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Abstract

Hierarchical forecasting problems arise when time series compose a group struc-
ture that naturally defines aggregation and disaggregation coherence constraints
for the predictions. In this work, we explore a new forecast representation, the
Poisson Mixture Mesh (PMM), that can produce probabilistic, coherent predic-
tions; it is compatible with neural forecasting innovations, and defines simple ag-
gregation and disaggregation rules capable of accommodating hierarchical struc-
tures, unknown during its optimization. We perform an empirical evaluation to
compare the PMM to other hierarchical forecasting methods on Australian domes-
tic tourism data, where we obtain a relative improvement of nearly 20 percent.

1 Introduction and Motivation

There are several cases where forecast users need simultaneous forecasts throughout a hierarchy
or group structure. The coherence between the predictions is critical for the user’s trust. Some
examples of hierarchical forecasting problems include retail demand where sales are tracked at the
product and geographic levels (Seeger et al., 2017); electricity price forecasting where predictions
are needed at different regional levels (Ben Taieb & Koo, 2019; Jeon et al., 2019).

The main goal of hierarchical forecasting is to leverage available information across all the levels
of the structure, to produce coherent forecasts. Prior solutions to the challenge depend on two-stage
approaches where base forecasts are created and later reconciled. More recent work extended the
generation of probabilistic hierarchical forecasts into single and simplified models. Some limitations
that we find in current solutions are (i) their efficiency, as any new hierarchical structure of interest
would require fitting a whole new model, (ii) their accuracy, as the models tend to use restrictive
probabilistic models, to enable reconciliation. In this work we explore a Deep Poisson Mixture
Network (DPMN) solution for hierarchical forecasting, as we envision that its following characteristics
can help to tackle the mentioned challenges:

1. Probabilistic Coherence: The Poisson Mixture Mesh (PMM) defines a joint distribution
across all levels of the time series structures. And by construction, it guarantees probabilis-
tic coherence of its predictions, through its simple aggregation and disaggregation rules.

2. Enhanced Accuracy: The PMM is a flexible and powerful improvement over available hier-
archical methods capable of producing coherent, probabilistic forecasts that rely on strong
assumptions on the distributions, like Gaussian noise, that enable its reconciliation strate-
gies. Additionally, the PMM representation is independent of the model that supports and
can leverage the rich literature on neural forecasting models.

3. Efficiency: Finally, the PMM can accommodate unrevealed hierarchical structures during its
optimization. Its aggregation and disaggregation rules also allow users to easily generate
any new marginal distribution across the hierarchy. In contrast, other more complex ap-
proaches require the hierarchical structure in advance, and changes to the structure need to
fit a whole new specialized model.
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Figure 1: A simple three level time series hierarchical structure, with four bottom level variables.
The disaggregated bottom variables are marked with gray background. In this description each node
represents non overlapping series for a single point in time, other indices can be used like locations.

The remainder of the paper is structured as follows. Section 2 introduces notation and reviews
relevant literature on hierarchical forecasting. Section 3 describes the DPMN model. In Section 4 we
provide an empirical evaluation on the Australian Tourism hierarchical data, where we showcase the
advantages of our method. Finally, in Sections 5 and 6 we discuss future work and conclude.

2 Literature Review

2.1 Hierarchical Forecasting Notation

A hierarchical time series, is a multivariate time series that satisfies linear aggregation constraints.
The aggregation is typically depicted with a tree structure, but with group structures beyond strict
hierarchies, it may not necessarily be described by a tree (Hyndman et al., 2014; Athanasopoulos
et al., 2017; Spiliotis et al., 2020). A hierarchical multivariate time series can be denoted by the
vector y[a,b],t = [y>[a],t | y

>
[b],t ]> ∈ RN , where a, b, t stand for the single aggregate, bottom and

time indices for the time series y, and [a], [b], [t] listed indices respectively. With the total number
of series in the hierarchy N = Na + Nb, where Na is the number of aggregated series and Nb
the number of bottom series, that are at the most disaggregated level possible. The hierarchical
aggregation constraints have the following convenient matrix representation:

y[a,b],t = Sy[b],t ⇔
[
y[a],t

y[b],t

]
=

[
Ssum

INb

]
y[b],t, (1)

The matrix S ∈ R(Na+Nb)×Nb aggregates the bottom level series to the series above, it can be
decomposed into a summing matrix Ssum and an identity matrix INb . For a simple example, hier-
archy described by Figure 1, where each parent node is the sum of its children. In this example the
dimensions are Na = 3, Nb = 4, and the hierarchical, aggregated and base series are respectively

yTotal,t = yb1,t + yb2,t + yb3,t + yb4,t

y[a],t = [yTotal,t, yb1,t + yb2,t, yb3,t + yb4,t]
ᵀ

y[b],t = [yb1,t, yb2,t, yb3,t, yb4,t]
ᵀ

The summing matrix of the Figure 1 example can be written as:

S =


Ssum

INb

 =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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2.2 Reconciliation Strategies

Prior solutions to the hierarchical forecasting challenge follow a two-stage process, where first a
set of base forecasts ŷ[a,b],t ∈ RNa+Nb is created and then revised into coherent forecasts ỹ[a,b],t

through a reconciliation method. The reconciliation can be compactly expressed by

ỹ[a,b],t = SPŷ[a,b],t (2)

where S ∈ R(Na+Nb)×Nb is the hierarchical aggregation matrix and P ∈ RNb×(Na+Nb) is a projec-
tion matrix determined by the reconciliation strategies. The most common reconciliation methods
can be classified into top-down, bottom-up and alternative reconciliation approaches.

• Bottom-up: The simple bottom-up strategy (NaiveBU; Orcutt et al. 1968; Dunn et al. 1976),
first generates bottom level forecasts and then aggregates them to produce predictions for
all the series in the hierarchical structure. Here P = [0Nb×Na | INb ].

• Top-down: The top-down strategy (TD; Gross & Sohl 1990; Fliedner 1999), distributes the
total forecast, and then disaggregates it down the hierarchy using proportions that can be
historical or forecasted. In this strategy P = [pNb×1 | 0Nb×(Na+Nb−1)]. This method has
several variants, depending on the way the proportions p are created, like the average of
historical proportions, proportions of historical averages, or the forecasted proportions.

• Alternative: The more recent middle-out strategies (MO; Hyndman & Athanasopoulos
2017), treat the second stage reconciliation as an optimization problem for the projection
matrix P. These reconciliation techniques include among others the least squares recon-
ciliation (Hyndman et al., 2011), the minimum trace reconciliation (MinT; Wickramasuriya
et al. 2019) and the empirical risk minimization approach (ERM; Ben Taieb & Koo 2019),
that relaxes unbiasedness assumptions in MinT.

Despite the advancements in post-processing methods, there are still fundamental limitations. First,
most post-process reconciliation methods produce point rather than probabilistic forecasts, with
some exceptions (Gneiting & Katzfuss, 2014; Taieb et al., 2017; Panagiotelis et al., 2020). Second,
the mentioned methods learn the model parameters of the base level forecasts independently, missing
the opportunity to share a common model that leverages information across all the time series in the
hierarchical structure. Finally, most post-processing reconciliation strategies do not consider the
model parameters obtained during the first stage but only their predictions.

2.3 Hierarchical Neural Forecasting

In the last decade, neural network-based forecasting methods have become ubiquitous in large-
scale forecasting applications. Neural forecasting has transcended the boundaries of industry into
academia, as it has redefined the state-of-the-art in many practical tasks, and forecasting competi-
tions (Benidis et al., 2020; Makridakis et al., 2018, 2020). The latest contributions on neural hier-
archical forecasting have incorporated the reconciliation strategies to the models. Methods like the
Simultaneous Hierarchically Reconciled Quantile Regression (SHARQ; Han et al. 2021) and Hierar-
chically Regularized Deep Forecasting (HIRED; Paria et al. 2021) augment the training loss function
with quadratic approximations to the hierarchical constraints, while the Hierarchical End-to-End
learning (HierE2E; Rangapuram et al. 2021) method imposes exact hierarchical constraints to the
predictions through a projection in a single end-to-end model. None of the architectures and meth-
ods mentioned are readily usable for large-scale applications. For instance, the architectures do not
use the forking sequences optimization technique (Wen et al., 2017), and the HierE2E reconciliation
projection scales poorly as it needs to receive all the time series of the hierarchy simultaneously.

2.4 Multi-horizon Quantile Recurrent Forecaster

Many scalability and accuracy improvements of sequence modeling have been incorporated into
the MQ-Forecaster family (Wen et al., 2017). The methods of the family produce probabilistic
forecasts using non parametric quantile regression (Koenker & Bassett, 1978). In spite of major
advances in forecast accuracy for large-scale applications, the estimated quantiles are not additive
and ensuring the hierarchical coherence of quantile regressors would potentially imply the need to
fit a network for the marginal distributions associated to each hierarchical structure of interest, or
coherency regularization, which encourages but does not guarantee coherence.
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Our primary goal is then to create a probabilistic hierarchical forecasting model that is accurate, and
efficient, by extending the proven MQ-Forecaster family.

3 Poisson Mixture Mesh Model

3.1 Poisson Mixture Mesh

The foundation of PMM model is the assumption that the joint distribution of a multivariate time series
y[b],[t], is described by a Poisson Mixture distribution. The mixture first determines a latent categor-
ical variable K that selects a state, and conditional on the selection an independent Poisson random
variable that determines the observations. Using mixing weights wk and rate λb,k,t parameters the
joint likelihood can be parametrized:

P
(
y[b],[t]

)
=

Nλ∑
k=1

P(K = k)P
(
y[b],[t] |K = k

)
=

Nλ∑
k=1

wk
∏

(b,t)∈B

(
(λb,k,t)

yb,t
exp−λb,k,t

(yb,t)!

) (3)

We denote such Poisson Mixture distributed variable as y[b],[t] ∼ PM(w[k], λ[b],[k],t). We describe
properties of the Poisson Mixture distribution that make it exceptionally suited for the hierarchical
forecasting task below.

3.2 Probabilistic Properties

Under conditional independence assumption and the unmixing property of the parameters w[k] and
λ[b],[k],t, we show in the Appendix A that the marginal distributions follow the simple aggregation
and disaggregation rules:

• Aggregation Rule: Let a multivariate time series y[b],[t] follow the PMM then aggregated
levels satisfy

y[a], t = Ssumy[b],t ∼ PM(w[k],Ssumλ[b],[k],t) (4)

with Ssum ∈ RNa×Nb the hierarchical aggregation matrix.

• Disaggregation Rule: Let the most aggregated level time series yTotal,t follow the PMM, then
l-th level series can be built with the proportions p(l)

[b],t ∈ RNb by

y[b], t = p
(l)
[b],tyTotal,t ∼ PM(w[k],p

(l)
[b],t � λTotal,[k],t) (5)

with proportions 0 ≤ p(l)bi,t,
∑
bi
p
(l)
bi,t

= 1 and � a multiplication over the b-th dimension.

3.3 Deep Poisson Mixture Network

The PMM offers a solution to model the high dimensional regression problem

P(y[b],[t:t+h] | y[b],[:t],x
(h)
[:t] ,x

(f)
[:t] ,x

(s)) (6)

where y[b],[t:t+h],y[b],[:t],x
(h)
[:t] ,x

(f)
[:t] ,x

(s) represent future observations of the multivariate time se-
ries, observations of the target up until time t, the past covariates, known future information and
static covariates, respectively. It is fully general and compatible with the MQ-Forecaster model
family (Wen et al., 2017), for which we only need a few adjustments.

For this work, we combine the PMM with the convolutional encoder version of MQ-Forecaster
(MQCNN) into the Deep Poisson Mixture Network (DPMN). To alleviate the computational burden of
optimizing for a full joint distribution from Equation (3), simpler variants need to be devised (Varin
et al., 2011). The learning objective is implied by the different versions of the PMM that we design,
we describe the variants in detail in Section 3.4.
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3.4 Poisson Mixture Mesh Variants

The PMM aggregation and disaggregation rules, described in Section 3.2, allow for applying any of
the post-processing reconciliation strategies from Section 2.2. Yet, we can further improve the DPMN,
by augmenting the model’s architecture or optimization with the said strategies.

• Naive Bottom-Up:
The DPMN-NaiveBU model is estimated exclusively on the bottom-level series that are
treated as conditionally independent from one another, however for a single time series
its time dependencies are still estimated.

Optimization:

P
(
y[b],[t]

)
=
∏
b∈[b]

P
(
yb,[t]

)
=
∏
b∈[b]

(

Nλ∑
k=1

wk
∏
t∈[t]

Poisson (yb,t|λb,k,t)) (7)

• Group Bottom-Up:
Given that the prediction intervals of the NaiveBU version are excessively wide, we created
the GroupBU version of the model to help the PMM learn a learn a better correlation structure
of the bottom-level series. The DPMN-GroupBU model learns a joint distribution for groups
g of bottom-level series and uses a group sampling strategy for the network’s SGD opti-
mization. The independence treatment between the groups, maintains the tractability of the
likelihood computation.

Optimization:

P
(
y[b],[t]

)
=
∏
g∈[g]

P
(
y[g],[t]

)
=
∏
g∈[g]

(

Nλ∑
k=1

wk
∏

(b,t)∈g×[t]

Poisson (yb,t|λb,k,t)) (8)

During the hierarchical reconciliation stage, the DPMN’s predictions of the upper levels are
created using bottom-up strategy and the aggregation rule:

ỹ[a,b],t ∼ PM(w[k],Sλ̂[b],[k],t) (9)

4 Empirical Evaluation

For the empirical evaluation of our proposed methods, we use a publicly available dataset from exist-
ing hierarchical forecasting literature. This allows to compare against well-performing benchmarks
from the literature and test the DPMN model on real data with natural hierarchical structures.

The dataset we use is Tourism-L, a detailed Australian Tourism dataset with origin in a National
Visitor Survey, managed by Tourism Research Australia1 (Tourism Australia, Canberra, 2019). As
described in Table 1, the dataset contains 555 monthly series from 1998 to 2016, it is organized by
geography and purpose of travel. The geographical hierarchy comprises seven states, divided further
into 27 zones and 76 regions. This dataset has been referenced by important hierarchical forecasting
studies like the one of the MinT reconciliation strategy (Wickramasuriya et al., 2019).

Table 1: Australian Tourism flows (Tourism-L).
Geographical

Division
Series per
Division

Series per
Purpose Total

Australia 1 4 5
States 7 28 35
Zones 27 108 135
Regions 76 304 380

Total 111 444 555

1The Tourism-L dataset can be publicly accessed in the MinT reconciliation web page.
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Table 2: Empirical evaluation of probabilistic, hierarchical forecasts on the Australian Tourism
Flows (Tourism-L). Mean continuous ranked probability score (CRPS) for predictions at each ag-
gregation level, averaged over 8 runs. The best result is highlighted (lower is better). Only the best
performing among the state-of-the-art reconciliation strategies is shown.

Level DPMN-GroupBU DPMN-NaiveBU Hier-E2E Best Reconciliation

Overall 0.1260± 0.0046 0.1578± 0.0084 0.1520± 0.0032 0.1609 (ARIMA-MinT-shr)
1 (geo.) 0.0411± 0.0110 0.1130± 0.0197 0.0810± 0.0053 0.0438 (ARIMA-MinT-shr)
2 (geo.) 0.0624± 0.0070 0.1189± 0.0161 0.1030± 0.0030 0.0816 (ARIMA-MinT-shr)
3 (geo.) 0.1122± 0.0049 0.1466± 0.0131 0.1361± 0.0024 0.1433 (ARIMA-MinT-shr)
4 (geo.) 0.1571± 0.0032 0.1759± 0.0125 0.1752± 0.0026 0.2036 (ARIMA-MinT-shr)
5 (prp.) 0.0747± 0.0056 0.1315± 0.0060 0.1027± 0.0062 0.0830 (ARIMA-MinT-shr)
6 (prp.) 0.1100± 0.0044 0.1416± 0.0058 0.1403± 0.0047 0.1479 (ARIMA-MinT-shr)
7 (prp.) 0.1901± 0.0046 0.1908± 0.0052 0.2050± 0.0028 0.2437 (ARIMA-MinT-shr)
8 (prp.) 0.2600± 0.0039 0.2428± 0.0045 0.2727± 0.0017 0.3406 (ARIMA-MinT-shr)

4.1 Evaluation Metrics

The evaluation of the model’s predictions is based on the quantile loss (QL); consider the estimated
cumulative distribution function F̂i,t for an observation yi,t, then the quantile loss is defined by:

QL(F̂i,t, yi,t)q = 2
(
1{yi,t ≤ F̂−1i,t ( q )} − q

)(
F̂−1i,t ( q )− yi,t

)
(10)

We further summarize the evaluation, for convenience of exposition and to ensure the comparability
of our results with the existing literature, using the continuous ranked probability score (CRPS;
Matheson & Winkler 1976). The CRPS measures the predictive power of forecast distributions and
has desirable theoretical guarantees (Gneiting & Ranjan, 2011). Following notation from Laio &
Tamea 2007, the CRPS2 is defined as

CRPS(F̂i,t, yi,t) =

∫ 1

0

QL(F̂i,t, yi,t)qdq (11)

4.2 Training Methodology and Hyperparameter Optimization

We set the training window to 202 observations (16 years) preceding the generation of the 12 (1 year)
steps ahead forecast. To train the neural network, we minimize the negative log likelihood of the
PMM variant, using stochastic gradient descent with Adaptive Moments (ADAM; Kingma & Ba 2014).
The network is trained for 3,000 epochs, with 2 NVIDIA K80 GPUs and a grouped batch size of 4
regions and 4 purposes each. The DPMN is implemented using MXNet (Tianqi Chen et al., 2015) and
the learning rate and random initialization hyperparameters are selected using HYPEROPT (Bergstra
et al., 2011), a Bayesian optimization library that efficiently explores the hyperparameters using
tree-structured Parzen estimators. The hyperparameter search process trains on data from 1998 to
2014 and evaluates the validation performance on data from 2015. Once the optimal hyperparameter
values are determined, we retrain shifting the training window forward one year and predict on data
from 2016 to obtain the final CRPS scores.

4.3 Forecasting Results

We compare against the next methods: (1) NaiveBU that produces univariate bottom-level time
series forecasts independently and then sums them according to the hierarchical constraints, a dis-
tribution is generated using Gaussian assumptions on the errors. (2) MinT (Wickramasuriya et al.,
2019) that reconciles unbiased independent forecasts and minimizes the variance of the forecast
errors. (3) ERM (Ben Taieb & Koo, 2019) that improves on the unbiasedness assumption of the base
forecasts in MinT and aims to minimize the bias-variance trade-off of the errors. (4) PERMBU (Taieb
et al., 2017) that performs a probabilistic hierarchical aggregation and (5) HierE2E (Rangapuram
et al., 2021) that combines a deep vector autoregressive approach with hierarchical constraints 3.

2In practice the evaluation of the CRPS uses numerical integration technique, that discretizes the quantiles
and treats the integral with a Riemann approximation, averaging over uniformly distanced quantiles.

3The HierE2E benchmark models and experiments are available in an GluonTS library extension.
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We report two variants of the DPMN model as an ablation experiment to better analyze the source of
the forecast accuracy improvements. The first version, the DPMN-NaiveBU, treats the bottom level
series as independent and the DPMN-GroupBU version that considers groups of time series during its
likelihood estimation, both methods obtain probabilistic coherent predictions through their aggrega-
tion rule using bottom-up reconciliation.

Table 2 contains the CRPS scores for the predictions at each aggregation level through the
Tourism-L hierarchy. The top row reports the overall CRPS score (averaged across all the hier-
archy levels). We highlight the best result in bolds.

The DPMN-GroupBU improves the overall CRPS by near 17.1 percent against the second-best alter-
native. Its predictions show uniform performance gains across all the levels of the hierarchy. Our
results confirm previous observations from the community that a shared model, capable of learning
from all the time series jointly improves the predictions over those from univariate time series meth-
ods. Additionally the comparison 4 between the NaiveBU and the GroupBU versions of the method
show that an expressive joint distribution framework capable of leveraging the hierarchical struc-
ture of the data is also beneficial for the forecast accuracy, when compared to the more restrictive
Gaussian distributions based methods from the hierarchical forecasting literature.

5 Future Work

We constructed the DPMN extending the MQ-Forecaster architecture. Despite the signifi-
cant improvements in computational efficiency and accuracy for large-scale applications the
MQ-Forecaster family may not be suited for small datasets. Given the time constraints, we re-
stricted our current experiments to the Tourism-L dataset. We are looking forward to perform more
experiments on smaller and larger datasets to continue strengthening this paper’s findings.

The current version of the GroupBU model defines the groups by simple geographical distances.
However, other exciting approaches could arise when using distances over different dimensions.
New ways of describing the groups could create interesting connections with nearest neighbors and
clustering literature.

We envision that we can include interactions of time series beyond the predefined groups implied
by the GroupBU approach to enhance the ability of the PMM to model the joint likelihood of the
hierarchically structured time series while maintaining its estimation tractable. The top-down disag-
gregation method to learn aggregate level Poisson rates and bottom level proportions could help the
model capture higher hierarchical relationships inherited from the structure’s upper levels.

6 Conclusion

We have introduced a novel method for probabilistic hierarchical forecasting, the Poisson Mixture
Mesh (PMM). Our approach is a joint probability distribution that defines simple aggregation and dis-
aggregation rules for its predictions. By construction PMM produces coherent probabilistic forecasts.
It provides a flexible and expressive representation capable of highly accurate predictions and is
highly efficient since it is scalable and can accommodate hierarchical structures unrevealed during
its optimization. Additionally, the method is compatible with innovations in neural forecasting as a
minimal adaptation process is needed to augment existing deep forecasting architectures. We empir-
ically showcase the advantages of PMM through its application with the DPMN model, which improves
by 17.1 percent compared with previous state-of-the-art results on Australian domestic tourism data,
a hierarchical dataset from the literature.

The original implementation of MinT is available in the R package hts (Hyndman et al., 2020), it automati-
cally selects ARIMA and ETS univariate base forecast methods (Hyndman & Khandakar, 2008).

4Figure 2 and Figure 3 in the Appendix show a qualitative exploration of the two versions of the model.
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A Appendix

Poisson Mixture Mesh Properties

To describe the joint distribution across all levels of the hierarchical time series structure we assume
that for a given time series yb,[t], its non overlapping observations are distributed Poisson mixture,
denoted yb, t ∼ PM(w[k],λb,[k],t), the observations are conditionally independent given the Pois-
son rates, the mixing weights w[k] are shared between the observations, and their respective Poisson
components do not mix5, under these assumptions we show in A.1, A.2 and A.4 the properties are
summarized in Table A1:

A.1 Unmixing Property

To describe the joint distribution across all levels of the time series structure we assume that for
a given time series yb,[t] with non overlapping observations yb, t ∼ PM(w[k],λb,[k],t), the obser-
vations are conditionally independent once the Poisson rates are known, the mixing weights w are
shared between the observations, and their respective Poisson components do not mix. We prove the
properties from Table A1.
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Figure 1: Representation of the un-mixing property of the Poisson components of the PMM.

A.2 Joint Distribution

Let two bottom random variables have a PM distribution with mixing weights w[k] and rates
λb,[k],t,λb,[k],t′ , that is yb,t ∼ PM(w[k],λb,[k],t) and yb,t′ ∼ PM(w[k],λb,[k],t′), then under the
conditional independence assumption, the independence between the weights and the bottom series
and the deterministic evolution property the joint distribution of the variables is:

P (yb,t, yb,t′) =
∑
k

wkPoisson(yb,t| λb,k,t)Poisson(yb,t′ | λb,k,t′)

Proof

P (yb,t, yb,t′)

=
∑
k

∑
l

P (yb,t, yb,t′ | λb,k,t, λb,l,t′)P (λb,k,t|λb,l,t′)P (λb,l,t′)

=
∑
k

P (yb,t| λb,k,t)P (yb,t′ | λb,k,t′)P (λb,k,t′)

=
∑
k

wkPoisson(yb,t| λb,k,t)Poisson(yb,t′ | λb,k,t′)

The first equality is the chain rule of probability, the second equality comes from the deterministic
evolution property, the final part comes from the conditional independence property. By induction,

P (yb,[t]) =

Nλ∑
k=1

wk

NT∏
t=1

Poisson(yb, t| λb,k,t)

5The un-mixing property of the Poisson components refers to the assumption that the count populations of
a given Poisson component are deterministic.
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A.3 Covariance Structure

From the joint distribution for yb,t, yb,t′ it can be shown using linearity of expectation and the
Poisson distribution properties that the covariance structure of the bottom series can be described by
the covariance structure of the Poisson rates:

Cov(yb,t, yb,t′) =

Nλ∑
k=1

wk(λb,k,t − λ̄b,[k],t)(λb,k,t′ − λ̄b,[k],t′)

where λ̄b,[k],t =
∑
k wkλb,k,t and λ̄b,[k],t′ =

∑
k wkλb,k,t′ . This shows that in spite of the strong

assumptions made for the PMM the model is capable of describing a rich correlation structure from
the dispersion inherited of the mixture.

A.4 Aggregation Rule

Let two bottom level random variables have a PM distribution with mixing weights w[k] and rates
λb,[k],t, λb′,[k],t, that is yb,t ∼ PM(w[k],λb,[k],t) and yb′,t ∼ PM(w[k],λb′,[k],t), then under the
conditional independence assumption, the independence between the weights and the bottom series
and the deterministic evolution property we have the following aggregation rule:

yb,t + yb′,t ∼ PM(w[k],λb,[k],t + λb′,[k],t)

Proof

P (yb,t + yb′,t)

=
∑
k

∑
l

P (yb,t + yb′,t| λb,k,t, λb′,l,t)P (λb,k,t|λb′,l,t)P (λb′,l,t)

=
∑
k

P (yb,t + yb′,t| λb,k,t, λb′,k,t)P (λb′,k,t)

=
∑
k

wkPoisson(yb,t + yb′,t| λb,k,t + λb′,k,t)

Table A1: Summary properties of the Mixed Poisson State-Space Model

1. Marginal distribution yb,t ∼ PM(w[k],λb,[k],t)

2. Assumptions

2.1 Conditional Independence yb1,t|λb1,k,t ⊥⊥ yb2,t|λb2,h,t if b1, b2 do not overlap

2.2 Unmixing property P (λb,k,t|λb,h,t) = δk,h Poisson components do not mix
where δk,h representing the Kronecker delta

3. Joint Distribution P (yb,[t]) =
∑Nλ
k=1 wk

∏NT
t=1 Poisson(yb, t| λb,k,t)

4. Hierarchical Coherence

4.1 Aggregation Rule y[a], t = Ssumy[b],t ∼ PM(w[k],Ssumλ[b],[k],t)

4.2 Disaggregation Rule y[b], t = p[b],tyTotal,t ∼ PM(w[k],p[b],t � λTotal,[k],t) )
with shares 0 ≤ pbi ,

∑
bi
pbi,t = 1 and �

multiplication in the b-th dimension

5. Covariance Structure Cov(yb,t, yb,t′) =
∑Nλ
k=1 wk(λb,k,t − λ̄b,[k],t)(λb,k,t′ − λ̄b,[k],t′)
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Hierarchically Linked Series for AAAHol

Figure 2: Example of a hierarchically linked time series from the Tourism-L dataset. The top
row shows the total number of tourist visits in Australia (TotalAll), the second row shows the visits
to Australia for the North South Wales state (AAll), the third row shows the holiday visits in the
metropolitan area of New South Wales (AAAll), the fourth row shows the total visits to Sydney
(AAAAll), the final row shows the holiday visits to Sydney (AAAHol). Quantile predictions are
shown in colored lines. The DPMN-NaiveBU performs well in disaggregated series and means, but
makes the predictions of the aggregated series unnecessarily wide.
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Figure 3: Example of a hierarchically linked time series from the Tourism-L dataset. The top
row shows the total number of tourist visits in Australia (TotalAll), the second row shows the visits
to Australia for the North South Wales state (AAll), the third row shows the holiday visits in the
metropolitan area of New South Wales (AAAll), the fourth row shows the total visits to Sydney
(AAAAll), the final row shows the holiday visits to Sydney (AAAHol). Quantile predictions are
shown in colored lines. The DPMN-GroupBU performs well in disaggregated series and aggregate
series.

14


	Introduction and Motivation
	Literature Review
	Hierarchical Forecasting Notation
	Reconciliation Strategies
	Hierarchical Neural Forecasting
	Multi-horizon Quantile Recurrent Forecaster

	Poisson Mixture Mesh Model
	Poisson Mixture Mesh
	Probabilistic Properties
	Deep Poisson Mixture Network
	Poisson Mixture Mesh Variants

	Empirical Evaluation
	Evaluation Metrics
	Training Methodology and Hyperparameter Optimization
	Forecasting Results

	Future Work
	Conclusion
	Appendix
	Unmixing Property
	Joint Distribution
	Covariance Structure
	Aggregation Rule


