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Abstract
Text-to-speech(TTS) has undergone remark-001
able improvements in performance, particularly002
with the advent of Denoising Diffusion Prob-003
abilistic Models (DDPMs). However, the per-004
ceived quality of audio depends not solely on005
its content, pitch, rhythm, and energy, but also006
on the physical environment. In this work, we007
propose ViT-TTS, the first visual TTS model008
with scalable diffusion transformers. ViT-TTS009
complement the phoneme sequence with the010
visual information to generate high-perceived011
audio, opening up new avenues for practical012
applications of AR and VR to allow a more013
immersive and realistic audio experience. To014
mitigate the data scarcity in learning visual015
acoustic information, we 1) introduce a self-016
supervised learning framework to enhance both017
the visual-text encoder and denoiser decoder;018
2) leverage the diffusion transformer scalable019
in terms of parameters and capacity to learn020
visual scene information. Experimental results021
demonstrate that ViT-TTS achieves new state-022
of-the-art results, outperforming cascaded sys-023
tems and other baselines regardless of the visi-024
bility of the scene. With low-resource data (1h,025
2h, 5h), ViT-TTS achieves comparative results026
with rich-resource baselines. 1027

1 Introduction028

Text-to-speech(TTS) (Ren et al., 2019; Huang et al.,029

2022b; Huang et al.) has undergone remarkable030

improvements in performance, particularly with031

the advent of Denoising Diffusion Probabilistic032

Models (DDPMs). However, the perceived quality033

of audio depends not solely on its content, pitch,034

rhythm, and energy, but also on the physical envi-035

ronment. For instance, a room with hard surfaces036

like concrete or glass reflects sound waves, whereas037

a room with soft surfaces such as carpets or cur-038

tains absorbs them. This variance can drastically039

impact the clarity and quality of the sound we hear.040

1Audio samples are available at https://ViT-TTS.
github.io/.

To ensure an authentic and captivating expe- 041

rience, it is imperative to accurately model the 042

acoustics of a room, particularly in virtual real- 043

ity (VR) and augmented reality (AR) applications. 044

Recent years have seen a surge in significant re- 045

search (Li et al., 2022; Radford et al., 2021; Li et al., 046

2023; Huang et al., 2023b) addressing the language- 047

visual modeling problem. For instance, Li et al. 048

(2022) have proposed a unified video-language pre- 049

training framework for learning robust representa- 050

tion, while Radford et al. (2021) have focused on 051

large-scale image-text pairs pre-training via con- 052

trastive learning. Visual TTS open-ups numerous 053

practical applications, including dubbing archival 054

films, providing a more immersive and realistic ex- 055

perience in virtual and augmented reality, or adding 056

appropriate sound effects to games. 057

Despite the benefits of language-visual ap- 058

proaches, training visual TTS models typically 059

requires a large amount of training data, while 060

there are very few resources providing parallel text- 061

visual-audio data due to the heavy workload. Be- 062

sides, creating a sound experience that matches the 063

visual content remains challenging when develop- 064

ing AR/VR applications, as it is still unclear how 065

various regions of the image contribute to reverber- 066

ation and how to incorporate the visual modality as 067

auxiliary information in TTS. 068

In this work, we formulate the task of visual TTS 069

to generate audio with reverberation effects in tar- 070

get scenarios given a text and environmental image, 071

introducing ViT-TTS to address the issues of data 072

scarcity and room acoustic modeling. To enhance 073

visual-acoustic matching, we 1) propose the visual- 074

text fusion to integrate visual and textual informa- 075

tion, which provides fine-grained language-visual 076

reasoning by attending to regions of the image; 2) 077

leverage transformer architecture to promote the 078

scalability of the diffusion model. Regarding the 079

data shortage challenge, we pre-train the encoder 080

and decoder in a self-supervised manner, showing 081
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that large-scale pre-training reduces data require-082

ments for training visual TTS models.083

Experiments results demonstrate that ViT-TTS084

generates speech samples with accurate reverbera-085

tion effects in target scenarios, achieving new state-086

of-the-art results in terms of perceptual quality. In087

addition, we investigate the scalability of ViT-TTS088

and its performance under low-resource conditions089

(1h/2h/5h). The main contributions of this work090

are summarized as follows:091

• We propose the first visual Text-to-Speech092

model ViT-TTS with vision-text fusion, which093

enables the generation of high-perceived au-094

dio that matches the physical environment.095

• We show that large-scale pre-training allevi-096

ates the data scarcity in training visual TTS097

models.098

• We introduce the diffusion transformer scal-099

able in terms of parameters and capacity to100

learn visual scene information.101

• Experimental results on subjective and ob-102

jective evaluation demonstrate the state-of-103

the-art results in terms of perceptual qual-104

ity. With low-resource data (1h, 2h, 5h), ViT-105

TTS achieves comparative results with rich-106

resource baselines.107

2 Related Work108

2.1 Text-To-Speech109

Text-to-Speech(TTS) tasks are divided into two cat-110

egories: (1) generating a mel-spectrogram from111

text or phoneme sequence first (Wang et al., 2017;112

Ren et al., 2019), and then converting the gener-113

ated spectrum into a waveform via vocoder (Kong114

et al., 2020; Lee et al., 2022; Huang et al., 2022b,115

2021, 2022a); (2) generating audio directly from116

text (Donahue et al., 2020; Kim et al., 2021).117

The earlier TTS (Li et al., 2019; Wang et al.,118

2017) models adopt an autoregressive manner,119

which suffers from the problem of slow infer-120

ence speed. As a solution, non-autoregressive121

models have been proposed to enable fast infer-122

ence by generating mel-spectrograms in parallel.123

More recently, Grad-TTS (Popov et al., 2021),124

DiffSpeech (MoonInTheRiver, 2021), and ProD-125

iff (Huang et al., 2022c) have employed diffu-126

sion generative models to generate high-quality127

audio, but they all rely on the convolutional archi-128

tecture such as WaveNet (Oord et al., 2016) and129

U-Net (Ronneberger et al., 2015) as the backbone. 130

In contrast, some studies (Peebles and Xie, 2023; 131

Bao et al., 2023) in image generation tasks have 132

explored transformers (Vaswani et al., 2017) as an 133

alternative to convolutional architectures, achieving 134

competitive results with U-Net. In this paper, we 135

present the first transformer-based diffusion model 136

as an alternative of convolutional architecture. By 137

harnessing the scalable properties of transformers, 138

we enhance the model capacity to more effectively 139

capture visual scene information and promote the 140

model performance. 141

2.2 Self-supervised Pre-training 142

There are two main criteria for optimizing speech 143

pre-training: contrastive loss (Oord et al., 2018; 144

Chung and Glass, 2020; Baevski et al., 2020) and 145

masked prediction loss (Devlin et al., 2018). Con- 146

trastive loss is used to distinguish between positive 147

and negative samples with respect to a reference 148

sample, while masked prediction loss is originally 149

proposed for natural language processing (Devlin 150

et al., 2018; Lewis et al., 2019) and later applied to 151

speech processing (Baevski et al., 2020; Hsu et al., 152

2021). Some recent work (Chung et al., 2021) has 153

combined the two approaches, achieving good per- 154

formance for downstream automatic speech recog- 155

nition (ASR) tasks. In this work, we leverage the 156

success of self-supervised to enhance both the en- 157

coder and decoder to alleviate the data scarcity 158

issue. 159

2.3 Acoustic Matching 160

The primary objective of acoustic matching is to 161

convert audio from a source environment into au- 162

dio that resembles the target environment. In the 163

field of blind estimation (Mack et al., 2020; Xiong 164

et al., 2018; Murgai et al., 2017; Mezghani and 165

Swindlehurst, 2018), acoustic matching is applied 166

to generate a simple room impulse response (RIR) 167

that can be used to synthesize the corresponding 168

target audio using two critical acoustic metrics 169

- the direct-to-reverberant ratio (DRR) (Zahorik, 170

2002) and the reverberation time 60 (RT60) (Rat- 171

nam et al., 2003). The DRR is used to describe 172

the energy ratio between the direct-to-reverberant 173

sound and the reflected sound, while the RT60 is 174

used to measure the time taken for the sound to 175

decay by 60 dB. The music production community 176

also implements acoustic matching to modify the 177

reverberation, thus simulating the reverberation of 178

the target space or processing algorithm (Koo et al., 179
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Figure 1: The overall architecture for ViT-TTS. In subfigure (b), Vi denotes the visual sequence and N1 denotes the
layers of Encoder. In subfigure (c), N2 is the number of transformer layers. α and β are the dimension-wise scale
parameters, while γ is the dimension-wise shift parameters. c is the variance adaptor’s output and t is the diffusion
step.

2021; Sarroff and Michaels, 2020). Recently, there180

is research on visual acoustic matching (Chen et al.,181

2022), which involves generating audio recorded182

in the target environment based on the input source183

audio clip and an image of the target environment.184

However, our proposed visual TTS is distinct from185

those mentioned above as we aim to generate audio186

that captures the room acoustics in the target en-187

vironment based on the written text and the target188

environment image.189

3 Method190

3.1 Overview191

The overall architecture has been presented as Fig-192

ure 1. To alleviate the issue of data scarcity, we193

leverage unlabeled data to pre-train the visual-text194

encoder and denoiser decoder with scalable trans-195

formers in a self-supervised manner. To capture the196

visual scene information, we employ the visual-text197

fusion module to reason about how different image198

patches contribute to texts. BigvGAN (Lee et al.,199

2022) converts the mel-spectrograms into audio200

that matches the target scene as a neural vocoder.201

3.2 Enhanced visual-text Encoder202

Self-supervised Pre-training The advent of the203

masked language model(Devlin et al., 2018; Clark204

et al., 2020) has marked a significant milestone in205

the field of natural language processing. To alle-206

viate the data scarcity issue (Huang et al., 2022d;207

MoonInTheRiver, 2021) and learn robust contex-208

tual encoder, we are encouraged to adopt the mask-209

ing strategy like BERT in the pre-training stage. 210

Specifically, we randomly mask the 15% of each 211

phoneme sequence and predict those masked to- 212

kens rather than reconstructing the entire input. 213

The masked phoneme sequence is then input into 214

the text encoder to obtain hidden states. The final 215

hidden states are fed into a linear projection layer 216

over the vocabulary to obtain the predicted tokens. 217

Finally, we calculate the cross entropy loss between 218

the predicted tokens and target tokens. 219

The masked token during the pre-training phase 220

will not be used in the fine-tuning phase. To mit- 221

igate this mismatch between the pre-training and 222

fine-tuning, we randomly choose the phonemes to 223

be masked: 1) 80% probability to add masks; 2) 224

10% probability to keep phoneme unchanged, and 225

3) 10% probability to replace with a random token 226

in the dictionary. 227

Visual-Text Fusion In the fine-tuning stage, we 228

integrate the visual modal and module into the en- 229

coder to integrate visual and textual information. 230

Before feeding into the visual-text encoder, we 231

first extract image features of panoramic images 232

through ResNet18 (Oord et al., 2018) and obtain 233

phoneme embedding. Both the image features and 234

phoneme embedding are fed into one of the vari- 235

ants of the transformer to get the hidden sequences. 236

Specifically, we first pass the phoneme through 237

relative self-attention, which is defined as follows. 238

α(i, j) = Softmax(
(QiW

Q)(KjW
K +RK

ij )
T

√
dk

) (1) 239
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where n is the length of phoneme embedding, RK
ij240

and RV
ij are the relative position embedding of key241

and value, and Q, K, V are all the phoneme embed-242

ding. We use relative self-attention to model how243

much phoneme pi attends to phoneme pj . After244

that, we choose to use cross-attention instead of a245

simplistic concatenation approach as we can rea-246

son about how different image patches contribute247

to the text after feature extraction. The equation is248

defined as follows:249

α(Q,K, V ) = softmax(
QKT

√
dk

)V (2)250

where Q is the phoneme embedding. K and V are251

the visual features. Finally, the feed-forward layer252

is applied to output the hidden sequence.253

3.3 Enhanced Diffusion Transformer254

Scalable Transformer As a rapidly growing cat-255

egory of generative models, denoising diffusion256

models (DDPMs) have demonstrated their excep-257

tional ability to deliver top-notch results in both258

image (Zhang and Agrawala, 2023; Ho and Sal-259

imans, 2022) and audio synthesis (Huang et al.,260

2022c, 2023a; Lam et al., 2021). However, the261

most dominant diffusion TTS models adopt a con-262

volutional architecture like WaveNet or U-Net as263

the de-factor choice of backbone, where it lacks264

the scalable ability to model additional visual infor-265

mation. This prevents the model’s incorporation of266

visual information as they lack scalability. Recent267

research (Peebles and Xie, 2023; Bao et al., 2023)268

in the image synthesis field has revealed that the in-269

ductive bias of convolutional structures is not a crit-270

ical determinant of DDPMs’ performance. Instead,271

transformers have emerged as a viable alternative.272

For this reason, we propose a diffusion trans-273

former that leverages the scalability of transform-274

ers to expand model capacity and incorporate room275

acoustic information. Moreover, we leverage the276

adaptive normalization layers in GANs and ini-277

tialize the full transformer block as the identity278

function to further improve the transformer perfor-279

mance.280

Unconditional Pre-training In this part, we in-281

vestigate self-supervised learning from orders of282

magnitude mel-spectrograms data to alleviate data283

scarcity. Specifically, assuming the target mel-284

spectrogram is x0, we first random select 0.065%285

of x0 as starting indices and apply a mask that286

spans 10 steps following the Wav2vec2.0 (Baevski287

et al., 2020). Then, we obtain xt through a diffu- 288

sion process, which is defined by a fixed Markov 289

chain from data x0 to the latent variable xt. 290

q(x1, · · · ,xT |x0) =

T∏
t=1

q(xt|xt−1), (3) 291

At each diffusion step t ∈ [1, T ], a tiny Gaussian 292

noise is added to xt−1 to obtain xt, according to a 293

small positive constant βt: 294

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (4) 295

xt obtained from the diffusion process is passed 296

through the transformer to predict Gaussian noise 297

ϵθ. Loss is defined as mean squared error in the ϵ 298

space, and efficient training is optimizing a random 299

term of t with stochastic gradient descent: 300

LGrad
θ =

∥∥∥∥ϵθ (αtx0 +
√

1− α2
tϵ

)
− ϵ

∥∥∥∥2

2

, ϵ ∼ N (0, I)

(5) 301

To this end, ViT-TTS takes advantage of the re- 302

construction loss to predict the self-supervised rep- 303

resentations which largely alleviates the challenges 304

of data scarcity. Detailed formulation of DDPM 305

has been attached in Appendix C. 306

Controllable Fine-tuning During the fine- 307

tuning stage, we will face the following challenges: 308

(1) there is a data scarcity issue with the available 309

panoramic images and target environmental audio 310

for training; (2) a fast training method is equally 311

crucial for optimizing the diffusion model, as it can 312

save a significant amount of time and storage space. 313

To address these challenges, we draw inspiration 314

from Zhang and Agrawala (2023) and implement 315

a swift fine-tuning technique. Specifically, we cre- 316

ate two copies of the pre-trained diffusion model 317

weights, namely a "trainable copy" and a "locked 318

copy," to learn the input conditions. We fix all 319

parameters of the pre-trained transformer, desig- 320

nated as Θ, and duplicate them into a trainable 321

parameter Θt. We train these trainable parameters 322

and connect them with the "locked copy" via zero 323

convolution layers. These convolution layers are 324

unique as they have a kernel size of one by one 325

and weights and biases set to zero, progressively 326

growing from zeros to optimized parameters in a 327

learned fashion. 328

3.4 Architecture 329

As illustrated in Figure 1, our model comprises a 330

visual-text encoder, variance adaptor, and spectro- 331

gram denoiser. The visual-text encoder converts 332
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phoneme embeddings and visual features into hid-333

den sequences, while the variance adaptor predicts334

the duration of each hidden sequence to regulate335

the length of the hidden sequences to match that336

of speech frames. Furthermore, different variances337

like pitch and speaker embedding are incorporated338

with hidden sequences. Finally, the spectrogram339

denoiser iteratively refines the length-regulated hid-340

den states into mel-spectrograms. We put more341

details in Appendix B.342

Visual-Text Encoder The visual-text encoder343

consists of relative position transformer blocks344

based on the transformer architecture. Specifically,345

it convolves a pre-net for phoneme embedding, a vi-346

sual feature extractor for image, and a transformer347

encoder which includes multi-head self-attention,348

multi-head cross-attention, and feed-forward layer.349

Variance Adaptor In variance adaptor, the du-350

ration and pitch predictors share a similar model351

structure consisting of a 2-layer 1D-convolutional352

network with ReLU activation, each followed by353

the layer normalization and the dropout layer, and354

an extra linear layer to project the hidden states355

into the output sequence.356

Spectrogram Denoiser Spectrogram denoiser357

takes in xt as input to predict ϵ added in diffusion358

process conditioned on the step embedding Et and359

encoder output. We adopt a variant of the trans-360

former as our backbone and make some improve-361

ments upon the standard transformer motivated362

by Peebles and Xie (2023), mainly includes:(1)363

we explore replacing standard layer norm layers364

in transformer blocks with adaptive layer norm365

(adaLN) to regress scale and shift parameters from366

the sum of the embedding vector of t and hidden367

sequence. (2) Inspired by ResNets (Oord et al.,368

2018), we initialize the transformer block as the369

identity function and initialize the MLP to output370

the zero-vector.371

3.5 Pre-training, Fine-tuning, and Inference372

Procedures373

Pre-training The pre-training has two stages: 1)374

encoder stage: pre-train the visual-text encoder375

vias masked LM loss LCE(ie. cross-entropy loss)376

to predict the masked tokens. 2) decoder stage:377

the masked x0 is puted into denoiser to predict378

Gaussian noise ϵθ. Then, the MSE loss is applied379

to the predicted Gaussian noise and target Gaussian380

noise.381

Fine-tuning We begin by loading model weights 382

from the pre-trained visual-text encoder and uncon- 383

ditional diffusion decoder, after which we finetune 384

both of them until the model converges. The fi- 385

nal loss term consists of the following parts: (1) 386

sample reconstruction loss Lθ: MSE between the 387

predicted Gaussian noise and target Gaussian noise. 388

(2) variance reconstruction loss Ldur,Lp: MSE be- 389

tween the predicted and the target phoneme-level 390

duration, pitch. 391

Inference In inference, DDPM iteratively runs 392

the reverse process to obtain the data sample x0, 393

and then we use a pre-trained BigvGAN-16khz- 394

80band as the vocoder to transform the generated 395

mel-spectrograms into waveforms. 396

4 Experiment 397

4.1 Experimental Setup 398

Dataset We use the SoundSpaces-Speech 399

dataset (Chen et al., 2023), which is constructed 400

on the SoundSpaces platform based on real-world 401

3D scans to obtain environmental audio. The 402

dataset includes 28,853/1,441/1,489 samples for 403

training/validation/testing, each consisting of clean 404

text, reverberant audio, and panoramic camera 405

angle images. Following (Chen et al., 2022), we 406

remove out-of-view samples and divide the test set 407

into test-unseen and test-seen, where the unseen 408

set injects room acoustics depicted in novel images 409

while the seen set only contains the scenes we 410

have seen in the training stage. We convert the 411

text sequence into the phoneme sequence with an 412

open-source grapheme-to-phoneme conversion 413

tool (Sun et al., 2019) 2. 414

Following the common pratice (Ren et al., 2019; 415

MoonInTheRiver, 2021), we conduct preprocess- 416

ing on the speech and text data: 1) extract the spec- 417

trogram with the FFT size of 1024, hop size of 256, 418

and window size of 1024 samples; 2) convert it to 419

a mel-spectrogram with 80 frequency bins; and 3) 420

extract F0 (fundamental frequency) from the raw 421

waveform using Parselmouth tool 3. 422

Model Configurations We extract the mel- 423

spectrogram from the raw waveform and set the 424

hop size and frame size to 256 and 1024 in respect 425

of the sample rate 16kHz. The size of the phoneme 426

vocabulary is 73. The dimension of phoneme em- 427

beddings and the hidden size of the visual-text 428

2https://github.com/Kyubyong/g2p
3https://github.com/YannickJadoul/

Parselmouth
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Method Test-Seen Test-Unseen ParamsMOS(↑) RTE (↓) MCD (↓) MOS(↑) RTE (↓) MCD (↓)

GT 4.34±0.07 / / 4.24±0.07 / / /
GT (voc.) 4.18±0.05 0.006 1.46 4.19±0.07 0.008 1.50 /

WaveNet 3.85±0.09 0.091 4.61 3.78±0.12 0.110 4.69 42.3M
Transformer-S 3.92±0.07 0.068 4.57 3.80±0.06 0.077 4.68 32.38M
Transformer-B 3.98±0.06 0.061 4.53 3.90±0.07 0.066 4.62 41.36M
Transformer-L 4.02±0.08 0.056 4.37 3.95±0.07 0.061 4.50 56.96M
Transformer-XL 4.05±0.07 0.047 4.35 4.00±0.05 0.053 4.39 115.12M

Table 1: Comparison between the diffusion WaveNet and diffusion transformers sweeping over model config(S,
B, L, XL). All models remove the pre-training stage and other conditions not related to backbone in training and
inference remain the same.

transformer block are both 256. We use the pre-429

trained ResNet18 as an image feature extractor. As430

for the pitch encoder, the size of the lookup table431

and encoded pitch embedding are set to 300 and432

256. In the denoiser, the number of transformer-B433

layers is 5 with the hidden size 384 and head 12.434

We initialize each transformer block as the iden-435

tity function and set T to 100 and β to constants436

increasing linearly from β1 = 10-4 to βT = 0.06.437

We have attached more detailed information on the438

model configuration in Appendix B439

Pre-training, Fine-tuning, and Inference Dur-440

ing the pre-training stage, we pre-train the encoder441

for 120k steps and the decoder for 160k until con-442

vergence. The diffusion probabilistic models have443

been trained using 1 NVIDIA A100 GPU with a444

batch size of 48 sentences. In the inference stage,445

we uniformly use a pre-trained BigvGAN-16khz-446

80band (Lee et al., 2022) as a vocoder to transform447

the generated mel-spectrograms into waveforms.448

4.2 Scalable Diffusion Transformer449

We compare and examine diffusion transformer450

sweeping over model config(S, B, L, XL), and451

conduct evaluations in terms of audio quality and452

parameters. Appendix A gives the details of the453

model configs. The results have been shown in Ta-454

ble 1. We have some observations from the results:455

(1) Increasing the depth and number of layers in456

the transformer can significantly enhance the per-457

formance of the diffusion model, resulting in an458

improvement in both objective metrics and subjec-459

tive metrics, which demonstrates that expanding460

the model size enables finer-grained room acoustic461

modeling. (2) Our proposed diffusion transformer462

outperforms WaveNet backbone under similar pa-463

rameters across both test-unseen and test-seen sets,464

significantly in the rt60 metric. We attribute this to 465

the fact that instead of directly concatenating the 466

condition input like WaveNet, we replace standard 467

layer norm layers in transformer blocks with adap- 468

tive layer norm to regress dimension-wise scale and 469

shift parameters from the sum of the embedding 470

vectors of diffusion step and encoder output, which 471

can better incorporate the conditional information, 472

as proven in GANs (Brock et al., 2018; Karras et al., 473

2019). 474

4.3 Model Performances 475

In this study, we conduct a comprehensive com- 476

parison of the generated audio quality with other 477

systems, including 1) GT, the ground-truth au- 478

dio; 2) GT(voc.), where we first convert the 479

groud-truth audio into mel-spectrograms and then 480

convert them to audio using BigvGAN; 3) Diff- 481

Speech (MoonInTheRiver, 2021), one of the 482

most popular DDPM based on WaveNet; 4)ProD- 483

iff (Huang et al., 2022c), a recent generator-based 484

diffusion model proposed to reduce the sampling 485

time; 5)Visual-DiffSpeech, incorporate visual-text 486

fusion module into DiffSpeech; 6) Cascaded, the 487

system composed of DiffSpeech and Visual Acous- 488

tic Matching(VAM) (Chen et al., 2022). The results, 489

compiled and presented in Table 2, provide valu- 490

able insights into the effectiveness of our approach: 491

(1) As expected, the results in the test-unseen 492

set do poorer than the test-seen part because there 493

are invisible scenarios among the test-unseen set. 494

However, our proposed model has achieved the 495

best performance compared to baseline systems in 496

both sets, indicating that our model generates the 497

best-perceived audio that matches the target envi- 498

ronment from written text. (2) Our model surpassed 499

TTS diffusion models(i.e.DiffSpeech and ProDiff) 500

across all metric scores, especially in terms of RTE 501
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Method Test-Seen Test-Unseen
MOS (↑) RTE (↓) MCD (↓) MOS (↑) RTE (↓) MCD (↓)

GT 4.34±0.07 / / 4.24±0.07 / /
GT(voc.) 4.18±0.05 0.006 1.46 4.19±0.07 0.008 1.50

DiffSpeech 3.79±0.08 0.104 4.65 3.67±0.05 0.120 4.71
ProDiff 3.76±0.13 0.121 4.67 3.65±0.06 0.137 4.72
Visual-DiffSpeech 3.85±0.09 0.091 4.61 3.78±0.12 0.110 4.69
Cascaded 3.61±0.08 0.071 5.13 3.59±0.08 0.082 5.25

ViT-TTS 3.95±0.06 0.066 4.52 3.86±0.05 0.076 4.59

Table 2: Comparison with baselines on the SoundSpaces-Speech for Seen and Unseen scenarios. The diffusion step
of all diffusion models is set to 100. We use the pre-trained model provided by VAM for the evaluation of cascaded.

values. This suggests that conventional diffusion502

models in TTS do poorly in modeling room acous-503

tic information, as they mainly focus on audio con-504

tent, pitch, energy, etc. Our proposed visual-text505

fusion module addresses this challenge by injecting506

visual properties into the model, resulting in a more507

accurate prediction of the correct acoustics from508

images and high-perceived audio synthesis. (3)509

The results of comparison with Visual-DiffSpeech510

highlight the advantages of our choice of trans-511

former and self-supervised pre-training. Although512

Visual-DiffSpeech adds the visual-text module, the513

choice of WaveNet and the lack of a self-supervised514

pre-training strategy make it perform worse in515

predicting the correct acoustics from images and516

synthesizing high-perceived audio. (4) The cas-517

caded system composed of DiffSpeech and Visual518

Acoustic Matching model visual properties is bet-519

ter than other baselines. However, compared to our520

proposed model, it performed worse in both test-521

unseen and test-seen environments. This suggests522

that our direct visual text-to-speech system elimi-523

nates the influence of error propagation caused by524

the cascaded manner, resulting in high-perceived525

audio. In conclusion, our comprehensive evalua-526

tion results demonstrate the effectiveness of our527

proposed model in generating high-quality audio528

that matches the target environment.529

4.4 Low Resource Evaluation530

Training visual text-to-speech models typically re-531

quires a large amount of parallel target environment532

image and audio training data, while there may be533

very few resources due to the heavy workload. In534

this section, we prepare low-resource audio-visual535

data (1h/2h/5h) and leverage large-scale text-only536

and audio-only data to boost the performance of the537

visual TTS system, to investigate the effectiveness538

of our self-supervised learning methods. The re- 539

sults are compiled and presented in Table 3, and we 540

have the following observations: 1)As training data 541

is reduced in the low-resource scenario, a distinct 542

degradation in generated audio quality could be wit- 543

nessed in both test sets (test-seen and test-unseen). 544

2) Leveraging orders of magnitude text-only and 545

audio-only data with self-supervised learning, the 546

ViT-TTS achieve RTE scores of 0.082 and 0.068 547

respectively in test-unseen and test-seen, showing 548

a significant promotion regardless of the unseen 549

scene. In this way, the dependence on a large num- 550

ber of parallel audio-visual data can be reduced for 551

constructing visual text-to-speech systems.

Method MOS (↑) RTE (↓) MCD (↓)

Finetune with 1 hour data

Test-Seen 3.72±0.05 0.092 5.04
Test-Unseen 3.67±0.06 0.101 5.11

Finetune with 2 hours data

Test-Seen 3.75±0.06 0.089 4.85
Test-Unseen 3.70±0.07 0.097 4.89

Finetune with 5 hours data

Test-Seen 3.83±0.05 0.068 4.65
Test-Unseen 3.73±0.09 0.082 4.72

Table 3: Low resource evaluation results.
552

4.5 Case Study 553

We provide two examples of generation sampled 554

from a large empty room with significant rever- 555

beration in the Test-Seen environment depicted in 556

Figure 2, and have the following observations: 1) 557

Mel-spectrograms produced by ViT-TTS are no- 558

ticeably more similar to the target counterpart. 2) 559

Moreover in challenging scenarios with invisible 560
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Figure 2: Visualizations of the ground truth and generated mel-spectrograms by different Visual TTS models. The
text corresponding to the first line in test-seen is "it is so made that everywhere we feel the sense of punishment"
while the second line in test-unseen is "the task will not be difficult returned david hesitating though i greatly fear
your presence would rather increase than mitigate his unhappy fortunes ".

scene images, cascaded systems suffer severely561

from the issue of noisy and reverb details missing,562

which is largely alleviated in ViT-TTS.563

4.6 Ablation Studies564

We conduct ablation studies to demonstrate the565

effectiveness of several key techniques on the Test-566

Unseen set in our model, including the encoder pre-567

training(EP), decoder pre-training(DP), visual in-568

put, and random image. The results of both subjec-569

tive and objective evaluations have been presented570

in Table 4, and we have the following observations:571

1) Removing the self-supervised encoder and de-572

coder pre-training strategy results in a decline in all573

indicators, which demonstrates the effectiveness574

and efficiency of the proposed pre-training strat-575

egy in reducing data variance and promoting model576

convergence. 2) Without the input of RGB-D im-577

age and removing all of the modules related to the578

image causes a distinct degradation in RTE values,579

which demonstrates that our model successfully580

learns acoustics from the visual scene.

Method MOS (↑) RTE (↓) MCD (↓)

GT(voc.) 4.18±0.07 0.008 1.50

ViT-TTS 3.86±0.05 0.076 4.59
w/o EP 3.82±0.07 0.078 4.63
w/o DP 3.83±0.06 0.081 4.65
w/o Visual 3.78±0.07 0.102 4.68
w/ RI 3.73±0.08 0.103 4.75

Table 4: Ablation study results. EP, DP, and RI are
encoder pre-training, decoder pre-training, and random
images respectively.

581

Furthermore, we conducted a more detailed ex-582

ploration of our model’s processing and reasoning583

about different patches in the RGB-D images. To 584

achieve this, we deliberately substituted the target 585

image with random images, allowing us to deter- 586

mine whether the model can derive meaningful rep- 587

resentations from visual inputs. Our findings show 588

that after replacing the target image with a random 589

image, the performance of our model significantly 590

degraded, indicating that our model could model 591

the room acoustic information of visual input. 592

5 Conclusion 593

In this paper, we proposed ViT-TTS, the first visual 594

text-to-speech synthesis model that aimed to con- 595

vert written text and target environmental images 596

into audio that matches the target environment. ViT- 597

TTS complemented the phoneme sequence with 598

the visual information to generate high-perceived 599

audio, opening up new avenues for practical ap- 600

plications of AR and VR, as it allows for a more 601

immersive and realistic audio experience. To miti- 602

gate the data scarcity for training visual TTS tasks 603

and model visual acoustic information, we 1) in- 604

troduced a self-supervised learning framework to 605

enhance both the visual-text encoder and denoiser 606

decoder; 2) leveraged the diffusion transformer 607

scalable in terms of parameters and capacity to 608

learn visual scene information. 609

Experimental results demonstrate that ViT-TTS 610

achieved new state-of-the-art results, outperform- 611

ing cascaded systems and other baselines regardless 612

of the visibility of the scene. With low-resource 613

data (1h, 2h, 5h), ViT-TTS achieves comparative 614

results with rich-resource baselines. To this end, 615

ViT-TTS provided a solid foundation for future vi- 616

sual text-to-speech studies, and we envision that 617

our approach will have far-reaching impacts on the 618

fields of AR and VR. 619
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6 Limitation and Potential Risks620

As indicated in the experimental setup, we utilized621

ResNet-18 as our image feature extractor. While it622

is a classic extractor, there may be newer extractors623

that perform better. In future work, we will explore624

the use of superior extractors to enhance the quality625

of generated audio.626

Moreover, our pre-trained encoder and decoder627

are based on the SoundSpace-Speech dataset,628

which, as described in the dataset section, is not629

sufficiently large. To address this limitation in fu-630

ture work, we will pre-train on a large-scale dataset631

to achieve better performance in low-resource sce-632

narios.633

ViT-TTS lowers the requirements for visual text-634

to-speech generation, which may cause fraud and635

scams by impersonating someone else’s voice. Fur-636

thermore, there is the potential for leading to the637

spread of false information and rumors.638
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A TRANSFORMER CONFIGURATION865

The details of transformer denoisers are shown in866

Table 5, while B, M, L, and XL means the base,867

medium, large, extra large respectively.

Model layers Hidden Size Heads

Transformer-S 4 256 8
Transformer-B 5 384 12
Transformer-L 6 512 16

Transformer-XL 8 768 16

Table 5: Diffusion Transformer Configs.868

B ARCHITECTURE869

We list the model hyper-parameters of ViT-TTS in870

Table 6.871

C DIFFUSION POSTERIOR872

DISTRIBUTION873

Firstly we compute the corresponding constants874

respective to diffusion and reverse process:875

αt =

t∏
i=1

√
1− βi σt =

√
1− α2

t (6)876

The Gaussian posterior in diffusion process is877

defined through the Markov chain, where each iter-878

ation adds Gaussian noise.879

q(x1, · · · ,xT |x0) =
T∏
t=1

q(xt|xt−1),

q(xt|xt−1) =N (xt;
√
1− βtxt−1, βtI)

(7)

880

We emphasize the property observed by (Ho881

et al., 2020), the diffusion process can be computed882

in a closed form:883

q(xt|x0) = N (xt;αtx0, σtI) (8)884

Applying Bayes’ rule, we can obtain the forward885

process posterior when conditioned on x0886

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

= N (xt−1; µ̃t(xt,x0), β̃tI),

(9)

887

where µ̃t(xt,x0) = αt−1βt

σt
x0 +888

√
1−βt(σt−1)

σt
xt, β̃t =

σt−1

σt
βt889

Algorithm 1 Training procedure

1: Input: The denoiser ϵθ, diffusion step T and
variance condition c.

2: repeat
3: Sample x0 ∼ qdata, ϵ ∼ N (0, I)
4: Take gradient descent steps on ∇θ||ϵ −

ϵθ(
√
αtx0 +

√
1− αtϵ, c, t)||.

5: until convergence

Algorithm 2 Sampling

1: Input: The denoiser ϵθ, and variance condition
c.

2: Sample xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: if t = 1 then
5: z = 0
6: else
7: Sample z ∼ N (0, I)
8: end if
9: Sample xt−1 = 1√

αt
(xt −

1−αt√
1−αt

ϵθ(xt, c, t)) + σtz

10: end for

D DIFFUSION ALGORITHM 890

E EVALUATION MATRIX 891

E.1 Evaluation Metrics 892

We measure the sample quality of the generated 893

waveform using both objective metrics and subjec- 894

tive indicators. The objective metrics we collected 895

are designed to measure varied aspects of wave- 896

form quality between the ground-truth audio and 897

the generated sample. Following the common prac- 898

tice of (Huang et al., 2022c; MoonInTheRiver, 899

2021; Popov et al., 2021), we randomly select a 900

part of the test set for objective evaluation, here is 901

50. We provide the following metrics: (1) RT60 902

Error(RTE)-the correctness of the room acoustics 903

between the predicted waveform and target wave- 904

form’s RT60 values. RT60 indicates the reverbera- 905

tion time in seconds for the audio signal to decay 906

by 60 dB, a standard metric to characterize room 907

acoustics. We estimate the RT60 directly from 908

magnitude spectrograms of the output audio, using 909

a model trained with disjoint SoundSpaces data. 910

(2) Mel Cepstral Distortion(MCD)-measures the 911

spectral distance between the synthesized and refer- 912

ence mel-spectrum features. The utilization of RTE 913

is solely intended for evaluating the room acoustic 914

performance of the generated audio, and as an ad- 915
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Hyperparameter ViT-TTS

Visual-Text Encoder

Phoneme Embedding 256
Pre-net Layers 3
Pre-net Hidden 256

Visual Conv2d Kernel (7, 7)
Visual Conv2d Stride (2, 2)

Encoder Layers 4
Encoder Hidden 256

Encoder Conv1d Kernel 9
Encoder Conv1D Filter Size 1024

Encoder Attention Heads 2
Encoder Dropout 0.1

Variance Predictor
Variance Predictor Conv1D Kernel 3

Variance Predictor Conv1D Filter Size 256
Variance Predictor Dropout 0.5

Spectrogram Denoiser

Diffusion Embedding 256
Transformer Layers 4
Transformer Hidden 256

Transformer Attention Heads 8
Position Embedding 256

Scale/Shift Size 256

Total Number of Parameters 32.38M

Table 6: Hyperparameters of ViT-TTS models.

ditional measure, we have incorporated the MCD916

metric to assess the quality of the mel-spectrogram.917

For subjective metrics, we use crowd-sourced918

human evaluation via Amazon Mechanical Turk,919

where raters are asked to rate Mean Opinion920

Score(MOS) on a 1-5 Likert scale.921

E.2 RT60 Estimator922

Following (Chen et al., 2022), we first encode the923

2.56s speech clips as spectrograms, process them924

with a ResNet18 (Oord et al., 2018) and predict925

the RT60 of the speech. The ground truth RT60 is926

calculated with the Schroeder (Schroeder, 1965).927

We optimize the MSE loss between the predicted928

RT60 and the ground truth RT60.929

E.3 MOS Evaluation930

To probe audio quality, we conduct the MOS (mean931

opinion score) tests and explicitly instruct the raters932

to “focus on examining the audio quality, natural-933

ness and whether the audio matches with the given934

image.”. The testers present and rate the samples,935

and each tester is asked to evaluate the subjective936

naturalness on a 1-5 Likert scale.937

Our subjective evaluation tests are crowd-938

sourced and conducted via Amazon Mechanical939

Turk. These ratings are obtained independently940

for model samples and reference audio, and both941

are reported. The screenshots of instructions for942

testers have been shown in Figure 3. A small subset943

of speech samples used in the test is available at 944

https://ViT-TTS.github.io/ 945
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Figure 3: Screenshots of subjective evaluations.
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