
Under review as a conference paper at ICLR 2023

ROBUST EXPLORATION VIA CLUSTERING-BASED
ONLINE DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Intrinsic motivation is a critical ingredient in reinforcement learning to enable
progress when rewards are sparse. However, many existing approaches that mea-
sure the novelty of observations are brittle, or rely on restrictive assumptions about
the environment which limit generality. We introduce Robust Exploration via
Clustering-based Online Density Estimation (RECODE), a non-parametric method
that estimates visitation counts for clusters of states that are similar according to
the metric induced by a specified representation learning technique. We adapt
classical clustering algorithms to the online setting to design a new type of mem-
ory that allows RECODE to efficiently track global visitation counts over thousands
of episodes. RECODE can easily leverage both off-the-shelf and novel represen-
tation learning techniques. We introduce a novel generalization of the action-
prediction representation that leverages transformers for multi-step predictions,
which we demonstrate to be more performant on a suite of challenging 3D-
exploration tasks in DM-HARD-8. We show experimentally that our approach can
work with a variety of RL agents, obtaining state-of-the-art performance on Atari
and DM-HARD-8, and being the first agent to reach the end-screeen in Pitfall!

1 INTRODUCTION

Exploration mechanisms are a key component of reinforcement learning (RL, Sutton & Barto, 2018)
agents, especially in sparse-reward tasks where long sequences of actions need to be executed be-
fore collecting a reward. The exploration problem has been studied theoretically (Kearns & Singh,
2002; Azar et al., 2017; Brafman & Tennenholtz, 2003; Auer et al., 2002; Agrawal & Goyal, 2012;
Audibert et al., 2010; Jin et al., 2020) in the context of bandits (Lattimore & Szepesvári, 2020) and
Markov Decision Processes (MDP, Puterman, 1990; Jaksch et al., 2010). Among those theoretical
works, one simple and theoretically-sound approach to perform exploration efficiently in MDPs is to
use a decreasing function of the visitation counts as an exploration bonus (Strehl & Littman, 2008;
Azar et al., 2017). However, this approach is intractable with large or continuous state spaces, as
generalization between states becomes essential. Several experimental works have tried to come
up with ways to estimate visitation counts/densities in complex environments where counting is
not trivial. Two partially successful approaches have emerged to empirically estimate visitation
counts/densities in deep RL: (i) the parametric approach that uses neural networks and (ii) the non-
parametric approach that uses a slot-based memory to store representations of visited states, where
the representation learning method serves to induce a more meaningful metric1 between states.

Parametric methods either explicitly estimate the visitation counts using density models (Bellemare
et al., 2016; Ostrovski et al., 2017) or implicitly estimate the counts using e.g., Random Network
Distillation (RND, Burda et al., 2019; Badia et al., 2020b). Non-parametric methods rely on a
memory to store encountered state representations (Badia et al., 2020b) and representation learning
to construct a metric that differentiates states meaningfully (Pathak et al., 2017). Parametric methods
do not store individual states explicitly and as such their capacity is not directly bound by memory
constraints; but they are less well suited to rapid adaptation on short timescales (e.g., within a single
episode). To obtain the best of both worlds, Never Give Up (NGU, Badia et al., 2020b) combines

1Usually this is a pseudometric on the space of observations, since d(x, y) = 0 for x ̸= y is permitted by
typical network architectures, and may be desirable as a means to discard noisy or uncontrollable features

1

Under review as a conference paper at ICLR 2023

a short-term novelty signal based on an episodic memory and a long-term novelty via RND, into a
single intrinsic reward. However, this approach also naturally inherits the disadvantages of RND; in
particular, susceptibility to uncontrollable or noisy features (see Section 5), and being difficult to
tune. More details on related works are provided in App. C.

In this paper, we propose to decompose the exploration problem into two orthogonal sub-problems.
First, (i) Representation Learning which is the task of learning an embedding function on observa-
tions or trajectories that encodes a meaningful notion of similarity. Second, (ii) Density Estimation
which is the task of estimating smoothed visitation counts to derive a novelty-based exploration
bonus. We first present a general solution to (ii) which is computationally efficient and scalable
to complex environments. We introduce Robust Exploration via Clustering-based Online Density
Estimation (RECODE), a non-parametric method that estimates visitation counts for clusters of states
that are similar according to a metric induced by any arbitrary representation. We adapt classical
clustering algorithms to an online setting, resulting in a new type of memory that allows RECODE to
keep track of histories of interactions spanning thousands of episodes. This is in contrast to existing
non-parametric exploration methods, which store only the recent history and in practice usually only
account for the current episode. The resulting exploration bonus is principled, simple, and matches
or exceeds state-of-the-art exploration results on Atari; being the first agent to reach the end-screen
in Pitfall!. In the presence of noise, we show that it strictly improves over state-of-the-art explo-
ration bonuses such as NGU or RND. The generality of RECODE also allows us to easily leverage both
off-the-shelf and novel representation learning techniques, which leads in to our second contribu-
tion. Specifically, we generalize the action-prediction representations (Pathak et al., 2017), used in
several state-of-the-art exploration agents, by applying transformers to masked trajectories of state
and action embeddings for multi-step action prediction. We refer to this method as CASM for Coupled
Action-State Masking. In conjunction with RECODE, CASM can yield significant performance gains in
hard 3D-exploration tasks included in the DM-HARD-8 suite; achieving a new state of the art in the
single-task setting.

2 BACKGROUND AND NOTATION

In this section, we provide the necessary background and notation to understand our method (see
Sec. 3). First, we present a general setting of interaction between an agent and its environment.
Second, we define the terms embeddings, atoms and memory. Third, we present our notation for
visitation counts. Finally, we show how we derive intrinsic rewards from visitations counts.

Interaction Process between an Agent and its Environment. We consider a discrete-time inter-
action process (McCallum, 1995; Hutter, 2004; Hutter et al., 2009; Daswani et al., 2013) between
an agent and its environment where, at each time step t ∈ N, the agent receives an observation
ot ∈ O and generates an action at ∈ A. We consider an environment with stochastic dynamics
p : H ×A → ∆O

2 that maps a history of past observations-actions and a current action to a prob-
ability distribution over future observations. More precisely, the space of past observations-actions
is H =

⋃
t∈NHt where H0 = O and ∀t ∈ N∗,Ht+1 = Ht × A × O. We consider policies

π : H → ∆A that maps a history of past observations-actions to a probability distribution over
actions. Finally, an extrinsic reward function re : H×A → R maps a history to a scalar feedback.

Embeddings, Atoms and Memory. An embedder is a parameterized function fθ : H → E
where E is an embedding space. Typically, the embedding space is the vector space RN where
N ∈ N∗ is the embedding size. Therefore, for a given time step t ∈ N , an embedder is a function fθ
that associates to any history ht ∈ Ht a vector et = fθ(ht) called an embedding. There are several
ways to train an embedder fθ such as using an auto-encoding loss of the observation ot (Burda et al.,
2018a), using an inverse dynamics loss (Pathak et al., 2017) or using a multi-step prediction-error
loss at the latent level (Guo et al., 2020; 2022). Those techniques are referred as representation
learning methods. An atom f ∈ E is a vector in the embedding space that is contained in a memory
M = {fi ∈ E}|M |i=1 which is a finite slot-based container, where |M | ∈ N∗ is the memory size. The
memory M is updated at each time step t by a non-parametric function of the memory M and the
embedding et. In the simplest case, the memory is filled in a first-in first-out (FIFO) manner along

2We write ∆Y the set of probability distributions over a set Y .

2

Under review as a conference paper at ICLR 2023

the interactions (Badia et al., 2020b;a) and atoms are simply the embeddings themselves. However,
more complex mechanisms than FIFO can be considered to fill/update a memory. For instance given
a memory M and an embedding et, the embedding et can be inserted in the memory if and only if it
is sufficiently different from the other atoms in the memory and the memory is not at capacity. The
update rule that defines the atoms in the memory is a key component of our method.

Visitation Counts. The exact visitation count, Nδ(M, e), for a given embedding e ∈ E with
respect to the memory M can be written as:

Nδ(M, e) =

|M |∑
l=1

δ(fl, e), where δ(f, e) : (e, f) ∈ E2 =
{
1, if e = f

0, otherwise,
(1)

However, when the state-space is very large or continuous, the exact visitation count is often un-
informative since the same embedding may rarely be encountered twice. To overcome this prob-
lem, we can instead compute soft-visitation counts NK(M, e) :=

∑|M |
l=1 K(fl, e), where K ∈ RE2+

is a definite positive kernel. Different choices of kernel can be made such as a Gaussian kernel
K(f, e) = exp(−∥e − f∥22) or an inverse kernel K(f, e) = 1

1+∥e−f∥22
where ∥.∥2 is the Eu-

clidean distance in the embedding space E . Finally, we can compute a weighted soft visitation
count NK(M, e, {wl}|M |l=1)=

∑|M |
l=1 wlK(fl, e), where the weights wl ∈ R+ are positive real num-

bers denoting the count at each atom. Note that the exact visitation count can be recovered from
the more general weighted soft visitation count as a special case by setting the weights wl = 1 and
K = δ.

Intrinsic Rewards from Visitation Counts. It is straightforward to define an intrinsic reward
from visitation counts. Indeed, as the goal of an exploratory agent is to go to less-visited states, an
intrinsic reward can be any decreasing function of the visitation counts. In the literature, the inverse
of the square root of the visitation counts is known to be theoretically sound (Azar et al., 2017).
Therefore, for a given time t, the intrinsic reward associated to the transition (ot, at, ot+1), can be
defined as:

rt =

(√
NK(M, et+1, {wl}|M |l=1) + c

)−1
, (2)

where a small constant c ∈ R+ is added to avoid numerical instability.

3 RECODE

In this section, we introduce our Robust Exploration via Clustering-based Online Density Estima-
tion (RECODE) approach that computes intrinsic rewards for exploration. At a high level, RECODE
stores a fixed number of weighted atoms (typically 5 · 104 or 2 · 105 depending on the domain) that
are interpreted in the following as cluster-centers, along with their counts. The update rule of our
memory M for each new embedding e ∈ E and the computation of the intrinsic reward are detailed
in Algorithm. 1. To each atom/cluster-center fl ∈ E , we associate a count cl ∈ N (initialized to 0)
that is updated after each new embedding e is observed. When a new embedding is inserted we prob-
abilistically choose either to add it as a new cluster (if it is far away from existing clusters relative
to an adaptive threshold) or increment the count of its nearest neighbor and adjust the cluster center
toward the new embedding. The update rule has a close connection to the DP-means algorithm of
Kulis & Jordan (2011), with two key differences:

• the counts of the cluster-centers are discounted at each step, allowing our approach to deal
with the non-stationarity of the data due both to changes in the policy and the embedding
function, effectively reducing the weight of stale cluster-centers in the memory,

• when creating a new cluster-center, we remove an underpopulated one, so as to keep the
size of the memory constant. We compare the qualitative behavior of different removal
strategies in Fig. 8

A theoretical analysis is sketched in Appendix D. To help build some intuition about the quality of
our density estimation, we illustrate in Figure 1 the result of Algorithm 1 on a toy example with

3

Under review as a conference paper at ICLR 2023

Algorithm 1: RECODE
Input : Embedding e, Memory M = {fl}|M|

l=1 , cluster-center counts {cl}|M|
i=l , number of neighbors k, relative tolerance κ, squared

distance estimate d2
m, decay rate τ , discount γ, insertion probability η, kernel functionK, intrinsic reward constant c

Output: Updated memory M = {fl}|M|
l=1 , updated cluster-center counts {cl}|M|

i=l , updated squared distance d2
m, intrinsic reward r

1 Compute weighted smoothed visitation-count of e: NK(M, e, {1 + cl}|M|
l=1) =

∑|M|
l=1 (1 + cl)K(fl, e)

2 Compute intrinsic reward r =

(√
NK(M, e, {1 + cl}|M|

l=1) + c

)−1

3 Find nearest k cluster centers to the embedding e: Nk(e)

4 Update squared distance estimate: d2
m ← (1− τ) d2

m + τ
k

∑
f∈Nk(e) ∥e− f∥22

5 Discount all cluster-center counts cl ← γ cl ∀l ∈ {1, · · · , |M |}
6 Find index of nearest cluster center i = argminl=1···|M| ∥fl − e∥2
7 Sample uniformly a real number in [0, 1]: u ∼ U [0, 1]

8 if ∥fi − e∥22 > κd2
m and u < η then

9 Sample index j of cluster center to remove with probability P (j) ∝ 1/c2j // Remove under-populated cluster10
11 Find index of nearest cluster center to fj : n = argminl=1···|M|,l ̸=j ∥fl − fj∥2
12 Redistribute the count of removed cluster center: cn ← cj + cn
13 Insert e at index j with count 1: fj ← e , cj ← 1 // Create a new cluster14

15 else
16 Update nearest cluster center fi ←

ci
ci+1 fi +

1
ci+1 e

17 Update nearest cluster-center count ci ← ci + 1

18 end

Figure 1: Density estimation using RECODE on a toy example: for step t = 0, . . . , 100, we sample a
batch of 64 2D-embeddings uniformly from the square of side 1+

√
t. The support of the embedding

distribution therefore expands over time to simulate a non-stationary distribution akin to the distri-
bution of states visited by an RL agent over the course of exploration. We plot the clusters learned
by RECODE with a size proportional to their count. We find that for a small enough discount, RECODE
exhibits a short-term memory, accurately approximating the distribution of the final distribution.
As we increase the discount, RECODE exhibits a longer-term memory, approximating the historical
density of states, as can be seen by the concentration of probability mass in the bottom-left corner.

a non-stationary embedding distribution. We find in particular that tuning the discount allows to
smoothly interpolate between short-term and long-term memory, a property that will prove crucial
to achieve the strong experimental results of Section 5.

Note that contrary to the usual episodic memory used in Badia et al. (2020b;a), the memory is never
reset, and is shared between all actors in our distributed RL agent. We use the following kernel
function defined for (e, f) ∈ E2 by:

K(f, e) = ϵ

ϵ+
∥e−f∥22

d2
m

1{∥e−f∥22<d2
m} , (3)

where ϵ ∈ R+, d2m is an estimate of the squared distance between an embedding and its nearest
neighbors in the memory (see Algorithm. 1)) and 1{.} is the indicator function. Compared to Badia
et al. (2020b;a), our smoothed visitation-counts computes the normalized distances from a given
embedding e to all its neighbors within a d2m-ball, instead of only the k-nearest neighbors. This
change avoids an undesirable property of the k-NN approach where inserting a cluster with unit-

4

Under review as a conference paper at ICLR 2023

count close to the embedding e might reduce its pseudo-count instead of increasing it if the k-th
nearest neighbor of e had a large count.

We now detail how RECODE can be integrated in a typical distributed RL agent (Espeholt et al.,
2018; Kapturowski et al., 2018) that comprises several processes that run in parallel and interact
with each other. Classically, a Learner performs gradient steps to train a policy πθ and an embedding
(representation) function fθ, forwarding the parameters θ to an Inference Worker. A collection of
independent Actors query the inference worker for actions that they execute in the environment
and send the resulting transitions to the Learner, optionally through a (prioritized) Replay (Mnih
et al., 2015; Schaul et al., 2015). When using RECODE, the Actors additionally communicate with
a shared Memory implementing Algorithm 1: at each step t, they query from the Inference Server
an embedding fθ(ht) of their history and send it to the shared Memory which returns an intrinsic
reward rt that is then added to the extrinsic reward to train the policy in the Learner process. In
practice, we normalize the intrinsic reward by a running estimate of its standard-deviation as in
Burda et al. (2019). A diagram giving an overview of a distributed agent using RECODE is given in
Fig. 10.

4 REPRESENTATION LEARNING METHODS

The Learner process uses the data sent by the actors to train the policy πθ via an RL algorithm and
to train the embedder fθ via a representation learning loss. As noted in Section 2, the choice of the
embedding function fθ : H → E induces a metric in the embedding space E allowing to compare
histories. Many different representation learning techniques have been studied in the context of
exploration in RL (Burda et al., 2018a; Guo et al., 2020; 2022; 2021; Erraqabi et al., 2021). In the
following, we focus on action prediction embeddings, introducing first the standard 1-step prediction
formulation (Pathak et al., 2017; Badia et al., 2020b;a). Our embedding function fθ is parameterized
as a feed-forward neural network taking ot, the observation at time t, as inputs. We further define
a classifier gϕ that, given the embeddings of two consecutive observations fθ(ot), fθ(ot+1), outputs
an estimate pθ,ϕ(at|ot, ot+1) = gϕ (fθ(ot), fθ(ot+1)) of the probability of taking an action given
two consecutive observations (ot, ot+1). Both fθ and gϕ are then jointly trained by minimizing an
expectation of the following loss:

min
θ,ϕ
L(θ, ϕ)(at) = − ln(pθ,ϕ(at|ot, ot+1)) , (4)

where L(θ, ϕ)(at) is the negative log likelihood and at is the true action taken between ot and
ot+1. These embeddings have been shown to be helpful in environments with many uncontrollable
features in the observation (Badia et al., 2020b), such as the game of Pitfall! in Atari, where they
might result in spurious sources of novelty even when the agent is standing still.

We note however that RECODE can be used with an arbitrary embedding function, e.g. one tailored
for the domain of interest. One downside of the standard, 1-step action-prediction method is that
the simplicity of the prediction task may only require highly localized and low-level features to be
learned for its solution, which may not be informative of more geometrical or topological notions of
environment structure, that partially-observable or 3D-exploration tasks might require. Other popu-
lar forms of representation learning such as Contrastive Predictive Coding (CPC, Oord et al. (2018))
or Predictions of Bootstrapped Latents (PBL, Guo et al. (2020)) utilize temporally-extended predic-
tion tasks but do not enforce any notion of controllability. We now present a novel generalization of
action-prediction embeddings that we show to yield strong results on DM-HARD-8 in section 5.

A straightforward generalization of 1-step action prediction is to predict sequences of actions be-
tween observations ot and ot+k, but in general there may be many such sequences which are possi-
ble, besides the one which is obtained by the behavior policy. This introduces an additional policy-
dependent non-stationarity in the prediction task which could potentially hinder learning efficiency
and stability. To counteract this problem we could provide all but one of the intervening actions to
our context (ot, at, at+1 . . . at+k−2, ot+k), and predict only at+k−1. However, in partially observed
domains it is possible that these two observations alone are insufficient to accurately localize the
agent’s state, and therefore it may be beneficial to provide additional context before ot.

Concretely, we propose to apply a causally-masked transformer to sequences of observation and
action embeddings, such that at each timestep t exactly one of ot and at is provided. The transformer
output is then projected down to the size of the embedding (dim zt = dim fθ(ot)), and the difference

5

Under review as a conference paper at ICLR 2023

between the two is input into a final MLP classifier, gϕ. During training, we randomly sample
N = 4 masks per trajectory to help reduce gradient variance. Note that we use et = fθ(ot), the
transformer inputs, as the embeddings for RECODE in order to avoid leaking information about the
agent’s trajectory. As with 1-step action prediction, we train the representation using maximum
likelihood. We refer to this approach as Coupled Action-State Masking (CASM) in the following.
Figure 2 shows a diagram of the architecture.

Figure 2: Coupled Action-State Masking (CASM) architecture used for learning representations in
partially observable environments. Note that masked inputs are shaded in pink.

5 EXPERIMENTS

In this section, we experimentally validate the generality of our approach by applying it to several
domains with distinct properties. We first show that we can match or improve state-of-the-art learn-
ing efficiency on the hardest exploration games contained in the well-established Atari benchmark.
We then turn to DM-HARD-8, a suite of partially-observable 3D hard exploration tasks, where we
obtain results that match or exceed the recently proposed BYOL-Explore (Guo et al., 2022) agent.
All the candidates evaluated in the experiments in the main paper and the extended experiments in
App. E are composed by three main modules: (1) a base agent, responsible for core RL aspects
such as collecting observations and updating the policy, (2) an algorithm responsible to generate an
exploration bonus, and (3) a representation learning algorithm responsible to generate latent repre-
sentation of the observations that allow the exploration bonus to be meaningful. Each of the agent
names in the experiments will reflect which specific algorithm is responsible for each of the three
modules. For example, in our more detailed taxonomy the original MEME agent described in Kap-
turowski et al. (2022) is denoted as the MEME-NGU-AP baseline. Similarly, our MEME-RECODE-AP uses
the same base agent (MEME) and representation learning algorithm (AP), with the only modification
being the intrinsic reward mechanism being swapped from NGU to RECODE. For a full description of
all the baselines we refer the reader to App. A. We use a memory comprised of 5 · 104 atoms for
our Atari experiments and 2 · 105 atoms for our DM-HARD-8 experiments. We find that the resulting
agent runs at roughly the same speed as the original MEME agent. More hyperparameters values can
be found in App. A.

5.1 ATARI

The Atari Learning Environment (ALE, Bellemare et al., 2013) is one of the most used RL bench-
marks for deep RL, comprising 57 Atari games which are mostly 2-D, and have a limited degree of
partial observability which can often be rectified by stacking a small number of frames. On the other
hand, many games have a long optimization horizon (with episodes lasting up to 27000 steps using
the standard action-repeat of 4), and rewards vary considerably in both scale and density. Among
the 57 Atari games, only a few are considered hard-exploration (Bellemare et al., 2016) such as
Montezuma’s Revenge, Pitfall and Private Eye. For evaluation, we follow the classical 30
random no-ops evaluation regime (Mnih et al., 2015; Van Hasselt et al., 2016), and average perfor-
mance over 3 seeds. This evaluation regime does not use sticky actions (Machado et al., 2018).

6

Under review as a conference paper at ICLR 2023

Figure 3: Comparison of RECODE against other exploration bonuses using a MEME base agent on 8
hard exploration games from the Atari domain.

Figure 4: Age distribution of the clusters learned by RECODE on Montezuma’s Revenge. We set
γ = 0.999 as in the experiments of Figure 3. We indicate in red the average length of an episode,
showing that in this setting, RECODE’s memory reaches back thousands of episodes.

We compare our approach with MEME-NGU-AP and its ablations on 8 of the hardest exploration games
on Fig. 3. We find that MEME-RECODE-AP matches the performance of the original MEME agent with
a single, simpler intrinsic reward, achieving super-human performance on all 8 hard exploration
games. Indeed, as shown in Fig. 3, MEME-NGU-AP requires the full NGU exploration bonus (i.e.,
both RND and EMM) to solve all 8 games: RND on its own cannot solve Pitfall! because of the many
uncontrollable features in its observations, while EMM on its own cannot solve Montezuma’s Revenge
because it requires long-term memory. Because RECODE estimates the visitation counts over many
episodes using AP embeddings that discard uncontrollable dynamics, it is able to solve both games
with a single intrinsic reward. We probe how far back the memory of RECODE goes in Montezuma’s
Revenge in Figure 4 and find that the distribution of the age of the clusters learned by RECODE
exhibits a mode around 2 · 106 actor steps, which corresponds to hundreds of episodes, with a
significant number of clusters ten times older than that. We also compare our approach with MEME-
RNDonAP (detailed in Appendix E), a modification of RND built on top of AP embeddings, in an
attempt to fix the aforementioned undesirable properties of RND. We find that this approach does not
allow to solve some of the hardest games such as Montezuma’s Revenge or Pitfall!. One possible
explanation of this failure is the fact that a large RND error can be caused by either the observation
of a new state, or a drift in the representation of an already observed one. The failure of RND to
disentangle these two effects results in poor exploration.

5.2 NOISY MONTEZUMA’S REVENGE

Atari Games are deterministic with respect to the RAM state, which is a property that most real-
world environments do not share (e.g.: observations may be noisy due to imperfect sensors). As
RND relies on predicting a random embedding of the raw observation to determine whether a state is
new or not, it cannot learn to discard noisy features, hindering its ability to detect meaningful novelty

7

Under review as a conference paper at ICLR 2023

Figure 5: (Left) : Performance of RECODE compared to NGU on Noisy Montezuma. (Middle and
Right) : A frame of Noisy Montezuma where the noise is concatenated to the original frame.

in the presence of noise. In this section, we show that MEME-NGU-AP inherits the limitations of RND.
To this end, we consider the game of Montezuma’s Revenge, for which effective exploration requires
long-term memory as shown by the ablations of Section 5.1. We challenge RND by concatenating the
original grey-scale, 210×160 pixels frame with a noisy frame of the same shape, where each pixel is
sampled uniformly at random from the range [0, 255]. This type of noise is commonly referred to as
noisy TV (Pathak et al., 2017). The results of our experiments on this environment are presented on
Figure 5. Perhaps as expected, we find that the performance of MEME-NGU-AP is strongly deteriorated,
since it relies on RND for the long-term component of its exploration bonus, and performs no better
than a pure RL baseline without exploration bonus (Kapturowski et al., 2018). RECODE, on the other
hand, relies on action-prediction embeddings to estimate global visitation-counts. In this embedding
space, states that only differ in the noisy, uncontrollable part of the observation tend to be aliased
together, so that the effect of the noise on exploration vanishes. Indeed, the performance of MEME-
RECODE-AP on Montezuma’s Revenge is unchanged when adding noise.

5.3 DM-HARD-8

DM-HARD-8 (Gulcehre et al., 2019) is a benchmark comprised of 8 hard exploration tasks, originally
built to emphasize the difficulties encountered by an RL agent when learning from sparse rewards
in a procedurally-generated 3-D world with partial observability, continuous control, and highly
variable initial conditions. Each task requires the agent to interact with specific objects in its en-
vironment in order to reach a large apple that provides reward (see Figure 11 in the Appendix for
an example). Being procedurally-generated, properties such as object shapes, colors, and positions
are different every episode. A recently proposed exploration bonus called BYOL-Explore (Guo
et al., 2022) was shown to be effective on this domain, while previous successes were only achieved
through the use of human demonstrations (Gulcehre et al., 2019).

We first assess the effect of using the RECODE bonus over NGU by performing a drop-in replacement
of the intrinsic reward in the MEME base agent as in Section 5. We consider the performance of the
resulting agent in the single-task version of DM-HARD-8 since the MEME base agent is not designed
to work in the multi-task setting out-of-the-box. The results, presented on Fig. 6, show that MEME-
RECODE-AP approach can solve 4 out of 8 games, strictly improving over the original MEME agent
using either NGU or EMM in this direct comparison. Second, we turn to using the CASM representation
learning approach introduced in Section 4 for our embedding. We find that the resulting MEME-
RECODE-CASM agent attains state-of-the-art results on the DM-HARD-8 benchmark, reliably solving
6 out of 8 games. This matches and often improves over the state-of-the-art performance of Guo
et al. (2022), which combined the BYOL-Explore exploration bonus with a VMPO-based base agent.
Finally, to demonstrate the generality of our approach, we also test the combination of a VMPO base
agent similar to that used in Guo et al. (2022) with RECODE and AP embeddings. The resulting agent
is evaluated in the multi-task setting, reliably solving 4 games with zero additional tuning (App. G),
matching the result obtained with Human Demonstrations in Gulcehre et al. (2019).

6 CONCLUSION AND DISCUSSION

We have introduced Robust Exploration via Clustering-based Online Density Estimation (RECODE),
a principled yet simple exploration bonus for deep Reinforcement Learning (RL) agents that allows

8

Under review as a conference paper at ICLR 2023

Figure 6: Performance of RECODE compared to MEME on the single-task version of DM-HARD-8.

Figure 7: Performance of RECODE using CASM embeddings compared to BYOL-Explore on the
single-task version of DM-HARD-8. The BYOL-Explore results correspond to the final performance
reported in Guo et al. (2022), after 109 environment frames, averaged over 3 seeds.

to perform robust exploration by computing visitation counts from a slot-based memory. Contrary
to previous work, where the memory was short-term (i.e. only able to attend to the current episode
due to memory limit), our memory is able to model a wide range of timescales determined by the
choice of discount. This is made possible by the use of an online clustering algorithm that is able
to approximate the density of visited states and from which we derive a simple and easy-to-tune
intrinsic reward.

We evaluate our exploration bonus on top of the recent MEME agent, which is a value-based agent
making use of the NGU intrinsic reward, that achieves state-of-the-art results on the Atari domain.
We show that we can replace the complex NGU intrinsic reward that combines RND and episodic
memory with the simpler RECODE reward without loss of performance on the hardest exploration
levels in Atari. Furthermore, we highlight important failure modes of NGU in the presence of noise,
and show that RECODE’s performance is unaffected. Similarly, we highlight the limitations of NGU in
procedurally-generated 3D environments such as DM-HARD-8, and demonstrate the improvements
brought by using RECODE as an intrinsic reward. Next we introduce a novel representation learning
method better suited to 3D and partially observable domains, which provides a significant boost
in performance on this task suite, enabling to achieve a new state-of-the-art on DM-HARD-8 in the
single-task setting.

Importantly we note that RECODE is agnostic to the choice of embeddings fθ(ht), and while CASM
presents one compelling option to extend 1-step action prediction, we hypothesize that much
progress could be made in challenging exploration problems by developing more sophisticated rep-
resentations which can be used in conjunction with RECODE.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
lem. In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings,
2012.

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In COLT, pp. 41–53. Citeseer, 2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 263–272. JMLR. org, 2017.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning, pp. 507–517. PMLR, 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In International Conference
on Learning Representations, 2020b.

André MS Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based reinforcement learning.
The Journal of Machine Learning Research, 17(1):2372–2441, 2016.

Marc Bellemare, Joel Veness, and Erik Talvitie. Skip context tree switching. In International
conference on machine learning, pp. 1458–1466. PMLR, 2014.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pp. 1471–1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Ronen Brafman and Moshe Tennenholtz. R-max – a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2003.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Seventh International Conference on Learning Representations, pp. 1–17, 2019.

Mayank Daswani, Peter Sunehag, and Marcus Hutter. Q-learning for history-based reinforcement
learning. In Asian Conference on Machine Learning, pp. 213–228. PMLR, 2013.

Omar Darwiche Domingues, Pierre Menard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko.
Kernel-based reinforcement learning: A finite-time analysis. In Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 2783–2792. PMLR, 2021a.

Omar Darwiche Domingues, Corentin Tallec, Rémi Munos, and Michal Valko. Density-based
bonuses on learned representations for reward-free exploration in deep reinforcement learning.
In ICML 2021 Workshop, 2021b.

10

Under review as a conference paper at ICLR 2023

Akram Erraqabi, Mingde Zhao, Marlos C Machado, Yoshua Bengio, Sainbayar Sukhbaatar, Ludovic
Denoyer, and Alessandro Lazaric. Exploration-driven representation learning in reinforcement
learning. In ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Caglar Gulcehre, Tom Le Paine, Bobak Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer,
Richard Tanburn, Steven Kapturowski, Neil Rabinowitz, Duncan Williams, et al. Making effi-
cient use of demonstrations to solve hard exploration problems. In International conference on
learning representations, 2019.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multi-
task reinforcement learning. In International Conference on Machine Learning, pp. 3875–3886.
PMLR, 2020.

Zhaohan Daniel Guo, Mohammad Gheshlagi Azar, Alaa Saade, Shantanu Thakoor, Bilal Piot,
Bernardo Avila Pires, Michal Valko, Thomas Mesnard, Tor Lattimore, and Rémi Munos. Ge-
ometric entropic exploration. arXiv preprint arXiv:2101.02055, 2021.

Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pı̂slar, Bernardo Avila Pires, Florent Altché,
Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. Byol-
explore: Exploration by bootstrapped prediction. arXiv preprint arXiv:2206.08332, 2022.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691, 2019.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic proba-
bility. Springer Science & Business Media, 2004.

Marcus Hutter et al. Feature reinforcement learning: Part I. unstructured MDPs. De Gruyter Open,
2009.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration
for reinforcement learning. In International Conference on Machine Learning, pp. 4870–4879.
PMLR, 2020.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Steven Kapturowski, Vı́ctor Campos, Ray Jiang, Nemanja Rakićević, Hado van Hasselt, Charles
Blundell, and Adrià Puigdomènech Badia. Human-level atari 200x faster. arXiv preprint
arXiv:2209.07550, 2022.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49(2-3):209–232, 2002.

Brian Kulis and Michael I Jordan. Revisiting k-means: New algorithms via bayesian nonparamet-
rics. arXiv preprint arXiv:1111.0352, 2011.

Branislav Kveton and Georgios Theocharous. Kernel-based reinforcement learning on representa-
tive states. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdi-
nov. Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

11

Under review as a conference paper at ICLR 2023

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

R Andrew McCallum. Instance-based utile distinctions for reinforcement learning with hidden state.
In Machine Learning Proceedings 1995, pp. 387–395. Elsevier, 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine Learning, 2002.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2721–2730. JMLR. org, 2017.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathe-
matical Statistics, 33, 1962. ISSN 0003-4851. doi: 10.1214/aoms/1177704472.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Jason Pazis and Ronald Parr. Pac optimal exploration in continuous space markov decision pro-
cesses. In Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698,
2019.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech, Oriol Vinyals, Demis
Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. ICML, 2017.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of
Mathematical Statistics, 27, 1956. ISSN 0003-4851. doi: 10.1214/aoms/1177728190.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
CoRR, abs/1511.05952, 2015.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on
Machine Learning, pp. 9443–9454. PMLR, 2021.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan,
John Schulman, Filip DeTurck, and Pieter Abbeel. #Exploration: A study of count-
based exploration for deep reinforcement learning. In Advances in Neural Information
Processing Systems, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3a20f62a0af1aa152670bab3c602feed-Paper.pdf.

12

https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf

Under review as a conference paper at ICLR 2023

Ruo Yu Tao, Vincent François-Lavet, and Joelle Pineau. Novelty search in representational space for
sample efficient exploration. Advances in Neural Information Processing Systems, 33:8114–8126,
2020.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

13

Under review as a conference paper at ICLR 2023

A HYPER-PARAMETERS

We omit hypers which do not differ from the base agent, MEME.

Table 1: Atari Hyper-parameters.

Parameter Value

RECODE memory size 5× 104

RECODE discount γ 0.999
RECODE relative tolerance κ 0.01
RECODE insertion probability η 0.05
RECODE reward constant c 0.1
RECODE decay rate τ 0.9999
RECODE neighbors k 20
IM Reward Scale βIM 1.0
Max Discount 0.9997
Min Discount 0.97
Replay Period 80
Trace Length 160
Replay Ratio 6.0
Replay Capacity 2× 105 trajectories
Batch Size 64
RL Adam Learning Rate 3× 10−4

Emedding Adam Learning Rate 6× 10−4

RL Weight Decay 0.05
Embedding Weight Decay 0.05
RL Torso initial stride 4
RL Torso num blocks (2, 3, 4, 4)
RL Torso num channels (64, 128, 128, 64)
RL Torso strides (1, 2, 2, 2)

Table 2: DM-HARD-8 Hyper-parameters.

Parameter Value

RECODE memory size 2× 105

RECODE discount γ 0.997
RECODE relative tolerance κ 0.2
RECODE insertion probability η 0.2
RECODE reward constant c 0.01
RECODE decay rate τ 0.9999
RECODE neighbors k 20
IM Reward Scale βIM 0.1
Max Discount 0.997
Min Discount 0.97
Replay Period 40
Trace Length 80
Replay Ratio 2.0
Replay Capacity 5000 trajectories
Batch Size 128
RL Adam Learning Rate 1× 10−4

Embedding Adam Learning Rate 3× 10−4

RL Weight Decay 0.1
Embedding Weight Decay 0.1
RL Torso initial stride 2
RL Torso num blocks (2, 4, 12, 6)
RL Torso num channels (64, 128, 128, 64)
RL Torso strides (1, 2, 2, 2)

14

Under review as a conference paper at ICLR 2023

Table 3: CASM Hyper-parameters.

Parameter Value
Transformer Type GatedTransformerXL
State Mask Rate 0.8
Num Masks Per Trajectory 4
Action Embedding Size 32
Num Layers 2
Attention Size 128
Num Attention Heads 4
MLP Hidden Sizes (512,)
Predictor Hidden Sizes (128,)

B AGENT TAXONOMY

All methods evaluated in the experiments in the main paper and the extended experiments in App. E
are composed by three main components.

• A base agent that oversees the overall RL learning process (e.g., executing actions and
collection observations, computing adjusted returns, updating the policy, ...). We focus on
MEME (Kapturowski et al., 2022), a recent improvement over Agent57 (Badia et al., 2020a)
that achieves much greater sample efficiency and is the current state-of-the-art on Atari, and
a VMPO-based agent (Guo et al., 2022) that is the current state-of-the-art on DM-HARD-8.

• An algorithm to generate intrinsic rewards. In addition to RECODE, we also consider the
recent BYOL-Explore Guo et al. (2022), NGU Badia et al. (2020b) and NGU’s two building
blocks, RND Burda et al. (2018b) and Episodic Memory (EMM) Pritzel et al. (2017).

• A representation learning mechanism to generate observation embeddings which are fed to
the intrinsic reward generator. We consider both Action Prediction (AP) and CASM embed-
dings. Note that some intrinsic reward modules cannot make effective use of the represen-
tation learning module (e.g., RND), while others merge both second and third module in a
single approach (e.g., BYOL-Explore)

For example, in our more detailed taxonomy the original MEME agent described in Kapturowski et al.
(2022) is denoted as the MEME-NGU-AP baseline, and compared against our novel MEME-RECODE-AP
agent where the only modifications is the changed exploration reward. Table E reports more details
on all combinations available present in our experiments.

Table 4: Taxonomy of agents used in the experiments.

Agent name Base agent Intrinsic reward Representation learning
MEME-NGU-AP Kapturowski et al. (2022) MEME NGU AP
MEME-RND (ablation) MEME RND N/A(a)

MEME-EMM-AP (ablation) MEME EMM AP
MEME-RNDonAP (ablation) MEME RND AP (b)

MEME-RECODE-AP (this paper) MEME RECODE AP
MEME-RECODE-CASM (this paper) MEME RECODE CASM
MEME-NGU-CASM (ablation) MEME NGU CASM
VMPO-BYOL-Explore Guo et al. (2022) VMPO BYOL-Explore BYOL-Explore (c)

(a) As in the original paper RND takes as input raw observations.
(b) To test RND’s ability to cope with non-stationary representations, we train an AP encoder concurrently with the
policy and use it to create embeddings of the observations that are fed in RND (i.e., running RND on top of AP).
(c) The BYOL-Explore mechanism internally trains a neural network to predict the dynamical evolution of the
observations. This provides the agent with both a reward/novelty signal (prediction error) as well as an embedded
representation of the observations (that can be extracted from the last few layers of the network).

15

Under review as a conference paper at ICLR 2023

C RELATED WORKS

In this section, we give a brief and non-exhaustive overview of past works computing visitation
counts or estimating densities in RL. We classify them as either parametric or non-parametric.

Parametric methods. Bellemare et al. (2016) and Ostrovski et al. (2017) propose to com-
pute pseudo-visitation counts using density estimators on images such as Context Tree Switching
(CTS,Bellemare et al., 2014) or PixelCNN (Van den Oord et al., 2016). On the other hand, Tang
et al. (2017) use locality-sensitive hashing to map continuous states to discrete embeddings, where
explicit visitation counts are computed. Some methods such as RND (Burda et al., 2019) can be inter-
preted as estimating implicitly the density of observations by training a neural network to predict the
output of a randomly initialized and untrained neural network which operates on the observations.
Hazan et al. (2019); Pong et al. (2019); Lee et al. (2019); Guo et al. (2021) propose algorithms that
search a policy maximizing the entropy of its induced state-space distribution. In particular, the
loss optimized by Guo et al. (2021) allows to compute a density estimate as well as maximizing
the entropy. Finally, Domingues et al. (2021b) computes a density estimation on top of learned
representations, which are inspired by bonuses used in reward-free finite MDPs.

Non-parametric methods. Non-parametric density estimates that we build on date back to Rosen-
blatt (1956); Parzen (1962) (Parzen–Rosenblatt window) and are widely used in machine learning
as they place very mild assumptions on the data distribution. Non-parametric, kernel-based ap-
proaches have been already used in RL and shown to be empirically successful on smaller scale
environments by Kveton & Theocharous (2012) and Barreto et al. (2016) and are theoretically an-
alyzed by Ormoneit & Sen (2002); Pazis & Parr (2013); Domingues et al. (2021a). In NGU (Badia
et al., 2020b), Agent57 (Badia et al., 2020a) and MEME (Kapturowski et al., 2022), a non-parametric
approach is used to compute a short term reward at the episodic level. Liu & Abbeel (2021) propose
an unsupervised pre-training method for reinforcement learning which explores the environment
by maximizing a non-parametric entropy computed in an abstract representation space. The authors
show improved performance on transfer in Atari games and continous control tasks. Seo et al. (2021)
use random embeddings and a non-parametric approach to estimate the state-visitation entropy, but
do not generalize to concurrently learned embeddings. Tao et al. (2020) show that K-NN based
exploration can improve exploration and data efficiency in model-based RL. While non-parametric
methods are good models for complex data, they come with the challenge of storing and comput-
ing densities on the entire data set. We tackle this challenge in Sec. 3 by proposing a method that
estimates visitation counts over a long history of states, allowing our approach to scale to much
larger problems than those considered in previous works, and without placing assumptions on the
representation, that can be trained concurrently with the exploration process and doesn’t need to be
fixed a priori.

D A CLUSTERING VIEW OF RECODE

The update rules of RECODE for its memory structure in Algorithm 1 can be interpreted as an ap-
proximate inference scheme in a latent probabilistic clustering model. We explore this connection
here as means to better understand and justify the proposed algorithm as a density estimator. Briefly,
our scheme is related to DP-means (Kulis & Jordan, 2011), with adaptations made to accommodate
the additional complexities of our setting, which follows a streaming protocol (i.e., data must be
explicitly consumed or stored as it arrives and data that are not stored cannot be accessed again)
and is non-stationary (i.e., data are not assumed to be identically distributed as time advances). The
clustering algorithm resulting from these adaptations is shown in Algorithm 2.

We first address the modifications introduced to deal with the memory limitations of the streaming
setting: 1) each datum (embedding et in our notation) is incorporated into a cluster distribution ap-
proximation, once, then discarded, 2) the total number of clusters is stochastically projected down
onto an upper limit on the number of clusters (otherwise they would grow without bound–albeit
progressively more slowly). Both modifications allow our method to maintain constant space com-
plexity in the face of an infinite stream of data.

16

Under review as a conference paper at ICLR 2023

Algorithm 2: A streaming clustering algorithm.

1 Parameters
2 Number of clusters L
3 Number of nearest cluster centres k
4 Discounting of counts at each step γ

5 Scaling of threshold on new cluster creation κ

6 Probability of actually creating new cluster when threshold exceeded η

7 State
8 Threshold on creating new cluster δ = 0

9 Cluster centres µl = 0 ∀l ∈ 1 . . . L

10 Cluster counts cl = 0 ∀l ∈ 1 . . . L

11 Indices of k-nearest neighbours of point e: Nk(e)

12 Implementation
13 for each received embedding e ∈ {e0, e1, e2, . . . } do
14 Update threshold on inter-cluster distances δ ← (1− τ)δ + τ

k

∑
l∈Nk(e)

∥µl − e∥22
15 Discount all cluster-center counts cl ← γ cl ∀l ∈ 1, . . . , L

16

17 Find index of nearest cluster center i = argminl=1···L ∥µl − e∥2
18 if ∥µi − e∥22 > κδ and with probability η then
19 Sample index j of cluster center to remove with probability P (j) ∝ 1/c2j
20 Find index of nearest cluster center to µj : k = argminl=1···L,l̸=j ∥µl − µj∥2
21 Redistribute the count of removed cluster center: ck ← cj + ck
22 Replace cluster j with a singleton of e: µj ← e , cj ← 1

23 else
24 Update nearest cluster center µi ← ci

ci+1
µi +

1
ci+1

e

25 Update nearest cluster-center count ci ← ci + 1

26 end
27 end

The step-wise justification of the Algorithm 2 is relative straightforward. At step t, for embedding
et, we show that the following objective is minimised:

min
l∈1,...,L

∥µl − et∥22 (5)

s.t. ∥µl − et∥22 ≤ κδ

Working backwards: Updating the cluster center of the closest cluster reduces the objective directly
and will not violate the constraint (unless it was already in violation; this excluded in the precondi-
tion of this branch). This accounts for the “else” branch. The “if” branch introduces a new cluster
center precisely at et, thus equation 5 is minimised completely: it is zero for this branch. Finally, se-
lecting the index of the nearest cluster center directly minimises placement of the branch according
to equation 5, ignoring the constraint (which is latest ensured by the “if/else”). Note that the hard
constraint of equation 5 takes the place of the soft cluster penalty of DP-means (Kulis & Jordan,
2011).

The updates to the cluster centers, unlike k-means and DP-means, are done in an exponentially-
weighted moving average of the embeddings, rather than as global optimisation step utilising all of
the data. Consequently, and importantly, what happens to equation 5 evaluated for es where s ̸= t,
is of significant interest, as objectives for k-means and DP-means account for all data, rather than a
single datum.

We now turn to this question, which will be answered by examining the modifications we introduced
to deal with the non-stationarity of our data stream: 1) the cluster count decays, 2) merging two
clusters to accommodate a new one, 3) the exponentially weighted moving average update of cluster
centers.

17

Under review as a conference paper at ICLR 2023

In k-means, all of the data are retained. This makes k-means costly: at each step of fitting the entire
data set is examined to update the cluster assignments and update the cluster means. Instead, we
take a distributional approximation to the data associated with each cluster, and when re-adjusting
cluster assignments according to equation 5, we do so in terms of this distributional approximation.

In particular, each cluster is approximated by a Gaussian distribution with precision 1 and whose
mean is unknown but with prior zero and precision 1. Specifically:

ml ∼ N (0, c0)

ei|ml ∼ N (ml, 1)

where N (µ, τ) denotes a Gaussian (or normal) distribution with mean µ and precision τ (precision
is the inverse variance). Since the prior on ml is conjugate to the likelihood on ei, we know that the
posterior on ml will have the form N (µl, cl). Updating this posterior with a single embedding ei
has the form:

µ← cl
cl + 1

µ+
1

cl + 1
ei

cl ← cl + 1

This is precisely the update in Algorithm 2.

Note that in this model, the counts cl are also the precision parameters of the distribution representing
the inverse spread (or the concentration) of each cluster. At each step of Algorithm 2 these counts
are decayed. Effectively, this causes the variance of the distribution representing each cluster to
spread out: thus at each time step, each cluster becomes less concentrated and more uncertain about
which data points belong to it. The hyperparameter γ captures the rate of diffusion of all clusters
in this manner. This uncertainty increase applied at each step acts as a “forgetting” mechanism that
helps the algorithm to deal with a changing data distribution.

Cluster re-sampling, as already justified for et above in terms of equation 5, ensures that the number
of clusters is bounded by L. There are two details to examine: what is merged, and how it is
merged. As cj 7→ 0, the probability assigned by the Gaussian likelihood of cluster j to any new
datum approaches zero also, thus the cluster with the lowest counts is likely to have the least impact
on future density estimates (as it is most diffuse). When cj ≫ 0, however, it is not so clear which
cluster should be removed, therefore, we stochastically select which cluster to remove inversely
proportional to the square of the counts (using the square of the counts emphasizes small differences
in counts more than 1/cj). The cluster could potentially be removed completely, but we instead
choose to re-assign its counts to the nearest cluster as we experimentally found this strategy to be
less sensitive to the choice of hyperparameters.

E RND ON TOP OF ACTION PREDICTION EMBEDDINGS

We adapt RND to leverage trained action-prediction embeddings, which we refer to as RNDonAP.
To that effect, we use a randomly initialize Multi-Layer Perceptron (MLP) to perform a random
projection of the embedding, and use a second, trained MLP, to reconstruct this random projection.
The reconstruction error provides an intrinsic reward for exploration, which we normalize by a
running estimate if its standard deviation as in Burda et al. (2019). We find that the resulting agent is
unable to solve some of the hardest exploration games such as Montezuma’s Revenge or Pitfall.
The results of this ablation is shown in Fig. 9. Preliminary experiments with pre-trained embeddings
do seem to indicate that RNDonAP can obtain stronger performance in this setting, but the inability
to concurrently train the embeddings greatly limits the general applicability of the method.

F ARCHITECTURE OF AN AGENT USING RECODE

Figure 10 shows the typical architecture of a distribued RL agent using RECODE.

G MULTITASK EXPERIMENTS

We also implemented RECODE in a VMPO-based agent similar to the one used with BYOL-
Explore (Guo et al., 2022), and compared our performance with BYOL-Explore in the multi-task

18

Under review as a conference paper at ICLR 2023

0 25 50 75 100

0

20

40

60

80

100

t=
50

0

P(j) 1/cj

0 25 50 75 100

0

20

40

60

80

100
P(j) 1/c2

j

0 25 50 75 100

0

20

40

60

80

100
argminj(cj)

0 25 50 75 100

0

20

40

60

80

100

t=
50

k

0 25 50 75 100

0

20

40

60

80

100

0 25 50 75 100

0

20

40

60

80

100

Figure 8: Effect of removal strategy on evolution of cluster centers and counts (with counts corre-
sponding to the size of the marker). At each timestep t we sample a batch of 64 2D-embeddings from
a square of side min(100, t). After t = 100 the distribution remains stationary and we would like the
distribution of cluster centers and counts to be to become approximately uniform after enough time
has passed. For a deterministic removal strategy which selects the clusters with the lowest counts,
the cluster centers can remain skewed long after the distribution has stopped changing. For both
probabilistic removal strategies, the cluster centers become approximately uniform, but only for the
1/c2j removal strategy do we observe both cluster centers and counts become uniform. (Note that
we use a discount of 0.9999)

Figure 9: Performance of RECODE compared to MEME and its ablations on 8 hard exploration Atari
games.

19

Under review as a conference paper at ICLR 2023

Figure 10: Overview of the architecture of a distributed agent using RECODE.

Look for bat Pick bat Throw ball down

Pick ball Place ball on sensor Enter chamber Pick apple (final goal)

1st frame

Figure 11: 1st-person-view snapshots of an agent solving the Baseball task. Images are ordered
chronologically from left to right and top to bottom. Each image depicts a specific stage of the task.

Figure 12: Performance of RECODE compared to BYOL-Explore on the multi-task version of
DM-HARD-8. Our RECODE implementation in this experiments is based on VMPO, using a con-
tinuous action set.

20

Under review as a conference paper at ICLR 2023

setting. This experiment serves two different purposes. First, this demonstrates the generality of our
exploration bonus, that is thus shown to be useful in widely different RL agents, be they value-based
or policy-based. Second, we can do a direct comparison with the state of the art BYOL-Explore
agent in the multi-task settings. We however note that the representation learning technique used
in this experiment, 1-step Action Prediction, is based on a feed-forward embedding that discards
past history, and may therefore not be the best fit for exploration in Partially Observable MDPs
(POMDPs). Still, we show in Fig. 12 that the performance of RECODE is competitive with that of
BYOL-Explore, with only one level missing to match its performance. Improving this performance
using better-suited representations, such as CASM, is left for future work.

H AGGREGATED RESULTS

Here we present our main results aggregated over all environments in each task suite. To ensure
that no single environment dominates due to larger reward scales we use the Human Normalized
Score (Mnih et al., 2015) in each environment, and then cap scores above 100% prior to averaging.
As can be observed in Fig. 13 (Left), the uncapped score can swing significantly over time, which
in this case is simply an artifact the high variance present in Q*bert. 3

Figure 13: (Left) : Mean Human-Normalized Scores of MEME-RECODE-AP compared to MEME-NGU-AP
on Atari games. (Right) : Capped Human-Normalized Scores.

Figure 14: Mean Capped Human-Normalized Scores of MEME-RECODE-CASM compared to VMPO-
BYOL-Explore on DM-HARD-8 games.

3This variance arises due to a bug in Q*bert, which allows for much larger scores to be obtained if exploited

21

	Introduction
	Background and notation
	RECODE
	Representation Learning Methods
	Experiments
	Atari
	Noisy Montezuma's Revenge
	DM-HARD-8

	Conclusion and Discussion
	Hyper-parameters
	Agent Taxonomy
	Related Works
	A clustering view of RECODE
	RND on top of Action Prediction Embeddings
	Architecture of an agent using RECODE
	Multitask Experiments
	Aggregated Results

