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ABSTRACT

Although unified MLLMs aim to unify generation and understanding, they are
considered to exhibit an internal gap, with understanding outperforming genera-
tion. Through large-scale evaluation across multiple MLLMs and tasks, we con-
firm the widespread non-unification of MLLMs, and demonstrate that it indeed
stems from weak generation rather than misunderstanding. This finding motivates
us to propose a simple yet effective internal gap-based self-improvement frame-
work, which mitigates internal gaps by leveraging stronger understanding to guide
weaker generation without relying on any external signals. We validate this strat-
egy through comprehensive experiments: scoring generations with understand-
ing to construct image data for post-training (e.g., SFT and DPO) significantly
improves generation while promoting unification. Furthermore, we empirically
discover a co-improvement effect of such self-improvement, a phenomenon well
known in pre-training but underexplored in post-training. Specifically, as genera-
tion improves, understanding becomes more effective at detecting false positives
that were previously misclassified as prompt-aligned. To explain this effect, we
extend learning dynamic theory to the MLLM setting, showing that the shared
empirical neural tangent kernel between generation and understanding encour-
ages aligned learning dynamics, thereby driving co-improvement. This interplay
between generation and understanding further motivates a curriculum learning ap-
proach for stronger self-improvement: progressively enhanced understanding and
generation revisit samples underutilized by pre-trained MLLMSs, dynamically ex-
panding post-training data and leading to improved performance and unification.

1 INTRODUCTION

Unified Multimodal Large Language Models (MLLMs) have attracted growing attention for their
capability to conduct both generation and understanding (Xie et al., [2024; |Wu et al.| 2024aj; Wang
et al., [2024; Team| 2025a; Zhou et al., 2024; (Chen et al., 2025a). However, an emerging consensus
is that, despite being designed to unify both generation and understanding, they are not truly unified
in performance (Yang et al., |2025; Mao et al.l 2025 Hong et al.| [2025; [Yan et al., 2025)), where
understanding typically outperforms generation (Yang et al., |2025). For example, Fig. (1| shows,
an MLLM’s generation may be judged as prompt-misaligned by its own understanding branch,
revealing an internal generation—understanding gap. A natural question arises:

Can the internal gap in MLLMs be leveraged as a free bonus, with the stronger branch guiding the
weaker one to improve the model’s performance and mitigate non-unification?

Prior works have discussed the internal gap in unified MLLMs, but their mitigation methods of-
ten rely on external reward models (Yang et al., [2025)) or additional supervised datasets (Mao et al.,
2025)), or focus solely on improving a single task, e.g., generation (Jiang et al., 2025} |Yan et al.,[2025;
Xie et al, 2025)), without emphasizing generation—understanding alignment. In this paper, we ex-
plore the potential of mitigating MLLMs’ non-unification without any external signals, and propose
a simple yet effective internal gap-based self-improvement framework. We further provide a detailed
analysis of the dynamic interplay between generation and understanding during self-improvement,
offering a strong complement to existing studies.
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Figure 1: Illustration of MLLMSs’ internal gap. We examine a challenging case (Han et al.| [2025)
involving implicit physical principles using ChatGPT 03 (OpenAl,|2024)) and find: images produced
by generation branch are identified as incorrect by understanding branch, showing non-unification.

We begin by validating the generation—understanding gap across multiple MLLMs and tasks. We
first introduce an internal metric, non-unification score, defined as the proportion of cases where
the understanding branch judges the generation as prompt-misaligned. Unlike previous unification
metrics that rely on an external estimator (Yang et al., 2025; |Mao et al., 2025), our metric directly
quantifies the internal consistency between two branches, avoiding biases from external assessment.
Comprehensive evaluation on six unified MLLMs and tasks of three difficulty levels shows that
non-unification is pervasive, with non-unification score reaching up to 60%. Further quantitative
analysis attributes most misalignments (60—100%) to weak generation rather than misunderstanding,
consistent with prior findings on single tasks (Yang et al.,|2025)) and single models (Mao et al.|[2025).

After confirming widespread non-unification and stronger understanding, we propose an internal
gap-based self-improvement framework that aligns MLLMs by leveraging stronger understanding
to guide the weaker generation. We validate its effectiveness on mainstream MLLMs such as Janus-
Pro-7B (Chen et al.,2025b): using the understanding branch to score generations and construct post-
training data for generation, standard pipelines, e.g., SFT (Brown et al., 2020; |[Radford et al., [2021)
and DPO (Rafailov et al.,|2024), significantly boost generation (up to +20% on T2I-CompBench++
(Huang et al., 2025)) and reduce the internal gap (non-unification score by as much as —16%),
surpassing even baselines with multiple external reward models such as T2I-R1 (Jiang et al.| [2025).

Furthermore, we empirically observe a co-improvement effect: the generation-targeted self-
improvement method also enhances understanding. Specifically, self-improved MLLMs better de-
tect false positives, i.e., samples previously misidentified as prompt-aligned. While co-improvement
is well-known in pre-training (Tong et al., |2024; Wu et al., 2025a; Deng et al., 2025} Zhang et al.,
2025; (Wu et al. 2025b)), it remains underexplored in post-training (Yang et al., |2025; Mao et al.,
2025)). To explain it, we extend learning dynamic theory (Ren & Sutherland, 2025) to multimodal
settings and formalize joint evolution of generation and understanding during self-improvement.
Our theory reveals a shared empirical neural tangent kernel (eNTK) facilitates consistent learning
dynamics across generation and understanding. Consequently, aligned dynamics reduce misaligned
generations and enhance misalignment detection, thus leading to co-improvement effect observed.

Finally, motivated by the co-improvement effect, we further demonstrate that curriculum learn-
ing (Elman, 1993} Bengio et al) |2009) can be incorporated into self-improvement by gradually
introducing harder samples that were initially excluded due to limited capabilities in generation or
understanding. Experiments show that curriculum learning enables self-improvement to dynami-
cally expand post-training data, further enhancing both the performance and unification of MLLMs.

Through a systematic exploration of MLLMs’ internal gap, our contributions are as follows:

* We first introduce the non-unification score, an internal consistency metric to measure MLLMs’
internal gap. Extensive evaluations across diverse models and tasks confirm pervasive non-
unification phenomenon, which is primarily caused by weak generation.

* Motivated by non-unification in MLLMs, we then propose a simple yet effective internal gap-
based self-improvement framework, which leverages stronger understanding capability to guide
the weaker generation. Extensive experiments show the proposed self-improvement significantly
boosts both generation and unification without external signals.

* In self-improvement, we empirically identify a co-improvement effect, where understanding
better detects prompt-misaligned generations. Extending learning dynamics to MLLMs, we
attribute this effect to shared eNTK between generation and understanding.

* Finally, co-improvement effect inspires a curriculum-based self-improvement strategy: progres-
sively strengthen understanding and generation enable reusing underutilized samples, thereby
expanding post-training data and boosting both performance and unification.
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Flgure 2: Verification of internal gaps. (a) and (b) identify task difficulty as a confounder in measur-
ing non-unification score (Non.): easy tasks may underestimate the gap, while hard tasks risk overes-
timation. Stratifying by task difficulty (Easy—-Medium—Hard) yields a more reliable estimation. (c)
Evaluation of six MLLMs across three difficulty levels shows unified MLLMs remain non-unified,
with non-unification scores approaching 60%. More details are provided in Appendix [A.T]

2 RELATED WORK

Non-unification of MLLMs. There are works showing internal gap of MLLMs, typically with
understanding outperforming generation (Yang et al.,[2025;|Mao et al.,2025;|Hong et al., 2025} | Yan
et al.| [2025; Yang et al.,|2025)). However, existing studies lack systematic quantification of such gap
across multiple MLLMs and tasks, with conclusions often confined to single models (Mao et al.,
20235)) or single tasks (Yang et al., 2025). Additionally, their measurements of internal gap rely on
external models, e.g., ChatGPT (Yang et al [2025; Mao et al., 2025)) instead of measuring internal
consistency, which potentially makes biased estimation by external evaluators. Therefore, we first
focus on introducing non-unification metric and performing large-scale verification.

Mitigating Non-unification of MLLMs. Several studies attempt to mitigate internal gap within
MLLMs, but they rely on external models (Jiang et al.| [2025; [Yang et al., 2025) or additional data
(Mao et al., [2025). For example, Hermesflow (Yang et al., |2025) leverages external Bert (Devlin
et al.| 2019) for understanding, self-critique and VQA (Antol et al.| 2015) models for generation, to
improve both branches. Other works (Jiang et al., [2025; Duan et al., 2025) enhance weaker gener-
ation by introducing multiple external reward models, e.g., BLIP (Li et al.| 2022) and HPMs (Wu
et al., 2023} [Xu et al.l |2023). In contrast, we focus on mitigating internal gap purely through self-
improvement without any external signals. Importantly, self-improvement does not conflict with
existing approaches: once achieved, external signals can be incorporated to further boost MLLMs.

Co-improvement of MLLMs. Co-improvement in unified MLLMs often refers to one branch im-
proving when the other is improved, such as understanding gains from adding more generation data
(Tong et al., 2024; |Wu et al, |2025a). This phenomenon has been widely observed in pre-training
(Tong et al., [2024; Wu et al.l 20254} |Deng et al.| 2025} |[Zhang et al., 2025} [Wu et al., 2025b), yet it
has not been sufficiently highlighted or thoroughly analyzed in post-training (Yang et al., 2025; Mao
et al., [2025; Hong et al., [2025)). Our work provides a learning-dynamics perspective on it, offering
insights into interplay between understanding and generation in unified MLLMs.

3 PHENOMENON VERIFICATION: THE NON-UNIFICATION IN MLLMS

While prior work suggests internal imbalances in MLLMs, this claim remains unverified through
evaluation across diverse models and tasks (see Section [2)). We therefore take the large-scale empir-
ical verification of non-unification as the starting point of our study.

We first propose a self-consistency metric to quantify the generation-understanding gap, termed the
non-unification score. Specifically, consider an MLLM 7y, a prompt y and the generated image x =
75" (y). We form an image—question pair (x, ¢(y)), where ¢(y) := “Does this image describe y?”.
This pair is processed by the understanding branch 7" (- ) yielding a binary decision: 1 if x is

aligned with y, and O otherwise. The non-unification score is the proportion of decisions equal to O,
Non-unification score := Ex I [§ ad (x, q(y)) = 0]. (1)

Intuitively, unified MLLMSs should have a near-zero non-unification score: generation renders the
prompt as an image and understanding verifies the image matches the prompt.
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Results. Fig. 2(c) demonstrates that all six evaluated models exhibit larger non-unification scores
on hard (5/6) and medium (1/6) tasks. In contrast, the small non-unification scores observed on easy
tasks may not indicate the absence (or near absence) of an internal gap, but rather that the tasks are
too simple. On VILA-U 2024b), it even reaches 58.47%, meaning that nearly 60% of
generations are rejected (prompt misaligned) by understanding. More discussion on non-unification
is provided in Appendix [A2]

To further distinguish whether non-unification comes from weak generation or misunderstanding,
we use a stronger external model, Qwen2.5-VL-72B-Instruct 2025), to check the accuracy
of the understanding scores. Define Weak Generation as the probability that, when the MLLM’s
understanding branch rejects an output, its judgment agrees with Qwen, i.e.,

Weak Generation := P(m3"(x, ¢(y)) = mguen (%, a(y)) [ 75" (%, q(y)) = 0).

Fig. |§| shows, across different task difficulties, all MLLMs achieve over 50% and up to 100% Weak
Generation, indicating that the internal gap mainly stems from poor generation rather than misjudg-
ments of understanding which well align with prior findings 2025). Additionally, Ap-
pendix[A2]provides weak generation score computed using Gemini-Pro-2.5 yielding
conclusions consistent with Qwen: the internal gap primarily stems from weaker generation.

4  MITIGATING NON-UNIFICATION: A SELF-IMPROVEMENT FRAMEWORK

4.1 METHOD: INTERNAL GAP-BASED SELF-IMPROVEMENT

The observation that understanding consistently outperforms generation then motivates our in-
ternal gap-based self-improvement framework to promote unification of unified MLLMs, which
leverages stronger understanding to enhance the weaker generation. Specifically, we adopt stan-
dard post-training strategies such as Direct Preference Optimization (DPO) and Supervised Fine-
Tuning (SFT). Given an image generation prompt y, the MLLM 7y produces N candidate im-
ages, i.e., {x;}N, = my(y). Each candidate x; is paired with the question as ¢(y) =
“Does this image describe y?” and processed by understanding branch 7r3“d. Images judged (most
likely) as aligned with the prompt are labeled as chosen, while those judged (most likely) as mis-
aligned are labeled as rejected, forming preference data (y, Xchosens Xrejected) for DPO and supervi-
sion pairs (Y, Xchosen) for SFT on the generation branch. Appendix provides further details on
post-training data construction, and Alg. [Tjoutlines the SFT-based self-improvement procedure.

4.2 EXPERIMENT: EFFECTIVENESS OF SELF-IMPROVEMENT ON MLLMS

We then show effectiveness of proposed self-improvement through following experiments.
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Algorithm 1: Self-Improvement (SFT)
Input: g, prompts P, image candidates IV,

Algorithm 2: Curriculum Replay
Input: 7y, discard pool B, image candidates IV,

epochs T’
Data: Dsgr <0, discard pool B <)
fory € Pdo
{1l =" ()
si 1y (xi,q(y)) €{0,1}:
C+{x;:s; =1};if |C| = 0 then

curriculum epochs Ecur
Data: Dgr (shared with Alg.[T)

fort € £ do
fory € Bdo

(%515 " (v);

| BeBU{y} 85 (%5,9(y));
else C«+{x;:5; =1};if|C| > 0 then
L Dsrr +Dsrr U {(Yu XChosen) | Xchosen GC} L Dsgr < Dsrr U {(y, X) | XEE};
remove y from B

fort =1to T do
L 0« 60— nVQEgen(e; DSFT) 5 B

4.2.1 SETUP

Baseline and Data. To validate self-improvement, we apply it to two baselines: Janus-Pro-7B
(Chen et al.l [2025b)) and Show-o (Xie et al.| [2024). We ablate which MLLM components to opti-
mize (e.g., the LLM and vision aligner) and find that updating only the shared LLM yields substan-
tial gains. Further details are in Appendix Experiments are conducted on T2I-CompBench++
(Huang et al.,|2025)), which provides about 6000 text prompts as post-training candidates. After data
construction, classical post-training strategies, SFT and DPO, are applied for generation-focused
self-improvement. Further implementation details are in Appendix

Evaluation. We compare self-improved and pre-trained |'| MLLMs on generation, unification and
understanding. For generation, we follow T2I-CompBench++ metrics and measure unification by
non-unification score. For understanding, we use win rate (excluding ties) (Zheng et al., 2023} Chen
et al., [2024): given validation text prompts with images generated by pre-trained MLLMs, models
judge prompt—image alignment. Win rate is the proportion of cases where the self-improved MLLM
disagrees with the pre-trained one but agrees with the stronger external judge, e.g., Qwen2.5-VL-
72B-Instruct. For example, if the models disagree on three samples and the self-improved model
matches Qwen on two, win rate is 2/3. Pre- and post-trained models with comparable understand-
ing achieve a win rate of 0.5. Win rate enables tracking changes in understanding and generation
on the same task, facilitating analysis of two branches. Appendix [B.T]includes additional metric
descriptions, as well as win rates obtained using additional external judges, e.g., Gemini-Pro-2.5.

4.2.2 RESULTS

We summarize key findings under SFT as follows. The corresponding DPO results, largely consis-
tent with SFT, are provided in Appendix [B.2]

Finding 1: Internal gap-based self-improvement effectively improves generation and promotes
MLLM unification. Fig. {] shows self-improved MLLMs can achieve up to 20% gains in genera-
tion and up to 16% in unification, validating effectiveness of proposed method. Moreover, we find
improvements in generation are significantly correlated with unification (pa Non. = 0.53). Spe-
cially, for model level, Janus-Pro, with a larger internal gap (see Fig.[2)), achieves greater gains than
Show-o with a smaller gap. For task level, subtasks with lower unification (e.g., Texture) ben-
efit more. We attribute this to internal gap—based method encouraging more post-training samples
from larger-gap subtasks, thereby enabling greater improvements. Fig. [I2]further confirms this by
showing post-training data contain a higher proportion of samples from larger-gap subtasks.

Finding 2: Generation-targeted self-improvement also enhances understanding, showing a
co-improvement effect. Fig.[5(a) shows an example that, in addition to generating more prompt-
aligned images, the self-improved MLLM also better detects mismatches between the original image
and the prompt. Fig. [5(b) further reports high win rates for Janus-Pro and Show-o across six sub-
tasks. For instance, the self-improved Janus-Pro achieves a win rate above 50% on 5 of 6 subtasks,
indicating higher accuracy than its pre-trained counterpart in judging prompt—image alignment. Ad-

'For clarity, we name MLLMs without self-improvement as pre-trained MLLMs, even if they may undergo
post-training phases during training.
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Figure 4: Self-improvement enhances generation and unification, with gains up to 20% and 16%
(1-non-unification score). Furthermore, improvements correlate with the internal gap (correlation
coefficient pa Non, = 0.53): models and subtasks with larger gaps benefit more.
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Figure 5: The Co-improvement Effect. (a) illustrates an example where self-improved Janus-Pro
generates prompt-aligned images and correctly scores the original as mismatched (see more cases
in Appendix [B); (b) reports win rates mostly above 50%, showing self-improved MLLMs judge
prompt—image alignment more accurately than pre-trained ones.

ditionally, we also provide results on standard understanding benchmarks in Table [8] where self-
improved MLLM consistently outperforms the pre-trained model.

5 UNDERSTANDING CO-IMPROVEMENT IN SELF-IMPROVEMENT

Section [4.2.2]reveals a co-improvement effect in self-improvement, an underexplored phenomenon
in unified MLLMs (see Section [2). Understanding this effect is crucial, as it highlights the unique
interplay between generation and understanding and may inspire more effective self-improvement.

5.1 LEARNING DYNAMICS OF GENERATION AND UNDERSTANDING

We extend the learning dynamics framework (Ren & Sutherland, 2025)) to the multimodal setting,
as it provides a principled way to analyze how MLLMs 7y evolve after self-improvement on post-
training data (y,,x,). Specifically, the framework helps to answer: (1) Generation: given a text
input yo, how generated images of the self-improved model differs from that of the base model;
(2) Understanding: given an image input X, how understanding output of the self-improved model
differs from that of the base model.

Suppose xg (from the pre-trained MLLM) and y( are misaligned. If generation and understand-
ing share aligned learning dynamics, e.g., jointly decreasing incorrect generation my(Xo|yo) and
misunderstanding 7y (yo|Xo), the co-improvement occurs.

Settings. We first consider the setting where generation and understanding share the same tokenizer,
as in Show-o and EMU3 (Wang et al., 2024). This contrasts with decoupled designs (e.g., Janus-
Pro) that use separate tokenizers. Nevertheless, our later analysis in Section indicates that the
conclusions drawn under the shared-tokenizer assumption also apply to decoupled architectures.
Additionally, our theoretical framework can also be extended to MLLMs that employ diffusion
models for modeling continuous image tokens (Xie et al.} 2024} [Zhou et al.,[2024). Then, we denote
V as the unified vocabulary of text and image tokens with size V' = |V|. Given a validation example
(¥0,x0), with image token sequence xo = (%o 1,...,%o,am) of length M and text token sequence
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yo = (Y0,1,- - -, Yo,r) of length L, our goal is to analyze how MLLM’s generation and understanding
outputs on (X, yo) change after self-improvement on the post-training sample (y.,, xu)ﬂ

Following Ren & Sutherland| (2025), we adopt standard causal masking in MLLMs (Wu et al.,
2024a; Wang et al., 2024; Wu et al [2025b) and define the input to generation branch as )y =
[yo | x0] € R>*(M+L) "and input to understanding branch as Xy = [xo | yo| € RdX(N”L)
We denote the logit network as hg, which outputs understanding and generation logits z; 4 :
ho(Xo):, M4 1:0042) and 20c, = ho(J0)[., L+1:1+ 1) Tespectively. We define the likelihood of sam-
ple (yo,xo) under generation and understanding branch as

M M

mo(x0 | Jo) = H mo(zok | Yo, Xo0,<k) = H [softmax(zgnd)]xo ok (Generation)
k=1 k=1 ’
L L

To(yo | Xo) = H To(Yo,e | X0, ¥o,<e) H [softmax(z gen)]yo ol (Understanding)
=1 =1 '

where the softmax is applied column-wise.

One-step learning dynamics. At epoch ¢, we define the one-step learning dynamics of eval-
uation data pair (yo,Xo) likelihood after training one-step on post-training data (y,,x,) as
AG(x0 | Vo) = logma,, (X0 | Vo) —logmg,(x0 | Vo) for generation branch and AU, (yq | Xp) =
log g, ,(yo | Xo) —log e, (yo | Xo) for understanding branch. We consider self-improvement with
SFT and relate the dynamics of understanding and generation in the following proposition. Self-
improvement with DPO are analyzed in Appendix [D.2]

Proposition 1 (Learning Dynamics of Generation and Understanding under SFT). Consider self-
improvement proposed in Section4|with SFT and at epoch t.

The one-step learning dynamics of generation is

AGi(xo | Vo) = —nZZ Cro =) K1, (V0. V)T —es, ) +O(), @)

k=1r=1
where ! = softmax(z¥) and z¥ = [hy (yu)Jr are the logits at position r obtained by running hg
onY, and IC,”())O, yu) = (Vgtzk)(vé)tz}n‘) € RV*V is empirical neural tangent kernel (eNTK).

The one-step learning dynamics of understanding is
M M

AU(yo | Xo) ==1D> Y D" we,(yi | %o ( €zo, — M) KL (V0 Vi) = (€xo . — m) T KL (Vi W >)(7rf —e,,)
k=1r=1y;#yo
+007)

(3)
where wy, (y | xo) = % and Y; denotes the concatenation of prompt'y; # yo and xg.

Proposition [T| shows the learning dynamics of generation (AG, in Equation (2)) and understanding
(AU in Equation ) are similar. The key difference is that AU; includes an additional eNTK term,
K ,f,_,, (Vi, V), which measures alignment between ); (i # 0) and the post-training data )/,,.

We therefore hypothesize: for co-improved pair (yo7 xo) there likely exist post-training samples
(Yu,Xy) that are highly similar, leading to ||/C/ (V. V. )llp > X} (V. )V.)|F. Hence, un-
derstanding update AU, in Equation IID is dominated by /&,,_,‘( Vo, V), which is a shared eNTK
term with the generation update AG; in Equation (Z). Aligned updates between generation and
understanding, i.e., aligned AG; and AUy, can jointly reduce the probabilities of mis-generation
(X0 | yo) and misunderstanding 7y (yo | Xo), thereby yielding co-improvement.

To test this hypothesis, we combine emplrlcal evidences from Section {f.2] with theoretical results
in Proposition ' 1] and empirically examine: for a sample (yo, X¢) of which understanding improves,
whether there exist similar post-training samples (y,, X, ). Such similarity may render AU; dom-

inated by the eNTK term Kf;‘/_,,( Vo, V. ), which is shared by both generation and understanding
branch, thereby aligning the updates of the two branches, i.e., aligned AG; and AUs.

2Appendix provides more detailed preliminaries.
3We omit potential special tokens (e.g., [SOI]) for simplicity.
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Figure 7: Empirical Evidence from Self-improved Janus-Pro with SFT. (a) Compared to random
samples, (yo,Xo) in the false positive correction group are more likely to be matched with highly
similar post-training pairs (y,,X,). (b) Such high data similarity makes /C/ (), ), ) be the dom-
inant term in Equation (E[), thereby promoting aligned learning dynamics AG; and AU;. (c) With
aligned dynamics, AG; < 0 implies AU; < 0: both the probability of mis-generation 7y (Xo | ¥o)
and misjudging my(yo | Xo), are reduced, i.e., false positive correction and co-improvement occur.

5.2 EMPIRICAL EVIDENCE

First, samples where understanding improves can be
classified into two cases: (1) False Positive Correc- 100
tion: when image x( and text yo are actually mis-
aligned (Qwen label = 0), pre-trained MLLMs incor- 80
rectly judge them as aligned (score = 1), while self-
improved MLLMs correctly predict misalignment
(score = 0); (2) False Negative Correction: when
X and yq are aligned (Qwen label = 1), pre-trained
MLLMs incorrectly predict misalignment (score =
0), while self-improved MLLMs correctly judge

alignment (score = 1). Using self-improvement with B e P
SFT on Janus-Pro as an example, Figure|§| shows ap- Figure 6: On T2I-CompBench++, under-
proximately 80% of the understanding improvement standing gains primarily (80%) arise from
originates from case (1), i.e., false positive correc- false positive correction . See Appendix [D]
tion. for results on additional MLLM:s.

Ratio (%)

PAM (Label, Pre-trained, Self-improved) = (0,1,0)

Our verification below mainly focuses on false positive correction. Specifically, consider prompt yq
and misaligned image x (generated by pre-trained MLLMs).

* Fig. Eka) identifies, for each (yo,Xo) in the false-positive correction group, its most similar
counterpart in the post-training data, showing that these samples typically have higher-similarity
post-training pairs (y,, X, ). In particular, the prompt y attains an average similarity of about
0.8, significantly higher than a randomly sampled reference.

* Fig. [7[b) supports that, the understanding branch of data in false positive correction group is
dominated by the eNTK term /C lfr (Vo, V). Since Yy is the concatenation of yg and xo, we use
the similarity between (yo, Xo) and its nearest post-training counterpart (y.,, X,,) as a proxy for
the eNTK. Based on proxies, we consistently observe ||/C)  (Vo, Vo )llr = 1K) (Vi Vo)l F-

* Fig.[7(c) shows, for false positive correction samples, the generation update satisfies AG; < 0,
i.e., the mis-generation probability mg(xo | yo) decreases. Combined with Fig. Eka)(b), this
further implies AU; < 0, meaning the misunderstanding probability 7y (yo | Xo) also decreases.

The above empirical evidence supports the hypothesis derived from Proposition [I] explaining both
the emergence of false positive correction and co-improvement. We provide details on how each
empirical result, e.g., the proxy of eNTK, was obtained and interpreted in Appendix [D]

6 CURRICULUM LEARNING FOR STRONGER SELF-IMPROVEMENT

Co-improvement effect motivates a curriculum learning (Elman) [1993; [Bengio et al., [2009) ap-
proach for stronger self-improvement: as generation and understanding improve together, difficult

samples that pre-trained MLLMs could not previously utilize (due to weak generation or inaccu-
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Model ES IS CLEl Texture Shape Spatial Color Complex Non-spatial
|Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.|
Gen. only
StrucDiffusion (Feng et al.[2022} X X X |49.00 - - 4218 - - |1386 - - 4990 - - [3355 - - |3 - -
CompDiffusion (Liu et al. 12022} X X X |3645 - - 3299 - - | 8.00 - - 4063 - - [2898 - - 2980 - -
Attend&Excite (Chefer et al.|2023] X X X |59.63 - - 4517 - - |1455 - - |6400 - - [3401 - - |3109 - -
PixArt-ar (Chen et al.}2023 X X X |6477 - - |4927 - - |2064 - - 6690 - - 3433 - - 3197 - -
CoMat (Jiang et al. 12024} X X X |6468 - - 5329 - - |2428 - - |7827 - - |36.80 - - |3187 - -
SDv1.5 (Rombach et al.}2022} X X X |41.86 - - 37.13 - - 11.65 - - |3758 - - 3047 - - |3L12 - -
SD-XL-base-1.0 (Podell et al.}2023] x X X |5299 - - |46.87 - - |21.31 - - 5879 - - 3237 - - 3119 - -
FLUX.1 (Labs|2024] X X X |6922 - - |5718 - - |2863 - - |7407 - - [3703 - - 3127 - -
Gen. and Und.
Janus-Pro-7B (Chen et al.;2025b} X X X |38.63 50.00 43.33(33.49 50.00 43.00|16.81 50.00 31.00|53.22 50.00 27.33|37.73 50.00 10.33|31.40 50.00 233
T2I-R1 (Jiang et al.|2025 v 50.91 5250 34.67 |37.80 53.49 36.00|24.22 4500 23.67|7047 3529 11.33|38.53 7273 3.33 |31.38 75.00 1.00
+SFT X v X 5393 6522 29.67(38.63 53.85 34.00|23.73 26.67 22.00|73.41 54.62 10.85|38.57 75.00 4.33 |31.45 75.00 1.00
+C-SFT X vV |5638 66.67 28.33|39.86 64.52 33.67|24.87 3846 21.67|73.77 52.14 1220|38.78 70.00 3.33 |31.44 75.00 233
Gen. and Und.
Show-o (Xie et al.{2024) X X X |66.80 50.00 0.33 |52.72 50.00 0.67 |39.31 50.00 4.67 |72.50 50.00 0.00 |35.17 50.00 0.00 |31.43 50.00 0.00
Hermesflow {Yang et al.|2025) v / X |6796 50.00 0.33 |51.81 50.00 0.33 |3845 0.00 4.00 |72.96 50.00 0.34 |35.28 50.00 0.00 |31.42 50.00 0.00
+SFT X v X 7326 50.00 0.00 |59.53 100.00 0.00 |42.66 100.00 0.67 |72.93 50.00 0.00 |36.33 50.00 0.00 |31.32 50.00 0.00
+C-SFT X v v |7411 50.00 0.00 |59.75 100.00 0.00 |42.70 100.00 0.33 |72.38 50.00 0.00 |36.42 50.00 0.00 |31.53 50.00 0.00

Table 1: Curriculum learning-based self-improvement (C-SFT) yields better generation (higher
Gen.) and understanding (higher Und.), and alleviates non-unification (lower Non.). which even
surpasses baselines rely on external reward models, such as T2I-R1 (built on Janus-Pro-7B) and
HermesFlow (built on Show-o0). Additional post-training strategy, e.g., DPO, and evaluations on
more benchmarks are provided in Appendix

rate understanding) can be incorporated later, forming an adaptive data expansion process based on
prompt complexity (Li & Zhang},2025)). To demonstrate co-improvement incorporates more unused
prompts, we compare two settings: (1) jointly improving generation and understanding, and (2) en-
hancing only a single branch (e.g., generation). As shown in Table [2| co-improvement contributes
about 1000 additional samples from discard pool 3 (defined in Alg.[I)) versus roughly 600 for single-
branch enhancement, supporting our motivation. Alg.[2]shows details of curriculum learning.

Setup. Following the experimental setup in Sec-
tion [4.2.1] we adopt self-improvement with curricu-
lum learning strategy. For Janus-Pro and Show-o,
curriculum learning is introduced at epoch 10, - -
during which the models regenerate and rescore 1able 2: Co-improvement (self-improved
previously unused prompts to produce additional POth Und. and Gen.) adds 1091 samples
post-training samples. Evaluation follows the same from discard pool B, compared to roughly
metrics in Section 4.2.1] We provide more imple- 600 when improving only a single branch.
mentation details in Appendix [Cland ablation study in Appendix

Baseline. Apart from generation-only models, e.g., SDv1.5 (Rombach et al. [2022), we consider
two unified MLLM baselines: T2I-R1 (Jiang et al.| [2025) improves generation of Janus-Pro-7B
by using multiple external reward models and provides comparison for Janus-Pro-7B-based self-
improvement. And Hermesflow (Yang et al., |2025) similarly employs external reward models, e.g.,
Bert (Devlin et al.,|2019), to enhance Show-o, serving as a reference for Show-o-based approach.

Und. Self-improved Und.

Gen. 0 649
Self-improved Gen. 603 1091

Results. We report only SFT-based self-improvement with curriculum learning (denoted as C-
SFT) on T2I-CompBench++ evaluation set. Results for DPO-based method and additional bench-
marks, such as GenEval (Ghosh et al., 2023) and Science-T2I (Li et all [2025), are provided in
Appendix As shown in Table |1} incorporating curriculum learning enables unified MLLMs
to achieve stronger self-improvement: compared with standard self-improvement, C-SFT delivers
consistent gains in generation, understanding, and unification across most tasks, even surpassing
baselines that rely on external rewards, such as T2I-R1 and Hermesflow. These results confirm the
effectiveness of incorporating curriculum learning into the self-improvement process.

7 CONCLUSION AND LIMITATION

This paper systematically investigates generation—understanding gap in MLLMs through empirical
validation, mitigation, mechanistic analysis and improved method design, showing gap-based self-
improvement mitigates non-unification and induces co-improvement between the two branches.

This work has the following limitations. First, our exploration of self-improvement is restricted
to limited MLLMs, such as Janus-Pro and Show-o. We leave validation on more models, e.g.,
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Bagel (Deng et al. [2025), to future work. Second, we attribute the observed co-improvement to
shared eNTK between generation and understanding. A deeper question, however, is why such NTK
sharing arises in unified MLLMs, which calls for further investigation into model’s mechanisms.

10
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REPRODUCIBILITY STATEMENT

We provide experimental details in Appendix[A] Appendix[B] and Appendix|C] including evaluation
tasks and hyperparameters, to ensure the reproducibility of experiments in Section (3} Section |4{and
Section [6] The proof derivations are presented in Appendix [D] and Appendix [E] to guarantee the
reproducibility of theoretical results in Section[5} We will release code publicly after review period.

ETHICS STATEMENT

This work aims to explore and mitigate the internal generation-understanding gap in unified
MLLMs. All experiments are conducted on publicly available datasets and open-source models,
ensuring that no private or sensitive data are involved. Our study focuses on explaining the phe-
nomenon and developing mitigation methods, and does not directly deploy downstream applications
that could raise ethical concerns.
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A ADDITIONAL DETAILS AND FULL RESULTS ON INTERNAL GAP

A.1 ADDITIONAL DETAILS

In this section, we provide an overview of MLLMs and tasks evaluated in Section[3] Unified MLLMs
aim to integrate generation and understanding, with common approaches including extending un-
derstanding MLLMs with external diffusion models for generation (Dong et al., [2023; [Tong et al.,
2024; Ge et al., 2024} [Yang et al., [2024} [Tian et al., 2024} |Chen et al.l [2025a; Xie et al., [2024)),
or representing both images and text as discrete tokens and training unified transformers under au-
toregressive paradigm (Team)| 2025a; |Zhou et al.| 2024} Qu et al., 2024} (Chen et al.l [2025b; Wang
et al.,[2024)). Despite aiming to unify tasks, most MLLMs emphasize single-task SOTA performance
while overlooking models’ internal alignment. Intuitively, truly unified MLLMs should maintain in-
ternal consistency between generation and understanding. Therefore, we first quantify at scale the
non-unification problem in unified MLLMs.

Evaluated MLLMs Our evaluation covers the following MLLMs:

« EMU3 (Wang et al., 2024) is a unified model for both generation and understanding, which
converts multiple modalities such as images, text, and video into discrete tokens, and performs
next-token prediction in mixed multimodal sequences based on an LLM-style transformer archi-
tecture. EMU3 pursues maximal architectural unification between generation and understanding,
sharing the same image tokenizer for both tasks and employing a common LLM backbone for
generation and understanding.

* Show-o (Xie et al., [2024) also follows an LLM-style transformer architecture and an autore-
gressive paradigm. In its default setting, generation and understanding share the same visual
understanding/generation encoder and LLM component. A distinctive feature of Show-o is that
it adopts different attention mechanisms for text and image tokens: causal attention for the for-
mer and full attention for the latter. Moreover, for image tokens during training, it is modeled
using discrete diffusion and incorporates a mask token prediction mechanism similar to that of
MaskGIT (Chang et al., [2022)).

e VILA-U (Wu et al} 2024b) also adopts a shared LLM and a unified next-token prediction
paradigm to integrate generation and understanding tasks. To better learn the discrete token
sequences resulting from concatenated images and text, VILA-U innovatively trains a unified
foundation vision tower by applying a CLIP-like contrastive loss (Radford et al2021]) between
visual and textual tokens, while simultaneously enforcing accurate reconstruction of images after
the decoder. This design promotes the performance of unified MLLMs.

* Janus-Pro (Chen et al.| 2025b) differs slightly from the above models. While continuing to fol-
low the LLM-style shared transformer and autoregressive paradigm, it emphasizes decoupling
generation and understanding tasks at the tokenizer stage. By employing separate image tok-
enizers for the two tasks, Janus-Pro aims to mitigate conflicts arising from using a single unified
tokenizer to serve tasks which require different representations.

* BAGEL (Deng et al., 2025), in contrast, adopts an architecture that explicitly separates genera-
tion and understanding. Inspired by the Mixture-of-Transformers (MoT) paradigm (Liang et al.,
2025)), BAGEL employs two dedicated transformer experts to handle the two types of informa-
tion, respectively. The only point of interaction between the tasks is through the self-attention
mechanism within each transformer block, while other components, such as visual tokenizers
and FFN, are fully decoupled by task.

e BLIP3-0 (Chen et al.,[2025a)), compared with the aforementioned models, adopts an even more
decoupled design by combining an autoregressive paradigm with diffusion models. Specifically,
BLIP3-o follows an understand-then-generate pipeline: it first performs image understanding
using an pre-trained understanding MLLM (e.g., Qwen2.5-VL) to produce visual features that
serve as semantic-level conditions for the subsequent image generation task. Then, leveraging
these semantic conditions, DiT (Peebles & Xie| |2023)) learn the distribution of the original image
representations in the CLIP (Radford et al., [2021) embedding space via flow matching. During
inference, a diffusion-based visual decoder will reconstruct pixel-level images from the CLIP
representations generated by the DiT.
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Figure 8: Full Results on Weak Generation based on Qwen2.5-VL-72B-Instruct. Our evaluation
across six MLLMs and nine tasks indicates that the primary cause of non-unification is weak gener-
ation, as reflected by weak generation scores exceeding 50% on the majority of tasks.
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Figure 9: Full Results on Weak Generation based on Gemini-Pro-2.5. Our evaluation across six
MLLMs and nine tasks indicates that the primary cause of non-unification is weak generation, as
reflected by weak generation scores exceeding 50% on the majority of tasks.

Evaluated Task We select nine subtasks from three benchmarks: GenEval (Ghosh et al.| 2023)),
T21-CompBench++ (Huang et al 2025), and Science-T2I 2025). We then categorize
subtasks into three difficulty levels (Easy, Medium, Hard) according to the complexity of generation
and understanding required. Table [3| provides a detailed description of each subtask. We observe
that Easy subtasks focus on the generation and understanding of simple single objects, e.g., a cat.
Medium subtasks introduce relatively complex understanding such as spatial relationships (e.g.,
on the top of) that are typically made explicit in prompts, and Hard subtasks involve implicit
reasoning not stated in the prompt, e.g., tree in winter, requiring MLLMs to leverage strong
prior knowledge about physics, chemistry, and biology.

A.2 FULL RESULTS

Full Results. Following the non-unification score defined in Section 3] we evaluate six MLLMs
on subtasks across three difficulty levels and observe the widespread presence of the internal gap,
as shown in Figure |Zl In addition, we find substantial variation in non-unification across MLLMs.
Show-o and EMU3 exhibit relatively small internal gaps, whereas recent models such as BAGEL
and BLIP3-o0 have larger gaps but stronger performance (Deng et al., 2025}, [Chen et al.| 2025a)). It
should be noted that the absolute performance of an MLLM is independent of its non-unification
score. First, non-unification measures only the relative discrepancy between generation and un-
derstanding, rather than an MLLM’s absolute performance on each task. Moreover, differences
in training configurations, such as data scale and pipeline design, can make comparisons between
absolute performance and the relative gap across models unreliable.

Stronger Understanding and Human Check. As described in Section[3] we use stronger external
models, such as Qwen2.5-VL-72B-Instruct, to evaluate the scores given by the understanding branch
in order to identify the source of the internal capability imbalance in MLLMs, i.e., the internal gap.
Figure[§]presents the weak generation rates across nine subtasks based on Qwen’s judgments, where
we observe that most models exhibit more than 50% weak generation on the majority of tasks.

“Notation: external signals (ES), internal signals (IS) and curriculum learning (CL).

SFor fair comparison, we generate images for T2I-R1 directly from original prompts, without using the
understanding branch for prompt expansion.
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Difficulty Task Evaluation Size Prompt Example Source
Single Ob;. 80 a photo of a cat
Easy Two Ob;. 99 a photo of a stop sign GenEval
and a dog
Color Attri. 100 a photo of a red cake
and a purple chair
Texture 300 fluffy clouds and a
Medium glass table T2I-CompBench++
Spatial 300 a cat on the top of a
sofa
Complex 300 The prickly green
cactus contrasted with
the smooth white walls.
Physics 118 A ice block at sixty
Hard degrees Celsius, clear, Science-T2I-S
simple and realistic.
Chemistry 49 A iron ball that has
been exposed to oxygen
for decades, simple,
clear and realistic.
Biology 60 A sweetgum tree in

winter with high

realism.

Table 3: Subtasks categorized by difficulty level. As shown in Table [3] we select nine subtasks
from three benchmarks to construct evaluation data with progressively increasing generation and
understanding difficulty. Easy tasks involve only object generation, while Medium prompts require
both generation and reasoning over spatial relations, colors, and textures. Hard tasks contain implicit
reasoning, requiring MLLMs to possess accurate prior knowledge.

Human Check (score=0 Samples) e sampies 150 with image 130 - wissing image o

F1Export SSON  Jump to next unlabeled  Percentage labeled as 0: 86.15% (numerator=112, denominat tor=130; labeled=130)

.
The glass fish tank and metallc filter provide a home for the wooden fish on the fluffy stand.

O Mark 1 (Yes) © Mark O (No)

Image found

Figure 10: The interactive interface used in the human-check procedure, illustrated using Janus-
Pro’s evaluation on the texture subtask as an example. Human annotators are asked to determine
whether the image—prompt pairs flagged by the understanding branch as misaligned (score = 0) are

indeed aligned with the prompt.

It should be noted that a weak generation rate of zero
may arise partly from misjudgments of the under-
standing branch, e.g., Janus-Pro and VILA-U in Bi-
ology have nearly zero weak generation, and in other
cases, e.g., Show-o, from a non-unification score of
zero for that task, which naturally leads to a weak
generation rate of zero.

To ensure the accuracy of our evaluation, we further
introduce a human check. The full procedure is as
follows. (1) Obtain the understanding-branch scores.
Following the definition of the non-unification score
in Section 3, we first compute the understanding
branch’s judgment of whether each generated image
satisfies its prompt. (2) Select samples predicted as
incorrect (score = 0). We then collect all samples for

B Emu3 VILA-U
Show-o MM Janus-Pro

BAGEL
BLIP3-0

‘Weak Generation (%)

Single Obj. Texture Physics
Figure 11: Human-evaluated weak genera-
tion aligns with Qwen-based results, con-
firming weak generation as the primary cause
of non-unification and supporting the use of

Qwen as external judges in win rate.

which the understanding branch outputs score = 0 (misaligned image—prompt pairs). (3) Perform
human re-evaluation of these score = 0 samples. All selected samples are manually inspected, where
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annotators decide whether each image satisfies the corresponding prompt (assigning a score of 0 or
1). The evaluation is conducted by two PhD-level annotators: one performs the initial annotation,
and the other verifies it, ensuring accurate understanding of both prompts and images. (4) Compute
the human-evaluated weak generation score. We the calculate the human-evaluated weak generation
score which measures the probability that humans agree with the understanding branch conditioned
on the branch predicting score = 0, i.e.,

Human-evaluated Weak Generation := P(75™(x, ¢(y)) = Shuman (X, q(¥)) | (%, q(y)) = 0).

where Shuman denotes the human score.

Figure [TT] further presents weak generation results based on human evaluation, which yield con-
sistent findings: MLLMs achieve weak generation scores exceeding 50% on the majority of tasks,
further emphasizing that non-unification primarily stems from weak generation rather than misun-
derstanding. Moreover, the weak generation scores obtained from human evaluation are closely
aligned with those derived from Qwen-based evaluation, with an average score difference of 1.01%
for Easy tasks, 8.21% for Medium tasks, and 19.67% for Hard tasks. The relatively larger discrep-
ancy for Hard tasks may indicate that Qwen also faces limitations in understanding images involving
implicit reasoning. Nevertheless, the overall agreement between human evaluation and Qwen in as-
sessing MLLMs supports the continued use of Qwen as an external judge in subsequent studies,
such as evaluating the win rate for understanding in Section 4.2}

B ADDITIONAL DETAILS AND FULL RESULTS ON SELF-IMPROVEMENT

B.1 ADDITIONAL DETAILS

Data Details. We use approximately 6000 prompts from T2I-CompBench++ (Huang et al., [2025)
as our training data, where we strictly follow the official data split defined in T2I-CompBench++ to
obtain the training and evaluation sets.

Implementation Details. During the construction of SFT and DPO datasets, we feed each input
image together with its corresponding question:

You are a helpful language and vision assistant. You are able to understand the visual content
that the user provides, and assist the user with a variety of tasks using natural language. Does
this original image describe {prompt}? If it describes the scene, score 1; if it does not fully
describe, score 0. Please answer in the following format: The score is {your score}.

We record the prediction probability from the understanding branch and select the image with the
highest predicted probability of {your score} = 1 as the chosen sample, and the image with the
highest predicted probability of {your score} = 0 as the rejected sample. The chosen images are
used both as positive samples for DPO and as SFT samples, whereas the rejected images are used
as negative samples for DPO. It is worth noting that, for DPO, we adopt the common practice of
applying the negative log-likelihood (NLL) loss (Pang et al. 2024} Dubey et al.l [2024) over the
preferred response in each pair, in order to enhance DPO. We conduct self-improvement on Janus-
Pro-7B and Show-o (option (a) and 512 x 512) using four 80 GB NVIDIA A800 GPUs, with self-
improvement epochs set to 20 for SFT and 30 for DPO, respectively. Self-improvement requires
approximately 7-8 hours. The detailed hyperparameter configurations are presented in Table 4]

Evaluation. In addition to evaluating the self-improved MLLMs on the validation set of T2I-
CompBench++, we also conduct evaluations on GenEval and Science-T2I. As introduced in Ap-
pendix [A7T] GenEval is a relatively simple benchmark focusing on object and its basic attributes,

®0ur implementation is based on https://github.com/PKU-Alignment/align-anything.
"Our implementation is based on https://github.com/ZiyuGuo99/Image-Generation-CoT.
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Hyperparameter Janus-Pro-7B[f] Show-o["]
Optimization

Optimizer Adam AdamW
Learning rate 1x1077 1x107%
Adam(W) [0.9,0.95] [0.9,0.999]
Weight decay 0.05 0.01
Warmup steps (Ratio) 0.03 0.1
Epoch 20 (SFT) /30 (DPO) 20 (SFT)/ 30 (DPO)
Grad. accumulation 1 1
Per-GPU batch size 1 1
Trainable modules

Trainable parts LLM LLM
Full Fine-tuning v v
Loss weights

DPO 0.01 0.01
Weight NLL 0.1 0.1
CFG Weight 5 5
Data Construction

Image Size 384 x 384 512 x 512
Images per Prompt 10 10
Data Size 1326 226

Table 4: Hyperparameter configurations in self-improvement. For trainable parts, we only con-
sider the LLM components shared by generation and understanding, which are sufficient to promote
MLLMs. Additional trainable modules are discussed in Appendix[F2]

Texture Shape Color Spatial Non-Spatial Complex Overall

Model
Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.? Non.[|Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-7B paseiiney 38-63 50.00 4333 [33.49 50.00 43.00 |53.22 50.00 27.33|16.81 50.00 31.00 |31.40 50.00 2.33 |37.73 50.00 10.33[35.21 50.00 26.22
+SFT 53.93 65.22 29.67 |38.63 53.85 34.00 |73.41 54.62 10.85(23.73 26.67 22.00 [31.45 75.00 1.00 |38.57 75.00 4.33 [43.29 58.39 16.98
+C-SFT 56.38 66.67 28.33(39.86 64.52 33.67|73.77 52.14 12.20|24.87 3846 21.67 |31.44 7500 2.33 3878 70.00 333 [44.18 61.13 16.92
+DPO 40.98 53.85 43.00(33.49 57.89 47.00 [51.72 63.64 27.12(1649 41.67 30.00 |31.32 66.67 2.00 |38.61 50.00 6.67 3544 55.62 2597
+C-DPO 42.13 53.33 4533 (3346 5556 40.00 [53.17 55.71 28.81|15.74 42.86 32.33 |31.38 50.00 2.00 |37.98 78.57 6.33 [35.64 56.00 25.80
T21-R 1 xrermal) 50.91 52.50 34.67|37.80 5349 36.00 |70.47 3529 11.33|24.22 4500 23.67 |31.38 75.00 1.00 |38.53 72.73 3.33 |42.22 55.67 18.33
Gen. and Und.
ShOW-0sasetine) 66.80 50.00 0.33 |52.72 50.00 0.67 [72.50 50.00 0.00 [39.31 50.00 4.67 [31.43 50.00 0.00 |35.17 50.00 0.00 [49.66 50.00 0.95
+SFT 73.26 50.00 0.00 |59.53 100.00 0.00 [72.93 50.00 0.00 |42.66 100.00 0.67 |31.32 50.00 0.00 |36.33 50.00 0.00 |52.67 66.67 0.11
+C-SFT 74.11 50.00 0.00 [59.75 100.00 0.00 |[72.38 50.00 0.00 [42.70 100.00 0.33 |31.53 50.00 0.00 |36.42 50.00 0.00 |52.82 66.67 0.06
+DPO 69.97 50.00 0.33 5545 50.00 0.00 [73.67 50.00 0.34 [42.59 66.67 2.00 |31.61 50.00 0.00 |35.71 50.00 0.00 [51.50 52.78 0.45
+C-DPO 70.32 50.00 0.00 {5732 50.00 1.00 {7539 50.00 0.00 |44.55 100.00 133 |31.52 50.00 0.00 |35.47 50.00 0.00 |52.43 58.33 0.39
Hermsflow gyemay 6796 50.00 033 [S1.81 50.00 033 |72.96 50.00 0.34 |38.45 0.00 4.00 |31.42 50.00 0.00 |35.28 50.00 0.00 |49.65 41.67 0.83

Table 5: Evaluation Results on T2I-CompBench++. Self-improvement enhances MLLMs in gener-
ation, understanding, and unification, achieving results comparable to or even surpassing those of
baselines that leverage external rewards.

whereas Science-T2I involves more complex prompts that require implicit reasoning. For image
generation metrics, we follow the evaluation protocols and metric definitions specified by each
benchmark. In addition, we adopt the definition of unification from Section 3] namely

unification := 1 — non-unification score.

For evaluating understanding capability, we introduce the win rate metric. Specifically, the win rate
(excluding ties) is defined as the proportion of samples where the understanding prediction changes
after self-improvement and agrees with the score of stronger judge—Qwen2.5-VL-72B-Instruct.
We let mp,e and 7gei¢ denote the pre-trained and self-improved MLLMs, respectively. We define
generations by pre-trained MLLMs as x,e = m&eq (y) for the prompt y. Win rate is:

pre

ST [ (Xpres () # Toitt (Xpre, 4(¥)) A T (Xpre, 4(¥)) = SQuwen]

Wi te ;= Y 4
in rate ST [ (s 2(3)) 7 78 (ks 4(3)] @
Yy

where sQwen (Xpre; ¢(y)) € {0,1} is oracle label provided by Qwen. We introduce the win rate
metric, which enables the simultaneous quantification of generation, understanding, and unification
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Model Single Obj. Two Obj. Counting Colors Position Color Attri. Overall
Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gent Und.t Non.||Gen.t Und.t Non.[|Gen.t Und.t Non.}|Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-7B gaseiiney 98.75 50.00 3.75 | 85.86 50.00 4.04 |61.50 50.00 2.50 |84.04 50.00 2.13 |75.00 50.00 5.00 |71.00 50.00 20.00|79.36 50.00 6.24
+SFT 96.25 100.00 2.50 | 87.88 0.00 7.07 [65.00 50.00 5.00 |87.23 66.67 1.06 |78.00 40.00 5.00 |65.00 50.00 13.00|79.89 51.11 5.61
+ C-SFT 98.75 100.00 6.25 |88.89 0.00 5.05 |66.25 0.00 6.25 {88.30 100.00 8.51 |79.00 40.00 6.00 |64.00 66.67 15.00|80.87 51.11 7.84
+DPO 98.75 50.00 2.50 {89.90 0.00 6.06 [56.25 50.00 6.25 |88.30 50.00 3.19 |73.00 50.00 6.00 |69.00 100.00 13.00|79.20 50.00 6.17
+ C-DPO 97.50 100.00 4.25 |85.86 0.00 5.10 |60.00 50.00 5.25 |88.30 100.00 1.06 |82.00 50.00 1.00 |69.00 43.33 20.00 | 80.44 57.22 6.11
T2I-R1 External) 98.75 50.00 7.50 |86.87 0.00 8.08 |58.75 0.00 7.50 |87.23 100.00 1.06 |83.00 60.00 5.00 |70.00 50.00 22.00|80.77 43.30 8.52
Gen. and Und.
Show-0(gaseine) 97.50 50.00 1.25 |80.81 50.00 2.02 |76.25 50.00 2.50 |85.11 50.00 0.00 |28.00 50.00 2.00 |53.00 50.00 0.00 |[70.11 50.00 1.30
+SFT 97.50 50.00 1.25 |91.92 50.00 0.00 |[61.25 50.00 0.00 |78.72 50.00 0.00 |37.00 50.00 2.00 |62.00 50.00 0.00 [71.40 50.00 0.54
+ C-SFT 96.25 50.00 1.25 |86.87 50.00 0.00 |67.50 50.00 0.00 {78.72 50.00 1.06 [44.00 50.00 1.00 |[66.00 50.00 1.00 |73.22 50.00 0.72
+DPO 97.25 50.00 1.25 |84.85 50.00 0.00 [71.25 50.00 0.00 |84.04 50.00 0.00 |38.00 50.00 1.00 |52.00 50.00 0.00 [71.23 50.00 0.38
+ C-DPO 97.50 50.00 1.25 |84.85 50.00 0.00 |[70.00 50.00 0.00 |86.17 50.00 0.00 |37.00 50.00 1.00 |59.00 50.00 0.00 [72.42 50.00 0.38
Hermsflow eqermay ~ 96.25 50.00 1.25 | 83.84 50.00 1.01 |66.25 50.00 1.25 [80.85 50.00 1.06 |35.00 50.00 2.00 |46.00 50.00 0.00 |68.03 50.00 1.10

Table 6: Evaluation Results on Geneval. Self-improvement enhances MLLMs in generation, under-
standing, and unification, achieving results comparable to or even surpassing those of baselines that
leverage external rewards.

Model Physics Chemistry Biology Overall
Gen.t Und.T Non.| ‘ Gen.t Und.t Non.] ‘ Gen.? Und.T Non.) ‘ Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-7Bpgseiine)  25.37 50.00 3.39 | 2557 50.00 2.04 |22.54 50.00 5.00 | 2449 50.00 3.48
+SFT 2547 3333 339 |26.85 100.00 0.00 | 2290 75.00 333 |25.07 6944 224
+ C-SFT 2548 25.00 1.69 | 26.66 100.00 2.04 | 2341 80.00 6.67 |25.18 68.33 347
+ DPO 25.72 50.00 1.69 | 25.37 100.00 0.00 |23.49 0.00 333 |24.86 50.00 1.67
+ C-DPO 25.72 50.00 1.39 | 2544 50.00 1.16 | 2276 66.67 5.00 |24.64 5556 2.52
T2I-R1(Externar) 25.52 0.00 2.54 | 2528 100.00 2.04 |22.64 66.67 500 |24.48 5556 3.19
Gen. and Und.
Show-0gageline) 25.56 50.00 593 |26.13 50.00 0.00 | 2248 50.00 0.00 |24.72 50.00 1.98
+ SFT 26.57 60.00 1.69 |26.62 50.00 0.00 | 2248 50.00 0.00 | 2522 5333 0.56
+ C-SFT 27.12 60.00 0.85 |27.63 50.00 0.00 |23.38 50.00 0.00 |26.04 5333 0.28
+ DPO 26.05 0.00 5.08 |25.76 50.00 0.00 |21.53 50.00 0.00 |24.44 3333 1.69
+ C-DPO 2593 50.00 5.93 |25.71 50.00 0.00 |22.51 50.00 0.00 |24.72 50.00 1.98
HermesFlow gyemay  25.61  54.00 546 | 2647 50.00 0.00 |21.91 50.00 0.00 |24.66 5133 1.82

Table 7: Evaluation Results on Science-T2I-S. Self-improvement enhances MLLMs in generation,
understanding, and unification, achieving results comparable to or even surpassing those of baselines
that leverage external rewards.

within the same task, thereby providing a better depiction of the synchronous changes between gen-
eration and understanding. In addition, we evaluate the understanding performance of MLLMs on
dedicated benchmarks and provide illustrative examples for both before and after self-improvement.

B.2 FULL RESULTS

Full Results on Self-Improvement. Table[3]
Table [6] and Table [7] report the improvements 30

in generation, understanding, and unification of
self-improvemed MLLMs across three bench-
marks. Results of self-improvemed MLLMs
are comparable to, and even surpass, two base-
lines, T2I-R1 and Hermesflow, which rely o
on external rewards. Taking Janus-Pro under

SFT as an example, self—in;gprovement boosts @ SFT, Janus-Pro-7B (b) SFT, Show-o
its generation and unification performance on Figure 12: Building self-improvement data based
T2I-CompBench++ by an average of 8% and on internal gaps yields more samples from large
10%, respectively. Moreover, compared to pre-  gap tasks, thus guiding more gains on such tasks.
trained Janus-Pro, its understanding capability is enhanced with win rate greater than 50%. Im-
provement also observed on GenEval and Science-T2I. These experiemnts verify the effectiveness
of our proposed approach.

Spatial

Additionally, MLLMs with larger internal gaps (e.g., Janus-Pro-7B) and larger gap subtasks (e.g.,
Texture) exhibit greater gains after self-improvement. We claim that this may be because tasks
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with larger internal gaps encourage more samples from those subtasks in the post-training data,
thereby benefiting the learning of those specific subtasks. Figure[I2]demonstrates that subtasks with
larger internal gaps constitute a higher proportion of the post-training data, which contributes to
their greater performance gains, supporting our hypothesis.

Improved Understanding: Additional Results on Understanding Benchmarks and Examples
For image understanding evaluation, we consider the benchmarks POPE 2023b), MMB
(Liu et al) 2024), SEED 2023a), GQA (Hudson & Manning| 2019), and MMMU, and
conduct the evaluation using [VLMEvalKitl Since all these benchmarks are in a multiple-choice
format, we compute accuracy using exact matching. Table [§] presents the results of the pre-trained
Janus-Pro and the self-improved Janus-Pro on various understanding benchmarks, showing that the
MLLM’s understanding ability is further enhanced after self-improvement, with gains up to 3%.
Table [§] also provides the self-improvement results for Show-o. We observe that SFT-based self-
improvement not only enhances generation but also improves understanding ability, for example,
POPE increases by nearly 2%.

We further present examples of self-improvement for Janus-Pro and Show-o under SFT (Figure [T4)
and DPO (Figure [I5)), which clearly demonstrate that after self-improvement, the models not only
generate images that better satisfy the prompts, but also more accurately identify misalignments be-
tween the original image and the prompt, thereby providing correct evaluation scores (from score
1 to score 0). The improvements observed on understanding benchmarks, together with these con-
crete examples, further support the co-improvement conclusion in Section[d.2.2} generation-targeted
self-improvement can also enhance understanding.

Model POPEf MMB1 SEED{ GQA{ MMMU ¢

Janus-Pro-7B 89.04 76.23 70.09 56.02 32.86
+SFT 88.45 76.97 70.44 56.12 35.24
+ DPO 89.06 76.41 70.10 56.26 33.71
+ C-SFT 89.03 77.18 70.48 56.02 35.24
+ C-DPO 89.10 76.47 70.86 56.17 34.33

Show-o 64.05 30.91 52.86 56.82 23.33
+ SFT 65.27 31.92 54.14 57.22 24.00
+ DPO 64.71 30.82 52.73 57.03 23.33

+ C-SFT 65.82 32.34 54.32 57.33 23.33
+ C-DPO 64.97 31.14 52.90 57.09 23.33

Table 8: The self-improved MLLMs demonstrated improvements on understanding benchmarks.

Improved Understanding: Additional Re-
sults on External Evaluator In Section [6]
we use Qwen2.5-VL-72B-Instruct as the exter-

nal evaluator. To further validate our findings i gy n R 1 B 3
regarding changes in the model’s understanding II I L I
capability, we replace Qwen with the closed- .- l o .- |

source Gemini-Pro-2.5 2025D) to com-
pute the win rate defined in Equation (). Using Fi 1(3? SIF Tt duci débt) C'SIFT luat
Janus-Pro’s SFT and C-SFT results as an illus- . ooc -2 “Aioducing an addtional evaiuator

. . Gemini-Pro-2. Under Gemini’s evaluation, self-
trative example, Figure [[3]shows the outcomes .
obtained with Gemini as the external evaluator. improved model demonstrates better understand-

In most cases, the win rate exceeds 50%, indi- ing ability with win rate greater than 0.5.
cating that Janus-Pro’s understanding ability improves after self-improvement, as reflected by its
scores becoming closer to those of Gemini-Pro-2.5.

LB st LB It

Win Rate (%)

C ADDITIONAL DETAILS AND FULL RESULTS ON
CURRICULUM-LEARNING-BASED SELF-IMPROVEMENT

In this section, we present the training details and full experimental results of the curriculum learn-
ing—based self-improvement method.
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Improved Generation Improved Understanding |

Question: You are a helpful language and vision assistant. You are able to understand the
visual content that the user pmvtdev and assist the user with a variety of tasks using natural
I Does this| i describe {prompt}? If it describes the scene, score 1; if it does not
fully o, SETU U e o e (Tt s T e i e S

Show-o Self-improved Show-o

1 \/mn -0t Yes, the image depicts a person on side of a cow. The cow is standing in a field, and '
I the person is standing next to it.
v

| Self-improved Show-o: No, this image does not depict a person on side of a cow. It shows a :
1 cow standing in a field of dry grass. I

Prompt: a person on side of a cow.

Self-improved Janus-Pro :-,/(mux—l’ru: The image shows a brown cat with green eyes and a red-orange background. The !
I scene includes a grassy area with sunlight filtering through, creating a warm and natural |
: setting. The cat's fur is predominantly brown with white accents, and the red-orange |
1 background is likely the sunlight reflecting off the grass. The scene is well-lit and vibrant, '
:. suggesting a sunny day. The score is 1. I

Janus-Pro

: Self-improved Janus-Pro: The image shows a brown cat with green eyes, and the background I
I appears to be a grassy area with some sunllght The cat's fur is primarily brown with some :
! lighter patches. The scene is outdoors, likely in a natural setting. The question asks if the
: image describes a brown cat and a red orange. The cat is brown, but there is no red orange in I

| the image. The score is 0. |

Prompt: A brown cat and a red orange.

Figure 14: Examples of co-improvements in generation and understanding of self-improved Janus-
Pro and Show-o under SFT. We observe that, after self-improvement, Show-o and Janus-Pro gen-
erate images that align prompts and accurately identify when images produced by the pre-trained
MLLM are misaligned with the promnpts.

Improved Generation | Improved Understanding |

Show-o Self-improved Show-o Question: You are a helpful language and vision assistant. You are able to understand the
visual content that the user provides, and assist the user with a variety of tasks using natural

Does this|i lescribe {prompt}? If it describes the scene, score I; if it does not
Jfully describe, scarzmarse answer in the following format: The score is {your score}.

1
, Show-o: Yes, the image depicts a person on side of a cow. The cow is standing in a field, and |
! the person is standing next to it. !

\ Self-improved Show
1 cow standing in a field.

Prompt: a person on side of a cow.

Janus-Pro Self-improved Janus-Pro

Janus-Pro: The image shows a clock with legs standing on a grassy hill, resembling a sheep.
The clock has two dials, one on top of the other, and the legs are deslg;ned to look like they are
part of the clock. The scene is wt ical and surreal, blendi of a clock and a sheep.
lhe score is 1.

| Self-improved Janus-Pro: The image shows a clock with a unique design, resembling a :
1 creature with legs, standing on a grassy hill. The clock is positioned against a clear blue sky 1
! with some clouds. The scene does not depict a clock on the top of a sheep, but rather a !
| standalone clock-like figure. The score is 0. :

Prompt: a clock on the top of a sheep.

Figure 15: Examples of co-improvements in generation and understanding of self-improved Janus-
Pro and Show-o with DPO. We observe that, after self-improvement, Show-o and Janus-Pro generate
images that align prompts and accurately identify when images produced by the pre-trained MLLM
are misaligned with the prompts.

C.1 ADDITIONAL DETAILS

Implementation Details. Following Section [f] we leverage the improved genera-
tion—understanding model to revisit prompts that were not utilized by the pre-trained MLLM
due to weak generation or weak understanding capabilities (see details in Alg[2). This process can
be regarded as a form of curriculum learning based on prompt complexity (Li & Zhang| 2025). We
follow the training configurations in Table [] and perform curriculum replay for both SFT-based
and DPO-based self-improvement at epoch 10. In Appendix [F4] we conduct an ablation study to
discuss the choice of epoch for curriculum learning. Table[9]shows the data expansion for Janus-Pro
and Show-o with curriculum learning, which increases sample size by up to 50%.

MLLM Self-improvement Strategy Curriculum Epoch Original Data Expansion Data

SFT 10 +1091

Janus-Pro-7B DPO 10 2265 4350
SFT 10 +64
Show-o DPO 10 226 +59

Table 9: Expansion of post-training data with introducing curriculum learning.
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Evaluation. Consistent with the evaluation in Appendix [B.I} we employ the same metrics to mea-
sure MLLMs in generation, understanding and unification.

C.2 FULL RESULTS

As shown in Table[5] Table[6] and Table[7} the self-improvement with curriculum learning (denoted
as C-SFT and C-DPO) demonstrates that the increased post-training data benefiting from curriculum
learning further enhances self-improvement MLLMs’ performance and unification, particularly in
understanding and generation.

D UNDERSTANDING CO-IMPROVEMENT IN SELF-IMPROVEMENT

Section [5.2] explains why co-improvement occurs when self-improvement is performed with SFT
and provides empirical evidence based on Janus-Pro. In this section, we first detail the computation
of the empirical evidence in Figure[7} then additionally present empirical evidence on Show-o with
SFT to further support the theoretical analysis in Section [5.1}

D.1 FULL THEORETICAL ANALYSIS UNDER SFT

Details on Empirical Evidence. Figure[7[a) explains that samples from the false positive correc-
tion group (yo, Xo), i.€., the primary source of improvement in comprehension capability, exhibit
higher similarity to their corresponding post-training samples (y.,, X, ). Specifically, we separately
compute text similarity and image similarity as proxies for eNTK term K: for each y, we first
identify its nearest neighbor y,, in the post-training data, then compute the similarity between the
corresponding images X, and x,, . For text similarity, we use pre-trained model all-MiniLM-L6-v2
Hto encode each prompt into a 384-dimensional vector and compute the cosine similarity between
vector pairs. For image similarity, we use an equal-weighted combination of MSE and SSIM (Wang
et al.| 2004) to measure both pixel-level and structural similarity. To evaluate whether false positive
correction group indeed exhibits higher similarity, we randomly sample random group (y,x) (with
the same size as false positive correction group) and calculate same. Figure[7(a) shows false positive
correction group demonstrates significantly higher similarity in (y.,, X, ), particularly in text. For
Figure[7|a), the difference in text similarity between the False Positive Correction group and the ran-
dom group becomes more pronounced: the prompt similarity between the False Positive Correction
group (0,1,0) and the training data has a mean of approximately 0.85, whereas the random group
has a much lower mean of around 0.65, indicating a clear distinction. The reason we focus more on
prompt similarity is that the similarity shown Figure is in fact a proxy for eNTK ICt,“ (Do, V) in
Proposition where ) := [y | «] is formed by concatenating the token embeddings of the prompt
y and the image z (see Appendix [E] for details). Since Proposition 1 shows that the learning dy-
namics for both understanding and generation accumulate token by token (see Proposition [T, the
prompt tokens, which appear at the beginning of the concatenated sequence, tend to contribute more
substantially to the resulting eNTK than the later image tokens. Therefore, variations in prompt
similarity can provide a more sensitive and reliable indicator of targeted eNTK.

Figure b) shows the Frobenius norm H/U( Vo, Vu) H P exceeds H/U (Vi Vu) || o This indicates that
at iteration ¢, the training dynamics of the understanding branch are primarily driven by ' (), )., ),
which tends to align AU, in Equation (3) and AG, in Equation (). To substantiate this, we use
data similarity as a proxy for the eNTK. Specifically, for each sample (yg, %) in the false positive
correction group, we first identify its closest (y,,, x,,) based on the most similar prompt and compute
text and image similarities using the same metrics as in Figure [/[a); this serves as the proxy for
||K,T (Yo, Vu )ﬁ o For ||K,T Vi, Vo) H > We compute the text and image similarity between each non-
(¥0,%0) sample (y;,x;) and (y., X, ), and average these similarities over all (y;, x;) as the proxy.

Figure [7|c) shows, for samples in the false positive correction group, the probability of prompt-
misaligned generation, i.e., the prompt-misaligned probability 7y (xq | yo) decreases. To quantify
this change, for each validation prompt y, we first use the pre-trained MLLM to generate x( and
record its image token sequence and the log-probability of that sequence as log mg, (xo | yo). We
then use the self-improved MLLMs to re-evaluate the conditional log-probability of the same token

8https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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sequence, obtaining log 7y, (X | ¥o). Following the definition of the generation-branch learning
dynamics in Section[5.1} we compute AG, = log 7, (x¢ | yo) — log 7, (%0 | y0).

More Empirical Evidence on Show-o. Section explains why co-improvement occurs when
post-self-improvement is performed with SFT and provides empirical evidence based on Janus-Pro.
In this section, we additionally present empirical evidence on Show-o with SFT to further support
the theorical analysis in Section [5.1] Figure [T6(a) shows that, for Show-o under supervised fine-
tuning (SFT), the primary gains in understanding still come from false positive correction, i.e.,
(Label, Pre-trained, Self-improved) = (0, 1, 0). Moreover, there exists post-training data similar
to the false positive correction group, with an average cosine similarity of 0.8 (see Figure [T6(b)).
Figure c) indicates that the high sample similarity makes ||/C"(). )/],)H the dominant term,
encouraging alignment between the training dynamics of generation and un(ﬂ%rstanding. Together
with Figure [I6[d), which shows AG; < 0, this suggests AU; < 0, meaning the model identifies
false positives and achieves joint improvement. Empirical evidence for Show-o under SFT further
corroborates the theoretical explanation in Section[5.2}

(Label, Pre-trained, Self-improved) = (0,1,0)

=,
s
g
L

20 : (©0.1.0) random Proxy K'(Yo, ) Proxy KH(¥j, V) %o 0 ™ Sw
(Label, Pre-trained, Self-improved) eNTK. AG:

(a) Dominant False Positive (b) Similar Yo and )., (¢) Proxy ||IC"(Vo, Vu)llr > (d) False Positive Correction
Correction 1KYV, V)llr Group: AGy < 0

Figure 16: Empirical Evidence from Self-Improvement with Show-o and SFT. (a) On T2I-
CompBench++, understanding gains primarily arise from the false positive correction group. (b)
Compared to random samples, those in the false positive correction group are more likely to be
matched with highly similar post-training pairs (y.., X,,) (average cosine similarity 0.8). (c) Such
high similarity makes /C/ (), ),,) be the dominant term in Equation , thereby promoting aligned
learning dynamics between understanding in Equation (3) and generation in Equation (Z)). (d) With
aligned dynamics, AG; < 0 implies AU; < 0: both the probability of misaligned generation
mo(Xo | ¥o) and misjudging 7 (yo | Xo), are reduced. This manifests as false positive correction
and jointly as co-improvement.

D.2 FULL THEORETICAL ANALYSIS UNDER DPO

Proposition. In this section, we discuss why DPO-based self-improvement also leads to co-
improvement (see Table [5] Table [6] Table [7] and Table [8). For DPO, we define a post-training
preference pair (y.,,x;", x,, ) where the chosen image x, and the rejected image x,, share the same
prompt y,,. The DPO loss is

mo (x4 | Vib) _ Blog mo(Xy | Vi) )]

Lopo(Yu X, Xy, ) = =By o+ oo [loga <5 log ————-~ — =
( ) (Fuxixu) 71—rcf(x't_‘l,— ‘ yl—l_) Tref (Xu | yu )

where VI denotes the concatenation obtained by appending the embedding of y, to the embed-
ding of x;', and ), denotes the concatenation obtained by appending the embedding of y,, to the
embedding of x;,;. Then, we have the following proposition:

Proposition 2 (Learning Dynamics of Generation and Understanding under DPO). Consider self-
improvement proposed in Section @ with DPO.

At epoch t, the one-step learning dynamics of generation is

AG(xo | Vo)
M M
= —180(=a) D" Y (@an = 7T Kk, Vo, VD (mi = ey ) = K, D0, Vi)™ — e,

Tor
k=1r=1

+0(n), (6)
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where the margin o = ﬁlog% — Blo g% and 7" = softmax(z%") and
ref (X u

z% " = [he(V)], are the logits at image position r obtained by running hg on Y,\. The neural
tangent kernel K}, (Yo, V;f) = Voz{(VoziT)" and K}, (Yo, Yy ) = Vezy(Voz ™)'

The one-step learning dynamics of understanding is

AUi(yo | Xo)

M M
=—nBo(—a)Yy > > we,(yi|xo) <ex0,kw2f (K0, V)t — e ) = KL, (D0, Vi)™ — e, )

k=1r=lyi#yo

Term I

= (ero — )T (KL, D0 V)Tt — ey ) = KL OV )™ —e,2 ) ) +0(?)

Term I1

(7
where ); denote the concatenation obtained by appending the embedding of y; to U.

We can interpret Proposition 2] by analogy with Proposition[T} Specifically, when ), is more similar
to the post-training data )/, than any other );, that is, the Frobenius norm of Term I exceeds that
of Term II, both the generation and understanding branches are dominated by the same alignment
Term I, yielding consistent update signs.

Theoretical Analysis with Empirical Evidence. First, Figure a)(b) show that under DPO,
gains in understanding still primarily come from correcting false positives: across training steps,
this accounts for roughly 60%—100% of the gains. Hence, we focus on y( and its misaligned image
xo generated by pre-trained MLLMs.

For self-improved Janus-Pro with DPO, by Proposition 2] co-improvement can arise when the post-
training data include pairs (y.,, X,,) whose prompt y,, is more similar to y( than any other prompt
Yi (empirical evidence in Figure ﬂ}[a)(e) and Figure @ka)(c)) In this case, the understanding
update AU; in Equation (7) is dominated by Term I rather than Term II (empirical evidence in
Figure (1§ lb)(d) and Flgurb)(d)) Note that, because K} . (Jo, V) and IC,ﬁ (D0, Y, ) share
the same prompt y,, their Frobenius norms are both large, reﬁectmg the high 51m11ar1ty between

Yo and y,, (empirical evidence in Figure a)(c) and Figure a)(c)) By contrast, K ,ﬁ Vi, Vi)
and K} (;, Y, ) are significantly smaller due to the lower similarity between y; and y,, (also in
Figure ﬁ;g[b)(d) and Figure [I9(b)(d)). The same Term I therefore aligns the learning dynamics of
generation (Equation (6))) and understanding (Equation (7)), yielding consistent update signs AG,
and AU;.

Moreover, such similar post-training pairs (y, X,,) improve generation by lowering the probability
of misaligned outputs, my(xo | yo), leading to AG; < 0 (empirical evidence in Figure [17(c)(d)).
Due to the aligned dynamics, AU; < 0 as well, meaning the probability of misjudging, 7y (yo | Xo),
is reduced. Consequently, false positive correction emerges, manifesting as co-improvement.

100
MW (Label, Pre-trained, Self-improved) = (0,1.0) M (Label, Pre-trained, Self-improved) - (0.1.0) IS g,

B T S sw s
AG: AG:

(a) Dominant False Positive (b) Dominant False Positive (C) False Positive Correction (d) False Positive Correction
Correction, Janus-Pro Correction, Show-o Group for Janus-Pro: AGy < 0  Group for Show-0: AG; < 0

Figure 17: Empirical Evidence from DPO-based Self-Improvement with Janus-Pro and Show-o.
(a)(b) On T2I-CompBench++, understanding gains primarily arise from the false positive correction
group. (c)(d) For prompts y in the false positive correction group, the self-improved MLLM also
reduces the probability of generating the prompt-misaligned image xg, i.e., AG; < 0.
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I

Proxy K(Yo, ;)
Proxy K(Yo, ;)

0.10) random " proxy K500, ) Proxy K0, ¥ ) .10 indon
(Label, Pre-trained, Self-improved) NTK (Label, Pre-traine )

Proxy K*(Yo, ;)

I
Proxy K3, V)
eNTK.

(a) Similar Y and Y (b) Proxy [|K" (Yo, V) lF > (c) Similar Yo and Y, (d) Proxy ||K"(Vo, Y, )lr >
1< Vi, YO lle <, Y )lle

Figure 18: Empirical Evidence from Self-Improvement with Janus-Pro and DPO. (a)(c) Compared
to random samples, those in the false positive correction group are more likely to be matched with
highly similar post-training pairs (y,,X,) (average cosine similarity 0.8). (b)(d) Such high sim-
ilarity makes Term I be the dominant term in Equation (7), thereby promoting aligned learning
dynamics between understanding in Equation (7) and generation in Equation ().

L . 1 - . s . 0

Similarity

Proxy K(Yo, ¥ )
Similarity

Proxy KV, ¥ )

©.10) random Proxy K'(Vo, %) Proxy K0, ¥ ) " (@) random " proxy KV, ;) Proxy K0, 77 )
(Label, Pre-trained, Self-improved) eNTK (Label, Pre-trained, Self-improved) eNTK.

(a) Similar Y and Y- (b) Proxy [|K" (Yo, V) lF > (c) Similar Yo and Y, (d) Proxy ||K"(Vo, Y, )lr >
1< i, YOl e <, Y )llr

Figure 19: Empirical Evidence from Self-Improvement with Show-o and DPO. (a)(c) Compared
to random samples, those in the false positive correction group are more likely to be matched with
highly similar post-training pairs (y,,X,) (average cosine similarity 0.8). (b)(d) Such high sim-
ilarity makes Term | be the dominant term in Equation (7), thereby promoting aligned learning
dynamics between understanding in Equation (7) and generation in Equation ().

E DERIVATIONS AND PROOF DETAILS

Preliminaries. We define the unified vocabulary V of discrete text and image tokens, with size
V' = |V|. Since fine-tuning only updates the LLM part 7y of the MLLM, we work directly in the
LLM input space. Let d denote the input embedding dimension.

We consider the setting where both image generation and image understanding share the same to-
kenizer as the default Show-o and EMU3. This contrasts with decoupled designs such as Janus-
Pro, where generation and understanding use separate tokenizers. Nevertheless, our analysis shows
that results derived under the shared-tokenizer assumption continue to hold for decoupled archi-
tectures like Janus-Pro. Specifically, at inference time, for each sequence of image token IDs
xo = (z01,---,%0,m) and text token IDs yo = (yo.1,---,%0,1), We encode them as sequences
of embeddings as the inputs of LLM. The image sequence is represented by embeddings

Uy = [ug; -+~ ugn] € RPM,
and the evaluation prompt is represented by
VO = [V071 VO,L] € RdXL.

where usually |V| > max(L, M). Similarly, the fine-tuning data pair (u,, v.,) yields U,, € R>*M
and V,, € R%X

We consider the typical causal-masking mechanism applied in MLLMs (Wu et al} [2024a; Wang
let all 2024} [Wu et al.} 2025b). Under this mechanism, 7y takes the full concatenation of image and
text embeddings as input and predicts the next token(s) (Ren & Sutherland, 2025). We denote the
concatenated inputs by

Xy = [Ug | Vo] € R*MFL) (Understanding),

Vo= [Vo|Up] € RZEAM) " (Generation).

? Across datapoints, the image length M is fixed while the text length I may vary; we use a common symbol
L for simplicity.
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Symbol Definition

Data-related notation

Yo = (Y0,1,---,%0,.)  Tokenized text prompt (index form), length L

xo = (®0,1,...,%0,m) Tokenized image (index form), length M
Ug=[ug1---ugn] Imagetoken embedding matrix
Vo=[vo1---Vo,L] Text token embedding matrix

Xo =[Uq | Vo] Input to understanding branch

Yo =[Vo]|Ug] Input to generation branch

Xy =[U, | V] Post-training sample (image) for SFT/DPO updates
Vu =V | Uy Post-training sample (prompt) for SFT/DPO updates
Model-related notation

Ty Unified MLLM parameterized by 6

he(+) Logit network producing token-wise logits before softmax
\%4 Unified vocabulary size for text and image tokens

z} (9) Logits at position & on sequence .S at epoch ¢

wi = softmax(z},) Token distribution at position k

e, One-hot vector corresponding to token x

(X0 | Vo) Generation likelihood of image tokens

mo(yo | Xo) Understanding likelihood of text tokens

Learning dynamic-related notation

AG(xg | Vo) One-step update of generation log-likelihood
AU(yo | Xo) One-step update of understanding log-likelihood

K (Vo5 Vu) Empirical NTK: (Vg,29)(Vg,z%) "

Table 10: Key Notations used in the learning dynamics analysis of unified MLLM.

where we omit potential special tokens (e.g., [SOI]) for simplicity.

Let hy denote the logits network with causal mask implemented. For understanding,

Zong = ho(X0)[, M1y € RV, ITyng = softmaxco (z),4) € RY*F,

and for generatio
) VxM ) M
den = he(Do)[:, L+1:040) € RV, Myen = softmaxcol(zgen) e RV*M,

Let yo; € V and xg, € V denote the scalar ground-truth token ids at text position [ and image
position k, respectively. Then the modeling of understanding and generation can be factorized as

L
log mo(yo | Xo) = Zlogwg(yo,l | X0, ¥0,<1) = Zlog [Hund]ygyl,lv
l =1

M
log m(xo | Vo) = ) logmo (o | yo,Xo,<x) = Y log [Mgen], ;-
k k=1

At epoch ¢, we define the one-step learning dynamics of evaluation data pair (xg,yo) after training
one-step on fine-tuning data (x,,y.,) as

AG{xq | Vo) = logmy,, (%0 | Vo) —log m,(X0 | Do) (Generation)
AUfyo | Xo) = logma,,,(yo | Xo) —log m,(yo | Xo) (Understanding)

10Typically, generation branch includes a projector as generation head. For example, Janus-Pro uses a 2-layer
MLP to map LLM outputs to generation tokenizer’s codebook. In our setting, the generation head is frozen.
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It is worth noting that Section [4.2.2] evaluates understanding improvement in terms of binary classi-
fication fy(-) whereas the theory focuses on log-likelihood log 7 (yo | Xp). We introduce a decision
rule to bridge the continuous log-likelihood with the discrete binary score:

fo(yo | Xo) = L{ma(yo | Xo) > 7},

where 7 is a threshold. When AU (yo | Xp) increases, the understanding branch is encouraged to
raise the log-likelihood, making it more likely to yield a score of 1 under the decision rule.

We first show the connection between the learning dynamics of generation and understanding. First,
we obtain
M
mo(xo0 | Vo) = [ [ mo(zo.x | y0.%0,.<x) = mo(x0 | ¥0),
k=1
L
mo(yo | Xo) =

}’0,<l) = 7T9(YO \ X0)~
=1

Given the prompts follows a Uniform distribution, Bayes’ rule yields
log 7 (yo | X0) = log me(x0 | yo) — log me(x0) + C.
where C' := log P(yy) is a constant under the uniform prompt prior. Therefore,
AU{yo | Xp) = log T, ,(yo | Xo) —logma,(yo | X0)

= (log 0111 (XO | yO) - 1Og o, (XO | yO)) - (IOg TG 41 (XO) - IOg o, (XO))
= AGy{xo | Yo) — Alogm(x0). ®)

Equation (8) implies that the learning dynamics of understanding AU, (y¢ | Xp) and those of genera-
tion AG¢(xo | Vo) differ only in the change of the marginal distribution 7, (x() between consecutive
steps. We next consider the training dynamics of the generation and understanding branches under
different post-training strategies, SFT and DPO. Table [10f summarizes the key notation used in the
learning dynamics analysis for reference.

E.1 LEARNING DYNAMICS UNDER SFT

Following equation we first discuss the training dynamics of the generation branch,
i.e,AG{xo | o), and then provide an indirect estimation for the understanding branch
AUt<y0 | Xo).

Lemma 1 (Learning Dynamics of Generation under SFT). Consider self-improvement proposed in
Section{d|with SFT. At epoch t, the one—step learning dynamics of generation is

AGy(xo | Vo) =—nZZ eror = T0) Kb Vo, Vo) (7t — €0, ) +O(), (9
k=1r=1

where ¥ = softmax(z¥) and z* = [hg(V.)], are the logits at image position r obtained by

running hg on Yy, and K, (Yo, V) = (Vo,29)(Vo,z)T € RV*V is empirical neural tangent
kernel (eNTK).

Proof. 'We first show the learning dynamic of generation, i.e., AG{xo | o) under the SFT setting.
Consider the k-th image token

(AG(x0 | o)), = [logma,,, (%0 | Jo)], — [logme, (x0 | I0)],
= Vo [logma, (x0 | Y0)], (Brs1 — 0) + O(|0011 = 0]?).  (10)
where [log mo(Xo | yo)]k = log W@(l‘o’k | yo,xo7<k).

Given the post-training data (x,,, yu) for generation, the negative log-likelihood loss of SFT is

‘CSFT yu - ZIOgTW = ZTu,r | yu - ZlOg

zu,,r
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where 7% = softmax(z) and z* = [hg())] are the logits at image position 7 obtained by running
hg on Y, = [V, | U,]. One-step SGD yields

Ori1 — 01 = —nVoLspr(Va) = —nz (Vozt)' Gr,

where G, =7 —e,, € RV.

Then, we obtain
Vo [logme, (x0 | V)], = (Ve,2)" (€x,, — 1)

Therefore, Equation (I0) can be rewritten as

(AGi(x0 | W), = —nz €sos — 1) (Vozp)(Vez,)' G, + O()

= —nz egm,C — (yo,yu)( — €z, 1') + O( )

where K}, (Yo, Vu) = (Vo,20)(Vo,z)" € RV*V.

Finally, we have the sequence-level one-step change as:

AGi(xo | Vo) = [logmo,,, (x0 | Vo), — > [logms, (x0 | Wo)],
K

k

M
= (AGi(x0 | J0)),
k=1

M M

= _772 Z Czo.k ﬂ'k TIC (yOvyu)<7T1rL - exu,'r') + 0(772)-

k=1r=1

The proof is complete. O

Lemma 2 (Learning Dynamics of Understanding under SFT). Consider self-improvement proposed
in Sectiond|with SFT. At epoch t, the one-step learning dynamics of understanding is

M M

AU(yo | Xo) = 77722 Z “)Gr ¥i | o) < Cao, — ”2)T’C1§,r(y0uyu) - (el'o,k - ﬂIi)TKlz.,r(yi’yu)>(7r: - el'u,r)

k=1r=1y;#yo
+0(n%)
1D

7o, (xoly) ) and Y; denotes the concatenation of prompt y; # yo and x.

where wy, (y | Xo) = 3, 70, (xoly)

Proof. We then analyze the learning dynamics of the understanding branch. By Equation (8) and a
first—order log-sum-exp expansion, we obtain

Alog my(x0) = logmg, ., (x0) — log 7, (x0)

= log Z TGy 41 (%0 |y) — logz 7, (X0 | ¥)
y y

= <Zw9t (v | x0) Vglog g, (%0 | y), Or+1 — 9t> + O([10:11 — 0:]%)
y

where the posterior weight is

= _m(oly)
wy, (y | X0) = Zy/ 7o, (X0 | y')
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Following Lemma|[T]and Equation (8], we obtain

AU(yo | X0)
= AG{xq | Vo) — Alog m(x0)

= Vglogm, (x0 | Vo) (041 — 0r) — Zwet(yi | x0) Vo logma, (xo | Vi) (0141 — 04) + O([|0r11 — 0c)1?)
Yi
M M

=13 > D wo (i | %0) ((ern = T KL Vo, V) = (€ = ) KL (Vi D)) (i = e, )

k=1r=1y;#yo

+0(%)
(12)
where )); denote the concatenation obtained by appending the embedding of y; to Uj.
The proof is complete. O

E.2 LEARNING DYNAMICS UNDER DPO

Lemma 3 (Learning Dynamics of Generation under DPO). Consider self-improvement proposed in
Section{d|with DPO. At epoch t, the one-step learning dynamics of generation is

AG(x0 | Vo)
M M
= 1r(=0) 303 ery, — 1) [ (0 VI — ey )~ K G0 Vi) e, )]
k=1r=1
+0(1r) (13)
where the margin o = 6log% - Blog% and 7% = softmax(z%™) and

z% " = [he(V)], are the logits at image position r obtained by running hg on Y,\. The neural
tangent kernel KCj, (Yo, V;F) = Vozl(Voz ) and Ki. (Yo, Vi) = Voz), (Voz ).

Proof. Following equation[I0] one-step SGD yields

Orp1 — 0, = —UveﬁDPo(yu)

= —772 [ V@Z 2 +Lppo + (VeZ ) Vzg,ﬂCDPO
M
= _nﬂg Z [ VQZ ;f i+ ewtr) (V@z’:v—)T(ﬂ—;M_ — ewgr)}
r=1
where the margin o := Slog % — Blog % And 7" = softmax(z%*") and
X Tref (X u

z% " = [hg(Y,])], are the logits at image position r obtained by running hg on Y, = [V, | U}].

Then, we have

(AG(x0 | Vo)),

= —n8(=e) Y (e - m) T (Voz) | (Voze ) (mit = e,y ) = (Voze ) (mi” — e, )] + O(?)

T v

M
= =10 (=) Y (€ay, — )T Kk, (0, VD)™ — e,y ) = Kf, (00, V)" e, )] + O?)
r=1

where the neural tangent kernel K} ,(Vo,Vif) = Vez)(Vez ™)' and Kf (Yo, V) =
VQZQ(VQZ?.’_)T.
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Finally, we have the sequence-level one-step change as:

AG(x0 | Do)
M M
= —180(=0) D D (@ans = 7T Kb, Vo, VD (mi = ey ) = Kk, D0, Vi) — e, )
k=1r=1
+0(n?)
The proof is complete. O

Lemma 4 (Learning Dynamics of Understanding under DPO). Consider self-improvement proposed
in Section 4| with DPO. At epoch t, the one-step learning dynamics of understanding is

AUi(yo | Xo)
M M

= —nBo(=) 32D 3 wolyi | %0) <( =) (KA 0, VD = gy ) = KL G0, Vi) (™ — e, )

k=1r=1y,#yo
— (as =) (KL D0 VI = ey ) = K, (V1 Vi)™ = ))) +00r)
(14)
where ); denote the concatenation obtained by appending the embedding of y; to Uy.

Proof. Following 2] for the learning dynamics of understanding under DPO, we have

AU(yo | o)
= AGt(Xo | yo) — Alog ﬂ't(x())

= Vylogm, (%o | Yo)" (41 — 0:) — > we, (yi | x0) Ve logma, (x0 | ¥i))" (g1 — 0:) + O(||0r41 — 64%)
Yi

= > we,(yil Xo)(vs log 7, (%0 | Yo)" — Vg log ma, (xo | yz‘)T)(9t+1 = 0¢) + O([|6111 — 6:]1%)
Yi#Yo
M M

=mio(=a) 3D Y walyilxo) ((( =T K V0, Vi) = (@ = ) KL D0 VD)) (mit — e, )

k=17=1yi#yo

— ((©ans = 7KL D0, 90) = (@u — ) ICh (V0 ) ) (™ = )> +0(r?)
M M

= nBo(-) >3 3 weyi | x0) <( — )T (KL 0, Pt — ey ) = KL 0, V) — e, )

L, r
k=1r=ly;#yo

- (eza,k - ﬂ—fc)—r <K£,7'(yi7 y;r)(ﬂ—;‘Hr - ewffw) - ,Ck{:,T(yi7 yzj)(ﬂ—;'hi - elur))> + 0(7/2)
where ); denote the concatenation obtained by appending the embedding of y; to Uj. O

F ABLATION STUDY AND MORE EXPLORATIONS

F.1 SELF-IMPROVEMENTS ON ADDITIONAL MODELS

We conduct SFT-based self-improvement experiments on an additional model, Janus-Pro-1B (Chen
et al., [2025b), where the training data, training pipeline, hyperparameters and evaluation metrics
follow Section 2.1} Table [T5]shows that the self-improved model exhibits improvements in gen-
eration, understanding, and unification, further confirming the effectiveness of self-improvement.

F.2 ABLATION ON UPDATED MODEL COMPONENTS

In Section 4.2} we update only the parameters of the LLM component during self-improvement,
while keeping all other components frozen. This design aligns with prior work on MLLM:s (focused
solely on image understanding), which suggests that optimizing the LLM alone is sufficient to im-
prove MLLM performance, while updating other components yields limited gains (Verma et al.|
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Model Texture Shape Color Spatial Non-Spatial Complex Overall
Gen.t Und.? Non.[|Gen.t Und.t Non.[|Gen.t Und.t Non.[|Gen.t Und.t Non.[|Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-1B paseiine) 50.85 50.00 51.33[43.11 50.00 46.00 | 55.81 50.00 29.83| 7.99 50.00 42.67|21.34 50.00 9.00 |23.05 50.00 16.00|33.70 50.00 32.47
+SFT 55.58 53.76 41.00 |43.67 32.38 39.00 |59.34 58.70 24.07 | 10.40 53.87 35.33|28.84 6528 9.33 |32.72 51.58 15.00|38.43 52.60 27.29

Table 11: Self-improvement results of Janus-Pro-1B on T2I-CompBench++, where the understand-
ing score is evaluated using Gemini-Pro-2.5 as the external evaluator.

2024). Table[T2] supports our setting: fine-tuning only the LLM already enables the self-improved
Janus-Pro-7B to achieve improvements in generation, understanding and unification. However, ex-
panding the parameter updates to include the image aligner (a two-layer MLP projector that maps
image tokens to the LLM input space), the generation head (a two-layer MLP that projects LLM
output into tokenizer’s codebook space), or even the vision tower, did not lead to significant perfor-
mance gains in generation and slight declines were observed in both understanding and unification.

Model Texture Shape Color Spatial Non-Spatial Complex Overall
Gen.t Und.t Non.||Gen.t Und.t Non.|Gen.t Und.t Non.|Gent Und. Nonl|Gent Und. Non.||Gent Und.t Non.||Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-7B gaseiine) 3863 50.00 43.33(33.49 50.00 43.00|5322 50.00 2733|1681 50.00 31.00 [31.40 50.00 233 |37.73 50.00 10.33]3521 50.00 26.22
+LLM 5393 65.22 29.67 [38.63 53.85 34.00 [73.41 54.62 10.85|23.73 26.67 22.00(3145 7500 1.00 [38.57 75.00 433 |43.29 5839 16.98
+ LLM and Projector 5298 51.72 3133 [40.88 56.67 37.67 [73.61 2273 13.90|21.04 3571 2333|3141 66.67 2.00 [38.70 75.00 4.67 |42.10 5142 18.82
+ LLM and Projector and Vision Tower 53.62 5517 28.00|39.39 56.67 36.00 |73.56 25.00 10.17 |22.45 3333 21.00 |31.41 100.00 0.67 |38.64 63.64 633 |43.18 55.64 17.02

Table 12: Based on Janus-Pro-7B, we conducted self-improvement via SFT and observed that only
fine-tuning the LLM was sufficient to achieve improvements in both performance and unification.
Updating other components, such as the vision tower and projectors, yielded no significant gains.

F.3 ABLATION ON IMAGE CANDIDATES N

Table [I3] reports the number of post-training samples produced under different values of image
candidate N (see details in Alg. |I|) We observe that as IV increases, the number of constructed
samples gradually saturates. In this paper, we adopt a large value of N = 10 for data construction.

MLLM N=2 N=4 N=6 N=§8 N=I10
Janus-Pro-7B 254 1338 1823 2088 2265
Show-o 80 160 192 208 226

Table 13: Data expansion slows down as N increases.

F.4 ABLATION ON CURRICULUM LEARNING

We introduced curriculum learning at different training epochs (4 and 10). Curriculum replay at both
epochs improved self-improvement performance, though performance was better when replay was
applied at epoch 10. This is likely because the model’s generative and understanding capabilities had
improved by that stage, enabling a more effective use of earlier samples for expanding post-training
data. Accordingly, we use epoch 10 for curriculum replay in all experiments.

F.5 IMPROVEMENT WITH EXTERNAL REWARD

We construct post-training data using external Qwen2.5-VL-72B-Instruct. For Janus-Pro-7B with
the SFT strategy, Table [T5] compares Qwen-based alignment with self-improvement. Qwen enables
Janus-Pro-7B to achieve better generation and unification. Self-improvement yields slightly weaker
alignment, likely due to Janus-Pro-7B’s inferior image understanding capability compared to Qwen.
Nevertheless, without introducing any external signals, the self-improvement method achieves re-
sults close to those obtained with Qwen-based alignment.
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Model Texture Shape Color Spatial Non-Spatial Complex Overall
Gen.t Und.? Non.[|Gen.t Und.t Non.[|Gen.t Und.t Non.[|Gen.t Und.t Non.[|Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-7B paseiine) 38.63 50.00 43.33[33.49 50.00 43.00|53.22 50.00 27.33|16.81 50.00 31.00|31.40 50.00 233 |[37.73 50.00 1033|3521 50.00 26.22
+SFT 53.93 65.22 29.67 |38.63 53.85 34.00 |73.41 54.62 10.85|23.73 26.67 22.00 |31.45 75.00 1.00 |38.57 75.00 4.33 |43.29 58.39 16.98
+C-SFT (10) 56.38 66.67 28.33|39.86 64.52 33.67|73.77 52.14 12.20|24.87 38.46 21.67|31.44 7500 2.33 3878 70.00 3.33 |44.18 61.13 16.92
+C-SFT (4) 55.95 50.00 28.33|39.23 60.00 32.67 |74.67 52.73 10.85|23.42 26.67 23.00|31.38 75.00 0.33 3849 77.27 7.67 |43.86 56.94 17.14

Table 14: Curriculum learning at different epochs consistently leads to better self-improvement, and
we consistently apply it at a later epoch (epoch 10).

Model Texture Shape Color Spatial Non-Spatial Complex Overall
Gen.? Und.t Non.||Gen.t Und.t Non.||Gen.t Und.t Non.||Gen.t Und.? Non.||Gen.? Und.t Non.[|Gen.t Und.t Non.}|Gen.t Und.t Non.|
Gen. and Und.
Janus-Pro-7B gaseiine)  38.63 50.00 43.33 33.49 50.00 43.00 [53.22 50.00 27.33|16.81 50.00 31.00|31.40 50.00 2.33 |37.73 50.00 1033|3521 50.00 26.22

+ Self-improved SFT  53.93 65.22 29.67
+ Qwen-assisted SFT 56.84 56.00 25.00

38.63 53.85 34.00
41.53 59.26 37.33

73.41 54.62 10.85
76.18 49.63 11.86

23.73 26.67 22.00
24.14 3125 19.33

31.45 75.00 1.00
31.48 70.00 1.00

38.57 75.00 4.33
38.53 66.67 5.33

43.29 5839 16.98
44.78 55.47 16.64

Table 15: Constructing post-training samples with Qwen also enhances the generation, understand-
ing, and unification of MLLMs. Without any external rewards, the self-improvement method yields
slightly lower performance and unification than Qwen-based MLLMs.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In writing, we used LLMs (ChatGPT-5) for manuscript-wide grammar checking and sentence pol-
ishing. In coding, we leveraged LLMs (ChatGPT-5) for debugging our self-improvement pipeline
and assisting with figure-visualization scripts.
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