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Adaptive Selection based Referring Image Segmentation
Anonymous Authors

ABSTRACT
Referring image segmentation (RIS) aims to segment a particular
region based on a specific expression. Existing one-stage methods
have explored various fusion strategies, yet they encounter two sig-
nificant issues. Primarily, most methods rely on manually selected
visual features from the visual encoder layers, lacking the flexibility
to selectively focus on language-preferred visual features. Moreover,
the direct fusion of word-level features into coarse aligned features
disrupts the established vision-language alignment, resulting in
suboptimal performance. In this paper, we introduce an innovative
framework for RIS that seeks to overcome these challenges with
adaptive alignment of vision and language features, termed the
Adaptive Selection with Dual Alignment (ASDA). ASDA innovates
in two aspects. Firstly, we design an Adaptive Feature Selection
and Fusion (AFSF) module to dynamically select visual features
focusing on different regions related to various descriptions. AFSF
is equipped with scale-wise feature aggregator to provide hierar-
chically coarse features that preserve crucial low-level details and
provide robust features for successor dual alignment. Secondly, a
Word Guided Dual-Branch Aligner (WGDA) is leveraged to inte-
grate coarse features with linguistic cues by word-guided attention,
which effectively addresses the common issue of vision-language
misalignment by ensuring that linguistic descriptors directly in-
teract with masks prediction. This guides the model to focus on
relevant image regions andmake robust prediction. Extensive exper-
imental results demonstrate that our ASDA framework surpasses
state-of-the-art methods on RefCOCO, RefCOCO+ andG-Ref bench-
mark. The improvement not only underscores the superiority of
ASDA in capturing fine-grained visual details but also its robustness
and adaptability to diverse descriptions.

CCS CONCEPTS
• Computing methodologies → Scene understanding; Image
segmentation.

KEYWORDS
referring image segmentation, vision-language alignment

1 INTRODUCTION
Referring image segmentation (RIS) [7, 15, 64] aims to predict a
pixel-wise mask for objects referred to in a natural language expres-
sion. It yields great value for various applications such as language-
based human-robot interaction [50] and image editing [2].
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(a) Paradigm comparisons

(b) Qualitative comparisons

Figure 1: (a) Comparison of feature selection paradigm: The pre-
vious method utilizes features from fixed layers within the visual
encoder regardless of the linguistic content, while our method adap-
tively selects the language-preferred features based on the specific
language input. (b) Qualitative comparisons reveal that our ASDA
framework outperforms previous state-of-the-art methods, achiev-
ing the best results across all splits on three datasets.

Unlike standard semantic segmentation [10, 12, 13], which cat-
egorizes image pixels based on a fixed set of labels, RIS needs to
understand free-form language expression to locate the exact pixels
of the referenced object. Hence, the primary challenge of this task
involves achieving precise alignment between the relevant visual
content and the descriptive text at the pixel level, which is crucial
for accurately producing the necessary mask.

Existing methods [15, 29, 40] often leverage external knowledge
to facilitate learning, typically relying on separate vision and lan-
guage encoder, such as the Swin visual encoder [35] paired with the
BERT language encoder [24], which inherently lacks multi-modal
correspondence. Meanwhile, some studies [51, 54] have built on
well-aligned model like CLIP [42], leveraging the advantages of
vision-language pretraining. Regardless of the backbone choice,

https://doi.org/XXXXXXX.XXXXXXX
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these methods commonly use manually determined visual features
from the visual encoder layers, subsequently investing significant
effort into feature fusion and alignment [4, 7, 18, 19, 23, 29, 34, 45,
51, 62]. Although these methods have promising performance, they
encounter inherent challenges. Primarily, most methods rely on
manually selected visual features from the visual encoder layers.
As illustrated in Figure 1, when processing the same image with
varying referring texts like "a sheep on the left" and "a cow on
the right", these methods extract the same manually determined
visual features. This manner lacks the flexibility to selectively focus
on visual features that are more relevant to the specific language
used. Moreover, the direct fusion between irrelevant visual features
[7, 17, 51] with sentence-level language features introduces noise to
subsequent word-level language features guided mask prediction,
which results in disrupting the established vision-language align-
ments. As depicted in Figure 4, by visualizing the coarse features
and the fine features, we observe that the fine features becomes
disrupted after the interaction between the coarse features and
word-level language features, focusing on regions unrelated to the
textual description.

To this end, we propose an Adaptive Selection with Dual Align-
ment (ASDA) framework to enhance performance on RIS tasks,
whichmainly contains Adaptive Feature Selection and Fusion (AFSF)
module and Word Guided Dual-Branch Aligner (WGDA) module.
TheAdaptive Feature Selection and Fusion (AFSF)module composes
of Adaptive Feature Selection (AFS) module and Scale-Wise Feature
Aggregator (SFA)module. Initially, AFS leverages sentence-level lan-
guage features to select the most relevant features from the visual
encoder layers. As shown in Figure 1, our AFS module can adap-
tively choose features that are more relevant to object described
in the referring expression. Subsequently, SFA merges multi-scale
visual features from AFS with sentence-level language features, ef-
fectively integrating semantics with the visual attributes of various
layers. This provides hierarchically aggregated features that pre-
serve crucial low-level details and offer robust features for successor
dual alignment. Furthermore, we design two distinct branches in
WGDA: the Coarse-to-Fine Segmentation Decoder (CFS) and the
Word Guided Coefficient Generator (WCG), to more effectively in-
teract word-level features with coarse features. The CFS utilizes
robust features from AFSF module to generate candidate masks.
Meanwhile, the WCG module employs a word-level language fea-
ture guided attention mechanism to generate the coefficients to
combinate these masks. Unlike previous methods [22, 51, 59] that
directly merge word-level language features into coarse features,
our WGDA enables linguistic descriptors to directly interact with
mask predictionwithout compromising the already aligned features,
which helps get finely aligned visual feature.

In summary, the contribution of this work is fourfold:

• Wepropose anAdaptive SelectionwithDual Alignment (ASDA)
framework to enhance performance on RIS task.

• Our Adaptive Feature Selection and Fusion (AFSF) module
dynamically selects the most relevant visual features based
on language features, moving away from the conventional
fixed-layer selection to a dynamic, text-responsive feature
selection mechanism.

• Our Word Guided Dual-Branch Aligner (WGDA) module
improves alignment and robustness of word-level features
with visual features through a dual-branch structure, enhanc-
ing the interaction between linguistic descriptors and mask
predictions.

• Our ASDA achieves state-of-the-art results on the RefCOCO,
RefCOCO+, and RefCOCOg datasets.

2 RELATEDWORK
Referring Image Segmentation (RIS) is designed to localize ob-
jects within images guided by natural language descriptions. The
early approach [15] utilized a fusion technique combining linguis-
tic and visual elements through concatenation. Subsequent efforts
[4, 17, 21, 22, 29, 38] have harnessed sentence-level textual features
from the descriptive phrases, whereas other studies [1, 9, 34, 40]
have adopted word-level textual features for textual representa-
tion. Given that natural language intrinsically contains structured
data [44, 57] that can be exploited to align with visual features,
certain methodologies have decomposed expressions into various
components [19, 52, 56, 58] or implemented a soft division approach
using attention mechanisms [7, 10, 18, 45, 55, 62, 64].

Recent work has adopted more efficient structures for vision-
language fusion. LAVT [59] utilizes the Swin Transformer [35] for
visual tasks and incorporates modules for vision-language inte-
gration in the last four layers of the visual encoder. In contrast,
ReSTR [25] and CRIS [51] start by separately encoding visual and
linguistic inputs with a dual encoder, then merging these features
either through a multi-modal transformer encoder or a cross-modal
decoder. Inspired by the advancements in large language mod-
els [43, 48], new studies approach RIS as an auto-regressive genera-
tion task, introducing capabilities for logical reasoning [26, 63]. Re-
cently, VPD [65] explores using semantic data from diffusion mod-
els [14, 46] for RIS applications, while ReLA [33] and DMMI [16]
extend RIS capabilities to handle multiple targets.

Despite significant advances in RIS architecture, most methods
face two main limitations. First, they depend on manually selected
visual features from encoder layers, lacking flexibility to focus on
language-preferred visual features for different objects. Addition-
ally, most methods directly fuse word-level features with coarse
visual features, leading to suboptimal performance. We introduce
an innovative framework for RIS that seeks to overcome these chal-
lenges with adaptive selection and dual alignment of vision and
language features.

Vision-Language Model (VLM) is a type of deep learning
model designed to simultaneously interpret visual and textual infor-
mation. Thesemodels can be categorized into twoworkflows: single-
stream and dual-stream. Single-stream models, such as [3, 5, 6, 36],
integrate vision and language embeddings using a unified self-
attention encoder. In contrast, dual-stream models like CLIP [51],
ALIGN [20], FILIP [61], and GLIP [28], employ separate encoders
for eachmodality, aligning the outputs through a dot product. Other
models such as ViLBERT [36] and LXMERT [47] utilize dual self-
attention-based encoders to process within-modality interactions,
while cross-attention mechanisms are used to handle interactions
between modalities. As a milestone, CLIP [39] applies a contrastive
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learning approach across a vast dataset of image-text pairs, demon-
strating significant transfer capabilities across over 30 classifica-
tion datasets. Following this model, CRIS [51] uses a transformer
decoder in conjunction with a CLIP model, adapting CLIP’s text-to-
image matching expertise to text-to-pixel applications. Given the
outstanding performance of CLIP [39], we follow this well-aligned
vision-language model to implement our framework.

3 METHOD
3.1 Overview
The framework of our proposed Adaptive Selectionwith Dual Align-
ment (ASDA) is illustrated in Figure 2. An image 𝐼 and referring
expressions𝑇 are fed to ViT-B based CLIP visual encoder (12 layers)
and language encoder [39] respectively to extract layer-wise vi-
sual features 𝐹 (𝑖 )

𝑉
and word-level, sentence-level language features

[𝑓𝑇 , 𝑓𝐸 ] (see Section 3.2). Next, Adaptive Feature Selection (AFS)
module adaptively selects low-level visual features 𝐹𝐿 from lay-
ers 4-6, middle-level visual features 𝐹𝑀 from layers 7-9, high-level
visual features 𝐹𝐻 from highest layer of the Vision Encoder and
generates multi-scale features 𝐹𝐿 , ˜𝐹𝑀 . Our Scale-Wise Feature Ag-
gregator (SFA) then progressively fuses the global language features
𝑓𝐸 with multi-scale visual features 𝐹𝐿 , ˜𝐹𝑀 , 𝐹𝐻 , generating coarse
aligned feature 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 (see Section 3.3). Finally, the Coarse-to-Fine
SegmentationDecoder (CFS) processes 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 through Local Visual
Attention and segmentation decoder to generate response masks
𝑀′. The Word-Guided Coefficient Generator (WCG) first combines
the attention-enhanced feature 𝐹𝐴 with word-level language fea-
ture 𝑓𝑇 using Visual and Language Local Attention, generating
fine feature 𝐹𝑓 𝑖𝑛𝑒 . Following this, the Gated Coefficient Genera-
tion produces the coefficients 𝑓𝑐𝑜𝑒 𝑓 corresponding to the masks𝑀′.
The final mask output𝑀 ∈ R𝐻×𝑊 is then obtained by applying a
weighted sum operation between the masks𝑀′ and the coefficients
𝑓𝑐𝑜𝑒 𝑓 (see Section 3.4).

3.2 Features Extraction
Given an image 𝐼 and referring expressions𝑇 , we extract layer-wise
visual features 𝐹 (𝑖 )

𝑉
and text features [𝑓𝑇 , 𝑓𝐸 ] through ViT-B-based

CLIP visual encoder and language encoder, respectively.
Image encoder. Following the design of vision transformer ViT,

the image 𝐼 ∈ R𝐻𝐼 ×𝑊𝐼 ×3 is patched and projected to 𝐼𝑃 ∈ R𝐻×𝑊 ×𝐶 ,
where (𝐻,𝑊 ) = (𝐻𝐼 /𝑃,𝑊𝐼 /𝑃) and 𝑃 indicates the resolution of
each image patch. Then, 𝐼𝑃 is fed into ViT [8] which employs 𝑁
transformer layers. And the output of layer 𝑖 is defined as 𝐹 (𝑖 )

𝑉
∈

R𝐻×𝑊 ×𝐶 , 𝑖 = 0, . . . , 𝑁 . The visual features of the final layer are
recorded as the highest-level visual features 𝐹𝐻 . Especially, there
are 12 transformer layers in ViT-B. Each layer’s visual features
contain a learnable embedding which is called class token. The
class token is recorded as the global visual features 𝑓 (𝑖 )

𝐶
∈ R𝐶 .

Text encoder. For the given natural language referring expres-
sion, we extract word-level language feature 𝑓𝑇 ∈ R𝑁𝑇 ×𝐶 using a
modified Transformer [49] architecture described in CLIP. Here, 𝑁𝑇
represents the number of word-level language tokens. The expres-
sion sequence is enclosed with [SOS] and [EOS] tokens to indicate
the start and end of sequences. The activations of the [EOS] token

are considered as the sentence-level language feature 𝑓𝐸 ∈ R𝐶 for
the entire natural language expression.

3.3 Adaptive Feature Selection and Fusion
As shown in Figure 2, the Adaptive Feature Selection and Fu-
sion (AFSF) module consists of two main components: Adaptive
Feature Selection (AFS) and Scale-Wise Feature Aggregator (SFA).
Specifically, we design an adaptive selection network in ASF which
is used to selectively identify the most relevant low-level visual
feature 𝐹𝐿 and mid-level visual feature 𝐹𝑀 . Then it generates cor-
responding multi-scale features of low-level visual feature and
mid-level visual feature, denoted as 𝐹𝐿 and ˜𝐹𝑀 . Subsequently, the
SFA module establishes the relationship between global language
feature 𝑓𝐸 and the highest-level local visual features 𝐹𝐻 . Addition-
ally, it fuses multi-scale features of low-level visual feature 𝐹𝐿 and
mid-level visual feature ˜𝐹𝑀 to enhance the visual information of
the target object, generating coarse feature 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 .

Adaptive Feature Selection (AFS). Based on our visual analy-
sis in Figure 1, the visual features in different layers of the visual
encoder can capture different local highlights related to various
objects. When selecting the low-level visual feature 𝐹𝐿 , the input
includes global visual feature of the low-level visual feature candi-
date layers 𝑓 𝑙

𝐶
, where 𝑙 ∈ {4, 5, 6}, and the sentence-level language

feature 𝑓𝐸 . We first compute the cosine similarity between 𝑓𝐸 and
the class token 𝑓 𝑙

𝐶
for each 𝑙 ∈ {4, 5, 6}:

𝑠𝑐𝑜𝑟𝑒𝑙 = 𝑓𝐸 ⊗ ΦT (𝑓 𝑙𝐶 ), 𝑙 ∈ {4, 5, 6} (1)

where 𝑠𝑐𝑜𝑟𝑒𝑙 ∈ R𝐶 , ⊗ means element-wise multiplication, ΦT is
a linear layer that maps the global visual feature 𝑓 𝑙

𝐶
to the same

dimension as 𝑓𝐸 ∈ R1×𝐶 . The score tokens 𝑠𝑐𝑜𝑟𝑒𝑙 serve a pivotal
role in determining the alignment and relevance between textual
descriptions and visual representations at different levels. They
measure the similarity of visual features to textual descriptions,
illustrating the relevance degree of correspondence. We then design
an adaptive selection network based on 𝑠𝑐𝑜𝑟𝑒𝑙 to select the low-level
visual feature:

𝑠𝑐𝑜𝑟𝑒𝐿 = Φas ( [𝑠𝑐𝑜𝑟𝑒4, 𝑠𝑜𝑐𝑟𝑒5, 𝑠𝑐𝑜𝑟𝑒6])
𝐿 = Φargmax (𝑠𝑐𝑜𝑟𝑒𝐿)

𝐹𝐿 = 𝐹
(𝐿)
𝑉

(2)

where [, ] denotes concatenation, Φas means adaptive selection
network which is a combination of a Linear layer and softmax,
𝑠𝑐𝑜𝑟𝑒𝐿 ∈ R3 represents the relevance scores of different feature
layers processed through Φas, 𝐿 is the index of the most relevant
feature layer identified by Φas using Φargmax, and 𝐹𝐿 is the feature
of the ViT layer corresponding to the index 𝐿. Φas here serves a
critical function in identifying the most appropriate feature layer
index from the concated score tokens. There are many possible
network architectures for Φas, but our experiments show that a
simple combination of a linear layer and softmax yields the best
results, as detailed in Table 5. The extraction of mid-level visual
features 𝐹𝑀 follows the similar way applied for low-level features,
employing our proposed Adaptive Feature Selection network Φas
to select the most related feature. This process is encapsulated as
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Figure 2: The overview of ASDA framework. It begins with extracting visual and language features from image 𝐼 and referring text 𝑇 . The
Adaptive Feature Selection (AFS) module adaptively selects visual features 𝐹𝐿 from Layers 4-6 and 𝐹𝑀 from Layers 7-9 of the Visual Encoder
and generates multi-scale features 𝐹𝐿 , ˜𝐹𝑀 . Our Scale-Wise Feature Aggregator (SFA) then progressively fuses the global language features 𝑓𝐸
with high-level feature 𝐹𝐻 together with multi-scale visual features 𝐹𝐿 and ˜𝐹𝑀 , generating coarse feature 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 . Finally, the Coarse-to-Fine
Segmentation Decoder (CFS) and Word-Guided Coefficient Generator (WCG) generate the final mask by using response masks 𝑀′ and
coefficients 𝑓𝑐𝑜𝑒 𝑓 .

follows:

𝑠𝑐𝑜𝑟𝑒𝑚 = 𝑓𝐸 · ΦT (𝑓𝑚𝐶 ), 𝑚 ∈ {7, 8, 9}
𝑀 = Φargmax (Φas ( [𝑠𝑐𝑜𝑟𝑒7, 𝑠𝑐𝑜𝑟𝑒8, 𝑠𝑐𝑜𝑟𝑒9]))

𝐹𝑀 = 𝐹
(𝑀 )
𝑉

(3)

Thus, we obtain the low-level visual features 𝐹𝐿 , mid-level visual
features 𝐹𝑀 . Here we consider the output of the last layer of ViT-B
as the highest-level feature 𝐹𝐻 , which captures more global informa-
tion in the image. All these three features have the same dimension
R𝐻×𝑊 ×𝐶 . We then downsample the low-level and mid-level fea-
tures. This process yields ˜𝐹𝑀 ∈ R

𝐻
2 ×𝑊

2 ×𝐶 for mid-level feature and
𝐹𝐿 ∈ R

𝐻
4 ×𝑊

4 ×𝐶 for low-level feature, facilitating a more detailed
and hierarchical representation of visual information.

Scale-Wise Feature Aggregator (SFA). Inspired by the effec-
tiveness of multi-scale features in the visual domain [11, 31, 67],
we have adopted multi-scale features to enhance feature align-
ment. Unlike traditional tasks in the visual domain such as object
detection [11, 31, 67] and segmentation [27, 66], maintaining the
positional relationship between text and images when using multi-
scale features in RIS settings presents a challenge. To solve this

problem, we introduce the Scale-Wise Feature Aggregator (SFA)
to preserve the spatial relationship between text and images from
CLIP while leveraging multi-scale features. SFA initially combines
global language feature 𝑓𝐸 with top-layer visual features 𝐹𝐻 , using
element-wise multiplication:

𝑓𝐺 = 𝑓𝐻 ⊙ 𝑓𝐸 (4)

where 𝑓𝐻 ∈ R𝐶 denotes the element of the top-layer visual features
𝐹𝐻 and 𝑓𝐺 ∈ R𝐶 represents the single element of the global-to-local
fused feature 𝐹𝐺 . Subsequently, the global-to-local fused feature
𝐹𝐺 ∈ R𝐻×𝑊 ×𝐶 is integrated with the down-sampled low-level
visual features 𝐹𝐿 ∈ R

𝐻
4 ×𝑊

4 ×𝐶 and mid-level visual features ˜𝐹𝑀 ∈
R

𝐻
2 ×𝑊

2 ×𝐶 through the following gradual process:

𝐹 ′𝐿 = Φup (𝐹𝐿)
𝐹 ′𝑀 = Φlateral ( ˜𝐹𝑀 ) + 𝐹 ′𝐿

𝐹coarse = Φagg (Φlateral (𝐹𝐺 ) + Φup (𝐹 ′𝑀 ))
(5)

where the down-sampled low-level visual feature 𝐹𝐿 is initially
2x up-sampled by Φup to 𝐹 ′

𝐿
∈ R

𝐻
2 ×𝑊

2 ×32 with channel reduction
to 32. Concurrently, the down-sampled mid-level visual feature
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˜𝐹𝑀 is enhanced through Φlateral to achieve 𝐹 ′
𝑀

∈ R𝐻×𝑊 ×32, with
channel reduction to 32. Φlateral here is a 1 × 1 Convolution-ReLU
block. Based on our assumption that only basic information about
the object location is needed, we boldly reduce the channel dimen-
sion to lower computational demands. The final aggregation step
combines these enhanced features into 𝐹coarse ∈ R𝐻𝑊 ×𝐶 . This is
achieved by employing a 3× 3 convolution followed by a flattening
operation via Φagg. This process is designed to restore the chan-
nel dimensions and then flatten the output for subsequent stages,
effectively maintaining a balance between preserving details and
ensuring computational efficiency in our approach to integrating
multi-scale features.

3.4 Word Guided Dual-Branch Aligner
As shown in Figure 4, the coarse feature map of CRIS [51] become
disrupted after interaction with word-level language features, often
focusing on regions unrelated to textual description. The previous
single-branch alignment method [25, 51, 54] utilizes a Transformer
Encoder or Decoder architecture to fuse coarse features with word-
level language features, as demonstrated in Figure 3. To address this
issue, we develop two distinct branches within the WGDA: Coarse-
to-Fine Segmentation Decoder (CFS) and Word Guided Coefficient
Generator (WCG), which more effectively align word-level features
with coarse feature 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 . Specifically, the CFS branch utilizes
Local Visual Attention and Segmentation Decoder to discern rela-
tionships among visual tokens and generate masks𝑀′ ∈ R𝐻𝑊 ×𝑁𝑐

focusing on different parts. The WCG branch comprises Visual
and Language Local Attention and Gated Coefficient Generation,
which find correspondences between word-level language features
and local visual features to generate coefficients 𝑓𝑐𝑜𝑒 𝑓 ∈ R𝑁𝑐 for
different response masks𝑀′. And then we can get the final mask
output𝑀 ∈ R𝐻×𝑊 by applying a weighted sum operation between
masks𝑀′ and coefficients 𝑓𝑐𝑜𝑒 𝑓 . This design effectively preserves
the alignment between global language and visual features while
seamlessly incorporating word-level language features, avoiding
the issues that come with single-branch.

Coarse-to-Fine Segmentation Decoder (CFS). Within the
CFS branch, we first leverage the coarse aligned feature 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 as
inputs to Local Visual Attention module, resulting in the attention-
enhanced local visual features 𝐹𝐴 ∈ R𝐻𝑊 ×𝐶 . For Local Visual
Attention module with 𝑛 layers, the workflow of i-th layer is sim-
plified as follows:

𝐹
(𝑖−1)
𝑎 = ΦMHSA (ΦLN (𝐹𝑐𝑜𝑎𝑟𝑠𝑒 )) + 𝐹𝑐𝑜𝑎𝑟𝑠𝑒

𝐹
(𝑖 )
𝑎 = ΦMLP (𝐹 (𝑖−1)

𝑎 ) + 𝐹
(𝑖−1)
𝑎 . 𝑖 = 1, 2, ..., 𝑛

𝐹𝐴 = 𝐹
(𝑛)
𝑎

(6)

where 𝐹 (𝑖−1)
𝑎 represents the gradual refined visual features,ΦMHSA

indicates a multi-head self-attention layer and ΦLN means Layer
Normalization. After 𝑛 layers of self-attention interaction, the Seg-
mentation Decoder leverages the attention-enhanced visual fea-
tures 𝐹𝐴 to produce the response masks𝑀′, which is computed as

Figure 3: Illustration of single-branch cross-modal alignment in
existing RIS methods and our dual alignment that enables linguistic
descriptors to directly interact with mask prediction.

follows:
𝐹
(𝑖 )
𝐴

= Φconv3×3 (Φup (𝐹 𝑖−1𝐴 )), 𝑖 = 1, 2, 3

𝐹
(4)
𝐴

= Φconv1×1 (𝐹
(3)
𝐴

)

𝑀 = Φsigmoid (𝐹
(4)
𝐴

)

(7)

where Φup represents the upsampling operation, Φconv3×3 denotes
the convolution operation with a 3 × 3 kernel, 𝐹 (𝑖 )

𝐴
denotes the

feature after the 𝑖-th convolution and upsampling operation, and
Φconv1×1 indicates the final convolution operation with a 1 × 1
kernel. After the last convolution, the Φsigmoid function is applied
to 𝐹 (4)

𝐴
and then produce the response masks𝑀′ ∈ R𝐻𝑊 ×𝑁𝑐 . Note

that the hyperparameter n and 𝑁𝑐 is discussed in the Table 3 and 4
in ablation study.

Word-Guided Coefficient Generator (WCG).Within WCG
branch, we integrate the refined visual features 𝐹𝐴 and the word-
level language features 𝑓𝑇 through the Visual and Language Local
Attention module. The multi-head cross-attention layer is adopted
to propagate fine-grained semantic information into the evolved
visual features. The calculation is as follows:

𝐹 ′𝐾 = ΦMHCA (ΦLN (𝐹𝐴, 𝑓𝑇 )) + 𝐹𝐴

𝐹𝑓 𝑖𝑛𝑒 = ΦMLP (𝐹 ′𝐾 ) + 𝐹 ′𝐾
(8)

where ΦMHCA denotes the multi-head cross-attention layer, and
𝐹 ′
𝐾
is the intermediate features. The evolved multi-modal fine fea-

ture 𝐹𝑓 𝑖𝑛𝑒 ∈ R𝐻𝑊 ×𝐶 which captures the relationship between
word-level language features and local visual features is utilized
for generating the coefficient 𝑓𝑐𝑜𝑒 𝑓 through Gated Coefficient Gen-
eration module. The calculation is as follows:

𝑓𝑐𝑜𝑒 𝑓 = Φcoef (𝐹𝑓 𝑖𝑛𝑒 ) (9)

where Φcoef comprises two stacked 3 × 3 convolution layers and
one 1 × 1 convolution layer, followed by the Tanh activation func-
tion. The WCG branch effectively captures the essence of visual-
textual interplay, producing normalized coefficients 𝑓𝑐𝑜𝑒 𝑓 ∈ R𝑁𝑐 .
Coefficients 𝑓𝑐𝑜𝑒 𝑓 are then used to guide the segmentation output,
ensuring a coherent integration of cross-modal insights.
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Table 1: Comparisons with the state-of-the-art approaches on three benchmarks. We report the results of our method with various visual
backbones. U: The UMD partition. G: The Google partition. “-” represents that the result is not provided. IoU is utilized as the metric.

Method Visual Language RefCOCO RefCOCO+ G-Ref Avgval testA testB val testA testB val(U) test(U) val(G)
CGAN [37] DarkNet-53 Bi-GRU 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69 46.54 54.98
LTS [22] DarkNet-53 Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25 - 58.18
ReSTR [25] ViT-B-16 GloVe 67.22 69.30 64.45 55.78 60.44 48.27 54.48 - - 59.99
LAVT [59] Swin-B BERT 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50 65.20
VLT [7] Swin-B BERT 72.96 75.96 69.60 63.53 68.43 56.92 63.49 66.22 62.80 66.66
SLViT [41] SegNeXt BERT 74.02 76.91 70.62 64.07 69.28 56.14 62.75 63.57 60.94 66.48
SADLR [60] Swin-B BERT 74.24 76.25 70.06 64.28 69.09 55.19 63.60 63.56 61.16 66.38
DMMI [16] Swin-B BERT 74.13 77.13 70.16 63.98 69.73 57.03 63.46 64.19 61.98 66.87
MCRES [53] Swin-B BERT 74.92 76.98 70.84 64.32 69.68 56.64 63.51 64.9 61.63 67.05
ReLA [33] Swin-B BERT 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97 62.7 67.65
CRIS [51] CLIP-R101 CLIP 70.47 73.18 66.1 62.27 68.08 53.68 59.87 60.36 - 64.25
ETRIS [54] CLIP-ViT-B CLIP 70.51 73.51 66.63 60.10 66.89 50.17 59.82 59.91 57.88 62.82
ASDA CLIP-ViT-B CLIP 75.06 77.14 71.36 66.84 71.13 57.83 65.73 66.45 63.55 68.34

Finally, the segmentation mask𝑀 is obtained by weighting and
summing the coefficients 𝑓𝑐𝑜𝑒 𝑓 ∈ R𝑁𝑐 and the response mask𝑀′ ∈
R𝐻𝑊 ×𝑁𝑐 :

𝑀 = Φreshape (𝑓𝑐𝑜𝑒 𝑓 ⊗ 𝑀′) (10)
where𝑀 ∈ R𝐻×𝑊 represents the final output mask, ⊗ denotes the
element-wise multiplication, and Φreshape is a reshaping operation
that transforms the multiplied result into the desired output dimen-
sions. Rather than adopting the contrastive learning proposed in
CRIS, we supervise mask prediction through a linear combination
of focal loss [32] and dice loss [30].

4 EXPERIMENTS
4.1 Datasets
We conduct extensive experiments on three benchmark datasets.
RefCOCO stands out in this research domain, comprises 19, 994 im-
ages and 142, 210 referring expressions linked to 50, 000 objects. The
dataset is divided into 120, 624 training, 10, 834 validation, 5, 657 test
A, and 5, 095 test B images. It is characterized by typically containing
two or more objects per image, with referring expressions averag-
ing 3.6 words in length. RefCOCO+ introduces an elevated chal-
lenge by omitting expressions containing certain absolute-location
words. It includes 19, 992 images, presenting 49, 856 objects through
141, 564 linguistic expressions. The dataset is distributed across
120, 624 training, 10, 758 validation, 5, 726 test A, and 4, 889 test B
samples. G-Ref distinguishes itself by using Amazon Mechanical
Turk to collect 104, 560 referring expressions that describe 54, 822
objects in 26, 711 images. This collection method ensures greater
linguistic diversity in the expressions, which averages 8.4 words
and frequently mention locations and appearances. G-Ref is avail-
able in two versions, curated by the University of Maryland (UMD)
and Google. Both versions have been utilized in our experiment.

4.2 Implementation Details
Experimental Settings. We firstly use ViT-B as the visual en-
coder and Transformer as the language encoder. Both the visual
and language encoders are initialized with CLIP. Input images are

resized to 416 × 416. The number 𝑁𝑐 of response masks 𝑀′ and
coefficients 𝑓𝑐𝑜𝑒 𝑓 are set to 32. The parameter 𝑛 of Local Visual
Attention module layers in CFS module is set to 2. The maximum
length for the input natural language expression is set to 17 for
RefCOCO and RefCOCO+, and 22 for G-Ref, including the [SOS]
and [EOS] tokens. We use the Adam optimizer to train the network
for 30 epochs with an initial learning rate of 5× 10−5, and we decay
the learning rate in the 18𝑡ℎ , 25𝑡ℎ epochs with a decay rate of 0.1.
We train the model with a batch size of 28 on 2 RTX 3090 GPUs.
Metrics. Following previous works, we adopt two metrics to ver-
ify the effectiveness: overall Intersection over Union (IoU) and
Precision@𝑋 . IoU calculates the ratio of intersection to union re-
gions between the predicted segmentation mask and the ground
truth. Precision@𝑋 measures the percentage of test images that
achieve an IoU score exceeding the threshold 𝑋 , with 𝑋 values of
0.5, 0.7, and 0.9.

4.3 Comparison with State-of-the-Art Methods
We evaluate our ASDA against state-of-the-art methods that utilize
various visual and language backbones. Table 1 shows performance
comparisons on three common splits of RefCOCO, RefCOCO+ and
G-Ref. Compared to the recently SOTA ReLA [33] which uses Swin-
B visual backbone [35] and BERT language backbone [24], our
ASDA improves IoU by 1.24%, 0.66% and 1.18% on val, testA and
testB splits of RefCOCO, respectively. On RefCOCO+, ASDA shows
improvements of 0.80%, 0.11%, and 0.18% respectively for val, testA,
and testB splits. Furthermore, on G-Ref dataset, improvements are
0.73% for val (U), 0.48% for test (U), and 0.85% for val (G) splits.
This demonstrates that our ASDA not only achieves a better under-
standing of the location and appearance information in RefCOCO
but also adapts to the various forms of expressions in RefCOCO+
and G-Ref. Besides, the following two comparisons show the effec-
tiveness of our ASDA from different perspectives: (1) CRIS [51] is
the first method which uses CLIP-R101 in RIS task. Compared to
CRIS, our ASDA demonstrates significant performance improve-
ments, with average gains of 4.6%, 3.92%, and 5.13% on RefCOCO,
RefCOCO+, and G-Ref datasets, respectively. This demonstrates
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Table 2: Ablation study on the validation set of RefCOCO. AFS: Automatic Feature Selection. SFA: Multi-scale Feature Aggregator. CFS:
Coarse-to-Fine Segmentation Decoder. WGC: Word-Level Guided Cross-Attention.

Method val test A test B
P@0.5 P@0.7 P@0.9 IoU P@0.5 P@0.7 P@0.9 IoU P@0.5 P@0.7 P@0.9 IoU

(a) baseline 76.98 62.80 14.92 66.70 81.40 69.08 15.53 70.02 70.10 53.89 17.21 62.43
(b) (a)+manual assign 78.86 66.43 21.26 69.38 83.71 73.28 21.97 72.87 73.30 58.82 22.72 65.88
(c) (a)+AFS 82.32 71.77 23.95 71.78 86.3 77.35 24.02 74.79 75.89 63.49 25.84 67.58
(d) (a)+AFS+SFA 82.37 72.34 27.09 72.39 86.30 77.44 27.68 75.25 76.52 63.47 27.36 67.97
(e) (d)+single-branch 85.97 76.76 28.72 74.65 88.45 81.36 28.76 76.54 79.50 68.45 29.55 70.62
(f) (d)+dual-branch(full) 86.37 77.74 29.80 75.06 89.28 82.23 29.96 77.14 80.76 69.61 30.14 71.36

that our ASDA, equipped with the CLIP-ViT-B visual backbone,
more effectively harnesses the spatial awareness capabilities of the
ViT. (2) Compared to ETRIS [54] which uses CLIP ViT-B backbone,
ASDA significantly surpasses them by 4.3%, 6.21% and 6.04% in
terms of average IoU on RefCOCO, RefCOCO+ and G-Ref datasets
respectively. This highlights ASDA’s more effective use of CLIP’s
aligned vision-language features.

4.4 Ablation Study
To verify the effectiveness of our proposed components, we conduct
comprehensive ablation studies to investigate each component on
the RefCOCO val, test A, test B dataset. The components studied
include Adaptive Feature Selection (AFS), Scale-Wise Feature Ag-
gregator (SFA), Coarse-to-Fine Segmentation Decoder (CFS), and
Word-Guided Coefficient Generator (WCG). The main results of
the ablation study are presented in Table 2. Additionally, we have
conducted ablation studies on the number of layers𝑛 in the Local Vi-
sual Attention module, the number of channels 𝑁𝐶 in 𝑓𝑐𝑜𝑒 𝑓 ∈ R𝑁𝑐

and𝑀′ ∈ R𝐻𝑊 ×𝑁𝑐 and the architecture of adaptive selection (AS)
network, which are presented in Table 3, 4 and 5 respectively. We
limit the training of experiments in Table 3, 4, 5 to only 10 epochs
and present the result on val split of RefCOCO , which leads to
some differences in results compared to those in Table 2.
Baseline and manual assignment. (a) The baseline method ex-
tracts the highest-level visual feature 𝐹𝐻 from the last layer of the
visual encoder and fuses it with the global textual feature 𝑓𝐸 using
element-wise multiplication. The fused feature is then processed
by the segmentation decoder to produce the final mask. (b) We
enhance the baseline by employing a manual assignment approach
following CRIS [51], manually selecting features from Layer 6 and
Layer 9 as the low-level feature 𝐹𝐿 and middle-level feature 𝐹𝑀
respectively. These features 𝐹𝐿 , 𝐹𝑀 and 𝐹𝐻 are then fused using the
typical concatenation and projection method [51], without the use
of multi-scale transformations. This improves 2.68%, 2.85%, 3.45%
IoU on RefCOCO val, test A, test B respectively over (a), which
demonstrates the significance of utilizing features from intermedi-
ate layers which focus on local regions.
Effect of Adaptive Feature Selection (AFS). (c) We replace the
manual assignment (in Table 2 row 2) with our proposed Adaptive
Feature Selection (AFS) module (in Table 2 row 3), which dynam-
ically selects visual features using the global language feature 𝑓𝐸 .
In our setting, AFS will produce muti-scale visual features, here
we just use the same fusion and decoder module as in (b). The
2.4%, 1.92% and 1.7% improvement of IoU on three splits compared
to (b) shows our AFS module can adaptively choose features that

Table 3: Ablation study on the hyperparameter 𝑛 of the layers in
the Local Visual Attention module.

n P@0.5 P@0.7 P@0.9 IoU
1 82.38 71.64 23.97 71.72
2 83.68 73.89 24.94 72.57
3 82.08 71.94 25.92 72.13
4 83 72.37 24.79 72.57

Table 4: Ablation study on the hyperparameter 𝑁𝐶 which repre-
sents the number of channels in 𝑓𝑐𝑜𝑒 𝑓 ∈ R𝑁𝑐 and𝑀′ ∈ R𝐻𝑊 ×𝑁𝑐 .

𝑁𝐶 P@0.5 P@0.7 P@0.9 IoU
16 79.68 68.16 22.2 70.61
32 83.68 73.89 24.94 72.57
48 82.46 71.9 24.91 71.92
64 82.25 70.6 24.25 71.78

Table 5: Ablation study on the architecture of adaptive selection
network (as)

as P@0.5 P@0.7 P@0.9 IoU
MLP 81.87 71.25 23.76 71.59
Conv 82.67 72.16 24.88 72.05
Linear 83.68 73.89 24.94 72.57

are more relevant to object described in the referring expression,
thereby enhancing segmentation accuracy.
Effect of Scale-Wise Feature Aggregator (SFA). (d) We further
validate the necessity of the Scale-Wise Feature Aggregator (SFA)
module (in Table 2 row 4). Incorporating (c) with the SFA mod-
ule, the IoU improves by 0.61%, 0.46% and 0.39% on three splits.
This highlights the importance of multi-scale visual features in
accurately capturing detailed characteristics of objects described in
text.
Effect of Word Guided Dual-Branch Aligner (WGDA). We
compare our proposed Word Guided Dual-Branch Aligner (WGDA)
with previously proposed single-branch approaches [7, 17, 51]. As
shown in Figure 3, (d) a single-branch approach directly interacts
𝐹𝑐𝑜𝑎𝑟𝑠𝑒 from the ASFA module with word-level language features
𝑓𝑇 , while (f) our WGDA method uses dual-branch to let inguistic
descriptors directly interact with masks predictions. The results
indicate that our WGDA outperforms the previous single-branch
method by 0.41%, 0.6%, and 0.74% on three respective splits (in
Table 2 row 5, 6). This indicates that our proposed Word Guided
Dual-Branch Aligner (WGDA) can not only progressively refine
visual features, but also effectively employ word-level language



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Visualization results of feature maps and final predicted mask in CRIS [51] and ASDA respectively. The coarse feature map
represents the features without interaction with word-level language features, while the fine feature map results from the fusion and
interaction between word-level features afterwards.

features 𝑓𝑇 to guide coarse feature 𝐹𝑐𝑜𝑎𝑟𝑠𝑒 to focus more on word-
level language features, highlighting the importance of precise
vision-language alignment.
Abalation about Adaptive selection (AS) network. In Table
5, we experiment different architectures within the adaptive se-
lection (AS) network. In this experiment, we use our full model,
only replacing the AS network layer. Specifically, we investigate
three structures in the Adaptive Feature Selection (AFS) module to
compute relevance scores: Linear, Convolution (Conv), and Multi-
layer Perceptron (MLP) layers. Each structure includes a softmax
layer that transforms the scores into a probability distribution.
Our findings indicate that the simple Linear layer configuration
outperformed both the MLP and Conv layers, as evidenced by im-
provements in IoU of 0.98% and 0.52% over the val split of RefCOCO.
This demonstrates that the Linear layer’s simplicity and efficiency
contribute to better generalization and performance.
Abalation about hyperparameter In Table 3, We conduct ex-
periments to determine the most appropriate number of layers for
Local Visual Attention within the Coarse-to-Fine Segmentation
Decoder (CFS). We find that optimal performance is achieved when
𝑛 = 2. In Equation 10, we obtain the final mask through weight
and sum between response mask𝑀′ ∈ R𝐻𝑊 ×𝑁𝑐 and coefficients
𝑓𝑐𝑜𝑒 𝑓 ∈ R𝑁𝑐 . As shown in Table 4, we conducted ablation studies
on the hyperparameter 𝑁𝐶 and found that the best performance
is achieved when 𝑁𝐶 = 32. As 𝑁𝐶 exceeds the optimal value 32,
performance declines due to overly complex model structure.

4.5 Qualitative Analysis
In Figure 4, we visualize the feature maps and the final predicted
mask in CRIS [51] and our ASDA.
Comparison of Feature Maps. Comparing the coarse feature
map, which is the fusion results between visual features from visual
encoder and sentence-level language feature 𝑓𝐸 , both CRIS and
ASDA roughly capture the objects’ semantic information. However,
after interacting with word-level language features, the fine feature

map in CRIS struggles to capture text-relevant features, leading to
incorrect predictions. In contrast, the fine feature map from our
ASDA, obtained after the Word Guided Cross-attention module in
the Word-Guided Coefficient Generator (WCG) branch, can capture
local visual detail. As shown by the yellow box in the Figure 4,
our method’s fine feature map can directly focus on visual features
relevant to the text.
Comparison of Predicted Mask. The final predicted mask clearly
demonstrates the superiority of our method. As indicated by the
red box in the figure, for expression (a), CRIS fails to finely segment
the part of the woman obscured by a bottle, whereas our method
produces a detailed mask. In scenario (b), among multiple easily
confusable objects, CRIS struggles to identify the correct person,
while ASDA accurately locates the target, as already detected by fine
feature map . For (c), CRIS incorrectly identifies the object, whereas
ASDA produces an accurate and refined mask. More visualization
results are provided in the Appendix.

5 CONCLUSION
In this paper, we introduce the Adaptive Selection with Dual Align-
ment (ASDA) framework for Referring Image Segmentation. Ini-
tially, our Adaptive Feature Selection and Fusion (AFSF) module dy-
namically selects visual features from vision encoder layers related
to various descriptive texts. AFSF includes a scale-wise feature ag-
gregator to provide hierarchically aggregated features that preserve
crucial low-level details and robust features for dual alignment. Sec-
ondly, we utilize a Word Guided Dual-Branch Aligner (WGDA) that
integrates visual features with linguistic cues through word-guided
attention, effectively addressing vision-language misalignment by
allowing linguistic descriptors to directly interact with mask pre-
dictions. This ensures focus on relevant image regions for robust
predictions. Our extensive experiments show that ASDA outper-
forms state-of-the-art methods on the RefCOCO, RefCOCO+, and
G-Ref benchmarks.
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