Deep Learning with Plausible Deniability

Wenxuan Bao'* Shan Jin? Hadi Abdullah? Anderson C. A. Nascimento?
Vincent Bindschaedler! Yiwei Cai?
"University of Florida 2Visa Research

Abstract

Deep learning models are vulnerable to privacy attacks due to their tendency to
memorize individual training examples. Theoretically-sound defenses such as
differential privacy can defend against this threat, but model performance often
suffers. Empirical defenses may thwart existing attacks while maintaining model
performance but do not offer any robust theoretical guarantees.

In this paper, we explore a new strategy based on the concept of plausible deniability.
We introduce a training algorithm called Plausibly Deniable Stochastic Gradient
Descent (PD-SGD). The core of this approach is a rejection sampling technique,
which probabilistically prevents updating model parameters whenever a mini-batch
cannot be plausibly denied. We provide theoretical results showing that PD-SGD
effectively mitigates privacy leakage from individual data points. Experiments
demonstrate the scalability of PD-SGD and the favorable privacy-utility trade-off it
offers compared to existing defense methods.

1 Introduction

Deep learning models are susceptible to privacy attacks such as membership inference [39] 145] 7, 14,
50, 144 23] 42]] that compromise the confidentiality of training data. Although mitigation strategies
exist, the current state of affairs forces practitioners to choose between strong privacy guarantees
and high-quality performant models. Differential privacy (DP)-based approaches [16] such as DP-
SGD [l]] offer strong mathematical privacy guarantees but often substantially degrade model quality.
Empirical defenses [30, 41, 9] better preserve model quality but come without any mathematical
guarantees and thus may ultimately prove vulnerable to future (yet-to-be-discovered) attacks.

This paper introduces a new approach for model training inspired by the concept of plausible
deniability. The central privacy goal is to ensure that the trained model could be obtained from
different data instead (and therefore model developers can plausibly deny using specific data subsets).
To satisfy this privacy desideratum, we propose Plausibly Deniable Stochastic Gradient Descent (PD-
SGD), a new gradient-based learning algorithm that leverages an efficient privacy test in each learning
iteration that scrutinizes mini-batch gradients before they are used to update model parameters. The
privacy test discards anomalous gradients — that are not consistent with the desired deniability level —
thereby mitigating potential adverse privacy consequences from such updates (as illustrated in [Fig. 2)).

We formalize batch-level plausible deniability as a privacy game focused on a single learning
iteration. We prove that achieving batch PD also protects individual examples’ privacy in the sense of
membership inference. With proper instantiation of the privacy test, PD-SGD satisfies batch PD and
(e, 9)-differential privacy. Through composition, we obtain a guarantee for the entire training process.

In summary, we provide a new way to conceptualize privacy for model training through plausible
deniability and a new algorithm for it that uses rejection-sampling based privacy testing. Compared
to DP-SGD, our approach does not require per-example clipping (which reduces computational and

*Work partially done during internship at Visa Research

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

) —— AdvReg
& SELENA

000 005 015 020

010
Attack Advantage

Figure 1: Privacy-Utility Trade-off for different
methods: We train WRN-16-4 on CIFAR-10 from
scratch with different defense methods. PD-SGD of-
fers a better trade-off than all other defenses. Attack
Advantage is 2 x (Balanced Attack Accuracy —0.5).

» Noise Z
— — Privacy Test Bound

G @ 9
P 3
P S ® g
‘o ® e, e ®e o g
4 \ 1
[0\"/.10 ° o ® e
\ - 7 p ~
\ e_ , ° y N
.o ,/ °] 1 REEN \
= b 1
. o ° | e)
o _
.) /
__’,
Pass Fail

Figure 2: Privacy Test Illustration. Gradients are
shown in 2-D. Pass: noisy seed gradient gs (blue) has
T alternatives/neighbors g; (black) inside privacy-test
bound (red dashed circles). Fail: Too few gradients
fall inside the region, so the update is rejected.

memory overhead) and it is applicable to any loss function (even non-decomposable ones). Compared
to empirical defenses (i.e., Adversarial Regularization [30]], SELENA [41]], and HAMP [9]), our
approach not only offers a theoretical guarantee but also provides a superior privacy-utility tradeoff.
In experiments, we find that models trained with PD-SGD often match or exceed the test accuracy of
empirical defenses while providing lower attack success rates against state-of-the-art membership
inference attacks [45,[7]. We also show that PD-SGD scales to large models by fine-tuning LLaMA-
2-7B [44] on SST-2 [40].

2 Background & Related works

Deep learning. We consider a supervised model represented by a function fy where 6 denotes
the model’s weights/trainable parameters. The model is trained using a dataset D of n data points
(24,9:), © € [1,n] and solving for the vector 6 that minimizes the loss function £(-) on D. This
is typically done using Stochastic Gradient Descent (SGD) [20] or a variant [21]]. We focus on
mini-batch SGD, which we refer to as (vanilla) SGD. In each iteration, the algorithm partitions
the training set into (roughly) equal-sized mini-batches, randomly picks a mini-batch, and updates
the parameters according to the mini-batch’s gradient. Specifically given a mini batch B;, we let
g; = VoL(0, B;) € R? denote the gradient of the loss on B; with respect to the model parameters
¢ € R?. The update at step k is therefore: 0, = 01 — ng;, where 7 is the learning rate.

Membership inference attacks (MIAs). MIAs have been extensively studied in recent years [39} 36|
461 1341 28] 1104 7, 145,129, 14,150, [14]]. These are privacy attacks where the adversary aims to determine
if a target example (z,y) was included in the model’s training set. Specifically, the adversary seeks
to discern between two competing hypotheses: Hy (“non-member” or “out”): (z,y) ¢ D, or Hq
(“member” or “in”): (z,y) € D.

Membership inference attacks were first introduced by Shokri et al. [39], employing shadow models
trained on data similar to the target’s to emulate its behavior and generate attack data. Recent works
like Ye et al. [45] propose different attack variants aimed at reducing adversarial uncertainty to
improve attack effectiveness. Carlini et al. [7] propose a Likelihood Ratio Attack (LiRA) and advocate
for increasing true positive rates at low false positive rates.

Defenses with a provable guarantee. Differentially Private Stochastic Gradient Descent (DP-SGD—
Abadi et al. [1]]) provably satisfies differential privacy [17]. DP-SGD updates the model parameters
iteratively like SGD, except that it bounds privacy leakage through (1) per-example clipping and (2)
noise addition. Each mini-batch gradient is computed as the average over the batch’s per-example
gradients, but the per-example gradients are first clipped to have bounded /5-norm. This ensures that
each example has a bounded influence on the mini-batch gradient that decreases with the size of the
mini-batch. Further, the mini-batch gradient is noised with isotropic Gaussian noise before being
used to update the parameters.

Given a clipping threshold C' > 0, the noisy gradient is:

_ 1 . C
gJ — g Zgjﬂ mln(l,m) +N(O,U2C2I) 5
i Dt
where b is the number of examples in the mini-batch, g; ; is the gradient vector of example ¢ in batch
Bj, and o is the noise level.

The prediction accuracy of models trained this way often suffers significantly due to the impact of
the noise [13] and gradient clipping [I8} 132, [25]]. Careful tuning of hyperparameters, and (or) use of
techniques such as data augmentation [[12} 3] is critical to obtain the favorable utility, especially when
the amount of training (or fine-tuning) data is limited [43]]. Another drawback is increased training
time, and larger memory requirements, although recent research attempts to mitigate these issues [6].

Empirical defenses. To address the problem of low utility while still effectively thwarting member-
ship inference, several empirical defense mechanisms have been proposed. These include Adversarial
Regularization (AdvReg) [30], SELENA [41] and HAMP [9]]. We select AdvReg, SELENA, and
HAMP because they are well-known and widely used as baselines [41} 2]. These defense mechanisms
are applied during the training phase, like DP-SGDE]

These approaches typically employ strategies such as regularization to lower the attack score, or
applying knowledge distillation to mitigate the attacks. While these empirical defense mechanisms
can preserve the model’s utility and offer some level of privacy protection, they lack provable
theoretical guarantees. Consequently, it is unclear to what extent they truly eliminate sensitive
information leakage or the degree to which they will be effective against future (possibly adaptive)
attacks.

To the best of our knowledge, no existing defense mechanism simultaneously offers a theoretically
justified guarantee and maintains good model utility. Our proposed method, PD-SGD, is designed to
help bridge this gap.

Plausible deniability. It is often said that differential privacy provides plausible deniability.
Differential privacy ensures that the probabilities of any output on neighboring datasets (datasets that
differ in exactly one example) are tightly bounded in terms of the privacy budget €. Thus, in a sense,
one can plausibly deny the membership of the differing example.

There are existing attempts at formalizing plausible deniability notions for machine learning such
as [33L15)]. Rass et al. [33] point out that since the same supervised model can be obtained from
multiple datasets (including purely random ones), then one can deny the dataset used. Bindschaedler
et al. [15] focus on the problem of synthesizing tabular microdata where a synthetic row is produced
from a single row of a database as a “seed.” The authors propose that a synthetic row is plausibly
deniable if the original database contains more than 7' (integer parameter) alternative rows that could
generate the synthetic with similar probability.

3 Plausible Deniability for Deep Learning

3.1 Batch-Level Plausible Deniability

In an epoch of a mini-batch learning algorithm such as SGD, the dataset is first randomly shuffled
and partitioned into m mini-batches of roughly equal size. Then, m iterations are performed and in
each: (1) a mini-batch is selected, (2) the gradient of the loss function (with respect to the parameters)
is computed on this mini-batch, and (3) this gradient is used to update the parameters. After the last
iteration, the epoch ends.

Let 7 denote a one iteration learning algorithm that represents steps (1) and (2) as described
above. The algorithm takes as input a sequence of batches 8 = (Bjy, ..., B,,) and the current
model parameter vector 6, and it outputs a gradient vector g. Suppose we invoke this algorithm on
batches 9B, it selects batch B (such that B = B; for some ¢ € [1,m]), and outputs gradient vector
g = grad(B;;), which is a function of B; and 6.

There are inference phase defenses such as MemGuard [24]]. We do not consider them, since PD-SGD is a
training algorithm.

Game GGy — Batch PD Game GG; — Singleton-Batch PD
1: (B1,B2,...,Bw), By + A'(Tp) > adversary pick 1: (B1,Bz2,...,Bw),z < A (To) > adversary pick
batches and the target batch batches and target data point z
2: b~ {0,1} > sample random bit b 2: By = {z} > batch with only z in it
3: if b = 1 then 3: b~ {0,1} > sample random bit b
4. g < To(B1,B2,...,By,B:) > gradient from 7 4: if b = 1 then
with By included 5: g < To(B1,Ba,...,By,B:) > gradient from 7
5: else with By included
6: g+« T9(B1,Ba,...,Bn) > gradient from 7~ 6: else
without By 7: g+ Te(B1,Ba,...,Bp) > gradient from 7~
7: endif without By
8: v « A(g,To,B1,Ba,...,Bm, Bt) 8: endif
9: b 14(9,7’97 B1,B2,...,Bm, Bt)
Game G2 — Chosen Data, Random Batches (= Strong MI) Game G'3 — Average Membership Inference
1: S,z + A’(Te) > adversary pick dataset S (|S| = n) and l: S~ D" > sample n data points i.i.d. from the data
target data point z distribution
2: (B1, Ba, ..., By,) < Partition(S) > randomly shuffle 2z +— A'(To) > adversary picks target data point z
and partition 3: (B1, Ba,. .., B,,) < Partition(S) > randomly shuffle
3: By = {2} > batch with only z in it and partition
4: b~ {0,1} > sample random bit b 4: B, = {2} > batch with only z in it
5: if b = 1 then 5: b~ {0,1}
6: g+ To(B1,Ba,...,Bm, Bt) 6: if b = 1 then
7: else 7: g < To(B1,B2,...,Bm, Bt)
8 g <+ To(B1,B2,...,Bn) 8: else
9: end if 9: g < To(B1,Ba,...,Bm)
10: v + A(g,Ts, S, Bt) 10: end if
11: b + A(g,Te, Bt)

Figure 3: One step privacy games relating batch plausible deniability to average membership inference. The

goal of the adversary (A, A”) is to guess bit b. We have that advg, > advg,,, fori =0,1,2.

Intuitively, we can plausibly deny that batch B was used (or was even a batch available to be selected)
if the same (or similar) gradient g could have been obtained from a different (disjoint) mini-batch
B’ # B. In other words, if there exists B’ # B among the set of batches such that g = grad(B’; 9).
If the gradient is computed deterministically, it would be extremely unlikely that two different batches
B, B’ have the exact same gradient. But if the process is randomized (e.g., if a small amount of
noise is added to the gradient) then observing a gradient g that could have been produced by multiple
batches does not reveal which batch was used (or if all were even available in the training data).

We formalize this privacy desideratum using a game-based definition (in the style used in prior
works [35] 46, 145]) where the adversary’s behavior is captured by two algorithms A and A’. Specifi-
cally, A’, denotes the procedure by which the adversary chooses the sequence of m > 1 (disjoint)
batches (B1, Ba, ..., B,,) and a target batch B;, whereas A denotes the procedure by which the
adversary guesses whether B; is included.

The batch PD game (Gy) is shown in the top left of The adversary determines the set of
batches B = (B4, ..., B,,) and the target batch B;. Then, a random bit b is sampled. If b = 1 then
the learning algorithm 7 is given the adversarially chosen of batches and the target batch. Otherwise,
it is given only B but not the target batch. In either case, the algorithm produces some output g that
is then provided to the adversary procedure A. The adversary guesses bit b’ and wins the game if
b = b. Intuitively, if no adversary can win at this game with higher probability than random chance,
then worlds in which b = 1 (and the target batch could be utilized) and in which b = 0 (and the target
batch is not available) are indistinguishable. Said differently, the model developer (who runs 7 can
plausibly deny inclusion/exclusion of any batch.

The advantage of adversary (A4, A’) for a game G is advg (A4, A') = 2Pr{d/ = b} — 1 and omit
A, A’ when clear from the context. The probability is over the randomness in the learning algorithm
T (and the choice of bit b). We denote the advantage of the best adversary for a game G as advg.
Informally, we say that a learning algorithm 7 provides (batch-level) plausible deniability if the
adversary’s advantage at the batch PD game is bounded. Crucially, batch PD is a property of the
algorithm. It does not depend on the data and must hold regardless of the set of batches (which the
adversary is allowed to choose).

3.2 Relationship to Membership Inference

Batch PD implies protection of individual examples in the sense of membership privacy. The intuition
is that protecting “membership” of a batch among the available batches also protects membership of
individual examples within that batch.

To show this, we construct a sequence of games G (batch PD), G1, G2, G5 (average MIA) where
the advantage of the best adversary for G; is at least as large as that of G; 1. From this, we conclude
that batch PD implies resilience to membership inference attacks. These games are shown in [Fig. 3|
and we discuss their construction and relationship in full detail in

3.3 Indistinguishability & PD Criterion

Let p7(-) denote the probability distribution over the output (gradient) from algorithm 7. With this
notation, Prz, (¢|(Bi, . .., By,)) is the probability that g is produced when the input of 7 consists
of the batches B = (By,...,B,,) and the parameters are 6. For conciseness, we will omit Ty
since we will only compare probabilities in the cases where 7 and 6 are fixed (and clear from the
context). So we write Pr(g|8B). We define plausible deniability of batches by the “closeness” of the
distributions Pr(:|8B) and Pr(:|B’) for two sets of batches B and B’ that differ in exactly one batch
(e.g..,B = (B1,...,Bm) and B'(By, ..., B,,, B") for some batch B’).

For distributions p and ¢ over the same domain X, we write p ~, » ¢ to denote that p and ¢
are (A, \')-indistinguishable. Distributions p and ¢ are (A, \')-indistinguishable for A > 1 and
0<)N <l1iffforallz € X and S C X we have:

p(x) < Ag(x) + N(x) and q(z) < Ap(z) + N (z) with /SX(m) <\ (1)

Eq. (1)|is a pointwise condition that relates the two distributions by a multiplicative factor A and
some slack \'(z) > 0 but the slack has total mass at most A’ over the domain.

Definition 1. A (one step) learning algorithm T satisfies the PD criterion if for any two sets of
batches B and B' that differ in exactly one batch, we have Prr(-|B) ~x x» Prr(-|B’) for some
A>1and 0 <)N < 1.

[Definition I]is a sufficient (but not necessary) condition to get an advantage bound on batch PD, i.e.:
on advg, < i—;i + ;‘—Jrll We provide more details in|Appendix B
Further theory. In we discuss the relationship between differential privacy and
plausible deniability. In brief, the notions have similarities but are not directly compatible as they
operate at different levels. (DP operates on entire datasets and reasons about adding/removing data
points; PD operates on sets of batches and reasons about adding/removing batches.) However, we
show later in the paper that the PD-SGD algorithm satisfies (£, §)-DP, although the guarantee is looser
than for DP-SGD (we leave improving bounds for future work).

4 Plausibly Deniable Stochastic Gradient Descent

We propose a simple modification to SGD to achieve batch PD. The idea is to combine (1) random-
ization of the gradient through noise addition with (2) a privacy test that enables discarding (noisy)
gradients that are not plausibly deniable given the available set of batches. When gradients are not
plausibly deniable, they are simply discarded. Otherwise, they are used to update model parameters
as usual. Intuitively, this process is a way to smooth out the output distribution over the gradient to
make it largely insensitive to the availability of any given batch.

4.1 Randomizing Gradients with Gaussian Noise

Adding noise to the gradient in SGD is a well-known technique that has benefits for convergence [31}
52]. In our case, we add isotropic Gaussian noise to the gradient vector g as § = g + Z, where
Z ~ N(0,0%I). We can now view each (noisy) mini-batch gradient § as a random variable and the
probability of producing a fixed gradient vector g from a batch B with gradient g = grad(B;0) is
denoted p(g|B) = p(g — g) where p denotes the Gaussian pdf for Z ~ N(0,021).

For a fixed g, we say that two batches B;, Bs are a-similar iff

1 _ p(g]B1)

— <a,
a ~ p(g|B2)

where o > 1 is a privacy parameter. We write B, ~, Bs to denote this (and often omit g when clear
from the context). Informally, if B; ~, B, then adversaries observing g cannot establish that g is
more likely to have originated from B than from Bs (other than allowed by «).

@

The larger the number of distinct a-similar batches, the harder it is for the adversary to link observing
g to a specific batch. The idea of privacy testing is to count the number of a-similar batches and
compare the count to a threshold 7. We call such batches “alternatives” since if some batch B
originated g then these a-similar batches are alternative explanations (that do not involve B) for the
adversary observing g.

4.2 Privacy Testing

We construct several privacy tests by considering alternative ways of counting ca-similar batches and

randomizing the probability that the test passes given a specific count. In we discuss
test variants and their properties in detail.

The privacy test acts as a local Lipschitz condition that bounds the change due to any one batch. There
are three critical properties of a privacy test that influence the achieved level of plausible deniability:
(1) stability, i.e., sensitivity of the count to adding/removing/substituting a batch; and (2) bounded
increase in passing probability for increasing counts.

In addition, tests that have a ceiling (i.e., a maximum probability of passing the test no matter how
large the count of alternatives) are desirable. This is because they limit the information leakage from
gradient rejections (failing to pass the test). However, this may not be needed in practical scenarios
as realistic adversaries do not observe rejections.

Given a partition of the dataset into batches B = (By, Ba, ..., B;,). We pick a B € 98 randomly
and produce a noisy gradient §. Let 7 = 7(g, B, B) denote the count of alternatives. The privacy
test takes as input the noisy gradient g, the gradient g from chosen “seed” batch B, and the set of
batch gradients G = (g1, . .., gm) (Where g; = grad(B;;#)). The privacy parameters are: o > 1
(similarity factor), T > 1 (count threshold), 8 > 1 (count noise scale), and 1) > 0 (floor/ceiling).

PrivacyTest(g, g, G; a, T, 3,):

1. 7 < CountSimilar(g, g, G; @)

2. Sample ¢ ~ Geom(f)

3. If 7+ ¢ > T': PASS with probability 1 — 1)
4. Else: FAIL

The test first computes the number of alternatives 7, then it randomizes the threshold by adding an
integer from the symmetric Geometric distribution with shape 3. If the count matches or exceeds the
threshold, then the ceiling probability 1 — v is applied and the test passes or fails accordingly. If the
count is below the threshold, then the test fails. For § — oo and 1) = 0 we recover a deterministic
test that passes or fails based on whether the number of alternatives is at least 7.

We propose three ways to count alternatives (CountSimilar). Let By, ..., By, be disjoint batches
and let B, be the chosen “seed” batch.

+ Simple counting: 7 is the number of distinct batches that are o-similar to B (Eq. (2)).

 Integer (“bins) counting: 7 is the number of distinct batches B’ such that:
[log,(p(31B.)| = [log, (p(3IB')].

* Clique counting: 7 is the largest k such that there exists distinct batches By, Bs, ..., By
that include By, where for any pair i, j € 1,2,...,k: B; ~, B; (Eq.).

In experiments, we find that all three variants perform similarly (up to slight tuning of privacy
parameters). The simple counting method performs well in experiments (which is why we often use
it). However, the other two counting methods have better theoretical properties: when adding or
removing a batch, the count for any noisy gradient g (originating from any batch) can change by at
most 1 (i.e., sensitivity is 1).

Algorithm 1 Plausibly Deniable Stochastic Gradient Descent (PD-SGD)

Input: Training dataset D, number of batches m, number of training steps K, loss function £(-), privacy
parameters («, T, 8,).
Initialize: 6 randomly
fori=1,2,..., K steps do
Randomly split D into {B1,..., Bn}
Pick seed batch B, uniformly at random
gs + VoL(0;—1, Bs) // Compute gradient on seed batch
G < gs + Z where Z ~ N(0,0°1) // Compute noisy gradient
Privacy testing and parameter updates
G+ 0
for j € [1,m] do
g;i < VeoL(bi—1, Bj) // Compute gradient on batch B;
G+ GU{g;}
end for
if PrivacyTest(g, g, G; o, T, 3,) then
01' < 97;71 —-n g
else
0; <+ 0;_1
end if
end for

If T' < 1 (and ¢ = 0), then the test always passes (since all ways of adding up alternatives include
the seed batch as an alternative). Evaluating the test is efficient (for all ways of counting). Let
a = exp (vy) for some vy > 0 (we can think of v as the privacy parameter instead of).

Take the log of the pdf. Checking for a-similarity (Eq. (2)) is equivalent to checking if:
llogpdf(Z) — logpdf(g — g:)| < v, (©)

which is easily testable for all batches’ gradients g; for i = 1,2, ..., m since the log-pdf of isotropic
Gaussian can be computed efficiently.

4.3 Algorithm

[Algorithm T|provides a description of the proposed method. We initialize 6 randomly and iterate for
up to K learning steps. In each step, we randomly partition the training data D into m roughly equal
size batches By, ..., B,,. We pick a single seed batch B, among them uniformly at random. We then
compute the gradient vector of the loss with respect to the model parameters under seed batch B,
which results in g5, and add isotropic Gaussian noise with scale ¢ on it to obtain noisy gradient g.

Then we evaluate the privacy test, which first involves the computation of the other batches’ gradients.
If the test passes, then we update the model parameters 6; with the noisy gradient §. Otherwise, the
update is never applied (keep 6; = 6;_1) (i.e., we discard the update) and continue to the next step.

It can be seen that we can instantiate the test so as to recover (vanilla) SGD: take T' < 1 ¢ = 0,
B — oo and ¢ = 0 (no noise on the gradient).

4.4 Algorithmic Complexity

The computational complexity of SGD, DP-SGD and [Algorithm T|depends on the number of gradient
calculations. SGD computes one gradient per step to update the parameters. DP-SGD computes b
gradients per step where b is the batch size since it needs to compute per data point gradients for
clipping. PD-SGD computes the seed batch gradient (and adds noise to it), and then (up to) m — 1
gradients for other batch gradients to run the privacy test.

However, since PD-SGD updates can fail, the complexity for a fixed number & of successful gradient
updates is O(mk(1 — p)~1), where p is the rejection rate. This is because (1 — p)~*! is the expected
number of iterations to get one successful gradient update. By comparison, performing & gradient
updates requires O(k) gradient computations with SGD and O(kb) with DP-SGD. Thus, for large
batches (b > m) we expect PD-SGD to be faster than DP-SGD. We observe this in experiments
(Appendix G.9). PD-SGD also consumes less memory than DP-SGD, albeit more than SGD. Note

that evaluating the privacy test does not require keeping O(m) batches’ gradients simultaneously in
memory, since after evaluating a-similarity (e.g., through|Eq. (3)) we can discard them.

Aside from lower computation and memory usage, not having to compute per data point gradients
has other benefits. PD-SGD (unlike DP-SGD) is compatible with any loss function, not only
decomposable ones. Non-decomposable are those where the batch gradient cannot be written as a
sum of the individual example gradients. Kong et al. [26] discuss this issue for DP-SGD and how to
mitigate 1t.

4.5 Privacy-Utility Tradeoff & Batch PD

Due to space constraints, we defer a full privacy analysis of PD-SGD to The key results
are that: (1) PD-SGD (with suitable privacy parameters) satisfies the batch PD criterion (Definition 1)
for A\, \ such that forany 1 < t < T: A < af(1 + %) (not the exact expression) and \' <
m~13~(T=1); and (2) PD-SGD (again with suitable privacy parameters) satisfies (e, §)-differential
privacy for € ~ In A (slightly different than above) and 6 < X'. These results are for one iteration of
PD-SGD, but with DP composition results, we then obtain guarantees for the training process

5 Experiments
5.1 Experimental Setup

Threat Model. For the purposes of comparing PD-SGD against existing membership inference
defenses, we assume a black-box membership adversary who knows the complete PD-SGD algorithm
and its privacy parameters — and the entire pool of candidate training records, but can only interact
with the final trained model (or its API); it does not see per-iteration mini-batches, noisy gradients,
or acceptance decisions.

Setup. We use three of the most commonly used datasets for evaluating membership inference
attacks [39} 145l 141] and DP-SGD [12,[3]: CIFAR-10, CIFAR-100, and Purchase-100. For the models,
we fine-tune ViT-B-16 for CIFAR-10 and CIFAR-100, linear model for Purchase-100, and Wide
ResNet for CIFAR-10 and CIFAR-100 training from scratch. Unless otherwise stated, we instantiate
the privacy test using simple counting without randomizing the threshold. We found empirically that
counting variants performs similarly up to parameter tuning variations. We tune privacy parameters
T, v (= Ina), and o according to In cases where we randomized the threshold and used
a ceiling, we set § = e and ¢ = 0.2.

To evaluate the robustness of our defense mechanisms against such adversaries, we employ black-box
membership inference attacks using the Privacy Meter}’| We use the Population Attack (P-Attack),
Reference Attack (R-Attack), Shadow model Attack (S-Attack) based on [45] and Carlini et al. Attack

(C-Attack) based on [[7]. We provide full details in[Appendix F|
5.2 Evaluations

Privacy-Utility Trade-off. We primarily evaluate utility using the trained models’ test accuracies,
although we include results on computational overhead in[Appendix G.9] We evaluate privacy using
our selected set of four different membership inference attacks, namely P-Attack, R-Attack, S-Attack,
and C-Attack. For the first three, we report the attack AUC score. For C-Attack we ,report TPR at
0.1% FPR as advocated for by [7].

We use two sets of hyperparameters for PD-SGD. Parameter Setting 1 (PS 1) is designed to optimize
utility while maintaining reasonable privacy, while Parameter Setting 2 (PS 2) prioritizes better
privacy at the cost of lower accuracy. [Appendix E|provides full details of how we tune parameters,
and shows the details of hyperparameters we used in experiments.

Our findings, summarized in[Table T| show that PD-SGD achieves a superior privacy-utility trade-off,
surpassing both empirical and DP-based defenses across all evaluated tasks.

*https://github.com/privacytrustlab/ml_privacy_meter/tree/
173d4ad80f183ae6e1867b2793dfffe0633107d0/benchmark

https://github.com/privacytrustlab/ml_privacy_meter/tree/173d4ad80f183ae6e1867b2793dfffe0633107d0/benchmark
https://github.com/privacytrustlab/ml_privacy_meter/tree/173d4ad80f183ae6e1867b2793dfffe0633107d0/benchmark

Table 1: Evaluations for PD-SGD: We evaluate PD-SGD on three datasets with four different attacks. We
report the average results and standard deviation among three independent runs. FS represent Training from
scratch and FT represent Finetuning. PS 1 and PS 2 represent parameter setting 1 and 2. We can observe that
PD-SGD can achieve a better privacy-utility trade-off than other empirical defense mechanisms and DP-SGD. In
this table, we set € = 8 for DP-SGD and we leave all experiments setup and full results in appendix.

Task Method \ Test ace | P-Attack R-Attack S-Attack C-Attack
Non-private 87.22% (+0.13%) | 0.60 (£0.01) 0.60 (£0.01) 0.58 (£0.01) 0.22% (£0.03%)
AdvReg 75.38% (£0.09%) | 0.53 (£0.00) 0.54 (£0.01) 0.53 (£0.01) 0.19% (40.02%)
CIFAR-10 (FS) SELENA 81.04% (+0.07%) | 0.53 (£0.01) 0.53 (£0.01) 0.53 (£0.01) 0.19% (£0.01%)
DP-SGD 63.31% (£0.15%) | 0.51 (£0.01) 0.50 (£0.00) 0.51 (£0.01) 0.13% (£0.02%)
PD-SGD (PS 1) | 82.22% (4+0.11%) | 0.53 (£0.01) 0.52 (+0.01) 0.51 (+0.01) 0.19% (+0.01%)
PD-SGD (PS 2) | 79.69% (£0.25%) | 0.53 (£0.00) 0.50 (£0.01) 0.51 (£0.01) 0.15% (£0.01%)
Non-private 96.09% (£0.02%) | 0.57(£0.01) 0.69(£0.01) 0.56 (£0.01) 0.37% (£0.03%)
AdvReg 95.96% (£0.06%) | 0.56 (£0.01) 0.59 (£0.01) 0.55 (£0.00) 0.31% (£0.01%)
CIFAR-10 (FT) SELENA 96.01% (+£0.04%) | 0.55 (£0.00) 0.51 (£0.01) 0.56 (£0.02) 0.33% (£0.02%)
DP-SGD 94.22% (£0.09%) | 0.54 (£0.00) 0.59 (£0.01) 0.54 (£0.01) 0.23% (£0.02%)
PD-SGD (PS 1) | 96.18% (£0.06%) | 0.54 (0.01) 0.49 (£0.01) 0.55 (£0.01) 0.27% (£0.02%)
PD-SGD (PS 2) | 94.73% (+£0.07%) | 0.53 (£0.01) 0.49 (£0.01) 0.53 (£0.01) 0.20%(--0.03%)
Non-private | 74.22% (£0.03%) | 0.73(£0.01) 0.68(£0.01) 0.73(£0.01) 0.38% (+0.03%)
AdvReg 72.08% (£0.03%) | 0.70(£0.01) 0.68(£0.01) 0.72(+0.01) 0.33% (+0.02%)
CIFAR-100 (FT) SELENA 68.46% (£0.04%) | 0.63(+0.00) 0.60(+0.01) 0.65(4+0.01) 0.19% (40.02%)
DP-SGD 27.12% (£0.05%) | 0.51 (£0.01) 0.52 (£0.01) 0.51 (£0.01) 0.13% (40.03%)
PD-SGD (PS 1) | 72.56% (£0.06%) | 0.67(+0.01) 0.62(£0.01) 0.64(£0.01) 0.18% (£0.02%)
PD-SGD (PS 2) | 68.79% (£0.05%) | 0.62(+0.01) 0.59 (£0.01) 0.62 (£0.01) 0.14% (£0.02%)
Non-private 68.56%(£0.12%) | 0.76(£0.01) 0.78(£0.01) 0.77(£0.01) 0.12%(40.02%)
AdvReg 57.56%(£0.07%) | 0.70(£0.01) 0.70(£0.01) 0.66(£0.01) 0.08%(40.02%)
Purchase-100 (ES) SELENA 6431% (+£0.09%) | 0.63(+0.00) 0.73(+0.01) 0.66(+0.01) 0.07%(+0.01%)
DP-SGD 47.61% (£0.12%) | 0.56(4+0.00) 0.56(£0.01) 0.56(£0.01) 0.08% (40.01%)
PD-SGD (PS 1) | 64.83% (£0.05%) | 0.63(£0.01) 0.72(+0.01) 0.64(+0.01) 0.06% (+£0.01%)
PD-SGD (PS 2) | 61.16% (£0.07%) | 0.61(£0.01) 0.59(+0.02) 0.60(x0.01) 0.06% (+0.01%)

PD-SGD, particularly with PS1, achieves comparable utility to the non-private setting, with a 96.18%
test accuracy on CIFAR-10 fine-tuning and robust performance on CIFAR-100 and Purchase-100.
This high-utility performance extends to training from scratch. To demonstrate generalizability, we
trained a Wide ResNet (WRN-16-4) model from scratch on CIFAR-10, with results shown in the row
of CIFAR-10 (FS) Here, PD-SGD (82.22%) surpasses empirical methods like SELENA
(81.04%) and AdvReg (75.38%). In all cases, PD-SGD exhibits stronger membership inference
attack resilience than these empirical defenses, with C-Attack performance being among the lowest
recorded.

Furthermore, PD-SGD provides a favorable privacy-utility tradeoff even when privacy is paramount
(PS2). For instance, on Purchase-100, there is only approximately a 7% decrease in test accuracy
to obtain a reduction in attack AUC of nearly 0.15 compared to the non-private baseline. This is
mirrored in the CIFAR-10 from-scratch setting, where the R-Attack AUC score shows a marked
decrease from 0.60 to 0.50.

Compared to DP-SGD, the method provides comparable or better membership privacy but with much
higher test accuracy. For instance, PD-SGD provides both higher test accuracy and better MIA
defense than DP-SGD for € = 8 for CIFAR-10. This superior trade-off holds in further experiments,
including when fine-tuning with more data and training from scratch on CIFAR-100
(Appendix G.12)), where we find PD-SGD still achieves better utility and comparable membership
privacy even when using a large ¢ like 500 for DP-SGD.

We further illustrate the privacy-utility tradeoff between methods visually in The x-axis shows
the (empirical) attack advantage, and the y-axis shows the test accuracy for the WRN-16-4 model
trained on CIFAR-10. Compared to DP-SGD, PD-SGD provides higher test accuracy for the same
attack advantag,e even for high privacy cases i.e., attack advantages close to 0. Compared to empirical
defenses, PD-SGD not only can provide better utility with comparable attack advantage but also
offers a way to navigate the tradeoff (through the privacy parameter) and not (only) a fixed point on
the privacy-utility landscape.

Scalability and Efficiency. To show the scalability of PD-SGD, we fine-tune LLaMA-2-7B [44] on
SST-2 [40] with PD-SGD. Our run reaches 94.76% test accuracy while maintaining stable memory
use (peak allocated memory 6,753.48 MB). It is comparable to 94.8% reported in Table 12 of Zhao

Table 2: Impact of Privacy Test and Noise: We keep all hyperparameters the same, only changing the threshold
T to control the privacy test. v'means the presence of noise or the application of a privacy test, X means the
absence of these components, and ® represents the use of random rejection for gradient updates instead of
standard privacy testing.

Method Noise Privacy Test | Testacc | P-Attack R-Attack S-Attack C-Attack
Non Private X X 96.08% 0.56 0.68 0.56 0.35%
Only Noise v X 94.99% 0.54 0.57 0.55 0.30%
Only Privacy Test X v 96.01% 0.55 0.56 0.56 0.32%
Random Rejection v & 94.78% 0.55 0.54 0.54 0.28%
PD-SGD v v 94.70 % 0.53 0.48 0.53 0.20%

et al. [51]] with normal training and 92.2% with DP-Lora [48]]. This shows PD-SGD is practical for
LLM fine-tuning and does not incur prohibitive memory overhead.

Although the privacy test introduces overhead compared to SGD, PD-SGD is significantly more
efficient than DP-SGD. This is because PD-SGD operates at the batch level, avoiding the costly
computation and storage of per-example gradients. A single training step is substantially faster, and
GPU memory consumption is drastically lower — remaining comparable to non-private training
and using less than half the memory required by DP-SGD in our experiments. Full details on

computational time and memory usage are available in[Appendix G.9

Privacy Test and Gradient Noise. Compared to (vanilla-)SGD, PD-SGD includes two components:
(1) noise addition to the seed batch’s gradient, and (2) a plausible deniability-based privacy test. We
create a set of principled experiments to isolate the effect of these two components.

* Only Noise: we set 7' =1 (¢ = 0, 5 — 00), ensuring the privacy test will always pass.
¢ Only Privacy Test: use privacy test normally, but update parameters using the un-noised gradient.
* Random Rejection: seed batches’ gradients are randomly rejected at the same rate as PD-SGD.

shows the results. Adding noise to the gradient without the privacy test does not effectively
defend against membership inference. The R-Attack success rate decreases substantially, but there is
no substantial decrease for P-Attack, S-Attack, and C-Attack. Similarly, if the privacy test is used
but the gradient is un-noised or if updates are randomly rejected, we again see no major decrease
in membership inference attack success rates. By contrast, PD-SGD exhibits the largest effect in
mitigating membership inference attacks. The R-Attack success rate drops further to 0.48, and other
attack vectors like P-Attack, S-Attack, and C-Attack are similarly reduced.

These results demonstrate that it is the combination of both noise addition and privacy testing that
results in the observed privacy protection of PD-SGD.

Additional Experiments. In we explore trade-offs between the privacy parameters,
show the impact of the batch size/number of batches, rejection rate for PD-SGD, and provide
additional experiments such as training from scratch on CIFAR-100. We also evaluate how PD-SGD
rejects anomalous batches, its computation time and GPU usage per training step, frequency of
examples used in PD-SGD, compared to SoTA DP-SGD and new defense mechanism (e.g., HAMP
[9l), privacy-test variants, and vulnerable data points identified by PD-SGD.

6 Conclusions

We proposed a new approach for training models with privacy, inspired by the concept of plausible
deniability. Our construction, PD-SGD, is based on a rejection sampling approach using a privacy test.
We show that PD-SGD limits membership inference attack success rate and show that PD-SGD can
be instantiated to meet differential privacy guarantees. In experiments, we find that PD-SGD provides
a superior privacy-utility trade-off compared to existing defense methods. This makes PD-SGD a
promising solution for enhancing privacy protection in practical deep-learning applications.

There are limitations that we plan to alleviate in future work. The relationships between batch PD,
membership inference, PD-SGD, and differential privacy are per iteration. They can be extended
to the entire training process, but we believe that the resulting bounds are loose and that stronger
composition results can be derived. Also, we focused on the centralized learning setting, and more
work is required for application to collaborative or federated learning.

10

Acknowledgments

We thank the anonymous NeurIPS reviewers and area chair for their helpful feedback and suggestions.
This work was supported in part by the National Science Foundation under CNS-2055123. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar, and L. Zhang. Deep learning with
differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pages 308-318, 2016.

[2] M. Aerni, J. Zhang, and F. Tramer. Evaluations of machine learning privacy defenses are misleading. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2024.

[3] W. Bao, F. Pittaluga, V. K. BG, and V. Bindschaedler. Dp-mix: mixup-based data augmentation for
differentially private learning. Advances in Neural Information Processing Systems, 36, 2024.

[4] M. Bertran, S. Tang, A. Roth, M. Kearns, J. H. Morgenstern, and S. Z. Wu. Scalable membership inference
attacks via quantile regression. Advances in Neural Information Processing Systems, 36:314-330, 2023.

[5] V. Bindschaedler, R. Shokri, and C. A. Gunter. Plausible deniability for privacy-preserving data synthesis.
Proceedings of the VLDB Endowment, 10(5), 2017.

[6] Z. Bu, J. Mao, and S. Xu. Scalable and efficient training of large convolutional neural networks with
differential privacy. Advances in Neural Information Processing Systems, 35:38305-38318, 2022.

[7]1 N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. Membership inference attacks from first
principles. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1897-1914. IEEE, 2022.

[8] X. Chen, S.Z. Wu, and M. Hong. Understanding gradient clipping in private sgd: A geometric perspective.
Advances in Neural Information Processing Systems, 33:13773-13782, 2020.

[9] Z.Chen and K. Pattabiraman. Overconfidence is a dangerous thing: Mitigating membership inference attacks
by enforcing less confident prediction. In Network and Distributed System Security (NDSS) Symposium,
2024.

[10] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot. Label-only membership inference attacks.
In International conference on machine learning, pages 1964—-1974. PMLR, 2021.

[11] J. D. Cook. Upper & lower bounds for the normal distribution function. https://www.johndcook.com/
blog/norm-dist-bounds/, 2024.

[12] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle. Unlocking high-accuracy differentially private
image classification through scale. arXiv preprint arXiv:2204.13650, 2022.

[13] F. Dérmann, O. Frisk, L. N. Andersen, and C. F. Pedersen. Not all noise is accounted equally: How
differentially private learning benefits from large sampling rates. In 2021 IEEE 31st International Workshop
on Machine Learning for Signal Processing (MLSP), pages 1-6. IEEE, 2021.

[14] J. Dubinski, A. Kowalczuk, S. Pawlak, P. Rokita, T. Trzcifiski, and P. Morawiecki. Towards more realistic
membership inference attacks on large diffusion models. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 4860—4869, 2024.

[15] L. Duembgen. Bounding standard gaussian tail probabilities. arXiv preprint arXiv:1012.2063, 2010.

[16] C. Dwork. Differential privacy. In International colloquium on automata, languages, and programming,
pages 1-12. Springer, 2006.

[17] C.Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of cryptography conference, pages 265-284. Springer, 2006.

[18] C.Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3—4):211-407, 2014.

[19] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy mechanisms. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 351-360, 2009.

11

https://www.johndcook.com/blog/norm-dist-bounds/
https://www.johndcook.com/blog/norm-dist-bounds/

[20] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtédrik. Sgd: General analysis and
improved rates. In International Conference on Machine Learning, pages 5200-5209. PMLR, 2019.

[21] S. H. Haji and A. M. Abdulazeez. Comparison of optimization techniques based on gradient descent
algorithm: A review. PalArch’s Journal of Archaeology of Egypt/Egyptology, 18(4):2715-2743, 2021.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

[23] Y. He, B. Li, L. Liu, Z. Ba, W. Dong, Y. Li, Z. Qin, K. Ren, and C. Chen. Towards label-only membership
inference attack against pre-trained large language models. In USENIX Security, 2025.

[24] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong. Memguard: Defending against black-box
membership inference attacks via adversarial examples. In Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pages 259-274, 2019.

[25] A. Koloskova, H. Hendrikx, and S. U. Stich. Revisiting gradient clipping: Stochastic bias and tight
convergence guarantees. In International Conference on Machine Learning, pages 17343-17363. PMLR,
2023.

[26] W. Kong, M. Ribero, et al. Differentially private optimization for non-decomposable objective functions.
In The Thirteenth International Conference on Learning Representations.

[27] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[28] Y. Long, L. Wang, D. Bu, V. Bindschaedler, X. Wang, H. Tang, C. A. Gunter, and K. Chen. A pragmatic
approach to membership inferences on machine learning models. In 2020 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 521-534. IEEE, 2020.

[29] T. Matsumoto, T. Miura, and N. Yanai. Membership inference attacks against diffusion models. In 2023
IEEE Security and Privacy Workshops (SPW), pages 77-83, 2023.

[30] M. Nasr, R. Shokri, and A. Houmansadr. Machine learning with membership privacy using adversarial
regularization. In Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security, pages 634-646, 2018.

[31] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and J. Martens. Adding gradient
noise improves learning for very deep networks. arXiv preprint arXiv:1511.06807, 2015.

[32] J. Qian, Y. Wu, B. Zhuang, S. Wang, and J. Xiao. Understanding gradient clipping in incremental gradient
methods. In International Conference on Artificial Intelligence and Statistics, pages 1504—1512. PMLR,
2021.

[33] S. Rass, S. Konig, J. Wachter, M. Egger, and M. Hobisch. Supervised machine learning with plausible
deniability. computers & security, 112:102506, 2022.

[34] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou. White-box vs black-box: Bayes optimal
strategies for membership inference. In International Conference on Machine Learning, pages 5558-5567.
PMLR, 2019.

[35] A. Salem, G. Cherubin, D. Evans, B. Kopf, A. Paverd, A. Suri, S. Tople, and S. Zanella-Béguelin. Sok:
Let the privacy games begin! a unified treatment of data inference privacy in machine learning. In 2023
IEEE Symposium on Security and Privacy (SP), pages 327-345. IEEE, 2023.

[36] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes. MIl-leaks: Model and data
independent membership inference attacks and defenses on machine learning models. arXiv preprint
arXiv:1806.01246, 2018.

[37] T. Sander, P. Stock, and A. Sablayrolles. Tan without a burn: Scaling laws of dp-sgd. In International
Conference on Machine Learning, pages 29937-29949. PMLR, 2023.

[38] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta,
C. Mullis, M. Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text
models. Advances in Neural Information Processing Systems, 35:25278-25294, 2022.

[39] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning
models. In 2017 IEEE symposium on security and privacy (SP), pages 3—18. IEEE, 2017.

12

[40] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu,
and S. Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1631-1642, Seattle, Washington, USA, Oct. 2013. Association for Computational
Linguistics.

[41] X. Tang, S. Mahloujifar, L. Song, V. Shejwalkar, M. Nasr, A. Houmansadr, and P. Mittal. Mitigating
membership inference attacks by {Self-Distillation} through a novel ensemble architecture. In 315t USENIX
Security Symposium (USENIX Security 22), pages 1433-1450, 2022.

[42] J. Tao and R. Shokri. Range membership inference attacks. In 2025 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), pages 346-361. IEEE, 2025.

[43] M. Tobaben, A. Shysheya, J. F. Bronskill, A. Paverd, S. Tople, S. Zanella-Beguelin, R. E. Turner, and
A. Honkela. On the efficacy of differentially private few-shot image classification. Transactions on Machine
Learning Research, 2023.

[44] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

[45] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri. Enhanced membership inference
attacks against machine learning models. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3093-3106, 2022.

[46] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning: Analyzing the
connection to overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF), pages
268-282. IEEE, 2018.

[47] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek, J. Nguyen, S. Ghosh,
A. Bharadwaj, J. Zhao, G. Cormode, and 1. Mironov. Opacus: User-friendly differential privacy library in
PyTorch. arXiv preprint arXiv:2109.12298, 2021.

[48] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T. Lee, A. Manoel, L. Wutschitz,
S. Yekhanin, and H. Zhang. Differentially private fine-tuning of language models. In International
Conference on Learning Representations, 2022.

[49] S. Zagoruyko and N. Komodakis. Wide residual networks. british machine vision conference (bmvc),
2016.

[50] S.Zarifzadeh, P. Liu, and R. Shokri. Low-cost high-power membership inference attacks. In Forty-first
International Conference on Machine Learning, 2024.

[51] J. Zhao, T. Wang, W. Abid, G. Angus, A. Garg, J. Kinnison, A. Sherstinsky, P. Molino, T. Addair, and
D. Rishi. Lora land: 310 fine-tuned 1lms that rival gpt-4, a technical report. arXiv preprint arXiv:2405.00732,
2024.

[52] L. Ziyin, K. Liu, T. Mori, and M. Ueda. Strength of minibatch noise in SGD. In International Conference
on Learning Representations, 2022.

13

Road Map
This appendix is structured as follows:

. Notation: a compact table of symbols used throughout the paper.

. — Batch PD Analysis: more on the relationship between batch PD and other
privacy games such as membership privacy, and derivation of bounds on adversary’s advantage.

* [Appendix C|— Privacy-Test Analysis: detailed study of the privacy tests and their properties,
and the derivation of the (¢, §)-DP guarantee.

* [Appendix D|— What Batch Pass the Test: analysis of gradient rejection and its implications.

* [Appendix E|— Hyper-parameter Tuning: practical guidance on choosing the noise scale o,
threshold +, and neighbor count 7', illustrated with privacy—utility curves.

* [Appendix ¥|— Implementation Details: datasets, model architectures, training settings, and
configurations for four black-box membership-inference attacks.

. — Extended Experiments: additional results and ablation studies, including

training with larger datasets, training from scratch on CIFAR-100, rejection of anomalous
batches, training-time efficiency, parameter sensitivity analyses, frequency of examples used
of PD-SGD, compared to SoTA DP-SGD, privacy-test variants, and vulnerable data points
identified by PD-SGD.

A Symbols
Table 3: Table of Symbols.

Symbol Meaning Where
(z,9) Individual Example From Training Set Section 2

0 Model Parameter Vector — 6 € R? Section 2
B; SGD Mini-Batch ¢ Section 3.1
B A set of batches Section 3.1
Js Gradient (of the Loss wrt #) of Batch ¢ Section 4.1
B Chosen “Seed” Batch Section 4.1
Js Gradient of Seed Batch Section 4.1
g Noisy Gradient Section 4.1
zZ Gaussian Noise — N (0, 021 Section 4.1
7(B,%) The number of a-similar batches to B in B Section 4.2
o Privacy Parameter — Noise Scale Section 4.1
ol Privacy Parameter — Log-PDF Threshold Section 4.2
! Privacy Parameter — o = exp(7) Section 4.2
T Privacy Parameter — Count Threshold Section 4.2
Ié] Privacy Parameter — Threshold Randomization [Section 4.2
Y Privacy Parameter — Test Ceiling Section 4.2
A PD Indistinguishability / LR Bound Section 3.3
N PD Indistinguishability / LR Slack Section 3.3

B More on Batch PD

In this section, we provide more details on the game based construction of and derive
advantage bounds based on the PD criterion

B.1 From Batch PD to Membership Privacy

Consider the series of games from [Fig. 3] These games are provided in the style of Salem et al. [35]]
and connect batch PD to (one-step) MIA. We assume there are at least m > 2 batches that are disjoint
and of roughly equal length. We let D denotes the data distribution (used only in some games).

14

Difference between Batch PD (G)) and G1: In GG; the adversary does not get to pick a full target
batch, but only a single data point.

Observe that: advg, > adveg,. Any adversary that wins G; with some advantage can play G and
output the same z as B, as it would when playing G.

Difference between GG; and G5: In GG the adversary picks the dataset S but does not determine the
partitioning into batches (or learn it).

We have: advg, > advg,. If adversarial partitioning provides any benefit then adversaries for G,
can use that but those for G5 cannot.

Difference between GG and G5: in i3 the adversary picks only the target data z, not the dataset S
(which is sampled randomly).

We have: advg, > advg,. We conclude: advg, > advg,. A one-step algorithm 7 that achieves
batch PD also has a bounded (one-step average) membership inference advantage.

Relationship to other privacy games. The Salem et al. [35] SoK establishes the relationship
between a number of data inference games. However, the games in Salem et al. [35] are (1) not one
step; (2) do not model batches and partition; and (3) operate “replace-one” setting (i.e., adversary
chooses zg, z1 but 2y is included; e.g., Game10 in the SoK) not in the “add-remove” setting.

Differences (1) and (2) are a consequence of working with a batch notion. We need the games to
explicitly model the batches. We do not believe (3) is a consequential difference. It is well-known that
the “replace-one” and “add-remove” settings can be related (usually a constant factor is the difference
between the two). Intuitively, if an adversary has difficulty distinguish between (B, ..., B,,) and
(B1, ..., Bm, Bt) (add-remove) for any such set of batches, then the adversary will still have some
difficulty distinguishing between (B, ..., By, B) and (By, . .., B,,, B’) since we can go from one
scenario to the other in two steps (i.e., (B1, ..., Bm, B) = (B1,...,Bm) — (B1,..., Bm, B)).
To be consistent with the rest of the paper, we follow the “add-remove” setting.

B.2 Bounding Adversarial Success Rate

We show that the PD criterion is a sufficient (but not necessary) condition to bound the advantage of
any adversary at the batch PD game. Recall that a learning algorithm 7 satisfies the PD criterion
iff for any two sets of batches 95 and B’ that differ in exactly one batch, the distributions
Prr(-|B) and Pry(-|B’) are (A, \')-indistinguishable for A > 1and 0 < A < 1.

Consider the batch PD game Gy in Let Hy be the hypothesis corresponding to bit b. The

likelihood ratio is (g) = g;gg}ggg For conciseness, we write {;,(g) = Pr(g|Hp). In this game (and

all the ones we consider in this paper), we have equal priors since Pr(b = 1) = 1/2 and so the
posterior odds are exactly the likelihood ratio, i.e., the best adversary guesses based on the likelihood
ratio (V' = 1iffr(g) > 1else b’ = 0).

Advantage is the total variation distance between the two likelihoods, i.e., adv = advg, = % |l1—1lo1-
Alternatively, we can reason in terms of type I and type II errors. Define A = {g : r(g) > 1} = {g :
I1(g) > lo(g)} the region under which the adversary decides in favor of H;. Let Pp = Pr(A|H;)
(probability of detection), Pra = Pr(A|Hy) (false alarm), and Py;p = Pr(A°|H;) = 1 — Pp.
Since: adv = Pr(A|H;) — Pr(A|Hy) = Pp — Pra = 1 — (Pra + Puyp), maximizing advantage
is the same as minimizing the sum of missed detections and false alarms.

Lemma 1. Let Gy denote the batch PD game. If a learning algorithm T satisfies the batch PD
criterion for some A > 1 and N' > 0. Then the advantage of any adversary in the batch
PD game is bounded:

<)\—1Jr N <)\—1+X

TA+L A +1 T A+ 20

We provide the proof in As we show in[Appendix C.2] [Lemma I|applies to the PD-
SGD construction for A, A" depending only on the privacy parameters (and the number of batches).

aJdVG0

15

B.3 Multiple Steps

The definitions and games discussed so far focus on a single learning step. We can extend the batch
PD game to £ > 1 iterations by keeping b fixed across iterations, but letting the adversary choose
different sets of batches and target batch across iterations. The adversary gets all of the gradients
produced and guesses bit b’ at the end.

Game G'¥) — k-steps Batch PD
1: 6 initialized randomly

2: b~ {0,1} > sample random bit b
3: fort=1,2,...,kdo

4: (B1,Ba,...,Bp), B < A'(To,_,) > adversary pick batches and the target batch
5: if b = 1 then

6: gi < To,_,(B1,Ba,...,By,, By) > gradient from 7 with B; included
7: else

8: gi < To,_,(B1,Ba,...,By) > gradient from T without By
9: end if
10: Update 6;

11: end for

12: b+ A(g1,-- 9%, T)

Note that the algorithm depends on the current parameters 6 at each iteration and therefore the
distribution across iterations, even for the same batches, is not identical. However, the executions of
T across iterations are independent.

What may be counterintuitive is that because the batches (adversarially chosen) may change at every
iteration, not every possible run of this game maps onto a realistic training process. (In an actual
training process with an SGD-like algorithm, the set of batches changes but is constrained to always
be a valid partition of the training dataset.) However, a bound on the advantage of the best adversary
for this game is a bound on any adversary (A4, A’), including those adversaries that are restricted to
choose batches so as to mirror an actual training process (by restriction on A’). This allows the game
to capture numerous scenarios.

For example, this can model the case where there is a fixed dataset D and the adversary wants to
determine whether a small set of “correlated” examples S = (x1,¥1),. .-, (2, y;) was part of the
training data. In this case, A’ can select any partition By, ..., B, (different at each iteration) such
that their union equals D and as the target batch B, any batch that includes all of S (i.e., S C By).
This would faithfully capture the case where (for whatever reason) the dataset may include all of S in
one batch (e.g., the training process is poisoned in some way).

C Privacy: Tests, Batch PD & Differential Privacy

In this section, we explore the relationship between privacy testing and batch PD and between
PD-SGD and differential privacy.

C.1 Privacy Testing

Recall from [Section 4.2]the different ways of counting alternatives in the privacy test. The integer and
clique variants have the property that adding or removing any batch changes the count of alternatives
by at most 1. Also recall that we considered a randomized version of the test that also caps the
probability of passing the test.

Randomized Thresholds. Given the count 7 of alternatives, we randomize the test based on noise
z ~ Geom([3) so that the test passes iff 7 + z > T. We define z ~ Geom(/3) for § > 1 so that
Pr(z =14) = % Bl for any integer i. This type of geometric noise was initially proposed by
Ghosh et al. [19].

The probability of passing the test is E[1..>7], where we can think of 7 4 z as a noisy count. For
conciseness, we write p, = Pr(z > T — 7) to denote the probability that the test passes given the
count 7. All our privacy test variants are such that the probability of passing the test only depends on

16

7. When using a test such that the sensitivity of 7 is 1 then the probability of passing the test when
adding or removing one batch changes only by a bounded amount (e.g., by at most a factor of 5 when
increasing 7 by 1).

Adding a Ceiling. We also have a ceiling on the probability of passing the test. If there are enough
alternatives (i.e., 7 + z > T') then we flip a coin with probability of heads 1 — v (for some ¢ > 0). If
the coin lands on heads then the test passes. Otherwise the test fails. This means the probability of
passing the test is p, = (1 — ¥)Pr(7 + z > T'). For example if ¢y = 0.2 then the test never passes
with probability higher than 0.8.

Properties. With this setup, we obtain the following properties that describe how the probability of
passing the test changes for changing number of alternatives.

Lemma 2. Let p, be the probability of passing the test with T > 0 alternatives for a test with
randomization Geom(f3) and ceiling 1 — 1. We have:

1—
1< Pt o p g 1> TP Y
Pr 1—277- 1_;¢

The lemma states that p, is non-decreasing as a function of alternatives 7 and then when increasing
the count by one (e.g., if adding a batch), the probability of passing the test increases by a factor of at
most 5. Further, the change in probability of failing the test due to increasing the count by one is
lower bounded as a function of 3 and .

Moreover, when 7 is far from the threshold 7' the test passes with exponentially small probability.

Lemma 3. Let p, be the probability of passing the test with T > 0 alternatives for a test with
randomization Geom(f3) and ceiling 1 — . Forany 1 <t < T

pe < (1 =) exp (—eo(T — 1)),

where eg = In .

The proofs of [Cemmas 2]and fare in Appendix A2
We provide experiments that compare different variants of the privacy test in

C.2 PD Criterion

Recall from that any (one-step) learning algorithm 7 that satisfies the PD criterion has
bounded advantage (for batch PD game, membership inference, etc.). We show that the properties of
the test in combination with -similarity yield

Lemma 4. Let T denote a single training iteration of PD-SGD with a privacy test with
parameters T > 1, a > 1, randomization Geom(f3) and ceiling 1 — 1 (for 8 > L and 1 > 1) > 0).
For any integer 1 <t < T: T satisfies the PD criterion (on any partition of m > T
batches) for:

A=) :max{m’ilﬁ [1+%},

m+18—-1+¢ m 1)}

m Be malt T mg

and -
I/ - - —(T—t)
X =N(t)= =58 .

In this lemma, ¢ can be freely chosen to trade off between A and \'. The proof is in|Appendix H.3
Combining and [] yields the advantage bound on batch PD.

The A term in[Lemma 4] can be simplified for some constraints on the privacy parameters, in which
we expect the term that depends on «, 5 and ¢ to denominate. For example, we can eliminate the
dependence on ¢ by choosing 1 = (3 + 1)~! in which case the other terms are at most % 5.
For not too small number of batches, miﬂ approaches 1 so that the behavior is driven by the term

B(1+at™h).

17

C.3 Differential Privacy

For reasons analogous to PD-SGD satisfying the PD criterion (Lemma 4), we can show that the
algorithm satisfies (e, 0)-differential privacy.

However, we stress that batch PD and differential privacy are not directly compatible in the sense that
the input to the learning algorithm 7 for batch PD is a partition of batches, whereas for differential
privacy it is a dataset D. This means that for differential privacy, we need a learning algorithm 7~ to
first randomly partition D into a set of batches before passing those batches to 7. This straightforward
conceptually, but it highlights an important consequence: the batch PD guarantee has to hold for the
worst case partitioning (since it’s adversarially chosen). In the differential privacy case, the adversary
does not know the partition of the dataset into batches.

Lemma 5. Let T be as inwith privacy parameters (T, o, o, 3,1) and M the algorithm
that first randomly partitions the dataset into m > T > 1 batches (of roughly equal size) before
invoking T. For any two neighboring datasets Dy, Ds, any output set S C Range(M) and any
integer 1 < t <T, M satisfies (e,)-differential privacy. That is:

Pr(Y|M(Dy)) < ePr(Y|M(D3)) + 6,
wheree =Inf3 (1 + 1a) and § < (1 —) exp (—eo(T — t)). Here g9 = In 3, o0 = exp(7).

We provide a proof in

Parameter Tuning. Interestingly, it is possible to tune the parameters so the guarantee is fairly
stringent. Similarly to earlier, we may want to set a relatively low ceiling, i.e., ¢ = (3 +1)~*. To
ensure a small J it is desirable to set ¢ such that 7" — ¢t is relatively large. For example, we can set 7" and

t such that exp(—eo (T’ —t)) = 115 which requires 7' = %{?l +tand ensures that § < (1) .

That is § is asymptotically smaller than | D| ! if we consider a fixed batch size (so that as | D| increases
so does m). In such a case we gete < y+eo+In(1+1) =v+e+In(1+ (T - M)_1).

g
Note that 7" < m so everything else equal, it is more challenging to get good privacy with aosmaller

number of batches.

Composition. Since iterations of are independent, we can apply advanced composi-
tion [18]] (Theorem 3.20) to obtain an overall guarantee for the training process. So for K steps we

get:
g = \/2K1n($)s + Ke(ef —1)and 6’ = K§ + 8",

where (¢’,¢") is the privacy budget for an entire training run and 1 >> ¢” > 0 can be freely chosen to
control the tradeoff between &’ and §’.

As previously mentioned, these DP bounds may be overly pessimistic in the sense that the adversary
even knows the partition of data into batches. We leave to future work the task of deriving tighter
bounds in more realistic settings.

D What Batch Pass the Privacy Test?

So far, we have analyzed the privacy of our approach from the lens of batch PD and differential
privacy. Another lens we can adopt is to ask what kind of batches get rejected? In this section, we
show that gradient updates from anomalous batches are rejected with high probability (even for the
simplest variant of the privacy test).

Consider a seed batch By, its associated gradient g, and another batch B; with gradient g;. Recall
that a noisy gradient g = g, + Z is plausibly deniable with respect to batch B; iff [Eq. (2)|holds. In
Eq. (2)

other words, we denote plausibility (of g with respect to some g;) as the probability that holds:
1~ (g — gs)

~ PG 9i)
where the probability ¢(s, 7) is taken over the randomness of Z ~ A/(0, o2I). This probability only

depends on batches B, and B;. The following result shows that it only depends on the /5-distance
between the two gradients, i.e., ||gs — gi||o-

q(s,i) =Pr |a~ < a} ,

18

Lemma 6. For any seed batch with gradient g5 and any mini-batch with gradient g;, let d =
llgs — gil|3. The probability that|Eq. (2)|holds depends only d and we have:

o) =als.i) = Pr (v e | @

where Y ~ N(0,1) and 7 = 20%7.

d—7% d+a]>
20vd’ 20v/d ’

shows that ¢(d) is exactly the probability that a standard normal variable takes a value in
[2073, 2;73} where 7 = 2027. We provide a proof in|Appendix H.5

Intuitively, for a >> b > 0 the probability Pr(a —b < Y < a + b) can be reasonably approximated as
2b¢(a) where ¢(-) is the standard normal pdf, and thus the probability falls exponentially fast with a.

The following results derived from tail bounds on show that plausibility falls off exponen-
tially fast with the /5-norm d whenever d is sufficiently large with respect to . This immediately
implies that any highly anomalous candidate gradient (i.e., gradient with large /-norm to all other
mini-batch gradients) will be rejected with high probability.

Lemma 7. For any seed batch with gradient g5 and any mini-batch with gradient g;, and let d be
defined as in If d > 2027, we have that:

d2 + ~2
q(d) < Cg,0 - €xXp <— [Ssz]) . 5)

where Cy - » = 3%" : [exp (%) (d=3)"' = (d+7) -exp (7%) [(d+79)%+ 402d]71]

We provide the proof of [Lemma 7|in[Appendix H.5|

E Parameter Tuning

There are two main strategies to approach parameter tuning.

Theory-based strategy. We can tune parameters based on the rejection rate theory from
By tuning o and -, we can make ¢(d) arbitrarily small. If we have a desired bound on d, then we can
find combinations of o and ~y that achieve the desired effects. This can, for example, be done through
a grid search.

To provide intuition and guide parameter tuning, we plot the minimum d such that ¢(d) is at most
some § > 0 as a function of v and o. This is shown infor § = 0.05and § = 10~°, which plots
\/d/k, where k is the dimension of the gradient vector (i.e., g € R¥) used here for normalization.
We observe that (as expected) we require larger d* for the same o and +y for ¢(d) < 10~° compared
to g(d) < 0.05. Moreover, for a fixed ¢(d), the normalized distance d* appears to grow with the
product of o and . This is consistent with[Lemma 7] which suggests that the asymptotic behavior is
driven by the product o2+. Furthermore, when tuning the privacy parameters, exploring combinations
of o and y such that 02 remains roughly constant is a sensible strategy.

Alternatively, we can tune parameters based on the connection between PD-SGD and differential
privacy . In particular, we can set T' > 9~ ! In | D| + t to ensure a low enough §. In
that case e =y + o +1In (1 + %) so minimizing v maximizes privacy. However, if the chosen pair
(7, o) does not allow passing the test often enough, then the utility suffers. Keeping o2y roughly

constant to ensure a reasonable rejection rate and then tuning other parameters such as 7" also makes
sense.

Practical Parameter Tuning. We propose and evaluate an empirical parameter tuning strategy. We
conducted additional experiments on an NVIDIA B200 GPU.

As a baseline, we first performed a full grid search over the three main privacy parameters (o, -y, and
T), covering 180 combinations in total. This exhaustive search required around 110.41 GPU hours to
complete.

We then applied our empirically guided two-phase strategy, which significantly reduces tuning cost:

19

q(d)<10~° q(d) <0.05

1 20 2 20 2
Gradient Bound v Gradient Bound v

Figure 4: Normalized Distance d* for varying o and ~ under different ¢(d). We observe that for a fixed
probability of passing the test g(d), the larger the product of o and ~ the larger the normalized distance d* can
be, meaning that more anomalous batches pass the privacy test. Note that d* = y/d/k where k is the dimension
of the gradient vector (we set k = 7680 for this case).

Algorithm 2 Hyperparameter Search

Input:
1: ouist <+ list of candidate noise scales
2 Mist < list of candidate gamma values
3: Tiist < list of candidate thresholds
4: Fran <+ number of epochs for full training
5: Eshort <— number of steps for short trial (e.g., 200)
6: AC Cinresh < accuracy threshold to keep o (e.g., 96%)
7: train_fn < training function that returns (reject_rate, final_accuracy)

Output:
8: BestConfigs < list of viable (o, ~,T') configurations

9: > Phase 1: o Screening with 7' = 1
10: Ofilered <— []
11: for each ¢ in oy do

12: acc < train_fn(o, v = default, 7" = 1, epochs = Eiuy).accuracy

13: if acc > AC Cihresh then

14: append o t0 Tfilered

15: end if

16: end for

17: > Phase 2: Coarse Filtering over (o, v, T)

18: CandidateConfigs <]
19: for each o in cfierea do
20: for each y in s do

21: for each 7" in Tj; do

22: (rej, acc) < train_fn(o, v, T, epochs = Fgort)
23: if 0 < rej < 1 then

24: append (o, v, T') to CandidateConfigs

25: end if

26: end for

27: end for

28: end for

29: BestConfigs « [

30: for each (o, ~,T) in CandidateConfigs do

31: (rej, acc) < train_fn(o, v, T, epochs = Ejgun)
32: record (o, ~, T, rej, acc) in BestConfigs

33: end for

34: return BestConfigs

20

Phase 1 (o screening): We fix the threshold 7' = 1 and run full training for each candidate 0. We
retain only those o values that achieve high utility (final test accuracy > 96%).

Phase 2 (coarse filtering of v and T): For each surviving o, we run shortened training (200 steps)
across the v an d T" grid. We discard any configuration that results in degenerate behavior (i.e., reject
rate reaches 0% or 100%) early. The remaining viable combinations are then trained to convergence.

We provide full pseudo-code in

This procedure reduces total tuning time from 110.41 GPU hours to just 4.15 GPU hours, while still
identifying high-performing configurations. In practice, this makes PD-SGD much more efficient to
tune than standard grid search. Notably, we used the full grid primarily to ensure fair comparison
across baselines, not because PD-SGD requires it. We believe that the combination of theory-informed
constraints, practical heuristics, and structured filtering makes PD-SGD both scalable and practical
for deployment.

F Experiments Setup

F.1 Datasets

We use the three of the most commonly used datasets for evaluating membership inference attacks
(39,145, 141]] and DP-SGD [12} 3]

CIFAR-10 [27] contains 60,000 images with 10 classes. We use 50,000 as the full training set and
10,000 as the test set as most papers do. Each example has three RGB channels and size 32 x 32
pixels. For fine-tuning tasks, we only use 500 data samples for training and for training from scratch
tasks, we use 30,000 for training.

CIFAR-100 is a well-known benchmark in the field of computer vision, also collected by [27].
CIFAR-100 contains 60,000 color images, each with a resolution of 32 x 32 pixels. It is more
complex than the CIFAR-10 dataset; the images are organized into 100 distinct classes. The dataset
allocation includes 50,000 images for training purposes and 10,000 for testing. For finetuning task,
we only use 1000 data samples for training and the rest of training data examples are used for MIA
evaluation. For training from scratch, we use 25,000 data samples as the same setting in [50].

Purchase-100 is based on Kaggle’s “acquire valued shoppers” challengeﬂ and processed and simpli-
fied as introduced in [39]]. The dataset contains shopping records for thousands of individuals and
includes 197,324 data entries. For training, we use 25,000 samples and the rest for testing. For MIAs,
we use 25,000 samples from test set as shadow dataset.

F.2 Models

Vit-B-16 are pre-trained on the LAION-2B dataset [38]]. We obtain the model from Open Cli;ﬂ and
add a linear layer as a classification head. We only fine-tune this last layer and freeze the weights of
other layers. We utilize this model for CIFAR-10 and CIFAR-100 fine-tuning tasks.

Wide ResNet (WRN) [49] is a popular variant of the ResNet (Residual Network) model [22]]. The
architecture increases the number of channels in convolutional layers (width) rather than the number
of layers (depth). We use WRN-16-4 in experiments which is also commonly used in many DP-SGD
related work [3} 12} [37]. We train the model from scratch on CIFAR-10. We use WRN-28-2 for
training from scratch on CIFAR-100.

Linear model is commonly used for tabular data such as Purchase-100. We use this one-layer linear
model for experiments on Purchase-100.

F.3 Setups

We implemented PD-SGD using PyTorch. For DP-SGD, we use Opacus [47]. For other empirical
defense mechanisms, we reproduce them using SELENA’s [41]] original code-base E] and HAMP’s

*https://kaggle.com/c/acquire-valued-shoppers-challenge/data
https://github.com/mlfoundations/open_clip
https://github.com/inspire-group/MIAdefenseSELENA

21

https://kaggle.com/c/acquire-valued-shoppers-challenge/data
https://github.com/mlfoundations/open_clip
https://github.com/inspire-group/MIAdefenseSELENA

Table 4: Hyperparamters setting for experiments in [Table |

Dataset Param setting o o' T Step Reject Rate
CIFAR-IOFD by 03 33 om0 30314
CIFAR-IOED) by g do 3 om0 435
et)00 W0 jomo oo
s TSL O e o jomo o
CIARIOOES) ps Gol oo 3 om0 81

original code-base|’| For membership inference attack, we use the Privacy Meter toolbox From it,
we use Population Attack (P-Attack), Reference Attack (R-Attack), Shadow model Attack (S-Attack)
based on [45] and Carlini et al. Attack (C-Attack) based on [[7]. We employ these four widely used
attacks to comprehensively evaluate empirical privacy leakage and make fair comparisons between
different methods. Note that our goal here is not to use the most exotic or recent attack, but to establish
a fair empirical comparison between different defense methods, and thus we use a well-understood
set of popular recent membership inference attacks.

Details for Attacks: We keep the same attack setting for all defense mechanisms for a fair comparison.
For all datasets, other than the part we used for training the target models, the rest of training samples
are used as shadow datasets for shadow models or reference models. For all shadow models or
reference models, we sample the same amount of data samples as target dataset for training. We use
8 shadow models for S-Attack, R-Attack and C-Attack. For the C-Attack, we use the online version
of it and adopted from privacy meterﬂ When evaluating attack, we always use balanced evaluation
dataset (50% member and 50% non-member). When reporting (balanced) accuracy, we always select
the threshold with the highest attack accuracy.

Details for Defenses: We keep the same parameter setting for all other empirical defense mechanisms
as SELENA’s original code-base and HAMP original code-base. For DP-SGD, we set the clipping
threshold to 1 and use the same batch size as PD-SGD and SGD. We also perform a hyperparameter
search to identify the best learning rate for every run.

G Additional Experiments

G.1 Hyperparameter settings and Full Experimental Results
We show hyperparameter settings in and the full experimental results in

G.2 Understanding parameters of PD-SGD

Table 6: Impact of ~y Table 7: Impact of o Table 8: Impact of T’
v Test Acc Reject Rate Best Attack o Test Acc Reject Rate Best Attack T Test Acc Reject Rate Best Attack
1 92.78% 99.54% 0.52 0.1 17.19% 99.95% 0.52 1 64.78% 0.00% 0.76
2 94.70% 30.31% 0.53 0.15 96.02% 0.15% 0.54 2 6481% 10.17% 0.75
3 9471% 13.70% 0.56 02 95.70% 0.03% 0.55 3 64.76% 18.86% 0.71
4 94.74% 5.78% 0.57 04 93.67% 0.00% 0.55 5 62.66% 84.68% 0.64
6 94.80% 2.25% 0.59 1.0 85.23% 0.00% 0.56 7 3.21% 99.90% 0.50

Recall that PD-SGD has three primary parameters — o, 7y, and T' — that control the privacy-utility
trade-off. In this section, we discuss how these parameters impact the performance of PD-SGD.

"https://github.com/DependableSystemsLab/MIA_defense_HAMP

$https://github.com/privacytrustlab/ml_privacy_meter/tree/
173d4ad80£183ae6e1867b2793dfffe0633107d0

“https://github.com/privacytrustlab/ml_privacy_meter/tree/
173d4ad80£f1832ae6e1867b2793dff£e0633107d0/benchmark

22

https://github.com/DependableSystemsLab/MIA_defense_HAMP
https://github.com/privacytrustlab/ml_privacy_meter/tree/173d4ad80f183ae6e1867b2793dfffe0633107d0
https://github.com/privacytrustlab/ml_privacy_meter/tree/173d4ad80f183ae6e1867b2793dfffe0633107d0
https://github.com/privacytrustlab/ml_privacy_meter/tree/173d4ad80f183ae6e1867b2793dfffe0633107d0/benchmark
https://github.com/privacytrustlab/ml_privacy_meter/tree/173d4ad80f183ae6e1867b2793dfffe0633107d0/benchmark

Table 5: Evaluations for PD-SGD: We evaluate PD-SGD on three datasets with four different attacks. We
report the average results and standard deviation among three independent runs. We can observe that PD-SGD

can achieve a better privacy-utility trade-off than other empirical defense mechanisms and DP-SGD.

Dataset Method | Test acc | P-Attack R-Attack S-Attack C-Attack
Non-private 87.22% (£0.13%) | 0.60 (£0.01) 0.60 (£0.01) 0.58 (£0.01) 0.22% (£0.03%)
AdvReg 75.38% (£0.09%) | 0.53 (£0.00) 0.54 (£0.01) 0.53 (£0.01) 0.19% (£0.02%)
SELENA 81.04% (£0.07%) | 0.53 (£0.01) 0.53 (+0.01) 0.53 (£0.01) 0.19% (+0.01%)
CIFAR-10 (FS) DP-SGD (e = 1) 26.53% (£0.48%) | 0.50 (£0.00) 0.49 (£0.01) 0.50 (£0.01) 0.07% (£0.02%)
DP-SGD (e = 4) 55.46% (£0.28%) | 0.50 (£0.01) 0.49 (£0.01) 0.50 (£0.01) 0.10% (£0.01%)
DP-SGD (¢ = 8) 63.31% (£0.15%) | 0.51 (£0.01) 0.50 (£0.00) 0.51 (£0.01) 0.13% (£0.02%)
PD-SGD (param setting 1) | 82.22% (+0.11%) | 0.53 (£0.01) 0.52(£0.01) 0.51 (£0.01) 0.19% (£0.01%)
PD-SGD (param setting 2) | 79.69% (£0.25%) | 0.53 (£0.00) 050 (£0.01) 0.51 (£0.01) 0.15% (+0.01%)
Non-private 96.09% (£0.02%) | 0.57(+0.01) 0.69(+£0.01) 0.56 (£0.01) 0.37% (£0.03%)
AdvReg 95.96% (£0.06%) | 0.56 (£0.01) 0.59 (£0.01) 0.55 (£0.00) 0.31% (£0.01%)
SELENA 96.01% (+£0.04%) | 0.55(£0.00) 0.51 (£0.01) 0.56 (£0.02) 0.33% (£0.02%)
CIFAR-10 (ET) DP-SGD (e = 1) 68.97% (£0.11%) | 0.52(£0.01) 0.50(+£0.01) 0.52(+0.01) 0.17% (£0.01%)
DP-SGD (¢ = 4) 93.53% (£0.07%) | 0.54 (£0.01) 0.56 (£0.02) 0.54 (£0.01) 0.20% (+0.03%)
DP-SGD (e = 8) 94.22% (£0.09%) | 0.54 (£0.00) 0.59 (£0.01) 0.54 (£0.01) 0.23% (£0.02%)
PD-SGD (param setting 1) | 96.18% (£0.06%) | 0.54 (£0.01) 0.49 (£0.01) 0.55 (£0.01) 0.27% (£0.02%)
PD-SGD (param setting 2) | 94.73% (£0.07%) | 0.53 (£0.01) 0.49 (£0.01) 0.53 (£0.01) 0.20%(%0.03%)
Non-private 74.22% (£0.03%) | 0.73(£0.01) 0.68(+0.01) 0.73(+0.01) 0.38% (£0.03%)
AdvReg 72.08% (+£0.03%) | 0.70(+0.01) 0.68(x0.01) 0.72(+£0.01) 0.33% (+0.02%)
SELENA 68.46% (£0.04%) | 0.63(£0.00) 0.60(£0.01) 0.65(+0.01) 0.19% (£0.02%)
DP-SGD (e = 1) 4.46% (£0.13%) | 0.50 (£0.01) 0.50(£0.00) 0.50 (£0.01) 0.10% (£0.01%)
CIFAR-100 (FT) DP-SGD (¢ =4) 18.37% (£0.06%) | 0.50(£0.00) 0.50 (+£0.01) 0.51 (£0.01) 0.12% (£0.02%)
DP-SGD (e = 8) 27.12% (£0.05%) | 0.51 (£0.01) 0.52 (£0.01) 0.51 (£0.01) 0.13% (£0.03%)
PD-SGD (param setting 1) | 72.56% (£0.06%) | 0.67(x0.01) 0.62(£0.01) 0.64(£0.01) 0.18% (£0.02%)
PD-SGD (param setting 2) | 68.79% (+0.05%) | 0.62(+0.01) 0.59 (£0.01) 0.62 (£0.01) 0.14% (£0.02%)
Non-private 68.56%(+0.12%) | 0.76(£0.01) 0.78(£0.01) 0.77(£0.01) 0.12%(+0.02%)
AdvReg 57.56%(£0.07%) | 0.70(£0.01) 0.70(£0.01) 0.66(£0.01) 0.08%(+0.02%)
SELENA 64.31% (£0.09%) | 0.63(+0.00) 0.73(£0.01) 0.66(+0.01) 0.07%(+£0.01%)
Purchase-100 (FS) DP-SGD (¢ = 1) 22.51% (£0.22%) | 0.53(10.01) 0.54(£0.01) 0.54(£0.00) 0.04% (+0.01%)
§ DP-SGD (e = 4) 43.46% (£0.15%) | 0.56(£0.01) 0.55(+0.01) 0.56(£0.01) 0.07%(+0.02%)
DP-SGD (e = 8) 47.61% (£0.12%) | 0.56(£0.00) 0.56(£0.01) 0.56(£0.01) 0.08% (+0.01%)
PD-SGD (param setting 1) | 64.83% (£0.05%) | 0.63(+0.01) 0.72(£0.01) 0.64(+0.01) 0.06% (£0.01%)
PD-SGD (param setting 2) | 61.16% (£0.07%) | 0.61(£0.01) 0.59(£0.02) 0.60(=0.01) 0.06% (£0.01%)

We first fine-tune the ViT model on CIFAR-10 with different v values while keeping all other
parameters fixed. The results are presented in We observe that as v decreases, the model’s
test accuracy experiences a slight decline. However, the Best Attack AUC diminishes substantially.
Notably, when ~ decreases from 2 to 1, even though the Best Attack AUC decreases slightly, the
reject rate increases sharply to 99.54%, and the test accuracy drops to 92.78%. This suggests that
~v = 2 may be the optimal choice for this parameter setting.

We perform similar experiments with different o values and present the results in[Table 7] We observe
that when o is large (i.e., o > 0.2), the gradients can easily pass the Privacy Test, but the Best Attack
AUC remains high, and the model fails to achieve good test accuracy due to the large noise introduced
during training. When o is relatively small, although some gradients are rejected, it provides better
defense performance (lower Attack AUC). However, if ¢ is too small, such as 0.1, under the same
and 7T, it becomes very difficult for gradients to pass the privacy test, resulting in low test accuracy.

We also test different 7" values while keeping all other parameters fixed. We train the linear model on
Purchase-100 and present the results in[Table 8] We observe that as 7 increases, it becomes harder
for gradients to pass the privacy test. Consequently, the reject rate increases, test accuracy decreases,
but better defense performance is achieved (lower Attack AUC).

Therefore, based on these tables and results, we find that the observations corroborate our findings
in This demonstrates that PD-SGD can provide a wide range of privacy-utility trade-offs
through different parameter settings. On the other hand, to achieve a better privacy-utility trade-off, it
is advisable to tune all three parameters together rather than adjusting only one parameter.

G.3 Understanding Batch size in PD-SGD

The batch size plays an important role in terms of privacy. There are extreme edge cases that are
unrealistic, where the batch size is the entire training set or the batch size is a single example. For
more realistic batch sizes, there are several tradeoffs, and ultimately, the behavior also depends on the
chosen privacy parameters.

23

Table 9: Impact of batch size on Purchase-100 and CIFAR-10
Dataset Batch size Number of Batches Test Acc Reject Rate Best Attack

1024 24 0% 100% 0.5

2048 12 60.10% 88.94% 0.62

Purchase-100 3072 8 64.76% 10.41% 0.73
4096 6 64.80% 9.06% 0.74

5120 4 64.73% 0% 0.77

1024 29 60.24% 55.85% 0.51

2048 14 74.35% 37.63% 0.51

CIFAR-10 3072 9 80.40% 20.07% 0.53
4096 7 80.59% 14.07% 0.53

5120 5 81.57% 7.41% 0.54

We conduct experiments on Purchase-100 and CIFAR-10 and report results in[Table 91 Results show
that as batch size increases, the rate of deniability typically decreases — larger batches more easily
pass the privacy test (for fixed privacy parameters) due to the averaging effect you described across
different datasets. However, this does not necessarily translate into better privacy protection, as the
potential for individual sample contributions to still be inferred remains.

Moreover, we found that adjusting other parameters — e.g., o, v, and threshold can help mitigate
these effects, maintaining a balance between utility and privacy across varying batch sizes. For
example, for the batch size = 1024, if we double the v, we can decrease the reject rate to 56.98% and
achieve a test accuracy of 63.87% with Best Attack AUC of 0.68.

These results underscore the importance of carefully tuning all parameters in relation to batch size to
uphold robust privacy guarantees while preserving utility.

G.4 Understanding Reject Rate of PD-SGD

The rejection rate is strongly correlated with the level of privacy protection achievable through
PD-SGD. In the extreme case where PD-SGD rejects all updates, we gain perfect privacy at the
cost of zero utility. Conversely, if no updates are ever rejected, utility may be high but at the risk of
increased privacy leakage. Therefore, it is crucial to find an appropriate rejection rate.

In our previous experiments, the rejection rate was determined solely by the privacy parameters and
could not be predicted before training. To better understand its relationship with privacy, we adaptively
adjust v to maintain a desired rejection rate set prior to running the experiments. Specifically, during
training, we update -y based on the rejection rate observed over the most recent n updates, using an
exponential moving average to increment or decrement .

Furthermore, instead of counting every update, we only track the number of successful updates,
ensuring that the model trains for the same number of effective steps regardless of the rejection rate.
We apply this approach under the same experimental settings described in[Appendix G.12] training
a WRN-28-2 model from scratch on CIFAR-100. We show the results in|Fig. 5| We observe that,
as expected, a higher rejection rate improves defense performance, reflected in a lower best-attack
AUC, but also reduces utility (test accuracy). Notably, even when operating at lower accuracy levels,
PD-SGD surpasses a conventional DP-SGD baseline with ¢ = 500. While that baseline achieves
30.55% test accuracy and an attack AUC of 53.84%, certain PD-SGD configurations (e.g., a reject
rate near 0.6) maintain higher accuracy while further reducing the attack AUC.

G.5 Rejection of Anomalous Batches

How do we know that PD-SGD rejects gradient updates from anomalous batches and only those from
anomalous batches? We intentionally generate anomalous batches to evaluate this by flipping the
labels of a subset of examples (“poisoned examples™) and grouping them into a single batch with
other normal samples. We ensure that throughout training, the poisoned examples are in the same
“anomalous” batch. We then collect the rejection rates when the anomalous batch is chosen as seed
and when other batches are chosen as seed, for varying proportions of poisoned examples.

Results are shown in where we observe that for normal batches the rejection rate remains
consistently low, as expected and desired. This means that the privacy test does not discard updates
unnecessarily. However, when the anomalous batch is selected as seed, the rejection rate increases

24

—e— Test Accuracy (%) [0-5°°

% Best Attack AUC

425 0.550

40.0
0.545

0.540

35.0
0.535

Test Accuracy (%)
Best Attack AUC

0.530

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Reject rate

Figure 5: Privacy-utility trade-off with fixed Reject rate We show the privacy utility trade-off with fixed reject
rate by using adaptive v during training. We can observe that with a higher reject rate, defense performance is
improved, but utility is lower.

100

=8= Rejection rate for anomalous batch
== Rejection rate for normal batches

Rejection rate (%)

0 10 20 30 40 50 60 70 80
Poison data ratio (%)

Figure 6: Rejection rate for anomalous and normal batches. Rejection rate for the anomalous batch increases
to close to 100% as the proportion of poisoned examples increases, while the rate for normal batches remains
stable. This suggests that, as desired for privacy and utility, only those gradient updates that may cause privacy
leaks are rejected.

significantly and quickly plateaus near 100% as the proportion of poisoned examples increases. This
indicates that PD-SGD effectively identifies and rejects anomalous batches, preventing the model
parameters from being updated in such cases.

G.6 Frequency of examples used of PD-SGD

Since PD-SGD works by rejecting implausible gradient updates, some training set examples may be
used more frequently to update parameters than others. To investigate this, we record the successful
update counts for each data sample in the training set in a case where parameters are set to achieve
roughly 15% reject rate. We show this distribution in[Fig. 7} We can observe that, as expected, there
is a range of update frequencies. However, no training set example is used fewer than 72 times, so no
example is systematically excluded from influencing the final model.

G.7 Compared to SoTA DP-SGD and new empirical defense mechanism

Although this study is the first to propose PD-SGD and it may not be directly comparable with state-
of-the-art (SoTA) DP-SGD methods that have undergone extensive optimization, we nonetheless
provide comparative evaluation results. Specifically, we compare PD-SGD against recent SoTA
DP-SGD approaches such as those by De et al.[[12] and Bu et al.[6]. The detailed results are presented
in Our findings demonstrate that PD-SGD achieves superior utility compared to these
established DP-SGD methods under comparable privacy regimes (as measured by MIA success rates).

25

Frequency of Data Samples

Number of Successful Update Times

Figure 7: Distribution of data samples’ successful update Histogram of all training data samples’ successful
update. The average count is 107.53 (£10.27) and the min and max are 72 and 148, respectively.

Table 10: Compared to SOTA DP-SGD:Evaluation of PD-SGD and SOTA DP-SGD: Train WRN-16-4 from
scratch on CIFAR-10.
Method Test Acc P-Attack R-Attack S-Attack C-Attack

Non-private 87.22% 0.60 0.60 0.58 0.22%
DP-SGD 63.31% 0.51 0.50 0.51 0.13%
Buet al. [6] 63.56% 0.51 0.50 0.50 0.13%
De et al. [12] 72.17% 0.52 0.50 0.51 0.12%
PD-SGD(PS 1) 82.22% 0.53 0.52 0.51 0.19%
PD-SGD(PS2) 79.69% 0.53 0.50 0.51 0.15%

We also conducted new experiments using a new empirical defense mechanism, HAMP [9]] on the
Purchase-100 dataset and show its results with highlights in[Table 11} Two takeaways emerge: 1.
PD-SGD (PS 1) attains higher utility than HAMP while delivering comparable privacy. 2. PD-SGD
(PS 2) provides stronger privacy than HAMP at similar utility.

Table 11: Evaluations for new baseline HAMP [9]: Evaluation of PD-SGD and new baseline HAMP on
Purchase-100 dataset.

Method Test Acc P-Attack R-Attack S-Attack C-Attack
Non-private 68.56% 0.76 0.78 0.77 0.12%
AdvReg 57.56% 0.70 0.70 0.66 0.08%
SELENA 64.31% 0.63 0.73 0.66 0.07%
HAMP 61.66% 0.64 0.74 0.64 0.07%
DP-SGD (e=8) 47.61% 0.56 0.56 0.56 0.08%
PD-SGD (PS 1) 64.83% 0.63 0.72 0.64 0.06%
PD-SGD (PS2) 61.16% 0.61 0.59 0.60 0.06%

G.8 Variants of Privacy Tests

We discuss privacy test counting methods in Here, we measure their performance
empirically on CIFAR-10 and show the results in[Table 12| We find that PD-SGD achieves a similar
privacy utility trade-off for different tests.

We also analyze the effect of threshold randomization and ceiling. We consider a “comprehensive”
test which uses clique counting and threshold randomization and ceiling, and compare it to the simple
(non-randomized, no ceiling) test.

We evaluate this on Purchase-100. Because the threshold is now perturbed, we must raise it to offset
the added noise, so we decrease the batch size to 500 to increase the total number of batches to 50 and
set T' = 20. We use the geometric mechanism based on the implementation of differential-privacy-

26

Table 12: Performance of PD-SGD under different privacy tests: We evaluate different privacy tests on
CIFAR-10 and follow the setting as[Table 1| We change the -y to 2.3 for the integer test and 8.0 for the clique test.

Privacy Test ~ Testacc P-attack R-attack S-attack C-attack

Simple 2.0 94.22% 0.53 0.49 0.53 0.20%
Integer 23 94.35% 0.54 0.53 0.54 0.20%
Clique 8.0 94.79% 0.52 0.53 0.52 0.22%

Table 13: Performance of PD-SGD under comprehensive privacy tests: We evaluate different privacy tests
on Purchase-100 and follow the setting as[Table 1]

Privacy Test Testacc P-attack R-attack S-attack C-attack

Simple 61.16% 0.61 0.59 0.60 0.06%
Comprehensive 62.31% 0.60 0.59 0.61 0.07%

libra We set the 5 = e (i.e., ¢g = 1) and ¢» = 0.2. Since we changed the batch size, we reset the
~ to 3800. We show the performance comparison to the original privacy test in We can
observe that even after introducing additional randomness in testing, PD-SGD delivers a comparable
privacy—utility trade-off once the hyperparameters are properly calibrated.

G.9 Computational Resource Measurement

We evaluate the running time of PD-SGD for one training step. We conduct experiments using
CIFAR-10 by fine-tuning the ViT model, and train the WRN-16-4 model from scratch following
the same setup as described for[Table 1] The time is averaged over three consecutive steps taken
from the middle of the training process. For comparison, we also measure the time of standard SGD
and DP-SGD under the same conditions. The results are summarized in As demonstrated,
PD-SGD is noticeably slower than standard SGD but notably faster than DP-SGD for a single training
step.

We also conducted experiments to measure GPU memory usage of PD-SGD against DP-SGD and
non-private (SGD) training with the Wide-ResNet-16-4 model on the CIFAR-10 dataset and show
results in[Table 15

Results show that PD-SGD’s memory footprint is slightly higher but comparable to SGD and far
below DP-SGD. Thus, on memory-constrained GPUs where DP-SGD may exceed capacity, PD-SGD
remains feasible. We believe the high memory usage for DP-SGD is due to per data sample gradient
computations, which are not necessary for PD-SGD.

G.10 Vulnerable Data points recognized by PD-SGD

Data samples that are most frequently rejected by PD-SGD are hypothesized to be inherently more
vulnerable to membership inference attacks. To validate this, we first identified the six images with
the highest rejection rates across three independent PD-SGD trainings. For each of these samples, we

Yhttps://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/
mechanisms/geometric.py

Table 14: Computational Time per step: We measure the GPU time for SGD, DP-SGD, and our proposed

PD-SGD for one step with the same model and the same amount of data. We report the average time among 3

steps. For CIFAR-10 (Finetuning), we use Vit model and for CIFAR-10 (From scratch), we train WRN-16-4

from scratch. We can observe that although PD-SGD is slower than SGD, it takes less time than DP-SGD.
Dataset Method Time (ms)

DP-SGD 18.86 (+0.08)
CIFAR-10 (FT) PD-SGD 7.70 (£0.10)
SGD 0.49 (£0.03)

DP-SGD 2492.11 (£8.06)
CIFAR-10 (FS) PD-SGD 1780.16 (£15.72)
SGD 344.47 (£0.20)

27

https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/mechanisms/geometric.py
https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/mechanisms/geometric.py

Table 15: GPU Memory Usage Comparison: Evaluation of GPU memory usage of PD-SGD against DP-SGD
and non-private (SGD) training with the Wide-ResNet-16-4 model on CIFAR-10 dataset

Method alloc reserved peak_alloc peak_ reserved

SGD 37.9 MB 65620 MB 4918.2 MB 6562.0 MB
DP-SGD 103459 MB 18612.0 MB 10345.9 MB 18612.0 MB
PD-SGD 145.8 MB 67120 MB 5014.5 MB 6712.0 MB

Table 16: Evaluate PD-SGD on CIFAR-100 with more training data points: Finetune Vit model with large
subset of CIFAR-100 (10K). We can observe the similar thing that PD-SGD can achieve better privacy utility
trade-off than DP-SGD.

Method Test Acc P-Attack R-Attack S-Attack C-Attack
Non-Private 82.94% 0.56 0.57 0.56 0.19%
PD-SGD (PS1) 80.29% 0.52 0.52 0.51 0.11%
PD-SGD (PS2) 78.25% 0.51 0.51 0.51 0.08%
DP-SGD (¢ =8) 77.13% 0.52 0.54 0.52 0.13%

Table 17: Evaluate PD-SGD on CIFAR-100 for training from scratch: Train WRN-28-2 from scratch with
PD-SGD on CIFAR-100. We can observe that: PD-SGD achieves a better privacy-utility trade-off than DP-SGD
even with large €.

Method Test Acc P-Attack R-Attack S-Attack C-Attack
Non-Private 56.27% 81.71% 81.91% 81.85% 0.37%
DP-SGD(e = 8) 18.24% 52.29% 49.58% 51.03% 0.11%

DP-SGD(e = 100) 29.50% 53.04% 50.57% 51.76% 0.12%
DP-SGD(e = 500) 30.55% 53.84% 50.88% 51.84% 0.14%
PD-SGD (PS 1) 53.63% 58.80% 52.81% 57.46% 0.15%
PD-SGD (PS 2) 47.07% 54.27% 50.56% 50.00% 0.12%

ran ten independent per-example MIA trials and recorded the fraction of trials in which the adversary
correctly classified the sample as a “member.” The resulting per-sample MIA success rates are shown
in[Fig. 8] Under standard SGD, these six images exhibit an average MIA success rate of 91.67 %,
confirming their high vulnerability. When using PD-SGD, however, the average success rate falls to
56.67 %, demonstrating that PD-SGD not only delivers strong per-example privacy protection but
also serves as an effective mechanism for detecting the most privacy-sensitive points in the dataset.

G.11 Training with more data points

To extend our evaluation, we have finetuned ViT model with a larger subset of CIFAR-100 i.e.,
using 10K for training and 10K for testing and the rest of the data for shadow datasets. We report
results in We can observe that without any defense, the attack AUC is around 0.56, while
with PD-SGD, the attack AUC decreases to 0.52-0.51. For utility, PD-SGD can achieve 80.2% test
accuracy while DP-SGD with € = 8 can only achieve 77.13% test accuracy.

Sl

100%

PD-5GD 80% 60% 60% 50% 80% 10%

Figure 8: Samples frequently rejected by PD-SGD face higher MIA risk under standard SGD Average
per-example membership inference attack success rates are 91.67% but lead to reduced MIA success (56.67%)
when using PD-SGD. This shows the usefulness of the method to provide per-example privacy protection, as
well as its potential for detecting vulnerable points.

28

Table 18: Impact of Clip Threshold of DP-SGD
Clip Threshold Test Acc P-Attack R-Attack S-Attack C-Attack

0.1 93.49% 0.54 0.56 0.54 0.18%
1 93.56% 0.54 0.56 0.54 0.18%
10 93.54% 0.54 0.57 0.54 0.20%

G.12 Train from scratch on CIFAR-100

We used small training set sizes for these experiments to ensure the resulting models would be
vulnerable to MIA so that it would be clear if the desired level of protection was indeed achieved.
However, we also included other experiments in our paper where we used much larger training
set sizes (e.g., Mable 1). In addition, we conducted further experiments using a larger subset of
CIFAR-100. We follow the experiment setting in [S0] which trains a WRN-28-2 from scratch on
25k samples of CIFAR-100. We show the results in[Table 171 It can be observed that PD-SGD can
successfully defend different MIA attacks for example, Attack AUC is decreased significantly from
around 81% to 54% by using parameter setting 2 of PD-SGD.

Compared to DP-SGD, PD-SGD consistently provides substantially better utility, even for large
values of . For instance, with € = 100 or € = 500, DP-SGD achieves only about 30% test accuracy.
In contrast, our proposed PD-SGD attains significantly higher accuracy — 47.07% (with a slightly
higher Attack AUC) or approximately 37% (with a comparable Attack AUC), as shown in

G.13 Impact of Clip threshold of DP-SGD

To further investigate the impact of the clipping threshold in DP-SGD on privacy protection, we
fixed all other parameters and varied the clipping threshold, as shown in[Table 18] We can observe
that even though the clip threshold changes, the model’s utility and privacy are almost the same.
However, during these experiments, we do find that if the clip threshold is changed, the learning rate
also needs to be tuned properly to get the optimal utility. It makes sense that the impact on privacy of
the clipping threshold should not be substantial since in DP-SGD, the noise added to the gradient is
scaled by the clipping norm.

H Proofs

H.1 Proof of[Lemma 1|

Proof of[Lemma 1] We need to prove that if the likelihoods /;, satisfy for some A > 1
and N’ > 0, then the advantage is bounded:
A—1 N

< .
advs o7 A

For this first observe that the advantage is bounded by the total variation distance: adv <

TV (ly,1l) = %|l1 — lo|1. Therefore, we will show that v = TV (11, 1) < :\\ﬁ + /\+1

For conciseness, write p = [; and ¢ = ly. From|Eq. (1)|we have that for any x in the range of the
distribution (of p and q):

p(z) < Aqz) +c(x) and g(z) < Ap(z) + c(z),
for c(z) > 0 and [e(z)de < X.
Define A = {z : p(z) > q(x)}. We have v = TV (p,q) = [,(p — ¢) = p(A) — q(A). Decompose

the TV over A and A°¢:
v= /A (p(z) — g(@))dz < (A — 1) /A o(x)dz + /A (x)dz |

and

o= [(@ -p@)dr <=1 [padet [clajds.

c

29

Write p(S), ¢(S), ¢(S) to denote the integral over a set S we get: v < (A — 1)g(A) 4+ ¢(A) and
v < (A= 1)p(A4A°) + c¢(A°). Also, v = p(A) — q(A), we can plug in p(A€) = q(A€) — v in the
second inequality. We obtain:
v < A=D1 —q(A) —v) + (A9,
which can be reorganized to:
v < ATHA = 1)(1 = g(A)) + e(A%)]
Combining this with the first inequality, we have that:
v < min [(A— 1)g(A) + e(A), A~ (A= 1)(1 = q(4)) + c(A%))] .

Writing y = ¢(A) the above expression upper bounds TV as the minimum of (A — 1)y 4 ¢(A) and
AN = 1)(1 — y) + ¢(A°)]. These can be viewed as lines/functions of y € [0,1]. Clearly, the
maximum is reached when two lines intersect. It can be seen that the intersection point y* satisfies:

A [e(A) A—1
“xril A T

A
Replacing the RHS in the first inequality yields:
A—=1 c(A)+ec(A%) A-1 N
< <
VEATIT T arr Sar1 At

which completes the proof. O

y*(A—1)

H.2 Proofs of Privacy Testing

Proof of[Lemma 2] Because T' — 7 decreases with 7, the event {z > T' — 7} becomes easier as T
grows; hence

Dr41 Z Dr.
Upper ratio. The geometric tail satisfies Pr[z > k] = % B7F, so for p; 1 < 1 — 1) we have
pry1 BT
p @ P

If proy=1—1,thenp,y1/p, <1<

Lower bound on (1 — p,41)/(1 — p;). Based on upper ratio, we have

L=pri1 o 1= pr
1—pr — 1—’7”%

Since 11__5111 is monotonically decreasing and p, 1 < 1 — 1), We get:

B

1—pry1 > P

1 — Brt1i = 1—9
B _ -7
=73
O
Proof of[Lemma 3] For1 <t <T:
= (P2 T = (=) 3 6
i>T—t
<(1—9)B T = (1 —y)exp(—eo(T —).
O

30

H.3 PD Criterion for PD-SGD
Pr Take 7 as in that is the algorithm maps onto a single training iteration
[Algorithm]

of |Algorithm 1| with a privacy test with parameters o > 1, randomization Geom(/3) and ceiling

We need to prove that 7 satisfies the PD criterion (Definition 1)) with A,)’ as in the lemma. The
pointwise bounds need to hold for any partition By, . .., B, target batch By, and any g € Range(T).

Consider an arbitrary partition B8 = (Bj,...,B,,) and target batch B*. Let %' =
(Biy...,Bm,B*) = 9B,B*. The likelihood terms are I;(g) = Pry(¢g|B,B*) and ly(g) =
Prr(g|B).

PD-SGD sometimes rejects a gradient. We formalize this as the algorithm outputting L. Its range is
R< U { L} for a d parameters model. Consider the case for an arbitrary g € R? (g # 1) first.

To produce an output, first selects a seed batch uniformly random, then produces g by
adding noise to the seed batch gradient, and finally runs the privacy test. Therefore:

Pry(g|®B) = Z Pr(B) - Pr(g|B,B) Z Pr(B) - p(g|B) - pr(g.B.3) -
BeB BeB

Here Pr(B) is the probability of B being selected as seed, Pr(g| B, 2B) is the probability of outputting
¢ conditional on B being the seed batch (and B is the partition). The latter term, Pr(g|B, 9B),
requires that g is sampled from batch B’s gradient (p(g|5)) and that the test passes p. (4 5). We
use 7 = 7(g, B, B) to denote the number of alternatives. This is because the probability of passing

the test only depends on 7 and3).

Breaking down the sum for /; (g) over the seed batches, we have:

1
Ii(g) = —— Pr(g|B.B") + Pr(g|B*, B’
1(9) = - B% r(g|B,B') + Pr(g|B*, ')
> LS Pi(glB %) = —— 3 plg|B)
“m+1 rg|o, —m+1 p\g p‘r(g,B,‘B’)
BeB Bes
> — p(9|B) pr(g.B,B) = —— Pr(g|B,B)
m-+1 oyt m+1 Py
m
= !
().

The first inequality uses Pr(g|B*,B’) > 0 and the second uses the fact that adding a batch does not
decrease the probability of passing the test for other batches.

This gives the first direction: 1, (g)/lo(g9) > - =

For the second direction, we proceed similarly:

1

hig) m+1

> Pr(g|B. %) + Pr(g|B*, %')]
Be®B

By Pr(g|B,B) +Pr<g|B*,%’)]

BeB

1
m+1

IN

1
= 1(6 m ly(g) + Pr(g|B*,B")) .)

The inequality uses the fact that the rate of increase of the probability of passing the test is at most /3
when adding a batch (Lemma 2)), thus: Pr(g|B,®B’) < Pr(g|B,B).

To proceed from (1), we divide the analysis into two cases based on 7(g, B*,B’)., i.e., the number
of alternatives available to B*.

31

Case 1 (7(g, B*,B’) > t): We have 7(g, B*,B) > t since t + 1 alternatives in B’ means at least ¢
such batches exist in 8. Thus (using the definition of a-similarity):

* o
p(ng)S; E p(g|B) .
BeB
7(9,B,B)>t

For each alternative batch B in this sum, we also have that: p.(y g) > 87 pr(g, 5+ %) (Lemma 2).
Therefore:

* a
PriglB* %) < 225 pr(elB.m) < 203 Pr(olB,®) = Pino(o)
T(g%eg)zt pe®

So for case 1, we have: [1(g) < m+16(1+ lo(g).

Case 2 (1(g, B*, ') < t): In this case, there are fewer than ¢ alternatives in 95 (there could be none).
But (by [Lemma 3) the probability of passing the test is exponentially small in T — ¢. That is:

pr(g. B B) <p < (1—)BT
Thus: Pr(g|B*,B’) < p(g|B*)(1 —)3~ T~* from which we get (for case 2):

hig) < "B lolg) + ——N(g)

where X' (g) = p(g|B*)(1 = ¢)B~ Y.
Observe that for any § € R%: [X (g) < (1 —)3~ TV since [;p(g|B*) <1
It remains to consider the case g = L.
For this observe that since the test has a ceiling 1 > ,(L) > ¢ > 0 for b = 0, 1. We have:

(m+1) (L) Ypen Pr(L|B.S) + Pr(L]B*, %)

mly(L) > e Pr(L[B, %)

Write s(B) = > ey Pr(L[B,®B), s(B') = Y peg Pr(L|B,B') and s* = Pr(L|B*,B’).
S(B) > B We also have that for any batch B and par-

From [Lemma 2| we get that 1 > Tooy > i

tition B: 1 > Pr(L|B,B) > 1. Thus 1 > s* > 1) and also s(%) > map. It follows that:

B=1+v% m mlo(L) ma
Dividing by %7 yields:
-1
m B ¥y) om (L _mAyT
m+1\B—-14+¢ m lo(L) " m+1 ma m+1
Aggregating the bounds over all the cases completes the proof. O

H.4 PD-SGD satisfies DP

The proof of is similar to that of except that it must consider a random partition
and consequently there is no additional target batch By, so we have to couple the partitions under D,
and D5 and leverage the observation that the additional example (x, y) such that D1 = Dy U {(x,y)}
(or Dy = Dy U {(z,y)}) falls into exactly one batch.

Proof of[Lemma 3] Consider adding an example (z, y) to D. Let D’ = DU{(z,y)}. Observe that no
matter how D’ gets partitioned (assuming only m batches) the example (z,y) only falls into exactly
one batch. Furthermore, we can couple partitions on D and D’ as follows. If B = (By, ..., By,)
is a partition on D and D has n data points, there are 1 < g < m batches of size r + 1 and m — ¢
batches of size r for integer r such that n = mr + q. Under D’ we can take the partition 8 and
obtain a partition 9B’ by selecting a uniformly random batch of size r (i.e., one of the m — ¢ batches

32

of size r) and adding (z, y) to it. (If m = g, i.e., all partitions have size exactly n/m then we pick a
uniformly random batch and add (x, y) to it).

Fix an arbitrary partition B = (By,..., B;,) of D and let B’ = (BY, ..., B,) denote the associated
partition under D’. There exists j such that B’ # B; (and B’ 1ncludes (z,y)) and for i # j:

B; = Bj. Write B* (= B) to denote the dlffermg batch

Fix an arbitrary g # 1. Since the two partitions have the same number of batches, we can relate the
probability of producing g under 95 to that under 28’ by considering the case where the selected seed
batch is B* or not. When selecting a seed batch, the probability that we select B* is exactly 1/m,
therefore:

1 -1
Pr(g|%B’) = EPr(ng*,%’) + Pr(g|B, '), ©)

We proceed similarly to the proof of For the first direction, we immediately get the first
direction:

Pr(g|%B') > — 1Pr(gl‘B)

where the first inequality used the fact that Pr(g|B*,%B’) > 0 and the second used [Lemma 2] (the
probability of passing the test is non-decreasing).

Pr(g|B,B') > Pr(g|B,B) =

For the second direction, observe that the term Pr(g|B, B’) is related to Pr(g|B, 9B) as follows:

Pr(g|B,B") = p(g|B) - pr(B.3"
< ﬁp(g‘B) p'r B,B) — ﬁPI‘(g|B,%))

where we again used[Lemma 2| Since 9B’ differs in only one batch from 9B the number of alternatives
increases by at most one and thus the probability of passing the test by a factor of at most 3.
Case 1: 7(B*,’) > t. In this case for any batch B € B’ that is a-similar to B* we have
7(B*,B) > t (and there are at least ¢ such batches in B \ B;). Therefore:

Priglp',B) < P Y pr(glB.w)

t
BeB:B*~,B

S Pr(glB,®)

BeB

IN

where the first inequality applies the o-similarity and [Lemma 2]to the average batch B € B that is
a-similar to B*. The second inequality simply uses the fact that Pr(g|B,) > 0 for any batch B.

Since Pr(g|B) = = >,y Pr(g|B, SB):

1 x 5 of
—Pr(g|B", B') < - > Pr(g|B,B) = TPr(g\%) .
BeB
Putting this together, we have for case 1 that:
o
Pr(o1) < pr(al®) + "L opr(ol®) < 6“4 5) prtgim)

Case 2: 7(B*,8’) < t. In this case, there are less than ¢ alternatives in B (e.g., there could be none).

However, since the term Pr(g|B*,8B’) is bounded by the probability of passing the test according
to We have:

1
—Pr(g|B*,B') <
m

1

m

(1 =) exp (—eo(T" —t)) p(g|B*) -
Therefore:

PH(gI) < (1 —) exp (~eo(T — 1)) (9] B*) + "5 Pr(y]B) .

1
m

33

Since mT_lﬁ < 5(7"7_1 + ¢). this completes the second direction and we get:
1
Pr(gl) < S L 1)Pr(gl'B) + o9, 5°).

where 0(g, %) = =(1 —) exp (—eo(T — t)) -p(ng*)-
To meet the definition for both directions, we need to consider an arbitrary set Y. It suffices to
integrate over the previous results. Since: Pr(Y|8') = fg cy Pr(g|®’), it follows that:

m—1

Pr(V|B) < Pr(V|%') < 8" + C)Pr(Y[B) +8(V, 5%

where 0(Y, %) = L (1 —) exp(—20(T — 1) - [,y P(g1B*) < (1 -) exp (—eo(T — 1)
because fg cy P(g|B*) is at most 1 since it is a probability.

Noting that Pr(Y|M(D)) = W > wen(p) Pr(Y[®B) and the number of partitions in the sum
from the coupling is the same for D and D’ yields the result with ¢ = In(8(1 + ¢)) and § <
L(1—) exp (—eo(T — 1)).

Finally, consider the case ¢ = . From the ceiling, we have that for any batch B and partition
B: 1 > Pr(L|B,B) > ¢ > 0. From[Lemma 2| we have that for any batch in B € B: 1 >

Pr(L|B, %) /Pr(L|B,%B) > 24

Write:
Pr(LIM(D")) > pew Pr(L[B,B") s(B')+Pr(L|B*, D)

Pr(LIM(D)) ~ > pen Pr(L|B.B) s(B)+ Pr(L|B;,B) @
with s(B') = > pcr.pxp- Pr(L|B,B’) and s(B) = ZBe‘B:B;éBj Pr(L|B,*B). Both sums are

S(B) o B
S(B) 2 F119"

From this taking the worst case for the terms involving B* and B; in both directions, we get:
(ﬁﬂfﬁ_w)sJﬂ/f <)< s+1
s+1 T s+

for s = s(B). Optimizing as a function of s € [(m — 1)4, (m — 1)], we see that the upper and lower
bounds are reached for s at its maximum and minimum respectively, from which we conclude:

B m_ _PMD) _ m
G-D+0m—1+¢1 = Pe(LIM(D)) ~ m-D)+¢

which concludes the proof. We get the result as stated in the lemma when the bounds for the g # L
case dominate (those for g =). For this, it suffices to choose 1 appropriately. O

H.5 Proofs of
We now prove

Proof of[Lemma 6] Consider the ratio of probabilities bounded by [Eq. (2)] and expand using the
Gaussian PDF. We get:

p(g —9s) P (_(202)_1 X ZJZ>
p(g - 9) exp (*(20’2)71 Z?:I(Zj + (gs,j - gi,j))Z)

over the same batches and we have that; 1 > 2

k
=exp | —(20?) IZ — (dj + Z;)?]
j=1

= exp | —(207?) 1—d—2ZdZ ,

34

k
where d; = g, j — gijandd = 37, dF = ||gs — gil3.

Plugging this into the inequality, taking the log and some reorganization we get that the candidate
gradient is plausibly deniable with respect to g; iff:

Since Z; ~ N'(0,0?), the summand for j is distributed as A'(0,d~'d?). Further, since the sum of
1.1.d. Gaussian random variable is distributed a Gaussian random variable with the sum of the means

and the sum of the variance, we recognize that Y = 37, % % ~ N(0,1).

Thus reducing the plausibility of a candidate gradient to:
Vd o <y <17 Vd

20 Vi SViT 2w @

and further to) 9
d—2vo <y < d+ 2vo

20v/d T T 20Vd

where we have used symmetry so that —Y has the same distribution as Y.

®)

Therefore, Y needs to be within a band of width ai\/g around \/E/ 20 where ¥ = 2027, which

completes the proof. O
The proof of relies on the following standard normal upper and lower tail bounds:
Lemma 8. Ler X ~ N(0,1). Fort > 0, we have:

t

m(\/%)*1 exp (—1%/2) < Pr(X > t) < (tV2r) Lexp (—12/2) .

Note that tighter bounds are available ([L1} [15]).

Proof oflLemma 7} Leta = Y% and b = 7. We have from [Lemma 6| that q(s,) = Pr(a —b <
X <a+b)for X ~ N(0,1). Thus:

q(s,9) =Pr(X >a—b) —Pr(X >a+0)

U S LI (a+b) o (atb)?/2
(a —b)v2r ((a+b)2+1)V2r
R S D S o S Cols ol) M REALY
Vor la—b (a+0)2+1
—(a2+0?%) b
2 [e (a+b) }
V2T a—b (a+b)?+1 '
Substituting back a and b in terms of d, o,y yields the result. O

The following corollary of the lemma provides a simple upper bound whenever d > 7.
Corollary 1. Letd > ? for some 0 < f < 1. Then:

q(d) <)

67(80%4»72;2)2 |: 67/2 6_7/2:|
o _
omd 1—f 2+f

Proof of[Corollary 1| Let d > 2yo? which implies @ — b > 0. When d increases, a increases but b
decreases. So, we can bound ¢ — b and a + b as follows:

35

Suppose b < fa where 0 < f < 1and a > 1, then

1 < 1
a—b" a(l-)

a+b S 1
(a+b)2+17" al2+f)

Based on this, we can get:

eab:|

—(a?+0?) “
a(s,i) < &~ [eb __(a+d)
’ Vor la—b (a+0b)2+1
677(“2;1’2) ab e—ab
< — .
V2ma [1 -f 2+ f]
_ _ d _ 20_2
Observe that ab = /2, a* = ;% ,b* = 5
So:
(5.1) e—(g%ﬁrwiiz) [eV/2 8—7/2}
5,1) < o -)
1 2md 1—f 2+f

36

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our claims match the theoretical and empirical results.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss it in appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

37

Justification: We provide full proofs in appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experiments details in main text and appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

38

Answer: [Yes]
Justification:We provide anonymous github link for the code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all details in appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide error bars for the results in main text.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide all details in appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research follows the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss it in appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

40

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all datasets, code bases and models.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

41

paperswithcode.com/datasets

14.

15.

16.

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

42

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background & Related works
	Plausible Deniability for Deep Learning
	Batch-Level Plausible Deniability
	Relationship to Membership Inference
	Indistinguishability & PD Criterion

	Plausibly Deniable Stochastic Gradient Descent
	Randomizing Gradients with Gaussian Noise
	Privacy Testing
	Algorithm
	Algorithmic Complexity
	Privacy-Utility Tradeoff & Batch PD

	Experiments
	Experimental Setup
	Evaluations

	Conclusions
	Symbols
	More on Batch PD
	From Batch PD to Membership Privacy
	Bounding Adversarial Success Rate
	Multiple Steps

	Privacy: Tests, Batch PD & Differential Privacy
	Privacy Testing
	PD Criterion
	Differential Privacy

	What Batch Pass the Privacy Test?
	Parameter Tuning
	Experiments Setup
	Datasets
	Models
	Setups

	Additional Experiments
	Hyperparameter settings and Full Experimental Results
	Understanding parameters of PD-SGD
	Understanding Batch size in PD-SGD
	Understanding Reject Rate of PD-SGD
	Rejection of Anomalous Batches
	Frequency of examples used of PD-SGD
	Compared to SoTA DP-SGD and new empirical defense mechanism
	Variants of Privacy Tests
	Computational Resource Measurement
	Vulnerable Data points recognized by PD-SGD
	Training with more data points
	Train from scratch on CIFAR-100
	Impact of Clip threshold of DP-SGD

	Proofs
	Proof of lem:batchpd-lambda
	Proofs of Privacy Testing
	PD Criterion for PD-SGD
	PD-SGD satisfies DP
	Proofs of app:additional-theory

