
Motion Style Transfer: Modular Low-Rank
Adaptation for Deep Motion Forecasting

Parth Kothari Danya Li Yuejiang Liu Alexandre Alahi
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Abstract: Deep motion forecasting models have achieved great success when
trained on a massive amount of data. Yet, they often perform poorly when training
data is limited. To address this challenge, we propose a transfer learning approach
for efficiently adapting pre-trained forecasting models to new domains, such as
unseen agent types and scene contexts. Unlike the conventional fine-tuning ap-
proach that updates the whole encoder, our main idea is to reduce the amount
of tunable parameters that can precisely account for the target domain-specific
motion style. To this end, we introduce two components that exploit our prior
knowledge of motion style shifts: (i) a low-rank motion style adapter that projects
and adjusts the style features at a low-dimensional bottleneck; and (ii) a modular
adapter strategy that disentangles the features of scene context and motion his-
tory to facilitate a fine-grained choice of adaptation layers. Through extensive
experimentation, we show that our proposed adapter design, coined MoSA, out-
performs prior methods on several forecasting benchmarks. Code available at
https://github.com/vita-epfl/motion-style-transfer
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1 Introduction

Motion forecasting is an essential pillar for the successful deployment of autonomous systems in
environments comprising various heterogeneous agents. It presents the challenges of modeling (i)
universal etiquette (e.g., goal-directed behaviors, avoiding collisions) that govern general motion
dynamics of all agents; and (ii) social norms (e.g., the minimum separation distance, preferred speed)
that influence the navigation styles of different agents across different locations. Owing to the success
of deep neural networks on large-scale datasets, learning prediction models in a data-driven manner
has become a de-facto approach for motion forecasting and has shown impressive results [1, 2, 3, 4].

However, existing deep forecasting models suffer from inferior performance when they encounter
novel scenarios [5, 6, 7, 8]. For instance, a network trained with large-scale data for pedestrian
forecasting struggles to directly generalize to cyclists. Some recent methods propose to incorporate
strong priors robust to the underlying distribution shifts [9, 10, 11]. Yet, these priors often make
strong assumptions on the distribution shifts, which may not hold in practice. This shortcoming
motivates the following transfer learning paradigm: adapting a forecasting model pretrained on
one domain with sufficient data to new domains such as unseen agent types and scene contexts as
efficiently as possible.

One common transfer learning approach is fine-tuning a pretrained model on the data collected from
target domain. However, directly updating the model is often sample inefficient, as it fails to exploit
the inherent structure of the distributional shifts in the motion context. In the forecasting setup, the
physical laws behind motion dynamics are generally invariant across geographical locations and
agent types: all agents move towards their goal and avoid collisions. As a result, the distribution shift
can be largely attributed to the changes in the motion style, defined as the way an agent interacts
with its surroundings. Given this decoupling of motion dynamics, it can be efficient for an adaptation
algorithm to only account for the updates in the target motion style.

In this work, we efficiently adapt a deep forecasting model from one motion style to another. We
refer to this task as motion style transfer. We retain the domain-invariant dynamics by freezing the
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pre-trained network weights. To learn the underlying shifts in style during adaptation, we introduce
motion style adapters (MoSA), which are new modules inserted in parallel to the encoder layers. The
style shift learned by MoSA is injected into the frozen pre-trained model. We hypothesize that the
style shifts across forecasting domains often reside in a low-dimensional space. To formulate this
intuition, we design MoSA as a low-dimensional bottleneck, inspired by recent works in language
[12, 13]. Specifically, MoSA comprises two trainable matrices with a low rank. The first matrix
is responsible for extracting the style factors to be updated, while the second enforces the updates.
MoSA learns the style updates by adding and updating less than 2% of the parameters in each layer.

In low-resource settings, it can be difficult for MoSA to distinguish the relevant encoder layers
updates from the irrelevant ones, resulting in sub-optimal performance. To facilitate an informed
choice of adaptation layers, we propose a modularized adaptation strategy. Specifically, we consider
forecasting architectures that disentangle the fine-grained scene context and past agent motion using
two independent low-level encoders. This design allows the flexible injection of MoSA to one encoder
while leaving the other unchanged. Given the style transfer setup, our modular adaptation strategy
yields substantial performance gains in the low-data regime.

We empirically demonstrate the efficiency of MoSA on the state-of-the-art model Y-Net [2] on the
heterogenous SDD [14] and inD [15] datasets in various style transfer setups. Next, we highlight the
potential of our modularized adaptation strategy on two setups: Agent Motion Style Transfer and
Scene Style Transfer. Finally, to showcase the generalizability of MoSA in self-driving applications,
we adapt a large-scale model trained on one part of the city to an unseen part, on the Level 5 Dataset
[16]. Through extensive experimentation, we quantitatively and qualitatively show that given just
10-30 samples in the new domain, MoSA improves the generalization error by 25% on SDD and inD.
Moreover, our design outperforms standard fine-tuning techniques by 20% on the Level 5 dataset.

2 Related Work

Motion forecasting. Classical models described the interactions between various agents based
on domain knowledge but often failed to model complex social interactions in crowds [17, 18, 19].
Following the success of Social LSTM [1], various data-driven forecasting models have been proposed
to capture social interactions directly from observed data [3, 20, 21, 4, 22, 23]. These methods heavily
rely on a large and diverse set of training data, which may not be readily available for novel agents
and locations. In this work, we efficiently adapt a pretrained model to unseen target domains.

Distribution shifts. The primary challenge in adapting to new domains lies in tackling the underlying
distributional shifts. In the motion context, negative data augmentation techniques have been applied
in a limited scope to reduce collisions [10] and off-road predictions [24] on new domains. Closely
related to our work, Liu et al. [25] proposed to reuse the majority of pre-trained parameters for
efficient adaptation. However, there exist key differences in the methodology: (1) we does not
require access to multiple training domains with varying styles in order to perform adaptation (2)
we introduce low-rank adapters instead of finetuning existing parameters, to model domain shifts.
Domain adaptation is another paradigm that allows a learning algorithm to observe unlabelled test
samples. While this approach is effective for supervised visual tasks [26, 27, 28], it is not ideal for
motion forecasting where the crucial challenge is sample efficiency as labels (future trajectories) are
fairly easy to acquire. Therefore, we propose to perform transfer learning using limited data.

Transfer learning. The standard approach of fine-tuning the entire or part of the network [29, 30]
has been shown to outperform feature-based transfer strategy [31, 32]. In the motion context, transfer
learning given limited data often requires special architecture designs like external memory [33] and
meta-learning objectives [34, 35] that require access to multiple training environments. Wang et al.
[36] performed online adaptation across different scenarios for vehicle prediction domains. Recently,
there has been a growing interest in developing parameter-efficient fine-tuning (PET) methods in
both language and vision, as they yield a compact model [37, 12, 13] and show promising results in
outperforming fine-tuning in low-resource settings [13, 38]. Similar in spirit to PET methods, we
introduce additional parameters in our network that account for the updates in target style.

Motion Style. the popular work of Robicquet et al. [14] defined navigation style as the way different
agents interact with their surroundings. It introduced social sensitivity as two handcrafted descriptions
of agent style and provided them as input to the social force model [17]. In this work, we model style
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Figure 1: We present an efficient transfer learning technique that adapts a forecasting model trained
with sufficient labeled data (e.g., pedestrians), to novel domains exhibiting different motion styles
(e.g., cyclists). We freeze the pretrained model and only tune a few additional parameters that aim to
learn the underlying style shifts (left). We hypothesize that the style updates across domains lie in a
low-dimensional space. Therefore, we propose motion style adapters with a low-rank decomposition
(r � d), designed to infer and update the few style factors that vary in the target domain (right).

as a latent variable that is learned in a data-driven manner. Furthermore, we decouple motion style
into scene-style components and agent-style components to favour efficient adaptation.

3 Method

Deep neural networks have shown remarkable performance in motion forecasting thanks to the
availability of large-scale datasets. However, these models often struggle to generalize when unseen
scenarios are encountered in the real world due to underlying differences in motion style. In this
section, we first formally introduce the problem setting of motion style transfer. Subsequently, we
introduce the design of our style adapter modules that help to effectively tackle motion style transfer.
Finally, we describe the application of style adapters to a modularized architecture in order to perform
style transfer in a more efficient manner.

3.1 Motion Style Transfer

Motion style. Modelling agent motion behavior involves learning the social norms (e.g., minimum
separation distance to others, preferred speed, valid areas of traversal) that dictate the motion of
the agent in its surroundings. These norms differ across agents as well as locations. For instance,
the preferred speed of pedestrians differs from that of cyclists; the separation distance between
pedestrians in parks differs from that in train stations. To describe these agent-specific (or scene-
specific) elements that govern underlying motion behavior, we define the notion of “motion style”.
Motion style is the collective umbrella that models the social norms of an agent given its surroundings.

Problem statement. Consider the inductive transfer learning setting for deep motion forecasting
across different motion styles. Specifically, we are provided a forecasting model trained on large
quantities of data comprising a particular set of style(s) and our goal is to adapt the model to the
idiosyncrasies of a target style as efficiently as possible. We denote the model input and ground-truth
future trajectory of an agent i using xi and yi respectively. The input xi comprises the past trajectory
of the agent, surrounding neighbors, and the surrounding context map. The context can take various
forms like RGB images or rasterized maps. We assume that the data corresponding to an agent type
is generated by an underlying distribution PX,Y (·; s) parameterized by s, the style of the agent. As
mentioned earlier, the style is dictated by both the agent type and its surroundings.

Training. The forecasting model has an encoder-decoder architecture (see Fig. 1) with weights Wenc

and Wdec respectively. The training dataset, DS of size N is given by ∪s∈SDs = (xi, yi)i∈{1,...,N},
where S is a collection of motion styles observed within the dataset. The model is trained to minimize
a loss objective L, such as the negative log likelihood (NLL) [1, 3] loss or variety loss [39]:

Ltrain(DS ;Wenc,Wdec) =
1

N

N∑
i=1

L(xi, yi;Wenc,Wdec). (1)

3



Adaptation. When a novel scenario with style s′ (s′ /∈ S) is encountered, it leads to a distribution
shift and the learned model often struggles to directly generalize to the corresponding dataset
Ds′ = (x′

i, y
′
i)i∈{1,...,Ntarget} of size Ntarget. The common approach to tackling such shifts is to

fine-tune the entire or part of the pretrained model. Fine-tuning optimizes an objective similar to
training, but on the new dataset:

Ladapt(Ds′ ;Wenc,Wdec) =
1

Ntarget

Ntarget∑
i=1

L(x′
i, y

′
i;Wenc,Wdec). (2)

In this work, we aim to develop an adaptation strategy for efficient motion style transfer, i.e., cases
where Ntarget is small (Ntarget � N ). Often, motion behaviors do not change drastically across
domains. Instead, most of the behavioral dynamics are governed by universal physical laws (e.g.,
influence of inertia, collision-avoidance). We therefore propose to freeze the weights of the pretrained
forecasting model and introduce motion style adapters, termed MoSA, to capture the target motion
style. As shown Fig. 1, we adapt a pre-trained forecasting model by fine-tuning WMoSA with the
following objective:

Ladapt(Ds′ ;WMoSA) =
1

Ntarget

Ntarget∑
i=1

L(x′
i, y

′
i;WMoSA). (3)

3.2 Motion Style Adapters

Our main intuition is that the style shifts across forecasting domains are usually localized – they
are often due to the changes in only a few variables of the underlying motion generation process.
Therefore, during style transfer, we only need to adapt the distribution of this small portion of latent
factors, while keeping the rest of the factors constant. These updates would correspond to the changes
in motion style (s → s′) in the target domain, as the general principles of motion dynamics (e.g.,
avoid collisions, move towards goal) remain the same across domains for all agents. We design
motion style adapters, referred to as MoSA, to carry out these updates.

Our proposed MoSA design comprises a small number of extra parameters added to the model during
adaptation (see Fig. 1). Each module comprises two trainable weight matrices of low rank, denoted
by A and B. The first matrix A is responsible for inferring the style factors that are required to be
updated to match the target style, while the second matrix B performs the desired update. The low
rank r realizes our intuition that style updates reside in a low-dimensional space, by restricting the
number of style factors that get updated (r � d where d is the dimension size of an encoder layer).
Therefore, during adaptation, the weight updates of the encoder are constrained with our low-rank
decomposition WMoSA = BA. The pretrained model is frozen and only A and B are trained.

For brevity, let us consider the adaptation of encoder layer l with input hl and output hl+1. As shown
in Fig. 1, W l

enc and W l
MoSA are multiplied with the same input hl, and their respective output vectors

are summed coordinate-wise as shown below:

(Train) hl+1 = W l
ench

l, (4)

(Adapt) hl+1 = W l
ench

l +W l
MoSAh

l = W l
ench

l +BlAlhl. (5)

It has been shown that initialization plays a crucial role in parameter-efficient transfer learning
[37, 12]. Therefore, following common practices, matrices A and B are initialized with a near-zero
function [12], so that the original network is unaffected when training starts. Furthermore, the
initialization provides flexibility to these modules to ignore certain layers during motion style updates.
Despite this flexibility, the total number of extra parameters is significant and can be inconducive to
efficient style transfer. Therefore, to further boost sample efficiency, we present a modular adaptation
strategy which we describe next.

3.3 Decoupling Motion Style Adapters

Motion style can be decoupled into scene-specific style and agent-specific style. Scene-specific style
dictates the changes in motion due to physical scene structures. For instance, cyclists prefer to stay on
the lanes while pedestrians move along sidewalks. The agent-specific style captures the underlying
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Figure 2: Our modular style transfer strategy updates only a subset of the encoder to account for the
underlying style shifts. For instance, we adapt the scene encoder only to model scene style shifts
(top right). While for the underlying agent motion shift, we only update the agent motion encoder
(bottom right). This strategy boosts performance in low-resource settings.

navigation preferences of different agents like distance to others and preferred speed. Modularizing
the encoder into two parts that account for the physical scene and agent’s past motion independently
can help to decouple the functionality of our motion style adapters and further improve performance.

Consider the modularized motion encoder designs shown in Fig. 2. The modularized encoder models
the input scene and agent’s past history independently. The fusion encoder then fuses the two
representations together. This design has the advantage to decouple the task of the style adapters
into scene-specific updates and agent-specific updates. Given the modularized setup, the nature of
the underlying distribution shifts can help guide which modules within the model are required to
be updated to the target style. As demonstrated in Section. 4.4, given different categories of style
transfer setups, decoupling style adapters can improve the adaptation performance while significantly
reducing the number of updated parameters.

4 Experiments

We evaluate our method on a total of three datasets to study the performance of motion style adapters:
Stanford Drone Dataset (SDD) [14], the Intersection Drone Dataset (InD) [15], and Level 5 Dataset
(L5) [16]. We evaluate each method over five experiments with different random seeds. More
implementation details and ablations are summarized in the Appendix.

Baselines. We use the state-of-the-art Y-Net model [40] on SDD and inD, and the Vision Transformer
(ViT) [41] on L5 across all methods. We compare the following:

• Full Model Finetuning (FT) [29]: we update the weights of the entire model.
• Partial Model Finetuning (ET) [25]: we update the weights of the Y-Net encoder for SDD and inD ,

and the last two layers of ViT for Level 5.
• Parallel Adapters (PA) [42]: we insert a convolutional layer with a fixed filter size in parallel to

each encoder layer and update the weights of these added layers. This baseline does not incorporate
the low-rank constraint.

• Adaptive Layer Normalization [43, 44]: we update the weights and biases of the layer normalization.
• Motion Style Adapters (MoSA) [Ours]: we insert our motion style adapters in parallel to each

encoder layer in SDD and inD, and in parallel to query and value matrices of multi-headed attention
in Level 5. During modularized adaptation, we add our modules only across the specified encoders.

Metrics. We use the established Average Displacement Error (ADE) and Final Displacement Error
(FDE) metrics for measuring the performance of model predictions. ADE is calculated as the l2 error
between the predicted future and the ground truth averaged over the entire trajectory while FDE is the
l2 error between the predicted future and ground truth for the final predicted point [1]. For multiple
predictions, the final error is reported as the min error over all predictions [39]. Additionally, we
define the generalization error as the error of the pretrained model on the target domain. The more
the dissimilarity between the source domain and target domain, the higher the generalization error.
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Table 1: Evaluation of adaptation methods for motion style transfer (pedestrians to cyclists) on SDD
and scene style transfer on InD using few samples Ntarget = {10, 20, 30}. Error reported is Top-20
FDE in pixels. The generalization error on SDD is 58 pixels and on inD is 33 pixels. Our proposed
motion style adapters (MoSA) outperform competitive baselines and improve upon the generalization
error by > 25% in both setups. Mean and standard deviation were calculated over 5 runs.

Stanford Drone Dataset Intersection Drone Dataset

Ntarget 10 20 30 10 20 30

FT 57.28 ± 1.21 52.61 ± 0.87 46.31 ± 1.79 27.92 ± 1.99 25.15 ± 1.08 23.18 ± 0.64
ET [25] 51.88 ± 1.32 46.78 ± 1.78 43.13 ± 1.03 28.06 ± 0.68 23.19 ± 1.39 21.13 ± 1.00
PA [42] 52.77 ± 0.85 47.75 ± 1.83 44.70 ± 1.28 28.71 ± 1.50 26.10 ± 0.74 25.00 ± 1.08
MoSA (ours) 49.98 ± 1.05 45.55 ± 0.77 41.69 ± 0.88 25.18 ± 0.72 21.70 ± 0.84 20.35 ± 1.18

Figure 3: Heatmap of
pedestrians motion (in
blue) and cyclists mo-
tion (in red) on SDD
deathCircle location.

observation
groundtruth prediction

observation
groundtruth prediction

observation
groundtruth prediction


M

as
te

r T
he

si
s 

Pr
es

en
ta

tio
n 

Li
 D

an
ya

Motion Style Transfer across Agents 
on SDD (🚶🚴)

15

-6

6

Figure 4: Illustration of the difference in goal decoder output of Y-Net,
pre-trained on pedestrians, after model adaptation on cyclist data using our
motion style adapters. Using only 20 samples, Y-Net learns to focus on the
road lanes (red) instead of sidewalks (blue) for cyclist forecasting.

4.1 Motion Style Transfer across Agents on Stanford Drone Dataset

We perform short-term prediction, where the trajectory is predicted for the next 4.8 seconds, given 3.2
seconds of observation. The Y-Net model is trained on pedestrian data across all scenes and adapted
to the cyclists’ data in deathCircle 0, as there exists a clear distinction between the motion style of
pedestrians and cyclists (see Fig. 3). We adapt the model using Ntarget = {10, 20, 30} samples.

Tab. 1 quantifies the performance of various adaptation techniques. The model trained on pedestrians
does not generalize to cyclists as evidenced by the high generalization error of 58 pixels. Our MoSA
design reduces this error by ∼ 30% using only 30 samples. Moreover, MoSA outperforms the
baselines while keeping the pretrained model frozen and updating only 2% additional parameters.
Fig. 4 illustrates the updates in the Y-Net goal decoder output (red means increase in focus and blue
means decrease in focus) on model adaptation using MoSA. Adapted Y-Net successfully learns the
style differences between the behavior of pedestrians and cyclists: 1) it correctly infers valid areas
of traversal, 2) effectively captures the multimodality of cyclists, and 3) updates the motion style
parameters as the new cyclist goal positions (red) are farther from the end of the observation position,
compared to the un-adapted goal positions (blue).

4.2 Motion Style Transfer across Scenes on Intersection Drone Dataset

We perform long-term prediction, where trajectory in the next 30 seconds is predicted, given 5
seconds of observation. The Y-Net model is trained on pedestrians in {scene2, scene3, scene4} and
tested on unseen scene scene1. We adapt the model using Ntarget = {10, 20, 30} samples.

Despite the long-term prediction setup, the generalization error is 33 pixels which is lower compared
to SDD, as the target domain is more similar to the source domain. Tab. 1 quantifies the performance
of scene style transfer across all methods. Using just 30 samples, MoSA improves the generalization
error by ∼ 40% and outperforms its counterparts. The superior performance in comparison to PA
justifies the importance of the low-rank constraint.
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(a) Input sample (b) Before adaptation (c) After adaptation

Figure 5: Attention heatmaps of the last layer of ViT before and after model adaptation on
unseen route in Level 5. After adaptation, the attention maps are more refined. The ego (in
green box) better focuses on the different possible future routes and the vehicles in front.
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Figure 6: Evaluation of adaptation techniques for
long-term motion prediction (25 secs) on Level 5.
Error in meters for 5 seeds.

Figure 7: Impact of the pre-trained dataset size
(relative size shown on x-axis) on motion adapta-
tion on L5. Target dataset size fixed to 15 batches.

4.3 Motion Style Transfer across Scenes on Lyft Level 5 Dataset

We divide the L5 dataset into two splits based on the data collection locations thereby, constructing
a scene style shift scenario. We train the ViT-Tiny model on the majority route and adapt it to the
smaller route not seen during training. To simulate low-resource settings, we provide the frames,
sampled at different rates, that cover the unseen route only once.

Fig. 6 quantitatively evaluates the performance of various adaptation strategies. MoSA performs
superior in comparison to different baselines while adding and updating only 5% of the full model
parameters. It is apparent that our low-rank design is a smarter way of adapting models in the motion
context as compared to fine-tuning the model. Fig. 7 empirically validates that a bigger pre-training
dataset size results in better adaptation performance. Finally, Fig. 5 qualitatively illustrates the
improvement of the attention heatmaps of the last layer of ViT post model adaptation using MoSA.
MoSA helps to better focus on the different possible future routes and the vehicles in front. Additional
visualizations are provided in the Appendix.
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4.4 Modular Motion Style Adapters

Now, we demonstrate the effectiveness of applying our adapters on top of a modularized architecture
on two setups: Scene generalization and Agent Motion generalization. As shown in Fig. 2, we
modularize the Y-Net architecture. We treat scene and agent motion independently for the first two
layers of the encoder before fusing the learned representations. We refer to this design as Y-Net-Mod.
Given Y-Net-Mod, we consider five cases based on modules on which MoSA is applied: (1) scene
only [S], (2) agent motion encoder only [A], (3) scene and fusion encoder [S+F], (4) agent motion
and fusion encoder [A+F], and (5) scene, agent motion and fusion encoders together [S+A+F].

Agent motion generalization: In scene1 of inD, cars and trucks share the same scene context
differing only in their velocity distribution. Fig. 8 represents the performance of style transfer from
cars to trucks on 20 samples under five different adaptation cases. It is interesting to note that
adapting the agent motion encoder alone [A] performs the best while including the scene encoder for
adaptation deteriorates performance ([S] worse than [A], [S+A+F] worse than [A+F]).

Scene generalization: We train the Y-Net-Mod model on pedestrian data on scene ids = {2, 3, 4} and
adapt it on scene1 of inD. Fig. 9 represents the performance of scene style transfer on 20 samples in
the five cases. Contrary to the previous setup, adapting the scene encoder [S] is clearly more important
than the agent motion encoder [A]. Further, adapting the agent encoder deteriorates performance
([S+A+F] worse than [S+F]). It is clear that modularization helps to boost the performance of MoSA.

5 Limitations

We demonstrated the effectiveness of decoupling our proposed motion style adapters using Y-Net-
Mod. However, during training, we do not enforce any constraints on the learning objective to favor
effective modularization that can result in more efficient adaptation. Developing training strategies
that allow quick adaptation using MoSA is a potential line of future work. Another limitation is the
requirement of human intervention in determining the modules to be adapted given the nature of the
style shift. A future direction is automating the selection of layers to be adapted for target domains.

6 Conclusion

We tackle the task of efficient motion style transfer wherein we adapt a pre-trained forecasting model
using limited samples from an unseen target domain. We hypothesize that the underlying shift across
domains often resides in a low-dimensional space. We formulated this intuition into our motion style
adapter (MoSA) design, which is trained to infer and update the style factors of variation in the target
domain while keeping the pre-trained parameters frozen. Additionally, we present a modularized
adaptation strategy that updates only a subset of the model given the style transfer setup. Extensive
experimentation on three real-world datasets demonstrates the effectiveness of our approach.
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