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Abstract
Confidence calibration is critical for the safe de-
ployment of machine learning models in the real
world. However, such issue in vision-language
models like CLIP, particularly after fine-tuning,
has not been fully addressed. In this work, we
demonstrate that existing prompt tuning methods
usually lead to a trade-off of calibration between
base and new classes: the cross-entropy loss used
in standard prompt tuning (e.g., CoOp) causes
overconfidence in new classes by increasing tex-
tual label divergence, whereas regularization-
based tuning (e.g., KgCoOp) maintains the confi-
dence level but results in underconfidence in base
classes due to the improved accuracy. Inspired by
the observations, we introduce Dynamic Outlier
Regularization (DOR) to ensure the confidence
calibration on both base and new classes after fine-
tuning. In particular, DOR minimizes the feature
deviation of novel textual labels (instead of base
classes) sampled from a large vocabulary set. In
effect, DOR prevents the increase in textual di-
vergence for new labels while easing restrictions
on base classes. Extensive experiments demon-
strate that DOR can notably enhance the calibra-
tion performance of current fine-tuning methods.
Our code is available at https://github.com/ml-stat-
Sustech/Outlier-Calibration.

1. Introduction
Large pre-trained vision-language models (VLMs) like
CLIP (Radford et al., 2021) have become the de facto
standard in today’s zero-shot tasks including image recog-
nition (Wortsman et al., 2022), open-vocabulary segmen-
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tation (Liang et al., 2023) and knowledge-augmented re-
trieval (Ming & Li, 2024). To efficiently adapt CLIP
to domain-specific downstream tasks, various parameter-
efficient fine-tuning (PEFT) techniques, such as prompt
tuning (Zhou et al., 2022b) and adapter (Gao et al., 2024),
have been proposed. While these methods improve ac-
curacy, they largely overlook reliability concerns such as
confidence calibration in fine-tuned CLIP. Without fully un-
derstanding the miscalibration in fine-tuned CLIP, it can
exacerbate safety concerns in high-stakes applications like
medical diagnosis and autonomous driving.

In confidence calibration, we generally expect the model’s
confidence level to be consistent with its empirical accu-
racy (Tu et al., 2023). In the literature, zero-shot CLIP is
often recognized for its excellent performance in confidence
calibration (Minderer et al., 2021). Prior work (Wang et al.,
2024) has shown that fine-tuning CLIP on base classes often
leads to miscalibration on novel classes within the same
task, where the model is expected to generalize (Zhou et al.,
2022b; Yao et al., 2023). While these studies focus on
miscalibration in novel classes unseen during fine-tuning,
they do not adequately address calibration issues on base
classes. Overall, the community still lacks a comprehensive
understanding of the fundamental cause of miscalibration
in fine-tuned CLIP and effective strategies for mitigation.

In this work, we first investigate how existing prompt tun-
ing methods affect the confidence calibration of CLIP. In
general, these methods can be fell into two categories: stan-
dard fine-tuning (e.g., CoOp (Zhou et al., 2022b)) and
regularization-based fine-tuning (e.g., KgCoOp (Yao et al.,
2023)). Our empirical analysis first reveals that both ap-
proaches struggle to maintain calibration across base and
novel classes simultaneously, inevitably compromising one:
CoOp exhibits overconfidence on new classes while Kg-
CoOp provides underconfident predictions on base classes.
To thoroughly understand such a phenomenon, we explain
it from the perspective of textual feature divergence. In
particular, CoOp increases the divergence of textual label
distribution through cross-entropy loss, resulting in exces-
sively high confidence misaligned with actual accuracy on
new classes. Conversely, KgCoOp constrains the divergence
increase, preserving confidence levels across both base and
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novel classes. However, this leads to the underconfidence
issue due to the improved accuracy on base classes. This
raises a key question: Can we achieve reliable calibration
on both base and novel classes after fine-tuning?

To tackle the above challenges, we introduce Dynamic
Outlier Regularization (DOR), a regularization technique
incorporated into the fine-tuning phase. The core idea of
DOR is to leverage outliers to regulate the divergence of
unseen textual distribution in the fine-tuned CLIP, without
interfering with the vanilla fine-tuning objectives. Specifi-
cally, we first collect textual outliers from the large lexical
database (e.g., WordNet (Miller, 1995)), while ensuring
that the selected words do not overlap with the base classes
in the fine-tuning task. During fine-tuning, we minimize
the feature discrepancy of novel textual labels between the
fine-tuned model and the zero-shot CLIP. To further enhance
flexibility, the textual outliers are dynamically sampled from
the constructed set in each epoch. By incorporating dynamic
textual outliers, DOR mitigates the increase in textual diver-
gence for novel labels while reducing constraints on base
classes, improving overall calibration stability.

We verify the effectiveness of DOR across 11 image clas-
sification datasets and 4 types of ImageNets with covariant
shifts. Extensive experiments show that DOR can enhance
the calibration of existing prompt-tuning methods (see Ta-
ble 1). For instance, DOR reduces the Expected Calibration
Error (ECE) by an average of 8.09% for CoOp across the 11
downstream datasets. Moreover, our method can maintain
and even improve the generalization performance of those
tuning methods (See Table 6 ). DOR also achieves competi-
tive improvements in the presence of covariate shifts, further
validating its robustness. Beyond prompt-based tuning, we
show that this regularization criterion can be extended to vi-
sual fine-tuning methods using image outliers, highlighting
its broader applicability.

We summarize our main contributions as follows:

1. We show that current prompt-tuning methods typically
lead to a trade-off between base and new classes, com-
promising one of them. To understand such miscalibra-
tion, we provide an in-depth analysis from the perspec-
tive of textual distribution divergence.

2. We propose DOR, a simple yet effective regularization
that ensures calibration performance on both base and
new classes. Our method is compatible with existing
prompt-tuning methods and can be extended to visual
fine-tuning methods with image outliers.

3. Extensive experiments on a wide range of real-world
benchmarks demonstrate that DOR is effective and
easy-to-use. DOR can be easily incorporated with
various prompt tuning methods.

2. Preliminaries
Contrastive Language-Image Pretraining (CLIP) CLIP
is a visual-language model that measures the alignment
between images and texts (Radford et al., 2021). Recently,
CLIP has shown great potential in zero-shot inference for
arbitrary classes. Let ϕ : x→ Rd and ψ : t→ Rd denote
CLIP’s image and text encoders, respectively. Given an
image instance x and a text label c, the logit function of
CLIP can be formulated as:

Lclip
c (xi) = τ · sim (ϕ(x), ψ(tc)) . (1)

Here tc is derived from a hand-crafted prompt like “a photo
of a {class}”, where the “{class}” is filled with the text label
c. τ is generally set as a pre-trained constant of 100.

For multi-class classification, we predict by selecting the la-
bel with the highest probabilities among the label candidate
set C = {ci}Ci=1, as shown below:

c∗ = argmax
c∈C

p(c|x) = argmax
c∈C

eL
clip
c (x)∑C

i=1 e
Lclip

i (x)
(2)

where p(c|x) is the predicted probability of class c for the
instance x.

Prompt tuning To boost performance of CLIP in down-
stream tasks, prompt tuning methods have been proposed
to efficiently fine-tune CLIP on datasets of interest (Zhou
et al., 2022a;b). In particular, prompt tuning optimizes the
context prompt only, without retraining the model and up-
dating its weights. CoOp (Zhou et al., 2022b) replaces the
hand-crafted textual tokens with a set of learnable textual
token T = {v1,v2, . . . ,vM}, where M is the length of
tokens. Thus, the output of fine-tuned CLIP is: Lcoop

c (x) =
τ ·sim (ϕ(x), ψ(t′c)) ,where t′c = [v1,v2,v3, ...vM , c] and
c denotes the textual embedding of class c. Using a few
labeled samples Dft = {(xi, ci)}Ni=1, the learnable textual
tokens T are optimized to minimize the standard cross-
entropy (CE) loss ℓce. We refer to the classes used in fine-
tuning as base classes, and the remaining labels within the
same task as new or novel classes.

To enhance the generalization ability of the learnable prompt
for unseen classes within the task, regularization-based
methods like KgCoOp (Yao et al., 2023) introduces a reg-
ularization term to align the learned prompt to the hand-
crafted prompt. The optimization of KgCoOp is:

T ⋆ = argmin
T

{
1

N

N∑
i=1

ℓce (p (ci | xi))

+ λ · 1
C

C∑
c=1

sim (ψ (t′c) , ψ (tc))

}
.

(3)
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(a) Base (b) New

Figure 1. Reliability diagram of fine-tuned CLIP (ViT-B/16) on StanfordCars dataset. ECE: Expected Calibration Error (lower is better).
Miscalibration is depicted in pink for overconfidence and purple for underconfidence.

Here, the first term is the standard cross-entropy loss used
in CoOp and the hyperparameter λ is used to control the
weight of regularization. With λ = 0, KgCoOp is degraded
to the original CoOp.

Confidence calibration In addition to predictive perfor-
mance, it is generally expected for deep models to be well
calibrated, i.e., the predicted class probabilities can faith-
fully estimate the true probabilities of correctness (Guo et al.,
2017). To quantify miscalibration, the Expected Calibration
Error (ECE) (Guo et al., 2017) is defined as the difference
between accuracy and confidence. With N samples grouped
into G bins {b1, b2, . . . , bG}, the ECE is formulated as:

ECE =

G∑
g=1

|bg|
N
|acc (bg)− conf (bg)| , (4)

where acc (·) and conf (·) denotes the average accuracy and
confidence in bin bm. In the literature, it has been shown
that pre-trained CLIP archives excellent performance of con-
fidence calibration in zero-shot inference (Minderer et al.,
2021). However, prior work (Wang et al., 2024) finds that
fined-tuned CLIP generally suffers from miscalibration on
novel classes within the same task, where the model is ex-
pected to generalize (Zhou et al., 2022b; Yao et al., 2023).
Yet to date, the community still has a limited understand-
ing of the fundamental cause and mitigation strategies of
miscalibration during fine-tuning. We proceed by analyzing
how the fine-tuning of CLIP affects the calibration.

3. Motivation
3.1. Empirical study on CLIP calibration

Setup To show the miscalibration in fine-tuned CLIP, we
first empirically study the calibration performance of fine-
tuned VLMs. We use ViT-B-16 pre-trained by OpenAI (Rad-
ford et al., 2021) as the zero-shot classification model. In
particular, we compare the zero-shot CLIP with standard
prompt tuning CoOp (Zhou et al., 2022b) and regularization-
based method KgCoOp (Yao et al., 2023) on StanfordCars
dataset (Krause et al., 2013). We evaluate the fine-tuned
CLIP under base-to-new protocol: the dataset is split into

base and new classes. The model is trained only on a few
examples from the base classes and evaluated on examples
from both base and new classes.

Prompt tuning leads to a trade-off between base and new
classes. Figure 1 illustrates the calibration performance
of zero-shot CLIP, CoOp and KgCoOp on base and new
classes. The results show that zero-shot CLIP achieves
almost perfect calibration on all classes, while the fine-
tuned models cannot maintain the calibration on base and
new classes simultaneously, compromising one of them.
In particular, CoOp maintains the excellent calibration on
base classes but exhibits overconfidence on new classes.
Instead, KgCoOp provides underconfident predictions on
base classes while preserving the calibration on new classes.
This motivates us to further investigate the fundamental
cause of miscalibration occurring after fine-tuning.

3.2. Understanding the miscalibration in CLIP

Given the above observation, we investigate how prompt
tuning leads to the miscalibration issue. Since the visual
features remain unchanged in the prompt tuning, the tex-
tual features thus play a key role in confidence calibration.
We first introduce a feature divergence score to quantify
the textual feature variation, inspired by the KNN-based
metrics commonly used for distribution estimation in cali-
bration (Xiong et al., 2023; Yuksekgonul et al., 2023).
Definition 3.1 (Feature Divergence). Consider a feature set
Z = {zi}Ni=1, each feature zi ∈ Rd is embedded by the
modality encoder in CLIP. Feature divergence (FD) score
of zi measures the average distances from each feature to
its M nearest neighbors in the set.

si =
1

M

∑
zj∈NM (z)

dist(zi, zj), (5)

where NM (zi) denotes the set of M nearest neighbors of
zi and dist (·, ·) is a distance metric like cosine similar-
ity. By averaging these similarity scores across all fea-
tures, we obtain the overall FD score of a given feature set
FD(Z) = 1

N

∑N
i=1 si, which can represent the divergence

of the textual distribution. To investigate the miscalibration
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Figure 2. Results of zero-shot and fined-tuned CLIPs with different
prompt tuning methods on UCF101 dataset.
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Figure 3. Comparison between the maximum logit and the average
of other logits, using different prompt tuning methods on DTD.

issue, we vary the hyperparameter λ in Eq. (3). In KgCoOp,
λ is set to 8.0, and it degenerates to CoOp when λ = 0. We
conduct the experiments on UCF101 (Soomro et al., 2012).
We present the results in Figure 2.

CoOp leads to overconfidence on new classes by increas-
ing the textual divergence. In the analysis of Subsection 3.1
and Figure 2b, we show that CLIP tuned by CoOp exhibits
overconfidence on new classes, but keeps calibration on base
classes. This is caused by the CE loss, which maximizes
the posterior p(y | x) for the ground-truth label y and mini-
mizes the probability for other labels. In other words, CE
loss tends to enlarge the distance between the image feature
and all textual features except the ground truth. As the im-
age feature remains unchanged during fine-tuning, it can be
translated to large distances among all textual labels, includ-
ing base and new classes. This is supported by the results
presented in Figure 2a, which shows that CoOp significantly
increases the FD score of textual features compared to zero-
shot CLIP. Consequently, As shown in Figure 3, the gap
between the maximum logit and the others widens for both
base and new classes. Hence, the tuned CLIP with CE loss
will make softmax predictions with high confidence on both
base and new classes. It aligns with the improved accuracy
on base classes, but is not consistent with the nearly un-
changed accuracy on new classes. This explains why CLIP
tuned by CoOp tends to be overconfident on new classes.

KgCoOp anchors the confidence level by hindering the
increase of textual divergence. In the previous analysis,
KgCoOp leads to underconfident predictions on base classes
while preserving the calibration on new classes. In Figure 2a,
we illustrate the FD scores of textual labels from the zero-
shot CLIP and the tuned CLIP by KgCoOp with various λ.
The results show that a large value of λ reduces the FD score
of both base and new classes, approaching that of zero-shot
CLIP. This phenomenon indicates that the regularization
in KgCoOp can prevent the model from increasing the tex-
tual divergence caused by CE loss. Correspondingly, the
fine-tuned CLIP by KgCoOp preserves the same confidence
level as the zero-shot CLIP. However, the fine-tuning sub-

stantially improves the accuracy of CLIP on base classes,
resulting in the underconfidence issue due to the anchored
confidence level. In this way, we explain why KgCoOp
leads to underconfidence on base classes.

Through the perspective of textual divergence, we provide a
thorough explanation for the calibration trade-off caused by
different prompt-tuning methods. We provide the compre-
hensive empirical results on more prompt tuning methods
to thoroughly support our observationin Appendix B.1 (See
Figure 5 and 6). In addition, we present a theoretical jus-
tification for the relationship between textual divergence
and model confidence in Appendix C. Ideally, we expect to
maintain the excellent zero-shot calibration for both base
and new classes after fine-tuning. In the following, we
proceed by introducing our method, targeting this problem.

4. Method: Dynamic Outlier Regularization
In the previous analysis, we show that textual divergence
is the key for CLIP calibration. To preserve the calibration
capacity of zero-shot CLIP, our key idea is to regularize
the textual divergence of new classes without restricting
that of base classes. To this end, we use textual outliers
to regularize fine-tuned CLIP. We provide clear evidence
to show that the regularization using textual outliers can
easily mitigate the overconfidence in the new classes without
altering the fine-tuning objective in Appendix B.2.

Selecting textual outliers With this in mind, we construct
a set of textual outliers using nouns from the large lan-
guage lexical database. Specifically, we mainly use Word-
Net (Miller, 1995) as the database, which is a large English
lexical database containing over 150,000 words. We select
nouns from WordNet that do not overlap but share higher-
level concept relations with the base classes used in the fine-
tuning, and then incorporate them into our regularization
term for prompt tuning. We demonstrate the effectiveness
of using relevant textual outliers in Table 8.

Let Cft = {c1, c2, . . . , cn} be the n base classes used in
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the fine-tuning. First, we obtain a candidate set Cword =
{o1, o2, . . . , om}, by filtering out the base classes from
WordNet. Then, we rank the nouns according to the av-
erage semantic similarity among the candidate Cword and
each base class cj ∈ Cft. For candidate word oi, we use
zero-shot CLIP to quantify the semantic similarity si:

si =
1

n

n∑
j=1

sim
(
ψ (toi) , ψ

(
tcj

))
, (6)

where toi represents the textual tokens of a noun oi using
a fixed prompt like “a photo of a [class-name]”, and i ∈
{1, 2, . . . ,m}. ψ is the text encoder of zero-shot CLIP. Then
we get the set of textual outliers using the score ranking.

Oout = {oi | i ∈ TopK (s1, s2, . . . , sm)} , (7)

where TopK(·) represents selecting the indices with the top
K largest scores for nouns in the candidate set Cword.

Dynamic Outlier Regularization Given a fine-tuning
dataset Dft with base classes Cft, we construct a large set
of textual outliers Oout as described above. To prevent the
increase of textual divergence on new classes, we propose
Dynamic Outlier Regularization (DOR), which minimizes
the feature discrepancy of textual outliers between the zero-
shot CLIP and the fine-tuned CLIP.

In each iteration, we randomly sample a batch of textual
outliers from the constructed set Oout . We denote the batch
of textual outliers as B = {oi}Bb=1, where B is the number
of textual outliers in the batch. By default, we set B as the
same as the batch size of fine-tuning data. Then, we build
the regularization by aligning the textual features to those of
zero-shot CLIP. Formally, the regularization is defined as:

Ldor = 1− 1

B

B∑
b=1

sim
(
ψ
(
t′ob

)
, ψ (tob)

)
, (8)

where sim(·) denotes the cosine similarity function and tob
denotes the token of the textual outlier ob. Using the reg-
ularization, the textual divergence of the fine-tuned CLIP
will be regularized to be consistent with the zero-shot CLIP.
Different from KgCoOp (Yao et al., 2023), the outlier regu-
larization does not restrict the textual feature deviation of
base classes, which is explicitly shown in Figure 9.

Equipped with dynamic outlier regularization, the final train-
ing objective for fine-tuning CLIP is:

Ltotal = Lce + λ · Ldor, (9)

where Lce and Ldor are the cross-entropy loss of fine-tuning
data and the proposed regularization, respectively. λ denotes
the hyperparameter that controls the weight of the proposed
regularization. Our method will degrade to CoOp (Zhou

et al., 2022b) when λ = 0. As λ increases, the optimization
will encourage the model to maintain the confidence level
on new classes, alleviating the overconfidence issue. We
illustrate the effect of λ in Figure 4.

Extension to other robust fine-tuning algorithms It is
worth noting that our regularization is a general method
and can be easily incorporated into existing regularization-
based tuning for CLIP, including knowledge-guided fine-
tuning (Yao et al., 2023; 2024), multimodal consis-
tency (Khattak et al., 2023b; Roy & Etemad, 2023), Self-
Regularization (Khattak et al., 2023b) etc. Given the ex-
isting robust fine-tuning objective Lrobust, we formalize the
fine-tuning objective as:

Ltotal = Lrobust + λ · Ldor. (10)

Noticeably, DOR offers several compelling advantages:

• Easy-to-use: DOR leverages text outliers for regular-
ization, which is readily available and easy to collect.

• Algorithm-agnostic: DOR can be easily incorporated
into existing fine-tuning methods (See Table 1 and 2)
or calibration algorithms for CLIP (See Appendix I).
Furthermore, our method can be extended to visual
fine-tuning methods with image outliers (See Table 7).

• Fine-tuning-nontoxic: Compared with existing
regularization-based methods, DOR does not conflict
with the fine-tuning objective and breaks the calibration
trade-off. (See Table 3 and Appendix B.2).

5. Experiments
5.1. Experimental Setup

Benchmark setting. Following recent works (Zhou et al.,
2022b; Wang et al., 2024), we perform two evaluations in
two standard benchmark settings: 1) Generalization from
Base-to-New Classes: A downstream dataset will be equally
split into base and new classes. The model is trained only
on the base classes in a few-shot setting and evaluated on
base and new classes. In practice, we mainly focus on
the harmonic mean value from both classes. 2) Domain
Generalization: The model is trained on ImageNet-1k in
a few-shot manner and evaluated on four other ImageNet
datasets that contain various types of domain shifts.

Datasets. For the base-to-new evaluation, we cover diverse
classification tasks including ImageNet (Deng et al., 2009),
Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi et al.,
2012), StanfordCars (Krause et al., 2013), Flowers102 (Nils-
back & Zisserman, 2008), Food101 (Bossard et al., 2014),
FGVCAircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), UCF101 (Soomro et al., 2012), DTD (Cimpoi
et al., 2014) and EuroSAT (Helber et al., 2019). For do-
main generalization, we use ImageNet-1k as the source
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Table 1. Average calibration across 11 datasets. “+DOR(Ours)” to our method applied to standard tuning methods. ↓ indicates smaller
values are better. Calibration error is given by ×10−2. “HM” denotes the harmonic mean. Bold numbers are significantly superior results.

ECE(↓) ACE(↓) MCE(↓) PIECE(↓)

Method Base New HM Base New HM Base New HM Base New HM

ZSCLIP 3.58 4.61 4.10 3.62 4.58 4.10 0.97 1.21 1.09 6.35 6.55 6.45

CoOp 3.07 14.58 8.82 2.97 14.50 8.73 1.07 3.72 2.40 4.68 15.27 9.98
+DOR(Ours) 2.67 6.49 4.58 2.64 6.47 4.55 0.83 1.65 1.24 4.45 8.33 6.39

CoCoOp 3.60 6.14 4.87 3.53 6.08 4.81 0.96 1.72 1.34 5.53 7.86 6.70
+DOR(Ours) 4.22 4.02 4.12 4.30 3.94 4.12 1.07 1.11 1.09 6.00 6.41 6.20

MaPLe 2.75 5.46 4.11 2.65 5.42 4.04 0.82 1.52 1.17 4.71 7.37 6.04
+DOR(Ours) 2.83 4.44 3.63 2.86 4.33 3.60 0.81 1.29 1.05 4.86 6.39 5.62

DEPT 6.04 14.58 10.31 6.00 14.52 10.26 1.44 4.58 3.01 7.31 15.42 11.37
+DOR(Ours) 7.67 7.50 7.58 7.66 7.44 7.55 1.73 1.87 1.80 8.68 8.86 8.77

Table 2. Average ECE (%) of regularization-based methods across 11 datasets. Bold numbers are significantly superior results. DOR
constantly improves the calibration when incorporated with existing regularization-based methods.

Metric KgCoOp TCP PromptSRC CoPrompt PromptKD

Vanilla +DOR Vanilla +DOR Vanilla +DOR Vanilla +DOR Vanilla +DOR

Base 5.82 6.07 4.71 4.79 3.7527 3.88 2.56 2.96 4.73 4.81
New 4.48 3.99 4.07 3.80 4.15 3.80 5.96 4.69 4.38 3.66
HM 5.15 5.03 4.39 4.29 3.95 3.84 4.26 3.83 4.56 4.24

dataset and its four variants as target datasets including Im-
ageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-A (Hendrycks et al., 2021b), and
ImageNet-R (Hendrycks et al., 2021a).

Baselines. We compare our method with standard prompt
tuning algorithms including CoOp (Zhou et al., 2022b), Co-
CoOp (Zhou et al., 2022a), MaPLe (Khattak et al., 2023a)
and DEPT (Zhang et al., 2024b). We also incorporate DOR
with regularization-based tuning including KgCoOp (Yao
et al., 2023), TCP (Yao et al., 2024), PromptSRC (Khat-
tak et al., 2023b), CoPrompt (Roy & Etemad, 2023) and
PromptKD (Li et al., 2024).

Implementation details. We use CLIP ( ViT-B/16) (Rad-
ford et al., 2021) as the pre-trained VLM throughout our
experiments and report results averaged over 3 runs. We
fine-tune the model with 16 samples per class in a few-
shot setting (Zhou et al., 2022a). We list the details of the
compared methods in Appendix D.

Evaluation metrics. We use 4 standard metrics of confi-
dence calibration in our evaluation including Expected Cali-
bration Error (ECE) (Guo et al., 2017), Maximum Calibra-
tion Error (MCE) (Guo et al., 2017), Adaptive Calibration
Error (ACE) (Nixon et al., 2019) and Proximity-Informed
Expected Calibration Error (PIECE) (Xiong et al., 2023).

5.2. Results

DOR enhances the calibration of existing prompt-tuning
methods. Table 1 shows the calibration performance of 4
standard tuning baselines w/ or w/o our DOR. We find that
DOR can consistently reduce the calibration error on new
classes. For instance, DOR significantly reduces the ECE
from 14.58% to 6.49% on new classes and maintains the
ECE from 3.07% to 2.67% on base classes, which makes
CoOp more reliable in terms of predicted confidence. More-
over, we incorporate DOR with other robust tuning methods
in Table 2. We observe a trade-off between the base and
new class for these methods, e.g., CoOp outperforms TCP
on base classes but significantly underperforms TCP on
new classes. Notably, DOR can continually reduce mis-
calibration on new classes across various metrics without
calibration trade-offs on base and new classes. In sum-
mary, our proposed DOR can consistently boost calibration
performance on new classes upon existing state-of-the-art
prompt tuning methods without compromising the vanilla
fine-tuning objectives. Due to space constraints, we pro-
vide detailed calibration results of all datasets in Appendix
F. Moreover, to illustrate how DOR affect the probability
distribution, we provide a visualization in Appendix G.

DOR effectively breaks the calibration trade-off. To di-
rectly demonstrate the role of DOR in the regularization
during CLIP fine-tuning, we compare DOR and KgCoOp
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Table 3. Average calibration results of ECE (%) using
various regularization on 11 datasets. DOR breaks the
calibration trade-off between base and novel classes.

Method Variant Base New HM

CoOp Vanilla 3.07 14.49 8.78
+KG 5.82 4.48 5.15
+DOR 2.47 6.48 4.47

MaPLe Vanilla 2.75 5.46 4.11
+KG 4.01 4.29 4.15
+DOR 3.06 4.26 3.66

CoPrompt Vanilla 2.60 5.96 4.28
+KG 4.01 4.99 4.50
+DOR 2.98 5.14 4.06

Table 4. Average calibration results of ECE (%) on 11
datasets. DOR† denotes that the outlier pool excludes
all new classes.

Method Variant Base New HM

CoOp Vanilla 3.07 14.49 8.78
+DOR 2.67 6.49 4.58
+DOR† 2.82 6.77 4.80

MaPLe Vanilla 2.75 5.46 4.11
+DOR 2.83 4.44 3.64
+DOR† 2.89 4.51 3.70

CoPrompt Vanilla 2.60 5.96 4.28
+DOR 2.96 4.69 3.83
+DOR† 2.71 4.93 3.82

on 3 baselines (CoOp, MaPLe, and CoPrompt), and present
the results in the table 3. The results demonstrate that inte-
grating with DOR can consistently outperform those with
KgCoOp on overall performance. In particular, our method
achieves much better performance than KgCoOp on Base
classes, while KgCoOp performs well on New classes. This
is consistent with the analysis presented in Subsection 3.2:
KgCoOp anchors the confidence level, leading to undercon-
fidence on Base classes. In short, the results demonstrate
the superiority of DOR in breaking the calibration trade-off
between base and novel classes.

DOR do not rely on the overlap with new classes. As
we mentioned in Section 4, DOR samples leverages text
outliers for regularization. To further analyze the potential
overlap with new classes used in the test time, we exclude
all new classes from the outlier pool (denoted as DOR†).
As is shown in Table 4, the average results on 11 datasets
show that DOR† without overlap achieves comparable per-
formance to DOR, significantly improving the performance
on all three baselines. Therefore, the effectiveness of our
method does not rely on the overlap with new classes. More-
over, we present all selected outlier texts for 6 datasets,
showing almost no class overlap, especially on Stanford-
Cars and FGVCAircraft in Table 10. In summary, leverages
general semantic information from language space rather
than memorizing target classes, which ensures its fairness
and generalizability.

DOR benefits base-to-new generalization. To further ver-
ify that our DOR is effective on new classes and non-toxic
for performance on base classes, we summarize the com-
parison of average test accuracy in Table 6. Similar to the
evaluation of calibration, a salient observation is that our
proposed DOR drastically improves base-to-new generaliza-
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Figure 4. Parameter sensitivity between KgCoOp (KG) and DOR
(w/ CoOp). Compared with KG, the accuracy and ECE of DOR
are not sensitive to λ base classes. Left: Accuracy. Right: ECE.

tion, with its accuracy consistently outperforming all exist-
ing baselines in the harmonic mean of base and new classes.
Moreover, DOR almost entirely preserves model capability
in the classification performance on base classes without
degeneration. For instance, applying DOR in DEPT can
increase accuracy on new classes from 65.04% to 71.39%,
while keeping the accuracy of base classes similar to the
baseline. Given that most prompt tuning methods lag be-
hind zero-shot CLIP on the accuracy of new classes, an
intuitive explanation is that DOR aligns the features of un-
seen classes with the zero-shot features, which can preserve
the zero-shot generalization on new classes. In addition, we
observe that some methods (e.g., CoCoOp and MaPLe) with
DOR, resulting in improvements of 2.12% and 2.00% re-
spectively, outperforming zero-shot accuracy on new classes.
This demonstrates that DOR can significantly enhance the
base-to-new generalization capacity of fine-tuned CLIP. To
further demonstrate DOR can be applied to domain-specific
open-vocabulary tasks, we provide more results on medical
datasets in Appendix J.

DOR is robust to covariate shifts. To comprehensively
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Table 5. Accuracy comparison on domain generalization datasets. DOR boosts the calibration and generalization of existing methods.

ECE (↓) Accuracy (↑)

Source Target Source Target

ImageNet -V2 -S -A -R AVG ImageNet -V2 -S -A -R AVG

CLIP 1.86 2.44 4.88 8.34 3.51 4.79 66.73 60.87 46.09 47.81 73.98 57.19

CoOp 1.10 4.19 8.40 15.34 0.80 7.18 71.44 63.55 45.76 47.81 73.74 57.72
+DOR(ours) 1.64 1.95 4.97 11.07 1.58 4.89 71.47 64.47 48.28 50.12 76.05 59.73

MaPLe 1.13 2.56 4.88 12.42 1.06 5.23 72.05 64.57 48.78 47.66 76.61 59.41
+DOR(ours) 1.46 1.89 3.96 11.08 1.37 4.58 71.93 64.94 48.77 48.29 76.20 59.55

Table 6. Average accuracy (%) across 11 base-to-new datasets. “Vanilla” denotes the baseline w/o DOR. DOR can improve the
generalization capacity on unseen classes while maintaining the performance on base classes.

ZSCLIP CoOp CoCoOp MaPLe KgCoOp DEPT CoPrompt PromptKD

Class Vanilla Vanilla +DOR Vanilla +DOR Vanilla +DOR Vanilla +DOR Vanilla +DOR Vanilla +DOR Vanilla +DOR

Base 69.49 82.97 83.20 80.57 79.89 82.11 82.08 82.29 82.13 83.70 83.81 82.32 82.39 85.74 85.52

New 74.32 61.74 72.01 72.47 74.59 73.89 75.89 72.21 73.14 65.04 71.39 73.29 74.50 79.80 80.81

HM 71.90 72.36 77.61 76.52 77.24 78.00 78.98 77.25 77.64 74.37 77.60 77.81 78.44 82.77 83.17

verify the robustness of DOR, we further evaluate its per-
formance in the domain generalization setting, i.e., there
is a covariate shift between training and testing datasets.
Specifically, we first fine-tune the model with all classes
of ImageNet on the 16-shot setting and then evaluate it
on 4 types of datasets with covariate shifts. As shown in
Table 5, the calibration performance indicates DOR main-
tains stability in the presence of covariate shifts. Although
DOR is not specially designed for the covariate shift, it
outperforms the calibration baseline of CoOp and MaPLe,
reducing ECE by 2.29% and 0.65% under distribution shifts
respectively. Meanwhile, DOR demonstrates superior accu-
racy in domain generalization and successfully maintains
in-distribution performance. Such regularization will not
hinder the generalization capacity of fine-tuned CLIP.

DOR is insensitive to hyperparameters. To further il-
lustrate the influence of hyperparameter λ, we present a
sensitivity analysis. We report the average performance on
11 datasets under the base-to-new evaluation protocol. As
shown in Figure 4, we can observe that DOR demonstrates
robustness in model calibration as λ in Eq.(10) varies. Al-
though KgCoOp has better calibration on new classes as
λ increases, it sacrifices accuracy and calibration on base
classes while our method does not. The results verify that
DOR is an effective approach to boosting calibration perfor-
mance on new classes while maintaining performance on
base classes. We provide more ablations on DOR including
selection strategy, similarity metric, outlier numbers, update
frequency, and outliers databases in Appendix H.

6. Discussion
Can the criterion of DOR be extended to visual tuning?
In this paper, we primarily focus on prompt tuning and
analyze how textual divergence impacts confidence calibra-
tion. Such analysis may limit the potential scope of CLIP
fine-tuning methods. To address this, we further consider a
similar regularization approach based on image outliers for
fine-tuning on visual representation. Specifically, we use
ImageNet-1k (Deng et al., 2009) as an outlier repository and
conduct experiments on four downstream datasets. To avoid
potential semantic overlap between the outlier and fine-
tuning data, we construct the outlier set by retaining images
from 50% of the classes of ImageNet-1k, which ensures
these classes differ as much as possible from those used
during fine-tuning. For visual representation fine-tuning
methods, we utilize CLIP-adapter (Gao et al., 2024) and
visual prompt tuning (VPT) (Jia et al., 2022).

As shown in Table 7, we observe that visual-based DOR can
successfully reduce the calibration error on new classes. For
example, DOR outperforms VPT and CLIP-adapter baseline
by reducing ECE by 4.64% and 1.82% on the DTD dataset,
respectively. We provide an additional analysis of visual
distribution in Appendix K. In general, visual-based DOR
achieves better average calibration across various down-
stream datasets and leaves space for further improvement.
Given that expected image outliers are not always accessi-
ble easily as text, a potential method is to generate them by
diffusion (Du et al., 2024) for high-quality image outliers.
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Table 7. Calibration results of ECE (%) on fine-tuning of visual representation. DOR-V(ision) is effective for better calibration via visual
representation regularization. HM refers to harmonic mean.

Flowers Cars DTD UCF101 AVG

Method Base New Base New Base New Base New Base New HM

VPT 7.98 8.20 5.32 1.93 2.54 13.04 4.04 4.79 4.97 6.99 5.98
+DOR-V(ours) 8.19 7.54 4.90 1.78 2.68 8.40 3.73 4.58 4.88 5.58 5.23
CLIP-adapter 3.70 6.55 6.09 5.73 3.00 7.45 4.04 7.09 4.21 6.71 5.46

+DOR-V(ours) 4.02 4.86 7.13 4.85 3.25 5.63 1.90 5.23 4.08 5.14 4.61

Table 8. Calibration results of ECE (%) with different outliers.
Oracle* denotes new classes that meet during test time.

w/o Near Far Random Oracle*

Base 3.07 2.68 2.95 2.80 3.13
New 14.58 7.09 7.72 7.33 4.34
HM 8.83 4.89 5.34 5.07 3.74

What makes a good regularization for CLIP fine-tuning?
In the experiments, we use the relevant but non-overlapped
outlier with the fine-tuning task (referred to as near-OOD).
Such selection raises the question: why do we prefer to
choose near-OOD? To address this, we conducted an abla-
tion on the policies of outlier selection. We considered four
types of outliers: near-OOD (ours), far-OOD, random-OOD,
and new classes used at test time. The far-OOD is selected
by applying the opposite operation of Eq. 7. “w/o” denotes
the baseline without outlier regularization. Since target new
classes are unknown during fine-tuning, we view them as
an oracle, which serves as a performance upper bound for
base-to-new tasks. We report the average performance on
the base-to-new datasets.

We present the results in Table 8. Since we primarily fine-
tune the model for a specific downstream task, selecting
random data or far-OOD data may not be optimal for base-
to-new evaluation. Additionally, the target class is unknown
during the fine-tuning phase. Therefore, we dynamically use
near-OOD as regularization data, which reduces calibration
errors on new classes while preserving performance on base
classes. We present several word extracted by near-OOD in
Appendix E. Interestingly, the random selection can serve as
a strong baseline, demonstrating the robustness of our pro-
posed regularization item. Moreover, while the oracle can
achieve impressive performance on the calibration of new
classes, the fixed number of outliers may cause the model
to overfit them, resulting in a decline in generalization.

7. Conclusion & Limitations
In this paper, we introduce Dynamic Outlier Regularization
(DOR), a simple yet effective technique that enhances the

confidence calibration on both base and new classes. We
show that current prompt tuning methods typically lead
to a tradeoff between the base and new classes. Through
the textual divergence, we provide a thorough explanation
for the limitations of those tuning methods. By utilizing
relevant but non-overlapped outliers, DOR regularizes the
textual distribution to preserve calibration capacity in zero-
shot CLIP. Our method is compatible with existing prompt-
tuning methods and can be extended to improve visual fine-
tuning methods, like adapters. We hope future research can
extend the insight in this work to other VLMs.

Limitations. Similar to previous regularization methods of
CLIP, DOR uses a hyperparameter λ to control the weight
of regularization, which will require extra computational
costs. Moreover, our analysis is limited in the scope of CLIP,
leaving other kinds of VLMs to be explored in the future.

Impact Statement
Foundational model plays an important role in today’s ma-
chine learning research. These models typically show re-
markable zero-shot generalization capabilities and achieve
better performance on downstream tasks via fine-tuning.
Unfortunately, it often comes at the cost of generalization,
which posing a significant challenge in real-world applica-
tions. In this paper, we investigate the confidence calibration
of vision-language models (e.g., CLIP) after fine-tuning.
Our goal is to mitigate overconfidence while preserving the
models’ adaptability to diverse tasks. We hope our find-
ings can extend to larger language models or more vision-
language architectures, aiming to enhance their robustness
after post-training in real-world scenarios.
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A. Related work
Vision-language models. Large pre-trained large vision-language models (Jia et al., 2021; Radford et al., 2021) have been
verified to effectively comprehend visual concepts using language supervision and apply them in downstream tasks (e.g.
image classification (Radford et al., 2021; Zhou et al., 2022b; Lu et al., 2022; Naeem et al., 2023), knowledge-augmented
retrieval(Ming & Li, 2024) and visual question answering (Parelli et al., 2023)) in a zero-shot manner. Despite VLM’s
effectiveness in generalizing new visual concepts, the performance of zero-shot CLIP still lags behind the fine-tuned
performance on specific downstream tasks (Zhang et al., 2024a). To further boost the downstream adaptation of pre-trained
VLMs, many parameter-efficient tuning methods like vanilla prompt tuning (Zhou et al., 2022b;a; Khattak et al., 2023a) and
adapter tuning (Gao et al., 2024; Zhang et al., 2022) have been proposed for high efficiency. Moreover, many regularization-
based tuning methods have been proposed to preserve the generalization performance on unseen classes (Yao et al., 2023;
2024; Zhu et al., 2023; Roy & Etemad, 2023; Khattak et al., 2023b). Despite the greater success of CLIP fine-tuning, the
effectiveness of safety-related evaluation like confidence calibration has largely been overlooked, which is essential for
real-world deployment.

Confidence calibration. Confidence calibration has been widely studied to ensure that the confidence levels output by
models accurately reflect their empirical accuracy. To achieve this, the state-of-the-art calibration methods can be categorized
into regularization methods and post-hoc methods. For regularization methods, they either explicitly or implicitly regularize
modern neural networks to have better calibration. Although regularization methods may not designed for calibration, they
generally have better calibration performance including L2 regularization (Guo et al., 2017), Entropy regularization (Pereyra
et al., 2017), focal loss (Mukhoti et al., 2020), etc. On the other hand, post-hoc methods fix the output probability after
the training phase. For post-hoc methods, the most representative and simple method is temperature scaling (Guo et al.,
2017), which learns a single scalar for rescaling the softmax logit. ATS (Joy et al., 2023) modifies the predicted confidence
by per-data-point adaptive temperature. Another type of post-hoc calibration is binning-based calibration (Zadrozny &
Elkan, 2001; 2002). For instance, Mix-n-Match (Zhang et al., 2020) leverages ensemble and composition techniques to
achieve data efficiency and maintain accuracy in confidence estimates. Recently, several works have explored the calibration
in CLIP. (Murugesan et al., 2025) investigate the calibration of CLIP under covariate shift. Given that existing post-hoc
calibration on base classes can not transfer to new classes, DAC (Wang et al., 2024) fixes the logit scale of prediction via
textual deviation-informed score in a post-hoc manner. Different from them, we address the calibration issue during the
fine-tuning phase. In this work, we introduce a regularization based on dynamic outliers. We demonstrate that DOR boosts
the calibration performance of many existing state-of-the-art prompt tuning methods of CLIP without affecting the vanilla
fine-tuning objective.

Outlier regularization in trustworthy machine learning. The outlier plays an important role in trustworthy machine
learning research including out-of-distribution (OOD) detection, noisy label learning, adversarial attack, long-tailed datasets
re-balancing, etc. In OOD detection, outliers are typically used to simulate the distribution of OOD data, thereby increasing
the distinction between ID data and OOD data (Hendrycks et al., 2019; Liu et al., 2020; Ming et al., 2022; Jiang et al., 2024).
Recently, Dream-OOD generate the expected OOD data by diffusion (Du et al., 2024). In noisy label learning, ODNL (Wei
et al., 2021) leverages outliers as dynamical noisy labels to improve model robustness against noisy labels. To address the
extreme class imbalance, Open-sampling (Wei et al., 2022) re-balance class priors via open-set noisy labels. OAT (Lee
et al., 2021) leverages outlier data to improve model generalization in adversarial robustness, which regularizes the softmax
probabilities to be a uniform distribution for outliers. In this paper, we utilize textual outliers to control the divergence of
unseen textual distribution, and further improve the calibration of fine-tuned CLIP.

B. Additional analysis of the motivation
B.1. Detailed Results of textual divergence

In section 3.2, we mainly derive the reason for the miscalibration issue from CoOp and KgCoOp. specifically, We use FD
score to measure the diversity of textual representation and evaluate the prompt tuning methods on the value of output
confidence and logit gap. To comprehensively verify our motivation, we further compare more prompt tuning methods
including CoCoOp, MaPLe, PromptSRC and CoPrompt.

As is in Figure 5a, we can observe a similar phenomenon as we discussed in section 3.2. We find that fine-tuning can
significantly increase the FD score of textual features compared to the zero-shot CLIP. Notably, this observation can extend
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Figure 5. Comparison between zero-shot CLIP and different prompt tuning methods on UCF101 dataset. Fine-tuned CLIP tends to have
higher confidence and FD score on both base and new classes.
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Figure 6. Comparison between the maximum logit and the average of other logits on DTD dataset. The logit gap become wider in
fine-tuned CLIP.

to new classes, even if they are not explicitly optimized during the fine-tuning phase. Consequently, the gap between the
maximum logit and the others widens after fine-tuning in Figure 6. Therefore, the tuned CLIP with CE loss will make
softmax predictions with high confidence, which can generate higher average confidence (See Figure 5b). Such an increase
in confidence aligns with the improved accuracy on base classes. However, it is not consistent with the nearly unchanged
accuracy on new classes, which leads to overconfidence.

B.2. Why using outliers for the regularization?

To further demonstrate the superiority of outliers in the regularization for CLIP fine-tuning, we provide additional analysis
in this section. Specifically, we first analyze the calibration issue from the perspective of gradient conflicts (Shi et al., 2023)
and present empirical evidence to understand previous regularization terms hinder the calibration of base classes. We can
decouple CLIP’s optimization objective as

Lclip = Lce + λ · Lreg,

where Lce is the cross-entropy loss for classification, and Lreg denotes the regularization term. Previously proposed
regularization terms include Lkg (KgCoOp), Ldistill (CoPrompt), and Lscl (PromptSRC). For reasonable comparison, we set
hyperparameters to be the same including optimizer, learning rate, etc. We calculate the cosine similarity of the prompt
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gradients between Lreg and Lce to reflect the degree of gradient conflicts.

Regularization from base classes hinders original fine-tuning objective. As shown in Figure 7, the gradient conflict
distributions for KgCoOp, CoPrompt, and PromptSRC are predominantly within the range of [−1, 0], which indicates a
conflict with the original learning objective. Considering that CoOp with vanilla Lce is an efficient calibrator for base classes,
we can infer that these regularization terms may hinder the calibration performance for base classes. As an alternative,
our proposed DOR leverages outliers to construct the regularization term. We observe that the gradient conflicts for DOR
are primarily concentrated within the range (−0.1, 0.1]. Compared to previous regularization terms, it shows significantly
fewer conflicts in the [−1, 0] range. The phenomenon supports our claim that outliers can be used in regularization without
interfering with the original fine-tuning objective.

Outlier-based regularization can break the calibration trade-off. To further illustrate the actual performance of outliers
in calibration, we conducted an analysis based on KgCoOp. Since KgCoOp uses a fixed number of base classes as the
regularization term, we progressively replaced these texts with textual outliers at varying proportions [0.1, 0.2...1.0]. As
shown in Figure 8, as the proportion of outliers increases, the calibration of base classes improves while the performance on
new classes remains largely unaffected. Such observation strongly supports our claim that outlier can effectively mitigate
the miscalibration issue on new classes while maintaining the calibration performance on the base classes.

C. Theoretical justification
To help readers understand the insights, we formalize our observations of CLIP fine-tuning that the textual divergence is a
significant factor for confidence estimation in this part. As the image feature remains unchanged in fine-tuning, the textual
divergence can be translated to the variance of logits, which is computed by the similarity between the image feature and
different text features. In the following, we formally show the relationship between the logit variance and the confidence.

For simplicity, we consider a binary classification problem. Let {zi}ni=1 be a set of logit vectors (i.e., model outputs), where
each vector zi = [z1, z2]

T consists of two logits. We assume that the logit z is an independent random variable drawn from
a normal distributionN (µ, σ2). The confidence (i.e., maximum softmax probability) pi is given by the softmax (or sigmoid)
function defined as in Eq.(2). We have the following proposition.

Proposition C.1. Let E[pσ] denote the expected value of the maximum probability pi when the logits are distributed as
N (µ, σ2). Then, for any σ1, σ2 > 0 and µ, we have E[pσ2

] > E[pσ1
], if σ2 > σ1.

This suggests that the high divergence in the logit distribution tends to generate larger predicted confidence, which is induced
by the textual divergence using CE loss. In Section 5, we empirically verify that our proposed method can preserve the
textual divergence on the new classes, thereby improving the calibration performance.
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Proof. We first remove the influence of µ. For any constant c, we have:

pi =
ezi+c∑N
j=1 e

zj+c
=

ezi∑N
j=1 e

zj
.

Thus, the mean value µ of the logits does not affect the softmax output. Therefore, without loss of generality, we can assume
that µ = 0 in our proof. For binary classification, we have:

p1 =
ez1

ez1 + ez2
=

1

1 + e−(z1−z2)
= sigmoid (z1 − z2) , p2 = sigmoid (z2 − z1) .

Hence, the maximum softmax probability is:

pmax = max(p1, p2) = sigmoid(|z1 − z2|).

Since z1 − z2 ∼ N (0, 2σ2), the absolute difference Z = |z1 − z2| follows a folded normal distribution with the probability
density function:

fZ(z) =
1√
πσ2

e−
z2

4σ2 , z ≥ 0.

Thus, the expected value of the maximum softmax probability is:

E[pmax] = E[sigmoid(Z)] =
∫ ∞

0

sigmoid(z) · fZ(z)dz =
∫ ∞

0

1

1 + e−z
· 1√

πσ2
e−

z2

4σ2 dz.

For simplicity, we perform the substitution u = z
σ
√
2

. The integral can be simplified to:

E[pmax] =

∫ ∞

0

1

1 + e−σ
√
2u
·
√
2√
π
e−

u2

2 du.

Using Leibniz’s rule, we can differentiate with respect to σ under the integral sign:

dE[pmax]

dσ
=

∫ ∞

0

∂

∂σ

(
1

1 + e−σ
√
2u

)
·
√
2√
π
e−

u2

2 du =

∫ ∞

0

e−σ
√
2u · 2u(

1 + e−σ
√
2u
)2 ·

1√
π
e−

u2

2 du ≥ 0.

Hence, the expected maximum probability E[pmax] increase alone with σ. Then, We have E[pσ2 ] > E[pσ1 ], if σ2 > σ1. The
proposition is proven.

D. Implementation details

Table 9. Hyperparameters for VLM tuning methods. “BS” denotes the batch size. “LR” denotes the learning rate. “CTX” is the context
length of the learnable prompt.

CoOp CoCoOp DEPT KgCoOp MaPLe TCP CLIP-Adapter VPT

Epochs 200 10 200 200 5 50 200 5
BS 32 1 32 32 4 32 32 4
LR 0.002 0.002 0.002 0.002 0.0026 0.002 0.002 0.0025
CTX 16 4 16 16 2 4 - 8

Our implementations are based on the open-source repository of DAC (Wang et al., 2024). Generally, We use CLIP (
ViT-B/16) (Radford et al., 2021) as the pre-trained VLM throughout our experiments and report results averaged over 3 runs.
We fine-tune the model with 16 samples per class in a few-shot setting (Zhou et al., 2022a). Following the corresponding
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Table 10. Outlier selection from WordNet based on zero-shot CLIP.
Dataset Base class Selected outlier

Flowers102

[’pink primrose’, ’hard-leaved pocket orchid’, ’sweet pea’,
’english marigold’, ’tiger lily’, ’moon orchid’, ’bird of paradise’,
’monkshood’, ’globe thistle’, ’snapdragon’, "colt’s foot", ’king

protea’, ’spear thistle’, ’yellow iris’, ’globe-flower’,
’purple coneflower’, ’peruvian lily’, ’balloon flower’]

[’May_lily’, ’flowering_plant’, ’dayflower’, ’coast_lily’,
’flower’, ’lily’, ’orchid’, ’African_lily’,

’non-flowering_plant’, ’plant’, ’sego_lily’, ’plant_material’,
’flower-of-an-hour’, ’flora’, ’liliaceous_plant’, ’Liliaceae’,

’apetalous_flower’, ’tongueflower’, ’herbaceous_plant’, ’daisybush’]

OxfordPets

[’abyssinian’, ’american_bulldog’, ’american_pit_bull_terrier’,
’basset_hound’, ’beagle’, ’bengal’, ’birman’, ’bombay’, ’boxer’,

’british_shorthair’, ’chihuahua’, ’egyptian_mau’,
’english_cocker_spaniel’, ’english_setter’, ’german_shorthaired’]

[’spaniel’, ’bulldog’, ’dog’,
’dog_do’, ’doggie’, ’doggy’, ’domestic_dog’,

’canine’, ’pug-dog’, ’pooch’, ’Japanese_spaniel’,
’Labrador_retriever’, ’sausage_dog’, ’Labrador’, ’Little_Dog’,
’housedog’, ’CAT’, ’retriever’, ’French_bulldog’, ’bird_dog’]

StanfordCars
[ ’2012 Acura RL Sedan’, ’2012 Acura TL Sedan’,
’2008 Acura TL Type-S’, ’2012 Acura TSX Sedan’,

’2001 Acura Integra Type R’, ’2012 Acura ZDX Hatchback’]

[’estate_car’, ’automotive_vehicle’, ’sedan’, ’used-car’,
’tesla’, ’Tesla’, ’pickup_truck’, ’car’, ’SUV’,

’hatchback’, ’subcompact_car’, ’patrol_car’, ’station_wagon’,
’sports_car’, ’sport_utility_vehicle’, ’passenger_vehicle’,
’secondhand_car’, ’vehicle’, ’sport_car’, ’touring_car’]

FGVCAircraft

[’707-320’, ’727-200’, ’737-200’, ’737-300’, ’737-400’, ’737-500’,
’747-200’, ’747-300’, ’747-400’, ’757-200’, A340-600’, ’A380’,

’ATR-72’, ’BAE 146-200’, ’BAE 146-300’, ’BAE-125’, ’Beechcraft
’Boeing 717’, ’C-130’, ’C-47’, ’CRJ-200’, ’CRJ-700’, ’CRJ-900’,

’Cessna 172’, ’Cessna 208’, ’Cessna 525’]

[’airliner’, ’widebody_aircraft’, ’aircraft’, ’airbus’, ’jetliner’,
’wide-body_aircraft’, ’jumbojet’, ’air_transport’,

’narrow-body_aircraft’, ’multiengine_airplane’, ’airline’,
’attack_aircraft’, ’reconnaissance_plane’, ’air_transportation’,
’military_plane’, ’aeroplane’, ’plane’, ’multiengine_plane’, ]

Food101

[’apple_pie’, ’baby_back_ribs’, ’baklava’,
’beef_carpaccio’, ’beef_tartare’, ’beet_salad’, ’beignets’,

’bibimbap’, ’bread_pudding’, ’breakfast_burrito’, ’bruschetta’,
’caesar_salad’, ’cannoli’, ’caprese_salad’, ’carrot_cake’, ’ceviche’,

’cheese_plate’, ’cheesecake’, ’chicken_curry’, ’chicken_quesadilla’,

[’entree’, ’pastry’, ’bread’, ’breakfast_food’, ’food’,
’salad’, ’burger’, ’Burger’, ’dessert’, ’soup’,

’French_pastry’, ’sandwich’, ’steak’, ’meat’, ’pizza’,
’cuisine’, ’pie’, ’PIE’, ’French_bread’, ’dish’]

UCF101
[’Apply_Eye_Makeup’, ’Apply_Lipstick’, ’Archery’, ’Baby_Crawling’,

’Balance_Beam’, ’Band_Marching’, ’Baseball_Pitch’,
’Basketball’, ’Basketball_Dunk’, ’Bench_Press’, ’Biking’]

[’weightlifting’, ’athletics’, ’sports_implement’, ’hitting’,
’physical_exercise’, ’near_thing’, ’athletic_competition’, ’phot’,

’depicting’, ’fitness’, ’athletic_game’, ’physical_fitness’,
’batting’, ’goal’, ’musical_style’, ’photography’, ’going’]

official implementation, We list the general hyperparameters in Table 9. For hyperparameter λ in DOR, we set λ = 8.0 for
CoOp, λ = 4.0 for MaPLe and 2.0 for other fine-tuning methods. We set the number of selected dynamic outlier repository
to 5000. The number of outliers in each batch is the same as the base classes. Here, we adopt these VLM tuning methods
from the corresponding official implementation and briefly introduce the corresponding hyperparameters of them. All the
methods are adopted from their official implementation. For CoOp and CoCoOp, they do not contain other hyperparameters.
For KgCoOp, we set λ = 8.0. For MaPLe, we set prompt depth J to 0 and the language and vision prompt lengths to 2.
For DePT, the learning rate for updating the parameters in the devised CAT head is set to 6.5× δ. where δ is the adopted
learning rate of CoOp. Moreover, the weight in the linear probe is set to 0.7. For TCP, the weight for prompt fusion is 1.0,
and the loss weight is the same as KgCoOp. For CLIP-adapter, we set α to 0.6, which is a trade-off hyperparameter between
fine-tuned and zero-shot visual representation. Finally, following MaPLe, we set the context length to 8.0 and prompt depth
to 12 for VPT.

E. A close look at selected outliers
In this section, we present the detailed results for the dynamic outlier selection. Specifically, we select nouns from WordNet
that do not overlap but share higher-level concept relations with the base classes seen in the fine-tuning task. We use the
textual encoder of zero-shot CLIP as the modality encoder.

As shown in Table 10, we can conclude that the selected outlier meets our requirement. For example, if our base class
contains certain aircraft models such as ’A340-600’, ’A380’, and ’ATR-72’, the outliers we selected include words like
’air_transport’, ’air_transportation’, and ’military_plane’. These nouns are highly relevant to the downstream task but do not
overlap with the base class. For further influence, we show that using outliers that are relevant but do not overlap with our
fine-tuning task are helpful in reducing calibration error while preserving performance in the base classes. To verify it, we
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empirically demonstrate that using base classes as the regularization may sacrifice its accuracy and calibration in Figure 4.
Moreover, As shown in Table 8, dynamic text is better than fixed text since the fixed number of text may cause the model to
overfit them.

F. The detailed experimental results
In this section, We present the detailed results of Expected Calibration Error (ECE) to verify the effectiveness of our
proposed DOR in Table 11.

Table 11. ECE (%) comparison of existing prompt tuning in the base-to-new generalization.
Methods Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

ZeroshotCLIP 6.49 2.25 3.74 3.11 1.57 3.03 1.59 4.53 8.35 3.24 1.51 3.58

CoCoOp 1.45 2.32 6.61 7.67 1.10 3.41 1.66 2.61 8.06 2.08 2.66 3.60
CoCoOp+DOR 2.20 2.97 6.85 8.49 0.97 3.33 3.19 2.86 10.12 2.96 2.52 4.22

CoOp 0.95 0.96 2.59 2.38 2.79 5.84 4.57 6.73 1.50 4.04 1.38 3.07
CoOp+DOR 1.59 1.78 4.20 4.90 0.63 3.35 0.87 5.81 2.66 1.61 1.96 2.67

DEPT 2.22 6.83 12.08 7.75 5.41 5.23 2.90 3.29 8.26 3.32 9.15 6.04
DEPT+DOR 2.95 8.32 13.37 10.26 7.04 6.51 5.55 4.78 9.50 5.08 10.96 7.67

KgCoOp 2.30 2.95 11.42 10.05 1.35 5.40 4.69 8.02 10.97 4.18 2.65 5.82
KgCoOp+DOR 2.48 2.96 11.02 10.19 1.39 7.64 4.84 8.34 11.03 4.32 2.57 6.07

MaPLe 1.21 2.09 5.81 4.23 0.82 3.46 1.04 4.34 3.53 1.77 1.95 2.75
MaPLe+DOR 1.84 2.05 6.49 4.47 0.86 2.40 2.28 2.32 4.44 3.08 2.02 2.93

TCP 1.99 2.44 8.93 6.83 1.56 5.28 2.64 6.83 9.58 3.58 2.12 4.71
TCP+DOR 2.03 2.46 9.34 7.10 1.63 5.28 2.90 6.52 9.84 3.48 2.09 4.79

PromptSRC 2.41 2.37 8.14 4.62 0.89 4.29 2.08 2.87 9.15 2.43 2.01 3.75
PromptSRC+DOR 2.32 2.56 8.19 4.92 0.95 4.12 2.16 3.53 9.20 2.59 2.13 3.88

CoPrompt 1.56 2.81 3.91 4.92 0.99 2.47 0.90 2.78 4.05 2.10 1.68 2.56
CoPrompt+DOR 1.96 2.86 4.25 6.24 1.02 2.50 1.53 2.97 5.63 1.74 1.91 2.96

(a) Base

Methods Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

ZeroshotCLIP 1.60 3.42 3.31 4.91 1.83 6.55 3.48 8.89 9.12 5.52 2.09 4.61

CoCoOp 3.94 2.35 2.26 11.33 1.63 12.51 2.03 16.40 9.17 4.39 1.57 6.14
CoCoOp+DOR 1.30 2.98 3.03 6.77 1.82 7.67 1.12 6.00 8.26 3.65 1.67 4.02

CoOp 4.11 1.57 11.81 19.84 4.42 32.12 15.98 26.49 15.50 18.09 10.40 14.58
CoOp+DOR 1.42 2.94 8.01 7.34 1.22 21.21 2.31 11.34 8.67 5.07 1.89 6.49

DEPT 4.23 2.71 11.15 18.32 2.71 34.21 15.15 24.30 18.90 18.94 9.73 14.58
DEPT+DOR 2.51 2.64 7.53 6.58 0.74 22.62 5.01 17.10 7.34 7.65 2.77 7.50

KgCoOp 2.02 3.15 3.35 5.92 1.87 12.76 1.51 7.41 6.56 2.95 1.74 4.48
KgCoOp+DOR 1.43 3.04 3.46 6.68 1.83 9.63 2.33 5.78 5.29 2.52 1.86 3.99

MaPLe 2.66 2.35 2.95 10.32 1.16 10.72 2.42 15.54 6.06 3.65 2.27 5.46
MaPLe+DOR 1.71 2.50 2.42 10.27 1.51 10.56 0.90 10.64 7.15 2.52 1.68 4.71

TCP 1.15 2.94 2.46 5.14 2.34 8.07 1.98 4.91 8.36 5.78 1.59 4.07
TCP+DOR 1.21 3.03 2.43 4.26 2.23 7.51 2.56 4.72 6.21 5.91 1.70 3.80

PromptSRC 1.55 3.07 2.02 5.53 1.66 11.31 0.66 6.42 8.53 3.24 1.71 4.15
PromptSRC+DOR 1.64 2.82 1.84 5.58 1.49 9.58 0.74 5.72 7.56 3.04 1.82 3.80

CoPrompt 1.69 2.41 5.59 10.19 1.67 11.54 2.28 8.64 16.18 2.60 2.79 5.96
CoPrompt+DOR 1.43 3.13 5.50 8.48 1.70 13.16 1.17 5.68 6.28 2.66 2.40 4.69

(b) New
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Figure 9. Distribution visualization of logit and maximum softmax probability on FGVCAircraft dataset. Our method generates logit and
probability distributions that closely resemble those of CoOp for the base class and are similar to zero-shot CLIP for the new class.

Table 12. Average calibration performance (ECE%) across 11 datasets using different similarity metrics. Calibration error is given by
×10−2. “HM” denotes the harmonic mean.

CoOp MaPLe CoPrompt

Metric Base New HM Base New HM Base New HM

w/o DOR 3.07 14.58 8.83 2.75 5.46 4.11 2.56 5.96 4.26
Cosine 2.67 6.49 4.58 2.93 4.71 3.82 2.96 4.96 3.96

Euclidean 2.92 4.74 3.83 2.83 4.63 3.73 2.92 4.78 3.85
Mahalanobis 2.83 6.73 4.78 3.05 4.86 3.96 2.96 4.76 3.86

G. How does DOR affect the distribution of logit and probability?
To further illustrate the influence of DOR on confidence calibration, we visualize and compare the distribution of output
logit and softmax confidence score for base and new classes in Figure 9. We compare zero-shot CLIP and CoOp w/ or w/o
DOR on FGVCAircraft dataset. The results verify that DOR modifies the logit distribution and confidence level. We can
observe that if the model tuning With CoOp+DOR, the logit distribution of base class approximate CoOp, and the new
class is similar to zero-shot CLIP, respectively. A similar phenomenon is observed in the softmax probability distribution.
The results meet our vision mentioned in Section 3.1, DOR can leverage the advantages of both models, which ensure the
confidence calibration on both base and new classes after fine-tuning.

H. The ablations of DOR
H.1. The similarity metric in outlier selection

In the outlier selection, we use cosine similarity as the distance metric for selecting textual outliers. To assess the metric
sensitivity of our proposed DOR, we conduct an ablation and use three metrics including Cosine similarity, Euclidean
distance (L2), and Mahalanobis distance. We report the average calibration performance on the base-to-new datasets across
various prompt tuning methods, including CoOp, MaPLe, and CoPrompt.

We present the results in Table 12. We find that our DOR framework is not very sensitive to the choice of similarity metric
and consistently reduces the calibration error. Surprisingly, Euclidean distance can outperform Cosine similarity across
different prompt tuning methods and achieve better harmonic mean (HM). For example, using Euclidean distance with
CoOp yielded an HM of 3.83%, compared to 4.58% with Cosine similarity. Despite this, we use Cosine similarity as the
default distance metric throughout this work since it is widely used in the feature selection of vision-language models (Yi
et al., 2024; Mayilvahanan et al., 2024; Wang et al., 2024).

H.2. The size of selected outlier set

We evaluate how the number of selected outliers in DOR affects the calibration performance. Specifically, we present this
ablation with average ECE on the base-to-new datasets with three prompt tuning methods including CoOp, MaPLe, and
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Figure 10. The ablation on the number of selected outliers. ECE (%) is calculated from the average performance on base-to-new datasets.

Table 13. Average ECE (%) across 11 datasets with different frequencies of outlier update in the batch. We use “1” denotes that the
outliers are updated in every iteration.

CoOp CoPrompt

1 10 100 1000 1 10 100 1000
Base 2.67 2.76 2.71 2.65 2.96 3.00 2.80 2.86
New 6.49 6.72 7.00 7.43 4.69 4.68 4.85 5.03
HM 4.58 4.74 4.86 5.04 3.83 3.84 3.83 3.95

CoPrompt. We vary the number of outliers k = {10, 50, 100, . . . , 20000}.

As shown in Figure 10, increasing the number of selected outliers leads to an evident reduction in ECE on the new classes.
The performance starts to reach a point of saturation with more outliers. Notably, even setting k = 10 yields significant
calibration improvements on the new classes. For the base classes, the outliers may be fixed in the batch during the
fine-tuning due to the small number, leading to poor performance due to overfitting. We can observe a similar phenomenon
in Table 1 (KgCoOp) or Table 8. Hence, we suggest to set a moderate number (e.g., 5000). Furthermore, when the number
of outliers is sufficiently large, DOR becomes less sensitive to the exact value of numbers, demonstrating its robustness.

H.3. The frequency of outliers

In DOR, we randomly sample a batch of textual outliers from the selected textual outlier set, in each iteration. Therefore, the
textual outliers used in each iteration can be different, which establishes a dynamic regularization. To evaluate the impact
of outlier update frequency on performance, we conduct an ablation study by varying the frequency at which outliers are
sampled for the batch with the update intervals in the range [1, 10, 100, 1000]. We present this ablation with average ECE
on the base-to-new datasets with two prompt tuning methods including CoOp and CoPrompt.

As shown in Table 13, low update frequencies (or large update intervals) are observed to negatively impact the calibration
performance of DOR. The phenomenon suggests that infrequent updates may allow the model to overfit to noise and reduce
its calibration performance. In short, The experimental results highlight the benefits of employing a dynamic update strategy
in DOR, since it helps mitigate overfitting to noise (Wei et al., 2021) and achieves superior calibration performance.

H.4. The choice of lexical database

In this work, we construct a set of textual outliers using nouns from WordNet. To evaluate whether different lexical
databases significantly affect the results, we performed an ablation study on the choice of lexical databases. Specifically, we
consider two additional textual databases: CLIP’s vocabulary and ConceptNet 5.7. For CLIP’s vocabulary, it includes 49,407
characters and words. For ConceptNet, we use raw sentences and filter out those exceeding CLIP’s input limit (77 tokens).
Finally. it consists of 705,662 short sentences. We report the average calibration results on the base-to-new datasets.
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Table 14. The ablation on the repository of the outlier set. The average ECE on the base-to-new datasets is compared. DOR is insensitive
to lexical databases.

Method Class Vanilla WordNet CLIP ConceptNet5

CoOp
Base 3.07 2.67 2.91 3.02
New 14.58 6.49 8.43 8.37
HM 8.83 4.58 5.67 5.70

MaPLe
Base 2.75 2.93 2.86 3.19
New 5.46 4.71 5.11 5.24
HM 4.11 3.82 3.99 4.22

As shown in Table 14, we find that DOR can achieve the best calibration performance with WordNet and all databases can
achieve better results than the baseline. Additionally, we observed that short sentences may not perform as well as prompts
like “a photo of [class].”

Table 15. Calibration results of ECE (%) of prompt tuning methods with DOR on pathMNIST. “Vanilla” denotes the baseline of fine-tuning
methods. Bold numbers are significantly superior results. DOR boosts the performance of existing methods on confidence calibration.

ZSCLIP CoOp KgCoOp MaPLe DEPT PromptSRC CoPrompt

Class Vanilla Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR

Base 29.80 1.56 1.25 13.45 12.15 14.12 15.47 6.57 7.63 12.43 11.52 12.26 6.27

New 15.27 61.28 14.99 12.45 7.48 13.47 6.54 62.18 13.91 11.08 10.34 8.39 7.57

HM 22.54 31.42 8.12 12.95 9.82 13.80 11.01 34.38 10.77 11.76 10.93 10.33 6.92

Table 16. Accuracy (%) of prompt tuning methods with DOR on pathMNIST. “Vanilla” denotes the baseline of fine-tuning methods. Bold
numbers are significantly superior results. DOR boosts the performance of existing methods on generalization.

ZSCLIP CoOp KgCoOp MaPLe DEPT PromptSRC CoPrompt

Class Vanilla Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR

Base 24.64 92.52 93.52 87.77 86.89 85.87 85.73 92.33 91.37 92.16 91.58 88.70 88.55

New 44.71 31.58 35.68 40.80 47.31 35.46 40.13 30.06 44.57 42.46 43.47 41.72 50.27

HM 34.68 62.05 64.60 64.29 67.10 60.67 62.93 61.20 67.97 67.31 67.53 65.21 69.41

I. Comparison with existing calibration methods
To further validate the effectiveness of our proposed DOR, we compare it with two recent calibration approaches for
CLIP. We consider two main calibration strategies: post-hoc scaling and regularization-based training. For post-hoc
scaling, we compare DOR with Zero-Shot-Enabled Temperature Scaling (ZS-TS) (LeVine et al., 2023). Specifically, we
perform post-hoc calibration on the fine-tuned model using ImageNet-1k and evaluate the learnable temperature τ on both
the base and new classes. For regularization-based calibration, we incorporate DOR into calibrated robust fine-tuning
method (CaRot) (Oh et al., 2024) like Equation 10. We report the average ECE performance on the base-to-new datasets.

DOR outperforms post-hoc scaling under base-to-new evaluation. We present the results in Table 17. We observe that
the temperature τ optimized on ImageNet-1k significantly mitigates the overconfidence and improves the calibration of the
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Table 17. Average ECE (%) comparison with post-hoc scaling methods on base-to-new datasets. ZS-TS fails to calibrate the base classes.
DOR effectively mitigates the miscalibration issue on new classes while maintaining the calibration performance on the base classes.

CoOp CoCoOp KgCoOp MaPLe PromptSRC

Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR

base 3.07 8.25 2.67 3.60 9.12 4.22 5.82 8.49 6.07 2.75 6.68 2.83 3.75 6.74 3.88
new 14.58 7.96 6.49 6.14 4.81 4.02 4.48 3.36 3.99 5.46 4.05 4.44 4.15 3.48 3.80
HM 8.83 8.11 4.58 4.87 6.97 4.12 5.15 5.93 5.03 4.11 5.37 3.64 3.95 5.11 3.84

Table 18. ECE (%) comparsion with regularization-based methods on base-to-new datasets. DOR can incorporate with CaRot to achieve
better calibration.

Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

Base CaRot 7.68 6.14 12.93 8.34 6.92 6.15 5.31 6.68 10.12 6.76 3.05 7.28
CaRot+DOR 5.71 5.10 11.35 8.55 6.13 5.72 5.23 6.86 9.67 6.81 2.91 6.73

New CaRot 2.51 6.46 4.32 5.66 7.16 5.20 3.54 6.03 6.37 5.09 1.78 4.92
CaRot+DOR 2.87 4.93 3.71 4.66 6.39 5.74 3.62 5.10 8.74 4.92 1.80 4.77

fine-tuned CLIP on new classes. For instance, it reduces the Expected Calibration Error (ECE) of the state-of-the-art method
PromptSRC from 4.15% to 3.48%. However, such calibration can not used on the base classes. ZS-TS exacerbates the
model’s underconfidence and increases the ECE from 3.75% to 6.74% on PromptSRC. In contrast, our approach effectively
mitigates the miscalibration issue on new classes while maintaining the calibration performance on the base classes.

DOR boosts existing regularization-based methods for better calibration. As shown in Table 18, we observe that
CaRot achieves decent calibration performance on both base and new classes. Furthermore, our DOR method can be
effectively integrated into CaRot and improve calibration on both base and new classes. For instance, DOR reduces the ECE
by 1.14% and 1.21% on base and new classes of the OxfordPets dataset, respectively. This demonstrates that DOR is a
flexible regularization strategy compatible with various fine-tuning methods.

J. Application on medical imaging
To verify our proposed DOR can be applied in real-world tasks, we conduct the experiments on PathMNIST from
MedMNIST+ (Yang et al., 2023) as the medical benchmark. PathMNIST is comprised of 9 types of tissues, resulting in a
multi-class classification task. For the text of each label, we use the caption from the official implementation. Specifically,
the dataset includes the following labels: adipose tissue (0), background (1), debris (2), lymphocytes (3), mucus (4), smooth
muscle (5), normal colon mucosa (6), cancer-associated stroma (7), and colorectal adenocarcinoma epithelium (8). we use
We fine-tune the CLIP with 16 shots from the first 5 classes and evaluate the model on all 9 classes under the base-to-new
evaluation protocol.

As shown in Table 15 and 16, we find that DOR can effectively help with the calibration of fine-tuned CLIP on medical
datasets. Noted that existing prompt tuning methods can be effectively applied to medical image datasets. For instance,
after fine-tuning, the accuracy of the base class improved significantly from 29.80% to over 85% for all methods. However,
compared with standard benchmarks used in the main experiment, the calibration performance could be worse and output
worse ECE for new classes. To this end, DOR effectively reduces ECE across all methods. For example, DOR lowers the
ECE for new classes from 61.28% to 14.99% in CoOp. Moreover, DOR can fit existing advanced methods like CoPrompt
and significantly reduces the overall ECE from 10.33% to 6.92%. In summary, DOR can notably improve the calibration
performance of prompt-tuning methods and is capable of real-world domain-specific tasks.

K. Feature visualization of DOR-V
In the discussion (Section 6), we show that DOR-V can successfully reduce the calibration error for visual feature adaptation.
To investigate how DOR influences the feature space of base classes when incorporating visual outliers, we visualized the
performance of CLIP-Adapter on the DTD dataset. For a better view, we randomly selected 10 base classes for visualization.
We denote DOR-V to our method combined with CLIP-Adapter.
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Figure 11. The t-SNE plots for visualizing visual features on the base classes of DTD dataset. DOR-V denotes our method applied on
CLIP-Adapter. CLIP-Adapter generates more discriminative features compared with ZS-CLIP. and DOR does not significantly affect the
visual feature space.

Table 19. Distribution similarity between visual features in Zero-Shot CLIP (Z), CLIP-Adapter (C), and CLIP-Adapter with DOR-V (D)
on the DTD dataset.

Metric Z←→ C Z←→ D C←→ D

MMD 0.39 0.84 0.22
Wasserstein 1.48 1.01 0.47

We present the visualization in Figure 11. Compared to ZS-CLIP, CLIP-Adapter generates more discriminative features.
Importantly, we observe that DOR does not significantly affect the visual feature space and maintains accuracy on the base
class. To further quantify the difference between visual distributions, we measure the distance between distributions via
Maximum Mean Discrepancy (MMD) and Wasserstein distance. As shown in Table 19, compared with ZS-CLIP, the gap
between CLIP-Adapter and DOR-V is relatively smaller. These results confirm that DOR does significantly affect the feature
space and can achieve better calibration results as evidenced in Table 7.

23


