.19 9.43 18.54

E2LLM 15.04 12.69 15.27 13.47 14.14 13.95 14.26 13.33 15.31 13.92 12.12 13.45 12.41 12.87 12.76 12.96 12.23 13.65 11.97 13.71

Concerning the task of DocumentQA, we adopt the method demonstrated by (Shaham et al., 2023),
which computes the unigram overlap between the generated and reference answers. This is accom-
plished by normalizing white-spaces, lower-casing, excluding stopwords and punctuation. Based on
the number of unigram tokens, in conjunction with the token quantity of the generated and refer-
ence answers, we calculate precision, recall, and F1. Again, a higher value indicates a more precise
answer by the model.

In Table 5 we present the above metrics of all methods for document summarization and QA.
Next, we investigate the sensitivity of the models’ performance to variations in context length. To
do this, we categorize samples from the QMSum and NarrativeQA datasets into five groups based
on their context lengths and then evaluate the perplexity (PPL) of the answers within each group.
Our findings are summarized in Table 6.

The results presented in the table indicate that E2LLM demonstrates a strong resilience to variations
in context length for both summarization (QMSum) and question-answering (NarrativeQA) tasks,
consistently achieving the best results among all models. This robustness can be attributed to the
“understanding” task incorporated during the training of E2LLM (see Section 3.2). By reconstruct-
ing different parts of the context, E2LLM effectively comprehends the information, regardless of its
length.

Notably, the performances of YaRN, LongLoRA, CEPE, RAG, and LongLLMLingua also exhibit
insensitivity to context length. On the other hand, LLoCO’s performance declines slowly with in-
creasing context length. Finally, streamingLLM and the original Llama2-7B demonstrate sensitivity
to context length; streamingLLM loses more information in the middle of the context as length
increases due to its specific Λ-shaped attention mask, while Llama2-7B struggles to handle long
contexts altogether, as its maximum length has not been extended.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

� �� �� 	� 	�
�
� �� �� �� �� � � �� �� �� �� �� �� ��
�

�� "����!���"

��

��

�	�

��

	��

	��

	��

	�

�

���

���

���

�	�

��
�"
�#
"�
��
��
"�

���

��

���

���

���

��
 ��

�� �� ��

��

���

���

���
���

���
��

	��
	��

���

����������������������������

���������	���
������������������

�
�
�

�
�

�
�

�
�

	
�

	
�

�

�

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

�
�
�

�������������

��� ���
���

���

��	
���

��	 ��	
���

��� ��� ���

���

���

���

��	

���
��	

��

��	

����������������������������

���������

�����������������

� �� �� �� �� 	� 	�
�
� �� �� �� �� � � �� �� �� �� ��
�

�������������

��	 ��� ���
��	

���
���

���

��
 ���

���

���

��	

���
���

���

���

���

���

��	

���

����������������������������

��������
�����������������

� �� �� �� �� 	� 	�
�
� �� �� �� �� � � �� �� �� �� ��
�

�� "����!���"

�

��

���

���

���

�
�

���

	��

	��

��

�

��

���

��
�"
�$
"�
��
��
"�

��	 ��	

��

���

��� ���

��
���

���

���

���

�� ��
���

��

���

�� ��
��� ���

������������� ��������������

���������������#�
������������������

� �� �� �� �� 	� 	�
�
� �� �� �� �� � � �� �� �� �� ��
�

�������������

��
���

��

���
��� ��� ��� ���

���
��

���

���
���

��

���

��
 ��

���

��

���

����������������������������

�

�

	

�

�

��

��
��
�

������������
�����������������	

� �� �� �� �� 	� 	�
�
� �� �� �� �� � � �� �� �� �� ��
�

�������������

���
���

��

���
���

���
���

���

���

��

���

���
���

���
���

��
��� ���

��

���

������������� ��������������

�

�

	

�

��

��
��
�

���������
������������������

Figure 5: Score avaraged over context length as a function of depth percentage in Needle in a
Haystack.

D MORE DETAILS OF NEEDLE IN A HAYSTACK

To assess the models’ ability to retrieve information from various positions within a lengthy context,
we utilize the well-established Needle in a Haystack benchmark. In this framework, a random fact
or statement (referred to as the ”needle”) is embedded within a lengthy context (the ”haystack”),
and its position from the beginning of the context is termed the ”depth.” For our experiment, we
selected 49 essays from Paul Graham’s website as the haystack. The specific needle we inserted is:
”The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day,”
accompanied by the retrieval question: ”What is the best thing to do in San Francisco?” We then task
the model with retrieving this precise statement, using GPT-4o mini to evaluate performance based
on predefined criteria and scoring templates. To ensure a thorough evaluation, we prepare contexts
of varying lengths, ranging from 4,000 to 52,000 tokens, and examine 20 different ranges of depth
percentages, from 5% to 100%. Note that a depth of 100% signifies a position that is quite close to
the answer.

For comparison, we have selected five representative methods from various categories: the original
Llama2-7B, YaRN, LongLoRA, LongLLMlingua, and LLoCO. The methods that require training
are trained on the data collected from the five tasks outlined in Appendix C. Note that we use all
training samples from QMSum, GovReport, Quality, and NarrativeQA, but randomly select 3,000
samples from TriviaQA, as the sample size of this dataset is much larger than that of others, but the
average context length is the shortest. The total number of training samples is around 13,000. For
the original Llama2-7B, whose sequence length is only 4,000, we truncate the long context from the
left such that the truncated context length is 4,000.

In addition to the results presented in Section 4.2, we further illustrated the average score over the
context length as a function of depth percentage in Figure 5. It is evident that the performances of
Llama2-7B, YaRN, LongLoRA, LongLLMLingua, and E2LLM are largely insensitive to the depth
at which the needle is inserted. In contrast, LLoCO achieved the best results when the needle was
positioned close to the answer, as discussed at the end of Section 4.2. Furthermore, E2LLM typically
delivers the best performance across all depths.

E DESCRIPTION OF LONGBENCH

We employ LongBench(Bai et al., 2024b) as the benchmark to evaluate the effectiveness of E2LLM
and baseline models. LongBench offers a comprehensive bilingual and multi-task dataset charac-
terized by diverse sequence lengths, distributions, patterns, languages, and domains, designed to
rigorously evaluate long-context understanding capabilities. Given that our base model is Llama2-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Data Statics for LongBench. Details of the datasets are collated by Li et al. (2024b).

Task Task Type Metric Avg. Length Language Sample
NQA Single-doc QA F1 18,409 EN 200
QAS Single-doc QA F1 3,619 EN 200

MFQA Single-doc QA F1 4,559 EN 150
HQA Multi-doc QA F1 9,151 EN 200
WQA Multi-doc QA F1 4,887 EN 200
MSQ Multi-doc QA F1 11,214 EN 200

GOVR Summarization Rouge-L 8,734 EN 200
QM Summarization Rouge-L 10,614 EN 200
MN Summarization Rouge-L 2,113 EN 200

TREC Few shot Accuracy 5,177 EN 200
TQA Few shot F1 8,209 EN 200
SAM Few shot Rouge-L 6,259 EN 200
PC Synthetic Accuracy 17,210 EN 200
PR Synthetic Accuracy 9,289 EN 200

LCC Code Edit Sim 1,235 Python/C#/Java 500
RBP Code Edit Sim 4,206 Python/Java 500

Table 8: Performance on RULER Benchmark. The best results are in bold, the second are
underlined, and the third are

::::
wavy

:::::::::
underlined.

Contex Length 4K 8K 16K

Task VT CWE FWE QA VT CWE FWE QA VT CWE FWE QA

LLama2-7B 27.00 85.60 74.33 63.00 - - - - - - - -
LongLoRA 1.60

:::::
16.60 9.33

:::::
55.50 2.20

::::
13.40 10.33 44.00 2.00

::::
5.80 4.00 52.00

YaRN 19.80 15.20 20.33 57.00
::::
1.80 10.30 11.67

:::::
34.50

::::
1.40 3.90 5.33

::::
29.00

LongLLMLingua
:::
5.20 7.60 44.67 14.50 4.20 5.70 24.33 16.0 7.00 2.00 27.33 15.50

LLoCO 0.00 27.70
:::::
24.67 32.50 0.00 24.10

::::
17.00 28.50 0.00 20.90 22.67 20.00

E2LLM 0.00 15.60 21.33 40.50 0.00 14.30 18.67 37.00 0.00 16.30
::::
19.33 37.50

Contex Length 32K 64K 128K

Task VT CWE FWE QA VT CWE FWE QA VT CWE FWE QA

LLama2-7B - - - - - - - - - - - -
LongLoRA

:::
0.40

:::
1.80 1.670 33.50 OOM OOM OOM OOM OOM OOM OOM OOM

YaRN 1.20 2.80 2.00 28.50 OOM OOM OOM OOM OOM OOM OOM OOM
LongLLMLingua 6.20 0.30

:::::
11.33 18.50 5.20

::::
0.30 13.33 15.0 5.20

::::
0.40 21.67 4.50

LLoCO 0.00 0.10 24.00 4.50 0.00 2.40 15.67
::::
9.00 0.00 3.30

::::
4.33

::::
2.00

E2LLM 0.00 3.50 16.67
:::::
28.00 0.00 4.90 13.33 16.50 0.00 2.50 8.67 7.50

7B, we have conducted an extensive evaluation across all 14 English tasks and 2 code tasks. More
details regarding the benchmark are listed in Table 7. For methods that require training, the training
data utilized are identical to those employed during the “Needle in a Haystack” experiment.

F RULER

In this section, we present the results of Llama2-7B, LongLoRA, YaRN, LongLLMLingua, LLoCO,
and E2LLM on the RULER benchmark. RULER primarily consists of four types of tasks:

• Retrieval: This task involves the Needle-in-a-Haystack test, which evaluates retrieval capability
using diverse types and quantities of ”needles”.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• Muti-hop Tracing: The variable tracking task (VT) serves as a minimal proxy for coreference
chain resolution, examining the ability to trace entities across multi-hop connections.

• Aggregation: This task entails the extraction of common or frequent words (CWE and FWE),
functioning as a proxy for summarization to test the ability to aggregate relevant information
across long-range contexts.

• Question Answering: For this task, distracting information is added to the input of existing short-
context QA datasets in order to assess question-answering capabilities at various context sizes.

We do not consider the retrieval tasks here, as they can be considered variants of the Needle-in-a-
Haystack test. For the VT task, we set the number of variable name-binding chains and the number
of times binding variable names in each chain to be 1 and 4, respectively. For the CWE and FWE
tasks, we set the frequency of ten common words to be 30, uncommon words to be 3, and alpha
as 2.0. Finally, for the QA task, we use two single-hop short-context QA datasets SQuAD and
HotPotQA. For models that requires training, we reuse the checkpoints trained in Section 4.2.

The results are listed in Table ??. Given the diversity of tasks presented in RULER, we can clearly
identify the strengths and weaknesses of each baseline method. Although Yarn and LongLoRA
perform relatively well in the QA task, they struggle significantly with the CWE and FWE tasks.
This is likely due to an attention distraction problem, which hampers their ability to focus on specific
common or frequent words. Additionally, both methods encounter out-of-memory issues when
the context length exceeds or equals 64K; for reference, we utilized an A100 GPU with 80GB of
memory for inference. This suggests that the space complexity of YaRN and LongLoRA is too high
for scenarios with limited resources. On the other hand, LongLLMLingua excels in the FWE task
but underperforms in the others. The soft compression methods, E2LLM and LLoCO, manage to
strike a balance between performance on the aggregation (CWE and FWE) and QA tasks, yielding
comparable results. E2LLM tends to favor QA tasks, while LLoCO is better suited for aggregation
tasks. It is worth noting that E2LLM can take advantage of increasingly sophisticated text encoders
that are continuously being open-sourced, as demonstrated in our ablation studies; meanwhile, the
encoder used by LLoCO is fixed to AutoCompressor. Lastly, we observe that all methods perform
poorly on the VT task, which demands a nuanced comprehension of the long context, presenting a
challenge that may be too great for the current models.

G MORE DISCUSSIONS ON TRAINING AND INFERENCE EFFICIENCY

Training Efficiency: We assess the training throughput of all methods requiring training, including
YaRN, LongLoRa, CEPE, LLoCO, and E2LLM. The experiments conducted on a single eight A100
GPU-equipped machine focus on measuring the number of processed tokens per second (tps), which
serve as our evaluation metric. The configuration for all baselines adheres to the respective parame-
ters specified in each of their original papers, and for our E2LLM, a chunk size of 512 characters is
set.

As demonstrated in Figure 4a, YaRN is clearly the least training-efficient method due to its necessary
handling of the quadratic time complexity associated with the context length, stemming from its lack
of original long context compression. LongLoRA, utilizing a sparse attention mechanism, offers
slightly improved efficiency compared to YaRN by eliminating the need to compute the attention
between some query-key pairs. Conversely, both CEPE and LLoCO demonstrate high throughput.
CEPE initially processes all chunks of the long context in a parallel way, akin to E2LLM, but retains
token-level embedding opposed to chunk-level embedding. This method then only trains the cross-
attention linking the encoder and decoder, introducing linear time complexity relative to the long
context length. In contrast, E2LLM trains the decoder relative to the compressed context length,
thus explaining CEPE’s higher throughput. Surpassing these, LLoCO performs remarkably well in
training efficiency given that the summary vectors or soft prompt are prepared offline ahead of time,
necessitating only the fine-tuning of the LLM decoder. E2LLM finally, processes context chunks in
parallel during the encoding phase and fine-tunes the decoder module efficiently with LoRA, thus
also demonstrating commendable training efficiency.

Inference Efficiency: We now proceed to examine the inference efficiency of various methods.
We begin by selecting seven differing context lengths that range from 1K to 73K; both YaRN and
LongLoRA encounter out-of-memory issues at a context length of 74K. For each selected context

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

length, we randomly select ten samples and truncate them to their predefined lengths. Upon averag-
ing the runtime and GPU memory costs (i.e., peak allocated memory) over these samples, we reveal
the results as a function of context length in Figure 4b and 4c.

Our model, E2LLM, exhibits the most impressive performance metrics, particularly in terms of
runtime and memory usage, even for lengthy sequences of up to 73K tokens. In contrast, both YaRN
and LongLoRA display significantly higher resource consumption, primarily due to the quadratic
complexity inherent in full attention mechanisms during inference (notably, LongLoRA employs
a full attention mask at this stage). Unlike LongLoRA, StreamingLLM utilizes a Λ-shaped sparse
attention mask during inference, resulting in reduced time and memory costs. However, as indicated
in the official implementation, for any given context, StreamingLLM must initially load the entire
KV cache associated with that context. During the subsequent generation process, it utilizes Sink
Attention to preserve the KV caches for both the starting and recent tokens. Consequently, in long-
context scenarios, the memory usage and inference time for StreamingLLM still exhibit quadratic
growth.

On the other hand, CEPE demonstrates both time and space efficiency by computing cross-attention
solely between the input to the decoder (such as a user query) and the encoder. This approach allows
CEPE to achieve subquadratic complexity concerning long contexts. However, it focuses on token-
level embeddings instead of chunk-level embeddings, which necessitates more time and memory
compared to E2LLM.

Furthermore, LongLLMLingua modifies the large language model (LLM) into a cross-encoder to
identify the most relevant chunks and tokens related to the user query. Consequently, while its
runtime increases dramatically with longer contexts due to the cross-encoder’s high complexity, the
memory usage remains stable. This is because the chunks can be processed sequentially, preventing
significant memory overhead.

A similar trend is observed in another advanced prompt compression method, RAG. As we do not
account for the memory costs associated with the retrieval process, and considering the retriever
only recalls the 40 most relevant chunks from a lengthy context regardless of its total length, the
generator’s inference memory does not depend on context length. Nonetheless, since it processes
the retrieved context token-by-token, the inference time and memory requirements still exceed those
of E2LLM.

Lastly, LLoCO also enhances inference time through soft prompt compression; however, its text
encoder, AutoCompressor, can only compress the original text by a maximum of 32 times, whereas
E2LLM achieves an impressive compression factor of around 100 times. Furthermore, while Auto-
Compressor processes all chunks sequentially, E2LLM leverages parallel processing, further mini-
mizing inference time.

H RESULTS AND DISCUSSIONS ON ABLATION STUDIES

In this subsection, we conduct ablation studies of E2LLM using the QMSum and NarrativeQA
datasets, which serve as representative benchmarks for long-context summarization and document
question-answering tasks, respectively. Details of each variant examined in Table 9 are outlined
below.

• −Und variant entails excluding the “understanding” task from our model and only employing the
“reasoning” task for training purposes, which emphasis on the critical role that the “understand-
ing” task plays within the model’s performance.

• −E denotes the freezing of encoder parameters, thereby allowing only the adapter and the decoder-
only LLM to be trainable. This configuration aims to substantiate our hypothesis that a pretrained
encoder alone is incapable of preserving the pertinent information that significantly impacts the
performance of the LLM. Hence, maintaining the encoder’s parameters as trainable is crucial.

• −D entails keeping the decoder-only LLM frozen, in order to test whether the LLM can still ade-
quately comprehend the output tokens from the adapter in the absence of any dedicated training.

• +Overlap variant introduces an overlap of 30% of the chunk size between sequential chunks
during the chunking process. Moreover, within the scope of the “understanding” task’s restatement
operation, the model is required to restate the overlapping section of these chunks once.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Ablation Study on QMSum and NarrativeQA.

Variants
QMSum NarrativeQA Avg.

Rel. Diff.R1 R2 RL G-mean Prec. Recall F1

E2LLM 25.37 6.55 18.75 14.61 13.53 13.79 12.35 -
-Und 22.64 4.86 16.20 12.13 11.13 10.04 9.94 -16.39%

-E 23.43 5.41 17.31 12.99 12.47 11.25 10.83 -9.08%
-D 23.09 4.93 17.11 12.49 12.23 10.95 10.46 -12.03%

+Overlap 25.23 6.39 17.95 14.25 13.28 13.94 12.41 +1.78%
+BGE 23.77 6.07 17.84 13.70 12.89 12.03 11.36 -4.33%

+Llama2-13B 25.77 6.72 18.89 14.84 13.75 13.74 12.68 +4.70%

- -1 -2 -3 -4 -5 -6 -7 -8 -9 -10-11
Log (base 10) of weight

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

M
et

ri
c

QMSum
NarrativeQA

(a)

0 4 8 12 16 20 24
Encoder LoRA rank

0.10

0.11

0.12

0.13

0.14

0.15

M
et

ri
c

QMSum
NarrativeQA

(b)

0 2 4 6 8 10 12
Decoder LoRA rank

0.10

0.11

0.12

0.13

0.14

0.15

M
et

ri
c

QMSum
NarrativeQA

(c)

1 2 3
#Adapter Layers

0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150

M
et

ri
c QMSum

NarrativeQA

(d)

Figure 6: Effect of the hyperparameter. (a) the loss weight of “understanding” task. (b) the lora rank
of encoder. (c) the lora rank of decoder. (d) the numer of layers in the adapter.

• +BGE variant test, on the other hand, involves replacing the GTE-Large-en model with the BGE-
m3 model as the encoder. This study seeks to affirm that our model maintains compatable with
different sentence-embedding models serving as encoders.

• +Llama2−13B configuration, similar in testing to the +BGE variant, is designed to verify the
compatibility of our E2LLM with other LLMs serving as decoders.

First, we assess the significance of the “understanding” task within E2LLM. Our findings indicate
a substantial decrease in performance—by 16.39%—when this task is omitted, highlighting its cru-
cial role in helping E2LLM interpret the chunk embeddings produced by the encoder and further
enhancing the performance of the “reasoning” task. Next, we examine the necessity of training the
LoRA branches of the encoder and the decoder during alignment. As shown in Table 9, the results
for configurations -E and -D underscore the importance of training these components; without this
training, E2LLM’s performance diminishes by 9.08% and 12.03%, respectively. Finally, we explore
the impact of replacing the chunker, text encoder, and LLM decoder within E2LLM (notated as
+overlap, +BGE, and +Llama2-13B). Our analysis reveals that chunkers with overlapping segments
(e.g., 30% overlap) provide a modest performance boost. Additionally, employing more advanced
encoders and decoders further enhances E2LLM’s performance, suggesting that improvements in
individual components can positively affect the overall system.

H.1 SCALING TO LARGER-SCALE MODELS

Table 10: Performance on E2LLM with larger-scale model.

R1 R2 RL G-mean PPL

E2LLM-7B 0.2537 0.0655 0.1875 0.1461 13.68
E2LLM-70B 0.2561 0.0652 0.2312 0.1569 11.98

Improv. +0.95% -0.458% +21.99% +7.39% +12.43%

We adopt Llama2-70B as the decoder
to further validate the feasibility
of E2LLM on larger-scale language
models (denoted as E2LLM-70B).
During training, we apply 4-bit quan-
tization using QLoRA’s Parameter-
Efficient-Finetuning (PEFT) method.
We conduct training and evaluating
on QMSum, assessing its perfor-
mance using the R1, R2, RL, G-
mean, and PPL metrics. The results are shown in Table 10.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 11: Effect of chunk size on the model performance.

Chunk Size
Context
Window

QMSum GovReport Quality NarrativeQA TriviaQA
R1 R2 RL G-mean R1 R2 RL G-mean Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

128 100K 24.29 6.35 18.81 14.26 29.98 9.29 17.21 16.86 12.94 14.76 12.54 13.42 13.65 12.11 32.95 33.90 32.89
512 400K 25.37 6.55 18.75 14.61 33.14 10.75 18.59 18.78 13.44 14.95 12.94 13.53 13.79 12.35 33.22 34.51 33.37

1024 800K 25.75 6.81 18.74 14.87 32.73 10.87 18.41 18.72 13.17 14.53 12.68 13.25 13.16 11.95 33.14 34.26 33.05
2048 1.6M 24.13 6.33 18.01 14.01 30.12 9.03 17.04 16.67 12.56 14.03 12.17 13.07 12.93 11.74 32.07 31.94 31.36

As shown in the table, the performance of E2LLM significantly improves when using Llama2-70B,
particularly in terms of Rouge-L and PPL. It is important to note that Rouge-1 and Rouge-2 evaluate
unigram and bigram overlaps, respectively, measuring the match between the generated text and
reference text at the word and phrase levels. In contrast, Rouge-L evaluates the similarity of the
generated and reference texts based on the longest common subsequence (LCS), which measures
structural similarity at the sentence level. This indicates that by leveraging a larger model, E2LLM
is able to better capture the overall sentence structure and word order. Additionally, the reduction in
PPL further demonstrates the model’s ability to generate more coherent and reasonable content.

H.2 HYPERPARAMETER SENSITIVITY

In this section, we explore the effects of hyperparameters on the performance of E2LLM, specifically
focusing on the weight assigned to the “understanding” task, the LoRA rank of the encoder and
decoder, the number of layers in the adapter network, and the chunk size.

The weight assigned to the “understanding” task indicates its relative importance compared to the
“reasoning” task. Recall that the input context typically has a much longer length than answers,
making it too long to be fully reconstructed at once. To address this, we employ a sliding window
approach, reconstructing the original context in segments based on a few consecutive chunks until
the entire input has been reconstructed. Consequently, the samples for the “understanding” task are
significantly more numerous than those for the “reasoning” tasks. To maintain sample balance, we
usually assign a smaller weight to the restatement task. As depicted in Figure 6, the optimal weight
may vary across different datasets, which may be influenced by factors such as context length and
the sentence embedding model’s capacity to comprehend the specific semantics of the context.

Moreover, we investigate the optimal LoRA rank of the encoder (i.e., GTE-Large-en) and the de-
coder (i.e., Llama2-7B-Chat) within the range of {0, 4, 8, 12, 16, 20, 24} and {0, 2, 4, 6, 8, 10, 12},
respectively. The findings suggest that having no trainable parameters—in other words, completely
”freezing” the encoder and decoder—hinders the effective extraction of original context content and
alignment between the encoder and decoder, as discussed in Section 3.1. As the rank of the two
modules increases, a corresponding improvement in performance is observed, thereby underscoring
the importance of training. Performance enhancement continues until it reaches a peak within a spe-
cific range of ranks. However, beyond this optimal range, further increases in rank lead to a decline
in performance, attributable to overfitting on the training datasets.

We also examine the impact of the number of layers in the adapter network. Figure 6 shows that
a two-layer MLP consistently delivers superior performance across different datasets, indicating
stability in results. We hypothesize that a single-layer MLP may struggle with the alignment task,
while a three-layer MLP might lead to overfitting on the training data.

We investigate the effect of chunk size on model performance, experimenting with sizes of 128, 512,
1024, 2048 characters, corresponding to maximum context window sizes of 100K, 400K, 800K, and
1.6M tokens for various E2LLM variants. Results in Table 11 show that the differences in perfor-
mance metrics across different chunk sizes are relatively small for all datasets used in this study,
indicating that the alignment process in E2LLM can effectively mitigate the impact of chunk size
on performance. Nonetheless, selecting an optimal chunk size can still provide a slight performance
boost. While smaller chunks might reduce compression and better preserve inputs, they may hin-
der context capture in longer sentences or paragraphs, making it difficult for the encoder to grasp
semantics, which affects downstream tasks. Conversely, larger chunk sizes increase diversity and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

noise, complicating semantic capture and leading to decreased performance, especially in tasks like
DocumentQA where relevant sentences may be overlooked.

I DISCUSSION AND OUTLOOK

I.1 CONTINUE PRETAINING USING THE E2LLM FRAMEWORK

While E2LLM demonstrates comparable or superior performance compared to various baseline
methods when utilizing the same amount of fine-tuning data, it has become increasingly common
to engage in continue-pretraining (CPT) alongside supervised fine-tuning (SFT). This approach typ-
ically involves leveraging substantial quantities of high-quality, long-context data. By doing so,
systems can achieve a long-text language model (LLM) that exhibits versatility across diverse long-
text tasks. This practice has been effectively illustrated by recent models in the Llama and Qwen
series (Dubey et al., 2024; Yang et al., 2024; Hui et al., 2024).

In this context, we will explore the methodology for conducting CPT within the E2LLM frame-
work. Given that E2LLM functions akin to an encoder-decoder architecture, it is logical to adopt
pretraining tasks prevalent in other established encoder-decoder frameworks, such as T5 (Raffel
et al., 2019), BART (Lewis et al., 2020), and GLM (Du et al., 2022). However, considering the
unique characteristics of the E2LLM model, we specifically recommend the use of prefix language
modeling (PLM) (Wang et al., 2022) as the pretraining task. This choice ensures that the CPT
process aligns seamlessly with the subsequent SFT process.

Concretely, suppose that the chunk size of the text encoder is C and the length of the decoder is
L. In this setup, we can create random pretraining sequences with lengths of ℓC + L − ℓ, where
1 ≤ ℓ ≤ L−1 represents the number of chunks. We then can partition the prefix segments of length
ℓC into ℓ individual chunks, which are then fed into the text encoder. The task for E2LLM during
this CPT phase is to predict the remaining segments of length L − ℓ. This structured approach not
only enhances the model’s ability to comprehend and generate lengthy texts but also sets a solid
foundation for effective fine-tuning on targeted applications thereafter.

I.2 LEARNABLE CHUNK SIZE

While the performance of E2LLM is not highly sensitive to chunk size, selecting the optimal size
can enhance its effectiveness, as illustrated in Table 11. This raises an intriguing question: Can we
determine a chunk size that further boosts the performance of E2LLM? We believe there are two
primary approaches to achieving this goal.

First, we can apply techniques commonly used to optimize hyperparameters in neural networks or
during neural architecture search (NAS) to the chunk size learning process. Approaches such as
Bayesian optimization, reinforcement learning, and meta-learning can be adapted to optimize both
the chunk size and E2LLM model parameters simultaneously.

Second, chunk size can also be optimized independently of the E2LLM model parameters. One
promising strategy is to explore chunking based on the semantic relationships between tokens, such
as through meta-chunking (Zhao et al., 2024). However, a significant challenge with existing chunk-
ing methods is that the tokens within a chunk only capture information from that specific chunk,
resulting in a loss of contextual information from nearby chunks. To address this issue, we can
consider the “late” chunking method (Günther et al., 2024). This approach first embeds all tokens
of a long text using a long-context embedding model and then applies chunking by mean pooling
the token embeddings within each chunk. While this method provides chunk embeddings that en-
capsulate full contextual information, it comes with the drawback of increased complexity, as the
computational demands of text encoders scale quadratically with the length of the input text.

25

	Introduction
	Related Works
	Our Approach: E2LLM
	Model Architecture
	Training Tasks
	Relation to Vision-Language Models (VLMs)

	Experiments
	Document summarization and question answering (QA)
	Needle in a Haystack
	LongBench
	Training and Inference Efficiency
	Ablation Study

	Conclusion
	Complexity of Existing Methods
	Overiew of Baseline Methods
	More Details of Document Summarization and QA Datasets
	More Details of Needle in a Haystack
	Description of LongBench
	RULER
	More Discussions on Training and Inference Efficiency
	Results and Discussions on Ablation Studies
	Scaling to Larger-Scale Models
	Hyperparameter Sensitivity

	Discussion and Outlook
	Continue Pretaining using the E2LLM framework
	Learnable Chunk Size

