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Abstract
Speech enhancement (SE) is the task of improving the quality of the desired
speech while suppressing other interference signals. Tremendous progress has
been achieved in the past decade in deep learning-based SE approaches. However,
existing SE studies are often limited in one or multiple aspects of the following:
coverage of SE sub-tasks, diversity and amount of data (especially real-world
evaluation data), and diversity of evaluation metrics. As the first step to fill this gap,
we establish a novel SE challenge, called URGENT, to promote research towards
universal SE. It concentrates on the universality, robustness, and generalizability of
SE approaches. In the challenge, we extend the conventionally narrow SE definition
to cover different sub-tasks, thus allowing the exploration of the limits of current
SE models. We start with four SE sub-tasks, including denoising, dereverberation,
bandwidth extension, and declipping. Note that handling the above sub-tasks within
a single SE model has been challenging and underexplored in the SE literature
due to the distinct data formats in different tasks. As a result, most existing SE
approaches are only designed for a specific subtask. To address this issue, we
propose a technically novel framework to unify all these sub-tasks in a single
model, which is compatible to most existing SE approaches. Several state-of-
the-art baselines with different popular architectures have been provided for this
challenge, including TF-GridNet, BSRNN, and Conv-TasNet. We also take care
of the data diversity and amount by collecting abundant public speech and noise
data from different domains. This allows for the construction of diverse training
and evaluation data. Additional real recordings are further used for evaluating
robustness and generalizability. Different from existing SE challenges, we adopt a
wide range of evaluation metrics to provide comprehensive insights into the true
capability of both generative and discriminative SE approaches. We expect this
challenge would not only provide valuable insights into the current status of SE
research, but also attract more research towards building universal SE models with
strong robustness and good generalizability.
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1 Competition description
1.1 Background and impact

We propose the URGENT challenge to promote research on the Universality, Robustness, and
Generalizability of speech EnhancemeNT (SE) models. This challenge is most related to the area of
speech signal processing and speech enhancement [1], which defines the task of improving a speech
signal that has been subject to distortions such as additive noise, acoustic interference, reverberation,
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or bandwidth limitation. Despite their impressive performance on popular benchmarks [2, 3, 4, 5],
most existing SE research and challenges have limitations on the coverage of SE sub-tasks, diversity
and amount of data, and diversity of evaluation metrics. In particular, universally robust and
generalizable SE approaches have been underexplored. We believe this is an important problem to
address in order to cope with diverse speech applications in the real world. Advancement in this
direction will enable speech processing in more sophisticated real-world scenarios and facilitate
numerous downstream speech applications [6], such as automatic speech recognition (ASR), speech
translation, and speaker recognition. Therefore, in the proposed challenge, we aim to fill the gap in
this direction and try to answer the following research question:

Can we build a single universal SE model to successfully handle various distinct SE sub-tasks in
diverse input conditions?

Here, “diverse input conditions” refer to different speech data formats, such as different sampling
frequencies (SF). The former relates to the diverse recording devices in real applications, which
require the SE model to support different SFs. The latter corresponds to the variations in speech
duration, which can lead to significantly different computational costs depending on the SE model
architecture. We measure the “successfulness” in the above question from three aspects:

• universality: the average performance over all conditions is good.
• robustness: the worst performance over all conditions is good.
• generalizability: the performance does not degrade significantly for unseen/mismatched devices

or environments.

We believe that the proposed challenge would be of interest not only to the speech community, but
also to the broader audience in the audio or signal processing community, as they all share highly-
related methodologies and can thus draw inspiration and insights from our findings. We conducted a
preliminary survey among the speech enhancement community and have received replies from 12
research groups confirming their willingness to participate in the proposed challenge. Meanwhile,
we are also reaching out to 25 potential participants who are active in speech enhancement and have
significant records on the challenge activities.

The proposed challenge is highly related to speech applications in our daily life. Since diverse speech
devices are used in a wide variety of scenarios, it is likely that the received speech signal in the device
(e.g., cell phone) will contain one or multiple distortions caused by background noise, reverberation,
clipping (due to limited device capability or heterogenous pre-processing at the device level), and so
on. Moreover, different devices may operate at distinct sampling rates, resulting in speech signals
of various SFs. The outcome of our proposed challenge is expected to be a single universal SE
model that can handle all conditions mentioned above. This is generally favored against conventional
task-specific or SF-specific SE models, because it is much easier and more convenient to deploy and
maintain a single model than a bunch of specialized models.

1.2 Novelty
The proposed URGENT challenge is a brand new challenge in the SE area, featuring the following
three major innovations:

1) Better coverage of SE sub-tasks: As detailed in Section 1.4, we start with four SE sub-tasks in this
challenge to explore the universality of SE approaches. This is motivated by the fact that speech
signals in real-world applications are likely to contain different SFs and several distortions caused
by the environment and recording devices. This necessitates the construction of a universal SE
model capable of handling various distortions and input formats. Compared to training separate
SE models for each distortion and each input format, constructing a single universal SE model is
more resource-efficient and more straightforward to deploy. Importantly, it also alleviates the error
propagation problem that usually occurs in cascaded specialized models. We are also interested
in investigating whether sharing the knowledge among different sub-tasks in a single SE model
can improve the overall performance during the challenge. A technically novel framework is
proposed to facilitate this exploration, which is carefully designed to be compatible with existing
SE approaches.

2) Larger scale and more diverse data with training data mandated and limited: It is commonly
observed that the evaluation of most existing SE approaches is often conducted on fixed, small (e.g.,
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Table 1: Detailed information of the corpora used in the challenge. Shaded cells are only used for the
test data, while corpora in other cells are shared for training, development, and non-blind test sets.
Type Corpus Condition SF Duration (After License(kHz) pre-processing)

Speech

LibriVox data from DNS5 challenge [12] Audiobook 8~48 ~350 h CC BY 4.0
LibriTTS reading speech [26] Audiobook 8~24 ~200 h CC BY 4.0
CommonVoice 11.0 English portion [27] Crowd-sourced voices 8~48 ~550 h CC0
VCTK reading speech [28] Newspaper, etc. 48 ~80 h ODC-By
WSJ reading speech [29, 30] WSJ news 16 ~85 h LDC User Agreement
Clean speech corpora only for the blind test set Unseen domains 8~48 > 100 h CC/Apache/MIT licenses
Noisy real speech corpora only for the blind test set Unseen domains 8~48 > 100 h CC/Apache/MIT licenses

Noise
Audioset+FreeSound noise in DNS5 challenge Crowd-sourced + Youtube 8~48 ~180 h CC BY 4.0
WHAM! noise [4] 4 Urban environments 48 ~70 h CC BY-NC 4.0
Noise corpora only for the blind test set > 20 unseen types 8~48 > 150 h CC/Apache/MIT licenses

RIR
Simulated RIRs from DNS5 challenge SLR28 48 ~60k samples CC BY 4.0
Other RIRs simulated by participants - 8~48 - -
RIRs only for test data Real-recorded RIRs 16~48 > 10k samples CC/Apache/MIT licenses

~10 h) or medium datasets (e.g., ~100 h). This can potentially lead to heavily over-fitted model
designs for these datasets. Moreover, such evaluations are usually restricted to matched conditions
where the speech quality, linguistic content, noise family, and other characteristics can be highly
similar to the training condition. This also impedes the understanding of the generalizability of
different SE approaches to unseen “speech-in-the-wild” conditions [7]. In this challenge, we aim to
explicitly evaluate this aspect with public data from different domains as detailed in Section 1.3.
Meanwhile, we mandate and restrict the training material allowed for system development. This
enables a comparable and conclusive analysis of the capabilities of different SE systems.

3) Extensive evaluation metrics: One major drawback of existing challenges is that they often only
use one or two objective metrics to evaluate challenge submissions, which may not well reflect the
comprehensive performance of SE models. For instance, it is possible to train SE models based on
a specific evaluation metric (e.g., scale-invariant signal-to-noise ratio [8]) discriminatively, which
thus leads to high scores in that metric but also biases the evaluation. In our challenge, we aim
to break this convention and propose to adopt four distinct categories of metrics to evaluate SE
models from different perspectives. These include a variety of non-intrusive SE metrics, intrusive
SE metrics, downstream task-independent (e.g., phoneme similarity1) metrics, and downstream
task-dependent metrics. The extensive evaluation metrics distinguish our challenge from existing
ones, and fit perfectly to our multi-task design. Moreover, our ranking rule based on these metrics
also takes care of both generative and discriminative SE approaches, thus encouraging efforts in
both directions to tackle this challenge.

While there have been several SE challenges in the literature, our proposed challenge is distinct
from them as mentioned above. In particular, existing SE challenges generally focus on specific
scenarios, such as denoising and dereverberation [5, 9, 10, 11, 12], speech restoration [13, 14],
packet loss concealment [15], acoustic echo cancellation [16, 17, 18, 19], hearing aids [20, 21], 3D
SE [22, 23, 24], far-field multi-channel SE for video conferencing [25], and unsupervised domain
adaptation for denoising [7]2. These challenges have fostered the development of state-of-the-art
(SOTA) SE models in the past. Complementarily, the proposed URGENT challenge provides unique
insights into the universality, generalizability, and robustness of SE approaches with a wide range of
scenario evaluation metrics.

1.3 Data
We have also taken care of the data diversity and amount during the challenge design. For simulating
the training, development, and non-blind test data, we collect abundant public speech and noise data
from different domains, including LibriVox & CommonVoice & VCTK & WSJ speech corpora and
Audioset & FreeSound & WHAM! noise corpora. The detailed information of the corpora is listed in
Table 1.

Almost all corpora in Table 1 adopt an open license that allows free use of the data (at least for
non-commercial use). The only exception is the WSJ corpus, which is owned by LDC and thus

1Unlike downstream tasks such as ASR, the phoneme information is generally language independent.
Therefore, we denote it as a downstream task-independent metric.

2Our challenge shares some similarities with the CHiME-7 UDASE task [7] which explores unsupervised
adaptation of SE models to real scenarios. However, our challenge considers more distortions than just noise and
reverberation, and adopts more diverse training/evaluation data as well as much more metrics.
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requires a purchased license. Regarding this specific corpus, we have contacted the LDC on their
data policy, and they have granted our challenge participants a free temporary license of the WSJ
corpus during the challenge period. Therefore, we can ensure that all corpora listed in Table 1 can be
freely accessible during the challenge. Moreover, WSJ is a commonly used corpus in ASR and other
speech tasks, which is very likely to be available in different research groups in this area. So it is still
possible for the community to conduct post-challenge evaluation.

The collected raw speech data are further pre-processed through the following steps to detect the true
SF and remove low-quality samples:

1) We first estimate the effective bandwidth of each speech and noise sample based on the
energy thresholding algorithm proposed in [31]. This is critical for our proposed method
to successfully handle data with different SFs. Then, we resample each speech and noise
sample accordingly to the best matching SF, which is defined as the lowest SF among {8,
16, 22.05, 24, 32, 44.1, 48} kHz that can fully cover the estimated effective bandwidth.

2) A voice activity detection (VAD) algorithm3 is further used to detect “bad” speech samples
that are actually non-speech or mostly silence, which will be removed from the data.

3) Finally, the non-intrusive DNSMOS scores (OVRL, SIG, BAK) [32] are calculated for each
remaining speech sample. This allows us to detect noisy and low-quality speech samples
via thresholding each score.

We finally curated a list of speech (~1300 hours) and noise (~250 hours) samples based on the above
procedure, and they will be used for simulating the training and test data in the challenge. Note that
these do not include the corpora listed in the shaded cells in Table 1, which will be further added to
the blind test set for a comprehensive evaluation in diverse conditions.

During the challenge, the participants are allowed to freely simulate degraded training and develop-
ment data based on the listed corpora. We will provide data preparation scripts as well as baseline
implementations to ease this process. However, unlike existing DNS challenges, they are not al-
lowed to use external corpora other than the listed ones. This enables a comparable and conclusive
experimental analysis.

The evaluation will be conducted based on the analysis of results on both simulated and real-recorded
test data. Our current non-blind test set consists of more than 9000 samples covering 4 different
distortions and SFs ranging from 8 kHz to 48 kHz. This is much larger and more diverse than existing
SE challenges, which often use only hundreds of test samples for evaluation. In addition, we will
also include real-recorded ASR corpora that adopt an open license as the blind test set, which allows
for evaluation on more realistic scenarios. This sufficient amount and diversity of test data will allow
us to draw conclusive and statistically significant results, from which we can provide solid insights to
the community.

1.4 Tasks and application scenarios
Our broader definition of the SE task is illustrated in Figure 1, and the SE model SE(·) can be
formulated in the general form below:

x̂ = SE(F(x)) , (1)

where x and x̂ are respectively the desired clean speech and enhanced speech. The former is degraded
by a distortion model F(·), and the degraded speech F(x) is fed as input to SE models. While this
definition seems similar to the commonly-adopted SE definition in the literature, ours has two key
distinctions. First, conventional SE approaches often only support a single SF, while our model allows
the model input F(x) to have various sampling frequencies (SF). This enables us to model the often
sub-optimal SFs (less than 44.1 kHz) that are usually encountered in real-world devices. Second, we
cover diverse distortions (i.e., additive noise, reverberation, clipping, and bandwidth limitation) using
the distortion model F , while conventional SE studies largely focus on noise or reverberation.

As mentioned earlier in Section 1.2, these definitions can better capture the complicated forms of
degraded speech in realistic scenarios. For example, we are surrounded by a wide variety of speech
devices in the real world, which can have very different SFs ranging from 8 kHz to as high as 48
kHz. They capture speech signals along with background noise, reverberation, and many other

3https://github.com/wiseman/py-webrtcvad
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Figure 1: URGENT speech enhancement task definition.

forms of distortions that can be introduced by the devices themselves (e.g., clipping due to low
device capability and bandwidth limitation due to low microphone quality). The proposed task will
thus cover these variations caused by both the environment and devices, leading to better-suited SE
techniques for real-world applications.

Despite the clear definition of this task, it has been a challenging topic in the SE literature, with only
very limited explorations [33, 34] that do not cover all of the aforementioned variations. To address
this issue, we propose a novel SE framework that has been proven successful through our preliminary
experiments in unifying all aforementioned sub-tasks as well as different SF variations.

As illustrated in Figure 1, in this challenge, we unify different sub-tasks via a distortion model F(·)
that provides a consistent data format for different SE sub-tasks. This allows us to unify multiple
sub-tasks in a single model by simply combining data with different distortions. In particular, we
take care of the bandwidth limitation distortion4, as it may result in changes in the data format (e.g.,
data shape, and SF) unlike other distortions. This distortion is defined as removing high-frequency
components from the speech data via low-pass filtering. This process often corresponds to signal
downsampling, as shown in Figure 1. However, it can also happen with high-SF signals where the
upper frequencies are missing due to poor microphone devices. To unify the data format for all
different distortions, we propose to always ensure the SFs of the desired, degraded, and enhanced
speech are the same as illustrated in Figure 1. In this way, we can easily build a multi-task SE system
with a unified data format.

Furthermore, we provide participants, via our baseline code, with two alternative model designs as
shown in the right part of Figure 1.

1) For most conventional SE models that are only designed for a single SF, we adopt a simple yet
effective strategy via pre-processing and post-processing [35]. That is, we always upsample the
model input to the highest SF (i.e., 48 kHz), so that the model only needs to process 48 kHz data
during both training and inference. Then, we downsample the model output back to the original
input SF for model training and evaluation.

2) For specific time-frequency domain architectures that are invariant to the input data shape (both
time and frequency dimensions), we adopt another strategy named sampling-frequency-independent
(SFI) processing. Inspired by existing works on SFI SE approaches [36, 37, 38, 39], we adopt
the SFI short-time Fourier transform (STFT) [37, 39] to replace the default STFT layer in the SE
models, where the STFT window size and hop size are adaptively adjusted according to the input
SF to have a fixed duration. For these models, no further pre-processing or post-processing is
needed.

With the above carefully designed framework, we can now easily build an SE system to handle
different sub-tasks and SFs. Our preliminary exploration (submitted to the Interspeech 2024 confer-
ence [40]5) also verified the effectiveness of this framework with several popular SE architecture,
including Conv-TasNet [41], BSRNN [38], and TF-GridNet [42]. The first baseline adopts model
design 1), while the other two baselines adopt model design 2) for handling different SFs.

1.5 Metrics
To obtain a comprehensive evaluation of the above baseline models, we adopt the following four
categories of evaluation metrics that capture different aspects of the enhanced speech quality:

4It corresponds to the bandwidth extension (BWE) sub-task.
5Note that the paper in submission [40] only serves as a preliminary investigation, while the actual challenge

has not been launched. And we are proposing to launch it as a NeurIPS competition.
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Table 2: Preliminary evaluation on non-blind test data. “SBS.” denotes the SpeechBERTScore.
Results with ∗ are not fully comparable due to different data and training setups. The per-metric
ranking is denoted by red numbers in parentheses. The per-category average ranking and the overall
ranking are denoted by and , respectively.
Model Non-intrusive SE metrics Intrusive SE metrics Downstream-indep. Downstream-task-dep.

DNSMOS ↑ NISQA ↑ POLQA ↑ PESQ ↑ ESTOI ↑ SDR (dB) ↑ MCD ↓ LSD ↓ SBS. ↑ PhnSim ↑ SpkSim ↑ WAcc (%) ↑
Noisy input 1.64 (6) 1.76 (6) 2.50 (4) 1.63 (5) 0.704 (4) 6.11 (5) 6.76 (5) 3.99 (5) 0.87 (1) 0.68 (5) 0.72 (3) 82.18 (3)
OM-LSA [54] 2.19 (5) 2.09 (5) 2.37 (5) 1.81 (4) 0.702 (5) 10.88 (4) 5.26 (4) 3.64 (4) 0.85 (4) 0.71 (4) 0.65 (5) 78.61 (4)
VoiceFixer [33]∗ 2.93 (1) 3.65 (1) 1.97 (6) 1.50 (6) 0.527 (6) -9.59 (6) 9.16 (6) 7.54 (6) 0.81 (6) 0.59 (6) 0.54 (6) 66.19 (6)
Conv-TasNet 2.31 (4) 2.71 (4) 3.12 (3) 2.42 (3) 0.799 (3) 14.42 (3) 3.23 (3) 2.73 (3) 0.85 (4) 0.73 (3) 0.70 (4) 76.82 (5)
BSRNN 2.41 (3) 3.05 (3) 3.49 (2) 2.66 (2) 0.833 (2) 14.89 (2) 2.75 (2) 2.66 (2) 0.87 (1) 0.80 (2) 0.77 (2) 82.53 (2)
TF-GridNet 2.43 (2) 3.06 (2) 3.54 (1) 2.76 (1) 0.841 (1) 15.42 (1) 2.70 (1) 2.39 (1) 0.87 (1) 0.81 (1) 0.78 (1) 82.87 (1)

Model Non-intrusive SE metrics Intrusive SE metrics Downstream-task-independent Downstream-task-dependent

Noisy input 4.175 6.0 4.7 3.0 3.0
OM-LSA [54] 4.450 5.0 4.3 4.0 4.5
VoiceFixer [33]∗ 4.750 1.0 6.0 6.0 6.0
Conv-TasNet 3.750 4.0 3.0 3.5 4.5
BSRNN 2.125 3.0 2.0 1.5 2.0
TF-GridNet 1.250 2.0 1.0 1.0 1.0

• intrusive SE metrics: POLQA [43], PESQ [44], extended short-time objective intelligibility
(ESTOI) [45], signal-to-distortion ratio (SDR) [46], mel cepstral distortion (MCD) [47],
log-spectral distance (LSD) [48];

• non-intrusive SE metrics: DNSMOS [32], NISQA [49];

• downstream-task-independent metrics: phoneme similarity (PhnSim, equal to “1-LPD”
in [50]), SpeechBERTScore [51];

• downstream-task-dependent metrics: speaker similarity (SpkSim), word accuracy (WAcc)6.

The intrusive SE metrics reflect the objective quality of the enhanced speech from the signal per-
spective, which require well-aligned reference speech as an additional input. The non-intrusive SE
metrics emphasize the speech naturalness and overall quality, which are predicted by pre-trained
neural networks, thus not requiring any reference speech. The downstream-task-independent metrics
measure how the high-level task-agnostic representations (e.g., phoneme predictions and discrete
tokens) of the enhanced speech match those of the reference speech. For example, the PhnSim metric
compares the sequence-level phoneme similarity between the enhanced and reference speech, which
has proven effective for evaluating generative SE approaches in the correctness of their generated
contents [50]. The SpeechBERTScore metric compares the similarity between semantic embeddings
of the enhanced and reference speech. It is worth noting that while they need the reference speech for
metric calculation, no strict alignment between the enhanced and reference speech signals is required.
The downstream-task-dependent metrics measure either a task-specific characteristic of the enhanced
speech (e.g., speaker similarity) or the compatibility with a downstream task (e.g. ASR performance
in terms of WAcc). These metrics allow us to easily exploit real-recorded data for extensive evaluation.
We use the RawNet3 [52] model pre-trained on VoxCeleb datasets for cosine-based speaker similarity
calculation and the OWSM v3.1 [53] model for WAcc calculation. Among all the metrics above,
a lower value in MCD and LSD indicates a better speech quality, while for other metrics, a higher
value represents better SE performance.

To show the effectiveness of these proposed metrics, we provide the evaluation results from our
preliminary experiments based on the simulated data as introduced in Section 1.3. As shown in
Table 2, we trained three different models, Conv-TasNet, BSRNN, and TF-GridNet and compared
their performance with other baseline approaches. Among them, OM-LSA [54] a typical denoising
method based on classical signal processing, which serves as a weak baseline that can only cope
with the denoising sub-task. VoiceFixer is a generative SE approach with vocoder-based resynthesis7,
which was trained to handle the same set of distortions as introduced in Section 1.4. Since VoiceFixer
was trained on a different dataset in [33], we cannot make a fair comparison with it. However, we can
still take it as a reference to verify the efficacy of other baseline models.

The results in Table 2 show that different metrics tend to capture different aspects of the enhanced
speech. For example, non-intrusive SE metrics (DNSMOS and NISQA) favors the generative

6WAcc is equal to 1− word error rate (WER).
7Available at https://github.com/haoheliu/voicefixer. We adopted “mode 0” as it performs best.
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SE approach (VoiceFixer) as it can generate more natural speech compared to discriminative SE
approaches (Conv-TasNet, BSRNN, and TF-GridNet). Intrusive SE metrics measure the signal-level
quality which are more strict about the sample-wise alignment between enhanced and reference
speech. Thus, discriminative approaches outperform VoiceFixer due to their capability of preserving
the sample-wise alignment. Downstream-task-independent metrics (SpeechBERTScore and PhnSim)
measure the overall and fine-grained quality in terms of contents, while downstream-task-dependent
metrics (SpkSim and WAcc) measure the task-specific performance. In particular, we find PhnSim
and SpkSim to be good consistency indicators of the enhanced speech. It is well known that generative
approaches tend to yield more natural speech but with potentially modified contents or styles. Such
an inconsistency can be well captured through these metrics. For example, VoiceFixer achieves
low scores in both metrics, indicating that its output contain different phoneme-level contents and
speaker characteristics from the original speech, while other discriminative approaches can achieve
better consistency. In addition, the SOTA discriminative model (TF-GridNet) achieves the best
performance among all models, which is also reflected by the final ranking. This further verifies the
effectiveness of the adopted metrics and the proposed ranking strategy in assessing the efficacy of
different approaches.

Facilitated by the above preliminary investigation, we propose the following ranking strategy inspired
by the Friedman test [55, 56]:

1. First, we calculate the ranking for each metric independently.
2. Then, we average the ranking for each of the four categories (i.e., intrusive SE, non-intrusive

SE, downstream-task-independent, and downstream-task-dependent metrics). This results in
four category-dependent rankings.

3. Finally, we average the category-dependent rankings to obtain the final ranking.

1.6 Baselines, code, and material provided
As mentioned earlier in Section 1.4, we will provide three baselines (i.e., Conv-TasNet, BSRNN, and
TF-GridNet) along with the corresponding open-source implementation in the ESPnet toolkit [57] and
training recipe. We are also considering adding an additional baseline based on the diffusion-based
generative SE approach [58].

The recipe includes scripts for data downloading, preprocessing, simulation, model training, and
metric evaluation8. They will be made available to participants and the community after the challenge
begins. Note that the provided scripts are only for reference, and the participants can freely use their
own codebase for system development.

1.7 Website, tutorial and documentation
The challenge website will be released at https://urgent-challenge.github.io/
urgent2024/, which will provide self-contained information about the URGENT challenge, in-
cluding basic description, data introduction, detailed baseline documentation, timeline, leaderboard,
FAQ, and news. We will also provide a dedicated email address urgent.challenge@gmail.com
for communication with participants.

2 Organizational aspects
2.1 Protocol
To participate in the challenge, participants can freely submit their results to our leaderboard anytime
during the challenge period. Note that we only require the submission of enhanced audios without
the corresponding code, thus attracting more potential submissions. The evaluation will be conducted
automatically on our server based on the evaluation metrics and ranking strategies proposed in
Section 1.5.

The current challenge will consist of two major phases. During the first phase, we only release
training and validation data to the participants for system development. During the second phase, we
release the test data for participants to submit their final results. To prevent cheating and overfitting,
we will anonymize the meta information of the test samples, and include real-recorded data as an
important part of evaluation, which is unlikely to be seen by the participants.

8Will be available at https://github.com/urgent-challenge/urgent2024_challenge.
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2.2 Rules and Engagement
We only have one track for this challenge, and do not apply any constraint on computational cost or
latency. So the participants can freely design their SE approach, either generative or discriminative,
to maximize the overall performance. The major requirement is that only the mandated training
materials mentioned in Section 1.3 are allowed to be used for system development. This is to ensure
a fair comparison among different submissions. No registration is required to participate in the
challenge, however, participants will need to contact us if they need a temporary LDC license to
access the WSJ data as mentioned in Section 1.3.

The participants can communicate with the organizers via email and GitHub issues/discussions. We
are also considering creating an official channel on Slack. To make sure our challenge updates can be
delivered to participants from different sources, we will sync up the information via multiple channels,
including the “news” section in our official website, and email updates to invited participants.

2.3 Schedule and readiness
The tentative timeline for challenge preparation is:

• [done] Finishing training and development data preparation scripts.
• [done] Finishing baseline implementation.
• [done] Verifying the reproducibility of the scripts.
• [done] Cleaning up the script for releasing.
• [April 30, 2024] Finishing website preparation and setting it online.
• [May 20, 2024] Finishing leaderboard implementation.
• [May 27, 2024] Fixing the bind test data.
• [May 27, 2024] Announcement of the challenge.

The tentative timeline for running the challenge is:

• [June 10, 2024] Challenge begins. Release of all scripts, evaluation plan, and train-
ing+development data.

• [August 19, 2024] Release of non-blind test data.
• [September 18, 2024] Release of blind test data.
• [September 20, 2024] Challenge ends.
• [October 21, 2024] Notification of final results.

2.4 Competition promotion and incentives
To promote participation in the challenge, we will curate a mailing list based on the publication and
challenge records of active research groups in the speech area. We will distribute the call among
organization members when sending invitations to potential participants in the list.

We encourage participants to write description and analysis papers with named authors. Since speech
research groups are relatively under-represented at NeurIPS, we hope this challenge could be a good
opportunity to promote the speech research.

3 Resources
3.1 Resources provided by organizers
We have computational resources on the PSC Bridges2 system via ACCESS allocation CIS210014,
supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and
#2138296. These could be used for conducting organizer-side exploratory experiments, evaluation,
and analysis. But the participants will have to use their own computational resources for system
development. We are also supported by the LDC, which generously provides a temporary license of
the WSJ corpus during the challenge period.

3.2 Support requested
We will need supportive materials for visa application to participate in NeurIPS in person. In addition,
a poster session is needed for us and challenge winners to present the challenge results.
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Organizing team

1. Wangyou Zhang (coordinator, data provider, baseline method provider)

– Affiliation: Shanghai Jiao Tong University, China
– Email: wyz-97@sjtu.edu.cn
– PhD student working on speech enhancement/separation and robust speech recognition in the

cocktail party problem. Co-creator and core developer of the ESPnet-SE toolkit.

2. Robin Scheibler (beta tester, evaluator)

– Affiliation: LY Corp., Japan
– Email: robin.scheibler@linecorp.com
– Senior researcher at LY Corp., working on speech and audio processing. Founder and core

developer of the Pyroomacoustics toolkit.

3. Kohei Saijo (baseline method provider, beta tester)

– Affiliation: Waseda University, Japan
– Email: saijo@pcl.cs.waseda.ac.jp
– PhD student working on sound source separation.

4. Samuele Cornell (beta tester, evaluator)

– Affiliation: Carnegie Mellon University, USA
– Email: cornellsamuele@gmail.com
– Post-doc researcher working on audio processing and machine learning. Co-creator of Asteroid

source separation toolkit and author of SpeechBrain toolkit.

5. Chenda Li (baseline method provider, beta tester)

– Affiliation: Shanghai Jiao Tong University, China
– Email: lichenda1996@sjtu.edu.cn
– PhD student working on speech separation, multi-talker processing. Co-creator and core

developer of the ESPnet-SE toolkit.

6. Zhaoheng Ni (evaluator)

– Affiliation: Meta, USA
– Email: zni@meta.com
– Research scientist at Meta Reality Labs, working on generative modeling for audio, single-

channel/multi-channel speech enhancement, and so on.

7. Anurag Kumar (evaluator)

– Affiliation: Meta, USA
– Email: anuragkr@ieee.org
– Research lead and scientist at Meta Research, primarily working on deep learning, au-

dio/speech processing and multimodal Learning.

8. Marvin Sach (beta tester, evaluator)

– Affiliation: Technische Universität Braunschweig, Germany
– Email: marvin.sach@tu-braunschweig.de
– PhD student working on speech enhancement.

9. Wei Wang (beta tester, evaluator)

– Affiliation: Shanghai Jiao Tong University, China
– Email: wangwei.sjtu@sjtu.edu.cn
– PhD student working on robust speech processing and self-supervised learning.

10. Shinji Watanabe (coordinator, platform administrator)

– Affiliation: Carnegie Mellon University, USA
– Email: shinjiw@ieee.org
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– IEEE Fellow, Associate Professor at CMU, primarily working on automatic speech recognition,
speech enhancement, spoken language understanding, and machine learning for speech and
language processing. Founder of the ESPnet toolkit. Core organizer of CHiME challenge
series.

11. Tim Fingscheidt (coordinator, platform administrator)
– Affiliation: Technische Universität Braunschweig, Germany
– Email: t.fingscheidt@tu-bs.de
– ITG Fellow, Professor at Technische Universität Braunschweig, primarily working on speech

enhancement, speech coding and quality metrics, and machine learning for speech and
computer vision.

12. Yanmin Qian (coordinator, platform administrator)
– Affiliation: Shanghai Jiao Tong University, China
– Email: yanminqian@sjtu.edu.cn
– Full Professor at Shanghai Jiao Tong University, primarily working on speech recognition and

translation, speaker and language recognition, speech separation and enhancement, natural
language understanding and multi-media signal processing. Founding member of the Kaldi
toolkit.
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