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ABSTRACT

Wearable foundation models have the potential to transform digital health by
learning transferable representations from large-scale biosignals collected in ev-
eryday settings. While recent progress has been made in large-scale pretrain-
ing, most approaches overlook the spectral structure of photoplethysmography
(PPG) signals, wherein physiological rhythms unfold across multiple frequency
bands. Motivated by the insight that many downstream health-related tasks de-
pend on multi-resolution features spanning fine-grained waveform morphology
to global rhythmic dynamics, we introduce Masked Multiscale Reconstruction
(MMR) for PPG representation learning — a self-supervised pretraining framework
that explicitly learns from hierarchical time—frequency scales of PPG data. The
pretraining task is designed to reconstruct randomly masked out coefficients ob-
tained from a wavelet-based multiresolution decomposition of PPG signals, forc-
ing the transformer encoder to integrate information across temporal and spec-
tral scales. We pretrain our model with MMR using ~17 million unlabeled 10-
second PPG segments collected from over ~32000 smartwatch users largely in
naturalistic field settings, ensuring high variability and ecological validity. On
11 of 13 diverse health-related tasks, MMR trained on large-scale wearable PPG
data outperforms or matches state-of-the-art open-source PPG foundation mod-
els, time-series foundation models and other self-supervised baselines. Exten-
sive analysis of our learned embeddings and systematic ablations underscore the
value of wavelet-based representations, showing that they capture robust and
physiologically-grounded features. Together, these results highlight the potential
of MMR as a step toward generalizable PPG foundation models.

1 INTRODUCTION

Foundation models for biosignals remain in their infancy, despite early promise demonstrating their
potential to transform health monitoring and biomarker discovery (Abbaspourazad et al.| 2024b;
Narayanswamy et al., 2024} [Erturk et al., 2025} Xu et al. [2025). Among these signals, photo-
plethysmography (PPG) is uniquely well-suited for self-supervised learning: it is embedded in vir-
tually every consumer wearable, already underpins multiple deployed machine learning models for
applications such as blood pressure, arrhythmia, and stress detection (Song et al., |2019; Bashar
et al.,|2019; Namvari et al., [2022} |Apple Inc., [2025)), and offers large-scale data for continuous car-
diovascular monitoring (Charlton et al., [2022a}; Lee & Akamatsu| 2025). Recent PPG foundation
models (Abbaspourazad et al.| [2024a; |Pillai et al., 2024; [Saha et al., 2025) have demonstrated that
self-supervised pre-training can outperform traditional ML approaches, underscoring the promise
of large-scale pretraining paradigms. More broadly, recent time-series self-supervised models have
shown that explicitly modeling spectral-domain information improves robustness and transferability
of learnt representations (Kara et al., [2024; |Fu & Hul 2025} |[Zhang et al.| [2022a; [Liu et al., [2024)).
However, existing PPG foundation models either focus solely on time-domain data or use frequency-
based methods that leverage fixed-window Fourier transform and late fusion, limiting their ability
to capture the adaptive, hierarchical time-frequency features of non-stationary physiological signals
such as PPG (Chen et al., [2025; Masserano et al., [2025). To address these limitations, we intro-
duce wavelet-based PPG foundation model, which explicitly learns cross-scale interactions in the
time—frequency domain and enables broad generalization across diverse downstream tasks.
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Figure 1: Masked Multiscale Reconstruction for Photoplethysmography (PPG) signals.

Physiological signals such as PPG are inherently multi-scale: local waveform morphology encodes
vascular health, and long-term trends capture heart rate variability and global rhythm dynamics
(Charlton et al., 2022b; Namvari et al.| 2022} Sherebrin & Sherebrinl [2002). Prior approaches for
PPG foundation models—temporal embeddings, patient-aware contrastive learning (Abbaspourazad
et al., [2024b), morphology-based objectives (Pillai et al., 2024), generally overlook this hierarchi-
cal multi-scale structure of PPG. Even hybrid time—frequency models (Zhang et al) 2022a) often
treat these domains separately, limiting multi-scale representation learning—a capability crucial for
downstream health-related tasks that require features spanning granularities from beat-level mor-
phology to global temporal semantics.

Wavelet decomposition offers a natural, physiologically aligned approach for analyzing PPG in
the time-frequency domain. By adaptively trading off time and frequency resolution, wavelets can
capture high-frequency transients, subtle waveform changes, and low-frequency rhythms such as
respiration and circadian trends in a unified, multi-resolution representation. Motivated by these
insights, we establish the Masked Multiscale Reconstruction (MMR) framework: raw PPG signals
are decomposed into multiple wavelet bands using the Discrete Wavelet Transform (Daubechies)
1992; Mallat, [2002)), and the model is trained to reconstruct masked coefficients across scales. This
approach encourages the learning of rich, cross-resolution embeddings.

To summarize, our contributions are: (i) We pretrain a large-scale wavelet-based PPG foundation
model on ~48K hours of real-world wearable PPG data with a masked multiscale reconstruction
objective, enabling the model to capture rich time—frequency information across multiple scales. (ii)
We demonstrate strong generalization across 13 diverse downstream tasks and provide detailed ab-
lations that examine the impact of design choices such as wavelet family, decomposition scales, and
patch size, further underscoring the promise of wavelets for building generalizable PPG foundation
models.

2 RELATED WORK

Self-supervised pre-training has become the dominant paradigm for large-scale biosignal modeling.
Prior PPG foundation models have leveraged large datasets to learn general representations, using
contrastive learning or waveform-based objectives to improve generalization (Abbaspourazad et al.}
2024b; Pillai et al.| [2024;[Saha et al.| [2025)). Multimodal foundation models transfer representations
across PPG, ECG, and other signals, and masked reconstruction has shown promise for multivariate
health time series (Abbaspourazad et al., [2024a; |Yang et al., 2023; Narayanswamy et al., [2024; Xu
et al} 2025). These works mark a shift from traditional task-specific models to general-purpose
biosignal foundation models.

Prior frequency-aware models rely on fixed-window spectral features, limiting their ability to cap-
ture the adaptive, hierarchical, multi-scale rhythms inherent across time-frequency in physiological
signals (Zhang et al.,[2022bj |Liu et al.| 2023} |[Kara et al.| 2024} |(Cheng et al.} 2025} [Fu & Hul |2025;
Duan et al.| [2024)). Early works have applied wavelets to PPG for denoising, feature extraction, or
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task-specific pipelines (Alafeef & Fraiwan, 2020; [Singh et al., 2023} |Shao et al.| 2021)), while more
recent deep learning work has applied end-to-end wavelets for time-series tokenization (Masser-
ano et al., 2025) and modeling biosignals like ECG and EMG (Chen et al., [2025). These methods,
however, do not explicitly model cross-resolution interactions at scale for large, real-world PPG
datasets.

In contrast, our MMR framework leverages multi-resolution wavelet decomposition to pre-train a
large-scale PPG foundation model. By reconstructing masked coefficients across scales, MMR ex-
plicitly captures hierarchical, physiologically grounded structure—from local waveform morphol-
ogy to intermediate oscillations and long-term rhythms. This approach goes beyond time-only and
fixed-resolution spectral methods, producing robust, transferable embeddings that generalize across
diverse cardiovascular and health monitoring tasks. See Appendix for an extended related
works.

3 METHOD

To build a Masked Multiscale Reconstruction model, we transform PPG signals into multiple
time—frequency scales using the Discrete Wavelet Transform (DWT) The resulting wavelet coef-
ficients are interpolated and stacked to form a 2D coefficient map, which is partitioned into patches,
many of which are masked, and then processed by a Vision Transformer (ViT) (Dosovitskiy et al.,
2020). The model is trained with a multi-scale reconstruction objective, aiming to recover the
masked coefficients and thereby learn robust signal representations (Fig. [I)).

Discrete wavelet transform. The discrete wavelet transform (DWT) decomposes a signal into an
approximation A ; and detail bands Dj;.lzl using paired low- and high-pass filters, with each level
downsampled by half for joint time—frequency localization (Mallat, 2002; |Daubechies, [1992). Un-
like the Fourier transform (Bracewell, [1989)), which represents global frequency content and has
zero time resolution, or the Short-Time Fourier Transform (STFT) (Durak & Arikanl 2003)), which
uses fixed time windows, the DWT adapts across scales, offering wide temporal support for low-
frequency components and sharp temporal localization for high-frequency transients (Masserano
et al.,[2025} [Stephanel |1999). This makes wavelets well-suited for nonstationary signals with local-
ized bursts or discontinuities. In the DWT, the approximation and detail coefficients are obtained
by inner products with scaling and wavelet functions. The scaling function (¢ ), which acts as a
low-pass filter, is used to find the approximation coefficients (a; ), while the wavelet function (¢ 1),

which acts as a high-pass filter, is used for the detail coefficients (d{c) The approximation coeffi-
cients capture the low-frequency (coarse) structure of the signal, while the detail coefficients capture
the high-frequency (fine) variations, providing a multi-resolution representation (Daubechies}|1992).

To obtain DWT coefficients from PPG signals, we conducted an empirical ablation (Section [5.4)
over multiple wavelet families and decomposition levels, and found the Haar wavelet family (Haar
1909) to perform reliably. We employ a level-4 Haar DWT using PyWavelets (Lee et al.,|2019),
which produces one approximation band and four detail bands. For the Haar wavelet, approximation
coefficients are calculated as local averages, whereas detail coefficients capture signed differences,
thereby summarizing coarse trends while isolating localized variations. We interpolate the detail and
approximation coefficients obtained from the DWT at each subband level, stretching the coefficients
at level j to match the original signal length. The resulting subbands are then concatenated in
decreasing order of frequency, with high-frequency detail coefficients stacked at the top and the low-
frequency approximation band at the bottom, forming a 2-D representation of shape [nsubbands, time].

Masked Multiscale Reconstruction — MMR. We adopt a Vision Transformer (ViT) encoder—
decoder within the masked autoencoder framework (He et al., [2022). The 2-D wavelet coefficient
map is divided into non-overlapping patches of size (1,25) along the temporal axis, yielding a to-
ken sequence {z, },cp across subbands. Fixed 2-D sine—cosine positional embeddings encode both
temporal order and subband index. During pretraining, a random subset M C P of 75% patches
is masked, and the decoder reconstructs the missing coefficients from the visible tokens P \ M.
Our MMR objective exploits the hierarchical structure of the DWT: coarse approximation bands
A, encode global trends at scale 27, while detail bands {D;} refine these trends at progressively
higher frequencies. The reconstruction task therefore encourages the encoder to capture both top-
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down (coarse — fine) and bottom-up (fine — coarse) dependencies, rather than treating each band
independently. This approach encourages cross-scale feature sharing reminiscent of classical mul-
tiresolution analysis (Mallat, 2002)), but learned directly by the Transformer. Formally, let X, € R¢

denote the original coefficient vector in patch p and Xp the reconstruction. The MMR loss is the
mean-squared error over masked patches:

1 . 2
Lavg = —— ’ X, — X
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Equivalently, writing X = {A;, D1, ..., D } for the multiscale decomposition,
J
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which makes explicit that errors are penalized across all scales. This multiscale masking compels
the encoder to jointly model spectral and temporal dependencies, yielding richer latent features for
downstream tasks.

4 EXPERIMENTAL SETTING

Here, we describe the datasets, pretraining setup, and evaluation protocols used to evaluate the MMR
approach.

Dataset We pretrain our encoder on large-scale PPG segments collected from diverse
[REDACTED] smartwatches. Each input is a 10-second segment, chosen as a practical trade-off
between signal quality and model input length: shorter windows reduce the likelihood of motion
artifacts or device dropout, while still capturing multiple cardiac cycles necessary for reliable wave-
form representation. The majority of segments were sampled at lower frequency range of 25 Hz-
100Hz, reflecting the low-power, battery-constrained acquisition typical of free-living wearable de-
vices. This setting is deliberately more challenging than those used in much of the prior work, which
often relies on clean clinical signals or generic time-series datasets (Pillai et al., 2024). By contrast,
our pretraining data reflect the noise, variability, and resource constraints of real-world wearables,
aligning model development directly with deployment conditions.

Preprocessing Before feeding each PPG segment as input to MMR, each segment is bandpass
filtered (Liang et al.| 2018 |Lapitan et al.,[2024), and subsequently z-score normalized to standardize
amplitude across devices and users. These steps reduce trivial sources of variability so that the
encoder focuses on physiologically meaningful structure. Because our signals come from real-
world smartwatch deployments, they inevitably contain motion artifacts, poor skin contact, and
environmental noise. Rather than eliminating this variability altogether, we apply a lightweight
signal quality index (SQI)-based filter to discard only the most corrupted segments. We combine
entropy (to capture waveform regularity) and autocorrelation (to assess periodicity), two metrics
commonly used to identify usable cardiac waveforms (Elgendi, 2016} Karlen et al., [2012; Pradhan
et al., 2017). This approach strikes a balance: the retained segments still reflect the variability of
naturalistic conditions, but avoid extreme outliers that would otherwise overwhelm representation
learning.

Downstream Tasks We evaluate the learned representations on 13 health-related downstream
tasks spanning both classification and regression. Classification tasks include hypertension de-
tection, evaluated in both controlled laboratory protocols and free-living settings. We also assess
premature ventricular contraction (PVC) detection, which provides clinically relevant information
for arrhythmia monitoring and supports atrial fibrillation detection. In addition, we evaluate clas-
sification of laboratory biomarker abnormalities, including electrolytes (sodium, potassium, carbon
dioxide), hematological indices (hemoglobin, white blood cells), and metabolic markers (creatinine;
see Appendix[A.4). Regression tasks focus on systolic and diastolic blood pressure prediction, cap-
turing continuous cardiovascular physiology. Collectively, this suite of tasks assesses the extent to
which MMR embeddings encode clinically relevant cardiovascular information from wearable PPG
data under diverse real-world conditions.
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Table 1: Comparison with Self-Supervised Baselines. Best downstream evaluation scores are shown
in bold, second-best are underlined, and the [min—max] range across the five cross-validation test
splits is reported in gray brackets.

Classification - AUROC (1) SimCLR (SM) MSN (2.5M) TF-C (10M) | MMR (7M) MMR-Light (2M)

Hypertension - Lab 69.58 (612-766]  66.90 (5367661 7310 [63.0-909] | T1.18 (60.9-92.6]  71.50 [58.5-89.1]
Hypertension - Free Living 60.93 59.1-628] 5516 53.6-563]  62.92 (61.3-650] | 68.12 (67.0-699] 67.08 659 69.3]
PVC 74.43 (679-8241  73.60 657-79.11  70.25 (649748 | 82.04 745839 81.30 (747 -83.0]
Carbon Dioxide 65.07 (535-837] 6290 (51.9-783] 63.02 (53.1-77.2] | 63.10(457-7371  63.95 [46.3 - 74.6]
Creatinine 54.18 388-7141  56.45 (456-704]  53.08 (47.7-638] | 54.82 (389-609] 57.28 (303-729]
Hemoglobin 56.10 29.1-698)  52.04 (354-742]  51.55402-643] | 52.63 (356-79.1]  53.19 348 -87.7]
Potassium 71.63 (6238511  69.47 [588-508] 73.76 (599812 | 7427 (419-642]  T73.23 [50.3-81.0]
Sodium 60.37 [535-6571  60.39 (49672 55.18 (41.7-71.6] | 60.54 [502-669] 57.08 [41.5-64.2]
White Blood Cells 79.51 (559 8601 76.93 (409 -883] 77.37 (482 -863) | 75.71 (424 -916]  T75.53 [41.8-91.4]
Average 65.76 +5.12 63.76 + 8.09 64.47 +9.12 | 66.93 =934 66.68 -+ 9.00
Regression - MAE ()

Sys. BP (Lab) 11.02 9.0 12.0) 11.02 89-118 1093 (9.1 -11.6] 11.12 94-117) 11.07 94-1138
Dias. BP (Lab) 7.95 (6.8 10.1] 8.07 (6.7 102] 7.95172-102] 7.90 (6.9 10.1] 7.88 169101
Sys. BP 1175 (16118 11821171191 1175 (116 118) | 11.63 [11.4- 11 11.66 (1151138
Dias. BP 9.47 19297 9.52 19.2-938] 9.45 19297 9.36 100.1-95) 9.37 19.1-96]
Average 10.04 + 146 10.11 + 143 10.02 + 145 | 10.00 =147 9.99 + 143

Baselines We compare MMR against three groups of baselines. First, self-supervised learning
methods trained on the same wearable PPG data, including SimCLR (Chen et al., [2020), Masked
Siamese Network (MSN) (Assran et al., 2022), and TF-C (Zhang et al., 2022a)), representing con-
trastive, masked patch/data matching, and multi-view frequency—time approaches, respectively (see
Appendix for details). These baselines allow us to assess the benefit of our proposed ar-
chitecture and pretraining strategy when applied to the same real-world PPG signals. Second, we
evaluate open-source pretrained models, divided into two categories: (i) general-purpose time-series
foundation models such as Chronos (Ansari et al.l [2024), which are trained on diverse multivariate
time-series but not specifically on physiological signals, and (ii) domain-specific models such as
PaPaGei (Pillai et al.| 2024)), which leverage high-quality fingertip PPG with stratified binning and
explicit morphological feature learning to capture clinical waveform properties at high sampling
rates (125-500 Hz); we use the PaPaGei-S variant in this work. These models provide a point of
comparison to evaluate whether pretraining on clean or general-purpose data transfers effectively
to noisy, wearable PPG. Finally, we include classical statistical feature—based models without pre-
training to provide a non-learned baseline. Together, these baselines span the current state of both
general-purpose and domain-specialized representation learning for PPG signals, highlighting the
advantages of MMR in capturing real-world cardiovascular physiology.

5 DOWNSTREAM EVALUATION

We evaluate the quality and generalization of the learned representations by training downstream
classifiers on top of frozen encoders. We consider both our full MMR model ( 7M params )and
a smaller variant, MMR-Light (2M params), which has fewer parameters to study efficiency-
performance trade-offs. For all experiments, encoder representations serve as input features to ran-
dom forest models for classification and regression tasks, with performance measured on held-out
test data using 5-fold cross-validation. Binary classification tasks are evaluated via AUROC, and
regression tasks via mean absolute error (MAE). Our evaluation encompasses several aspects: (i)
performance across 13 downstream health-related tasks compared to self-supervised and pretrained
baselines, (ii) analysis of the learned embedding space to assess patient discriminability and phys-
iological structure, (iii) the impact of pretraining data size and model parameter scaling, and (iv)
ablation studies examining key architectural choices such as wavelet family, decomposition level,
and patch size. This comprehensive evaluation allows us to assess both the predictive power and the
interpretability of the representations learned by MMR and MMR-Light.
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Table 2: Comparison with Open-source Pretrained Models and Statistical Features. Best
downstream evaluation scores are shown in bold, second-best are underlined, and the mini-
mum-—maximum range across the five cross-validation splits is reported in gray brackets.

Classification - AUROC (1) Stat. Feat. Chronos (200M) PaPaGei (5M) \ MMR (7M) MMR-Light (2M)
Hypertension - Lab 69.28 (59.7-83.1]  67.26 [55.8-79.8 65.85 [58.6-75.4] 71.18 (60.9-92.6]  71.50 [58.5-89.1]
Hypertension - Free Living 56.59 (54.7-57.71  59.95 [583-618 59.94 59.2-60.2] 68.12 (67.0-69.9]  67.08 [659-69.3]
PVC 70.41 (642-772]  65.73 [65.3-753 72.20 [67.0-79.9] 82.04 (745-889]  81.30 [74.7-88.0]
Carbon Dioxide 57.20 503-692]  61.14 [54.0-75.1 61.23 [523-75.3) 63.10 (4577371 63.95 [46.3-74.6]
Creatinine 49.32 (40.2-56 61.14 (492740 51.86 [43.4-70.0] 54.82 [38.9-699] 57.28 [39.3-72.9]
Hemoglobin 56.13 356-65.1]  53.65 [43.7-59.3 49.28 [39.5-59.2] 52.63 (35.6-79.11  53.19 [34.8-87.7]
Potassium 47.87 (4165531 63.49 [554-85.1 68.51 [56.1-77.2] 74.27 (419-642]  73.23 [503-81.0]
Sodium 52.72 14755671 63.33 [53.6-742 58.44 (51.1-703] 60.54 [50.2-66.9]  57.08 [41.5-64.2]
White Blood Cells 55.52 15275831 77.51 [55.4-88.1 73.64 [44.1-87.1] 75.71 (42.4-916]  75.53 [41.8-914]
Average 5712 + 760 63.47 + 773 62.77 + 861 \ 66.93 -+ 934 66.68 + 9.0
Regression - MAE ()

Sys. BP (Lab) 11.08 [9.3-11.9] 10.79 (92119 11.04 19.6-12.2 11.12 (94117 11.07 (94118
Dias. BP (Lab) 8.12 (6.7-10.3] 7.93 17.0-89] 8.09 (6.9-10.1] 7.90 (6.9-10.1] 7.88 (6.9-10.1]
Sys. BP 11.75 11161187 11.82 (11.7-119 11.75 111.6-11.8] 11.63 (1141177 11.66 [11.5-11.8]
Dias. BP 9.47 192-9.7] 9.52 (9.2-9.8] 9.45 19097 9.36 19.1-95 9.37 9.1-9.61
Average 10.04 + 146 10.11 + 143 10.02 + 145 | 10.00 + 147 9.99 & 148

5.1 EVALUATING TRANSFERRABILITY OF LEARNED FEATURES ACROSS DIEVSRE
DOWNSTREAM TASKS

Detailed results for all baselines are reported in Tables [[] and 2] Across 13 downstream health-
related tasks, MMR consistently achieves superior or competitive performance relative to state-of-
the-art baselines. On average, MMR reaches 66.9% AUROC across 9 binary classification tasks,
with notable strengths in PVC detection and free-living hypertension classification. Its lightweight
variant, MMR-Light, achieves comparable performance, demonstrating that parameter efficiency
can be maintained without substantial loss in predictive quality. For regression tasks, MMR attains
the lowest error on diastolic blood pressure in the lab setting and on both hypertension-related re-
gression tasks in free-living conditions. These results hold even when compared to self-supervised
baselines trained on identical wearable PPG data (SimCLR, MSN, TF-C). While TF-C, leveraging
both time- and frequency-domain augmentations, performs well on hypertension and systolic BP
regression, SIMCLR and MSN underperform on free-living hypertension and PVC detection. This
highlights the value of multi-scale representation learning: MMR’s design captures richer temporal
and spectral structure and consistently outperforming competing approaches.

When compared to pretrained PPG models, MMR outperforms PaPaGei by approximately 4% AU-
ROC on average across classification tasks. PaPaGei, trained on high-quality fingertip PPG at
high sampling rates, relies on fiducial point extraction, which can limit adaptability to noisy, low-
sampling-rate wearable data. Similarly, MMR improves over the large, general-purpose time-series
model Chronos on 5 of 9 tasks (average +3.5% AUROC), showing that domain-specific pretrain-
ing on large-scale wearable PPG is critical for capturing cardiovascular signal characteristics that
general multivariate models may miss.

Taken together, these results indicate that MMR not only excels across a wide range of tasks but also
produces representations that are robust to real-world variability in device, user, and signal quality.
Unlike models trained on clinical or high-fidelity data, MMR demonstrates strong generalization
under noisy, resource-constrained conditions, making it particularly suitable for practical, real-world
deployment.

5.2 LEARNED FEATURE ANALYSIS

To further interpret how MMR captures clinically relevant information, we examine the structure of
the learned embeddings on an unseen downstream task: the Hypertension- Free Living dataset.

Discriminability of Patient-Wise Embeddings. To evaluate the quality and interpretability of
the learned representations, we examine the separation of patient embeddings by computing inter-
patient distances. Well-separated embeddings indicate that the model separates diverse patient co-
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horts, which can improve robustness and accuracy in downstream tasks Pillai et al.| (2024). Figure[2a]
shows the average pairwise distances across patients in the Hypertension- Free Living dataset. MMR
achieves the largest separation among all methods, demonstrating its ability to disentangle individ-
ual patient identities in the embedding space. In contrast, contrastive baselines such as SimCLR and
TF-C show weaker separation, with many embeddings collapsing together, while PaPaGei performs
moderately well but still lags behind MMR.

Method
SimCLR
175 Method TFC
1 SimCLR PapaGei

MMR
20 PaPaGei-S

125 1 TFC
1 MMR

05 10 15 20 25 30 35 . .
160,501 150,130

Pairwise euclidean Distances Within Partiﬁipant Embeddings

(a) Comparison of participant-wise distance distribu-
tions of learned embeddings across different base-
lines. Wider curves mean stronger separation and dis-
crimination.

Mean Heart Rate Range

(b) Silhouette scores of heart rate clusters in the av-
erage patient embeddings learned by different base-
lines. A higher score indicates better-defined clusters
and stronger separation in the embedding space.

Figure 2: Analyzing the learned embeddings on the unseen downstream dataset of the Hypertension
— Free Living.

Physiological Structure in the Embedding Space. Beyond patient-wise discriminability, the
learned embeddings capture meaningful physiological variation. Visualizing participant-level mean
embeddings with t-SNE (van der Maaten & Hinton| 2008), colored by heart rate ranges (Figure[TT),
reveals a smooth gradient from low to high heart rate. This observation indicates that MMR encodes
underlying cardiovascular dynamics rather than producing arbitrary or randomly aligned represen-
tations. To quantify this structure, we compute silhouette scores (Rousseeuwl [1987)) for elevated
(90-130 bpm) vs. normal (60-90 bpm) heart rate groups. MMR consistently achieves the high-
est scores, demonstrating that its embeddings cluster more coherently by physiological state than
those of competing baselines. These findings suggest that MMR produces physiologically aligned
representations, enabling downstream models to leverage subtle but clinically relevant variations in
cardiovascular signals.

5.3 EVALUATING MMR AT VARIED DATA AND PARAMETER SETTINGS

We next examine how pretraining dataset size and model capacity influence downstream perfor-
mance. By comparing MMR across different amounts of pretraining data and varying parameter
scales, we gain insight into the trade-offs between model complexity, data efficiency, and predictive
accuracy.

Pretraining Data Scaling We pretrain MMR on datasets of increasing size—1M, 5M, and 17M
segments—to examine how the amount of pretraining data affects downstream classification per-
formance. As shown in Table [3] larger datasets consistently improve results on hypertension and
PVC detection, highlighting the benefit of data volume. The smallest dataset (IM segments) un-
derperforms relative to larger splits, achieving 68.0% and 66.1% AUROC on lab and free-living
hypertension tasks, compared to 69.1% and 67.5% for SM segments. Pretraining on the full 17M
segments yields the strongest overall performance across tasks. Some lab biomarkers, such as ab-
normal WBC and creatinine, show little improvement with additional data (see Appendix [A.6),
suggesting that certain endpoints are less sensitive to segment-level diversity. Overall, these re-
sults indicate that diverse and large-scale pretraining data—spanning multiple users, devices, and
real-world contexts—is critical for learning robust, generalizable representations.

Model Scaling We next consider the effect of model capacity on downstream performance. MMR
models with varying parameter counts were pretrained to assess how size influences predictive ac-
curacy. As shown in Table [6](full numbers in Appendix[A.6] Table[3), the mid-sized 7M-parameter
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Data Scaling (Segments) Model Scaling (Params)
M 5M 1M M ™ 27M

Classification AUROC (1)

Hypertension-Lab 67.99 69.06 71.18 7150 71.18  80.54
Hypertension 66.08 67.50 68.12 67.08 68.12  66.65
PVC Detection 76.62 79.84  82.04 8130 82.04 8141

Table 3: MMR Scaling Results: Mean AUROC on 5-fold cross-validation for selected predictive
tasks under both model scaling (parameters) and data scaling (pretraining segments).

model performs strongly across tasks, ranking first or second on 7 of 9 classification tasks. The
smaller 2M model also achieves competitive results, indicating that MMR-Light provides an effec-
tive, parameter-efficient alternative suitable for deployment on resource-constrained devices. Larger
models offer notable improvements for select endpoints, such as +10% AUROC on hypertension-lab
and +5% on sodium prediction, but these gains do not generalize uniformly across all tasks. Overall,
scaling model capacity can enhance performance for specific tasks, but even compact models retain
substantial predictive power.

5.4 ABLATION STUDIES

To understand the contribution of individual components within MMR, we conducted ablation ex-
periments using a 2M-parameter model (MMR-Light) pretrained on a 1M-segment subset. We sys-
tematically varied the wavelet family, decomposition level, masking strategy, and patch size, and
evaluated the resulting impact across all classification tasks. In Figure [3] the Hypertension-Free
Living dataset is labeled as BP, and the Hypertension Lab as BP Lab.

Wavelet family design. We evaluated several wavelet bases (db4, bior2.2, bior4.4, Haar)
(Daubechies|, [1988; [Karoui & Vaillancourt, |1994; Haar|, |[1909) under identical training conditions
(2M parameters, 1M segments). Across hypertension classification tasks, Haar consistently achieved
the highest AUROC, and it also outperformed most other wavelets on PVC detection. This advan-
tage likely stems from Haar’s compact and sharply changing basis functions, which are well-suited
to capturing abrupt waveform changes that signal irregular heartbeats (Yang et al.,|2019). In contrast,
smoother wavelets like db4 and bior4.4 can miss these fine transients, reducing performance on tasks
that depend on detecting sharp signal features. For other biomarkers and vitals, differences across
wavelets were smaller, with average AUROC generally between 64-68. Notably, bior2.2 improved
Creatinine prediction, while bior4.4 gave modest gains for WBC and Sodium lab outcomes. These
results suggest that smoother wavelets may be preferable for tasks dominated by slower, more global
signal dynamics, whereas Haar supports tasks requiring the detection of rapid, localized changes.

Effect of decomposition depth. We evaluated the effect of wavelet decomposition depth (levels
2-5 using Haar) in our PPG — DWT transformation. Decomposition depth determines the number
of multi-resolution sub-bands used to represent the signal. Moderate depths (levels 3) consistently
yielded the best performance on hypertension classification, while deeper decompositions (level 5)
led to a 7-8 % AUROC drop, likely because excessive decomposition fragments the signal and dis-
cards fine-grained, predictive features. A similar pattern was observed for PVC detection: level 3
achieved over 80% AUROC with only 1M pretraining samples, outperforming level 2 (73%) and
level 5 (75%). Some lab biomarkers, including WBC, Sodium, and carbon dioxide, benefited from
deeper decomposition, indicating that tasks dominated by slower, global signal trends may require
more sub-bands. Overall, these results show that decomposition depth has a task-dependent im-
pact and highlight the potential value of adaptive decomposition strategies rather than using a fixed
hierarchy.

Patch size ablation Building on the previous analysis of decomposition depth, we next examine
how patch size—the temporal resolution of input segments—affects downstream performance (re-
fer Fig. [5b]in Appendix). Patch size determines how the encoder captures local transients versus
broader signal dynamics. Smaller patches, such as (1,25), consistently achieve the strongest hy-
pertension classification, highlighting the importance of preserving fine-grained temporal details.
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(a) Comparison across different wavelet families (b) Evaluation of decomposition levels (L2-L5) indi-
(db4, bior2.2, bior4.4, and Haar) shows that Haar pro- cates that moderate depths, particularly L4, achieve
vides consistently strong performance across tasks. the best balance.

Figure 3: Ablation of various wavelet families and decomposition levels for PPG signal analysis.

Larger patches, like (1, 100), tend to smooth out fine-grained events, leading to a 6-7% drop in hy-
pertension lab AUROC, but provide modest gains for lab biomarkers such as WBC and potassium.
The intermediate patch size (1, 50) offers a compromise, performing reasonably on lab outcomes but
remaining weaker for hypertension. The across-band scheme (2, 25) underperforms across nearly
all tasks, suggesting that mixing sub-bands can reduce discriminative power.

Overall, these results reveal that different tasks benefit from distinct temporal and frequency
scales and suggest that multi-scale PPG representations provide complementary cues, highlighting
wavelet-based encodings as an effective pretraining strategy for robust and adaptive physiological
monitoring.

6 DISCUSSION AND FUTURE WORK

Foundation models for biosignals hold strong promise for generalizable digital health applications,
yet most existing approaches overlook the spectral structure underlying physiological rhythms. In
this work, we introduced Masked Multiscale Reconstruction (MMR), a pretraining framework for
PPG that leverages wavelet-based time—frequency representations, and demonstrated robust per-
formance across 13 diverse health tasks, matching or surpassing state-of-the-art baselines. Our
analyses show that MMR embeddings capture physiologically meaningful information and enable
subject-level discrimination, while ablations highlight the importance of explicitly modeling spec-
tral hierarchies for representation learning. A key limitation of our current design is the reliance on
fixed decomposition levels, which leads to uneven performance across tasks and motivates explo-
ration of adaptive multiscale strategies. More broadly, our findings suggest that learning directly in
the joint time—frequency domain is a powerful paradigm for PPG foundation models, opening paths
toward multimodal integration, longitudinal modeling, and clinically meaningful health prediction.
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A APPENDIX

A.1 EXTENDED RELATED WORK

Self-supervised pretraining has emerged as the dominant paradigm for large-scale biosignal mod-
eling. For example, (Abbaspourazad et al. 2024b) trained foundation models on PPG and ECG
from ~141K Apple Watch users, demonstrating the value of contrastive learning at scale. In par-
allel, (Pillai et al.l [2024) introduced PaPaGei , an open-source PPG foundation model trained on
20M unlabeled fingertip PPG segments that explicitly leverages waveform morphology, while (Saha
et al |2025) developed Pulse-PPG using 100 days of field data from 120 participants, showing im-
proved efficiency and generalizability. Beyond single-modality PPG, multimodal biosignal founda-
tions transfer representations across ECG, PPG, and other signals either via knowledge distillation
(Abbaspourazad et al, [2024a) or unified embeddings (Yang et al.| 2023). Related work has also
applied masked reconstruction on multivariate health time series, yielding strong generative and
discriminative performance on tasks such as activity classification (Narayanswamy et al.| 2024} | Xu
et al., 2025). Together, these advances reflect a shift from task-specific models to general-purpose
foundation models for biosignals.

While these foundation models highlight the value of large-scale self-supervision, most treat signals
purely in the time domain. A growing body of work shows that explicitly incorporating spectral
information provides a powerful inductive bias for robust and transferable representations. For in-
stance, Time-Frequency Consistency (Zhang et al., [2022b)) proposed aligning time- and frequency-
domain views via contrastive loss, while bioFAME (Liu et al., |2023) introduced a frequency-aware
transformer encoder with multi-head spectral filters. Similarly, FreqMAE (Kara et al., |2024)) lever-
aged temporal-shifting encoders to model spectral content in multimodal IoT data. More recent ap-
proaches, such as FAT (Cheng et al.|[2025), FEI (Fu & Hu, [2025)), and MF-CLR (Duan et al., 2024),
further illustrate how spectral modeling can enhance time-series representation learning. These find-
ings suggest that frequency-aware pretraining can serve as a complementary approach to large-scale
training for physiological signals such as PPG. However, most rely on a fixed-size Fourier transform
and fail to capture multi-scale representations of PPG.

Wavelet analysis provides a natural way to capture information at different temporal scales by
decomposing signals into multi-resolution frequency bands. Earlier PPG studies applied discrete
wavelet transforms (DWT) for denoising and handcrafted features, for example, in respiratory rate
estimation (Alafeef & Fraiwanl |2020), hypertension and diabetes detection (Singh et al.| [2023)), and
peak stabilization pipelines (Shao et al., 2021). More recently, deep learning models have incor-
porated wavelets end-to-end, such as wavelet-based tokenization for time-series foundation models
(Masserano et al.|[2025)) and PhysioWave (Chen et al.,2025])), which couples learned wavelet decom-
positions, frequency guided masking with Transformers for physiological signals such as ECG and
EMG. Building on this line of work, we introduce a multi-resolution masked pretraining framework
for large-scale PPG data collected from smartwatches in real-world settings. By leveraging the fact
that health tasks rely on information at multiple signal granularities, our approach provides more
physiologically grounded and transferable representations.

A.2 MMR ABLATIONS

MMR is downstream data efficient In this evaluation,

the frozen MMR model representations were evaluated o o 9 = un
with varying proportions {25%,50%,75%} of labeled P e e

downstream data. MMR demonstrates clear efficiency
in limited labeled settings, outperforming both TFC and
PaPaGei-S. This early advantage persists as data avail-
ability increases, showing that MMR’s representations re-
main robust and transferable across scales. TFC follows —
closely, improving steadily with additional supervision

but never closing the.: gap with MMR. PaPaGei exhil?its Figure 4: Average performance of MMR,
the steepest relative improvement as labeled supervision  p,paGei-S, and TEC models across increas-
increases, making its performance at full data more com-  jng percentages of labeled downstream data.
petitive. Overall, these patterns highlight MMR’s perfor-  Performance improves with more labeled

mance consistency across downstream data regimes. data, with MMR consistently leading, fol-
lowed by TFC and PaPaGei-S.

Average Classification Performance
2 2
A
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Downstream Labelled Data
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Masking strategy ablation. We evaluate three masking strategies for our masked autoencoder:
Random, Row-wise: masking entire rows of approximation or detail coefficients, and Cross-scale:
masking columns across the hierarchical scales. Random masking achieves the strongest perfor-
mance on hypertension classification, outperforming Row-wise by 5-6% and Cross-scale by 2—-3%.
This suggests that eliminating entire subband coefficients or masking across scales impedes the
model’s ability to predict low-frequency coefficients without access to high-frequency components,
and vice versa. Across most tasks, random masking either leads or performs competitively. How-
ever, task-specific patterns emerge: cross-scale proves advantageous for Creatinine and Sodium pre-
diction. For WBC classification, both row-wise and cross-scale masking achieve 78%, representing
a +3 point improvement over random. Overall, random masking serves as a strong default strategy,
while structured masking (row-wise, cross-scale) offers selective benefits for particular biomarkers.

80 Row-wise Cross-scale Random 80 (2,25) (1,50) (1,100) (1,25)

AUROC
AUROC
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(a) Masking strategy: We ablate across three
masking strategies—row-wise, cross-scale, and
random—and find that random masking per-
forms most consistently, providing a robust choice
across downstream tasks.

(b) Patch size: We ablate across multiple patch
size configurations, varying the number of sub-
bands and temporal span per patch, and observe
that (1,25) achieves the most consistent perfor-
mance across the downstream task.

Figure 5: Ablation studies analyzing the effect of masking strategy and patch size in the proposed
wavelet masked modeling framework, MMR.

A.3 TRAINING SETUP

We pretrain MMR using the AdamW optimizer (Loshchilov & Hutter, [2017)) with a base learning
rate of 1 x 104, a cosine decay schedule, and a linear warmup applied over the first 10% of steps.
Training is carried out with a batch size of 512, a weight decay of 1 x 1075, and gradient clipping
at 1.0. To the PPG signal, we apply the same augmentations as LSM (Narayanswamy et al.| 2024)
prior to wavelet decomposition, specifically time-flipping, adding Gaussian noise, and stretching
along the temporal axis. The MMR model architecture follows the LSM-Small configuration (ap-
proximately 7M parameters), consisting of 8 encoder blocks with hidden size 256, 4 attention heads,
and a feedforward size of 1024. For reconstruction during pretraining, we use a lightweight decoder
composed of 2 blocks with hidden size 192 and 4 attention heads. The smaller variant, MMR-Light
(approximately 2M parameters), follows the LSM-Tiny configuration from (Narayanswamy et al.,
2024), with 4 encoder blocks (hidden size 192, 3 heads) and a lightweight decoder of 2 blocks (hid-
den size 128, 4 heads). Hyperparameter tuning was minimal and limited to a small grid search over
candidate learning rates € {1072,1073,10~%} and weight decay values € {1073,107%,1075}.
These sweeps and ablations were conducted on a subset of the pretraining dataset consisting of ap-
proximately 1 million data points. All experiments were performed on four Tesla T4 GPUs (16GB
each) using distributed data parallel (DDP) training in PyTorch (Paszke et al., 2019).

A.3.1 BASELINE METHODS

For the PaPaGei family of models, we use the open-source pretrained weights released by [Pillai
et al.| (2024) for PaPaGei-S, the morphology-aware pretraining model, which we refer to simply
as PaPaGei. The model employs a ResNet-style convolutional encoder with 18 blocks, starting
with 32 filters that double every four layers, and produces a 512-dimensional embedding through
a projection head. The PaPaGei-S variant additionally includes two mixture-of-expert heads for
refining morphology-related indices (sVRI, IPA, SQI), resulting in approximately SM parameters
overall. Pretraining is performed on 57,000 hours of PPG data (around 20M segments) from large
clinical datasets such as MIMIC-III (Johnson et al.l 2016) and MESA (Chen et al., 2015), using
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a morphology-aware self-supervised objective with augmentations including cropping, Gaussian
noise, flipping, negation, and magnitude scaling.

For SimCLR (Chen et al., [2020), we adopt the same ResNet-18 backbone as PaPaGei (~5M pa-
rameters) and apply the standard NT-Xent loss (Sohnl [2016; |Chen et al.l [2020) with a temperature
of 7 = 0.2. The augmentation pipeline includes random cropping (0.5), time flipping (0.2), nega-
tion (0.2), scaling (0.4), and Gaussian noise (0.35). For TF-C (Zhang et al., [2022a)), we likewise
use a ResNet-18 encoder, with a total of ~10M parameters since two encoders are employed, and
train with a time-frequency contrastive loss. Both SimCLR and TF-C are optimized using Adam
with a base learning rate of 1 x 1074, a weight decay of 1 x 1072, a batch size of 128, and cosine
learning rate scheduling. For the Masked Siamese Network (MSN) (Assran et al.| 2022), we adopt
transformer encoders with 4 attention heads and 12 layers. The latent dimension of the attention
layers is 128, and the feedforward networks have a hidden size of 512, resulting in approximately
2.5M parameters overall. MSN is trained with a base learning rate of 5 x 10~%, a weight decay
of 1 x 1074, and linear warmup. Pretraining is performed on the same smartwatch PPG dataset as
MMR, using a patch size of 10 and a masking ratio of 0.75.

As a lightweight baseline, we also implement the Statistical Features approach similar to (Pillai
et al., [2024). Each 10s PPG segment is represented by a handcrafted feature vector: mean, stan-
dard deviation, 25th percentile, 50th percentile (median), 75th percentile, minimum, and maximum
values (i.e., [mean, std, pas, P50, P75, Min, max]). These features are computed per segment and
directly used as input to a random forest classifier or regressor, depending on the downstream task.

Finally, we include the open-source Chronos-T5 (Base, 200M parameters) (Ansari et al., [2024) as
a large-scale time-series foundation model baseline. Chronos is based on the T5 encoder—decoder
transformer architecture, adapted for time series by quantizing values into discrete tokens and ap-
plying mean-scaling normalization. It is trained autoregressively with cross-entropy loss on a large
collection of public datasets and synthetic series, using additional augmentation strategies such as
TSMixup. Chronos represents a state-of-the-art zero-shot time-series model that is substantially
larger than our other baselines, providing a complementary point of comparison for evaluating scale
and domain adaptation effects.

A.4 DATASET DETAILS
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Figure 6: Hypertension Free Living Data Statistics
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Figure 7: Hypertension Lab Data Statistics

We pretrain on data collected from various types of [REDACTED] smartwatches where PPG is
sampled at different sampling frequencies (e.g., 25-100 Hz). These datasets provide diverse signals
collected under [REDACTEDY] distinct studies and user groups. Such data closely reflect real-world
conditions, making them highly representative for PPG-based wearable applications. We evaluate on
several downstream datasets collected in diverse settings. For probing tasks, we train random forest
classifiers and regression models using 5-fold cross-validation. We adopt a grouped and stratified
5-fold cross-validation procedure. This approach ensures that all data from the same subject is
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Table 4: Downstream datasets. Counts are (#positive / #negative) segments

Task Setting Positive  Negative
. Lab (protocol) 646 3,595
Hypertension Naturalistic (field) 5,952 8,189
PVC Detection Naturalistic (field) 40,780 442,484
Laboratory Tests
Sodium Clinical reports 9,714 8,721
Potassium Clinical reports 10,103 9,509
Creatinine Clinical reports 8,176 8,879
Carbon Dioxide Clinical reports 7,846 9,141
Hemoglobin Clinical reports 6,429 6,286
‘White Blood Cells Clinical reports 7,384 6,380

contained within a single fold to prevent data leakage, while also balancing the distribution of target

classes across folds.

Hypertension Classification We define hypertension as a bi-
nary classification task based on clinical guidelines: individ- .
vals are labeled as Hypertensive (label 1) if their systolic

250000 50000

blood pressure is > 130 mmHg or diastolic blood pressure iS =z 2 o

> 80 mmHg, and Normal (label 0) otherwise. We apply buffer

thresholds of 8 mmHg around the diagnostic cutoffs.

PVC Detection Premature Ventricular Contractions (PVCs)
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are early heartbeats originating in the ventricles (Cha et al.|

2012). They may indicate underlying cardiac conditions or an

Figure 8: PVC label distributions.

increased risk of arrhythmias. Prior studies (Han et al., [2020;
Solosenko & Marozas, 2014) have investigated the detection
of PVCs using PPG data. In our setting, we label high PVC burden as class 1 and low PVC burden

as class 0.

Laboratory Tests For various laboratory tests (explained below as per (National Library of
Medicine (US),[2020)), we adopt a binary classification scheme where abnormal values are labeled

as class 1 and class O otherwise.

Sodium: Elevated sodium (hypernatremia) is linked to dehydration or adrenal gland/kidney
dysfunction.

Potassium: High potassium (hyperkalemia) may cause cardiac arrhythmias; low potassium
(hypokalemia) is associated with muscle weakness, fatigue, and rhythm disturbances.

Creatinine: Elevated creatinine reflects impaired kidney function and may indicate acute
kidney injury, chronic kidney disease, or other kidney problems.

Carbon Dioxide: Abnormal carbon dioxide levels suggest an acid-base imbalance. Low
levels may indicate metabolic acidosis or respiratory alkalosis, whereas high levels may
reflect metabolic alkalosis or chronic respiratory acidosis.

Hemoglobin: Low hemoglobin levels may indicate anemia, which can result from iron
deficiency, chronic disease, or blood loss.

White Blood Cells (WBC): Elevated WBC (leukocytosis) may be seen with infection, in-
flammation, stress, or blood disorders. Low WBC (leukopenia) can indicate bone marrow
suppression, viral infection, or autoimmune conditions.
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A.5 EXAMPLE VISUALIZATION OF DISCRETE WAVELET TRANSFORMS OF WEARABLE PPG
SIGNAL

In this section, we present visualizations illustrating the transformation of PPG signals into DWT
coefficients (Fig. [0) and their subsequent processing within our masked modeling framework.
The patchified coefficient maps are heavily masked, and the MMR encoder—decoder is trained
to reconstruct the missing subbands (Fig. [[0). These examples demonstrate how the DWT cap-
tures multi-resolution structure and how MMR exploits this representation to recover meaningful
time—frequency information from incomplete inputs.

Amplitude
DWT COefficients

0 200 400 600 800 1000

Segment Length Segment Length

Figure 9: Example PPG signal (left) and its corresponding 2-D representation of discrete wavelet
transform (DWT) coefficients (right). The DWT decomposes the signal into multi-resolution sub-
bands, where higher-frequency detail coefficients appear at the top and the low-frequency approxi-
mation band at the bottom, providing a time—frequency representation.
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Figure 10: Illustration of the masked modeling framework applied to DWT coefficients. Left: origi-
nal patchified DWT coefficient map of the PPG signal. Middle: masked input where 75% of patches
are randomly removed. Right: reconstructed patches generated by the MMR model, demonstrating
its ability to recover missing time—frequency structure from partial observations.
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A.6 ADDITIONAL CLASSIFICATION RESULTS FOR MMR AND BEST PERFORMING
BASELINES

Table [5]and Table [0 report the full set of AUROC scores for model scaling and data scaling experi-
ments. These results show that larger models (27M parameters) achieve the highest performance on
several endpoints, including Hypertension-Lab and Sodium prediction, while the mid-sized model
remains competitive across most tasks. Similarly, increasing pretraining data size from 1M to 17M
segments yields consistent gains for hypertension and PVC detection, with more modest improve-
ments for certain lab biomarkers such as WBC and creatinine.

Classification AUROC (1) 2 Million 7 Million 27 Million

Hypertension-Lab 71.50 71.18 80.54
Hypertension 67.08 68.12 66.65
PVC Detection 81.30 82.04 81.41
Laboratory Tests

Carbon Dioxide 63.95 63.10 62.57
Creatinine 57.28 54.82 58.26
Hemoglobin 53.19 52.63 54.57
Potassium 73.23 74.27 71.34
Sodium 57.08 60.54 64.45
White Blood Cells 75.53 75.71 76.12

Table 5: MMR Model Scaling Results: This table reports mean AUROC on the 5-fold cross-
validation performance metrics for MMR models of increasing scale (2 million, 7 million, and 27
million parameters). Each column represents a model size, while rows correspond to the predictive
tasks (e.g., hypertension, PVC, WBC).

Classification AUROC (1) 1Million 5 Million 17 Million

Hypertension-Lab 67.99 69.06 71.18
Hypertension 66.08 67.50 68.12
PVC 76.62 79.84 82.04
Laboratory Tests

Carbon Dioxide 63.80 63.54 63.10
Creatinine 59.60 54.60 54.82
Hemoglobin 52.21 53.89 52.63
Potassium 74.03 74.92 74.27
Sodium 57.69 57.25 60.54
White Blood Cells 76.80 75.16 75.71

Table 6: MMR Data Scaling Results: This table reports mean AUROC on the 5-fold cross-
validation performance metrics for MMR model with increasing pretraining data scale (1 million, 5
million, and 17 million segments). Each column represents pretraining data size, while rows corre-
spond to the predictive tasks (e.g., hypertension, PVC, WBC).
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A.7 ANALYZING LEARNED REPRESENTATIONS FOR DOWNSTREAM TASKS

We present t-SNE visualizations of patient-level embeddings learned by MMR and PaPaGei for
the Hypertension task (Free Living). Figure [TT] (left) shows the embeddings colored by age bins.
While the different age groups are not perfectly separable, the latent space reveals slight cluster-
ing, with patients above 50 years more prominently shifting toward the left side of the embedding.
This indicates that the model encodes some age-related demographic information. We found that,
beyond patient-level discriminability, the learned embeddings capture clear physiological structure.
As shown in Figure[TT] t-SNE visualizations of participant-level mean embeddings colored by heart
rate reveal a smooth gradient from low to high values. This indicates that the MMR model encodes
physiologically meaningful variation rather than random alignment. Such clustering is not observed
in t-SNE of PaPaGei embeddings in Fig.
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Figure 11: t-SNE visualization of patient-level embeddings (mean of all segments per patient)
learned by MMR for the Hypertension Task — Free Living. Left: embeddings colored by age bins
show only slight clustering, consistent with prior observations (Narayanswamy et al.| 2024). Right:
embeddings colored by heart rate bins reveal a gradient, indicating that the representations capture
meaningful physiological variability.
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Figure 12: t-SNE visualization of PaPaGei embeddings for Hypertension Task — Free Living.
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