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ABSTRACT

Fragmented tools and models and complex decision-making with incomplete and
heterogeneous information often hinder the drug discovery process. Large Lan-
guage Models offer promising capabilities in commonsense reasoning and tool
integration, yet their application in drug discovery remains constrained by chal-
lenges such as being incapable of handling large tool space, limited planning ca-
pabilities based on scientific intentions, and unscalable evaluation. We introduce
GENIEAGENT, a drug discovery agent that integrates a wide range of molecule de-
sign models and bridges the user intentions to concrete actions by navigating the
large skill ecosystem. By unifying disparate tools under a single natural language
interface, GENIEAGENT enables cross-tool reasoning and supports complex sci-
entific workflows. We also propose an evaluation framework simulating drug dis-
covery conversations, based on real-world experiments. A large-scale assessment,
validated by expert annotations, demonstrates that GENIEAGENT reliably meets
the majority of molecular engineers’ needs with high scientific accuracy and ro-
bustness.

1 INTRODUCTION

The early development stage of a drug highly depends on the models and tools that are used to
measure the properties of molecules, rank candidate molecules, and generate revised or brand-new
sequence designs with desired properties. These capabilities encompass both non-differentiable
operations, such as bioinformatics tools, and differentiable models, including fine-tuned machine
learning networks. However, these tools are often developed independently, trained on different
datasets, and implemented using diverse architectures (Liu et al., 2023; McNaughton et al., 2024).
This fragmentation disrupts the drug discovery workflow, slows down the feedback loop, and creates
barriers to tool accessibility and usability (Tu et al., 2024). Beyond the challenge of integrating
molecular design tools, drug discovery is inherently an open-ended exploration that demands careful
reasoning and planning, requiring scientists to compose individual actions and tools to effectively
address complex scientific objectives.

Large Language Models (LLMs) have been shown to perform well for commonsense reasoning,
natural language understanding and tool using (Swan et al., 2023; Rajendran et al., 2024). Though
many works have been utilizing LLM agents to connect tools for scientific discovery (Abbasian
et al., 2024; Li et al., 2024; Ferruz & Höcker, 2022; Huang et al., 2024), several bottlenecks exist
that prevent broad adoption of the LLM agents in scientific discovery processes. Firstly, existing
works support only a few tools, without the feasibility and robustness of navigating an ecosystem
with a large amount of expert-curated tools. Secondly, the orchestration of those tools follows an
expert-defined order, preventing complex tool planning and interaction from vague user intention.
Additionally, the drug discovery process is open-ended, and domain expertise is required to use and
evaluate the system; there is a lack of efficient approaches to evaluate multi-turn scientific discovery
agents.

In this work, we propose GENIEAGENT, a drug discovery agent connecting to a large-scale domain-
specific tool ecosystem with scientific intention awareness. We first curate a collection of drug
discovery models and tools, enabling large-scale molecule scoring, ranking, and generative capabil-
ities. These tools cover a wide spectrum of molecule design steps, involving both large and small
molecule spaces. Various types of models are incorporated, e.g. , generative, scoring, searching, to
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address a wide range of design objectives such as hit expansion, lead optimization, compound filter-
ing and ranking. The comprehensive suite of capabilities enables us to navigate an unprecedented
action space for drug discovery agents.

We then propose novel agent design innovations to tackle the challenges of the scientific discovery
agents mentioned above. To map the high-level and ambiguous scientific intention to actionable tool
uses, we introduce a synthesized intention index that provides reference intention and solutions to
facilitate the reasoning and planning of the agent. We design mechanisms to enable the navigation
of a large collection of tools with specialized skill-specific agents and metadata-inspired searching
tools. We finally introduce the hint routing nodes, a new paradigm of providing routing guidance to
the agent by appending pseudo reminder messages to the memory. Hint nodes combine the benefits
of fixed workflow and open-ended exploration. This lightweight approach guides the agent with
critical actions and plans in mind, preventing hallucination while keeping flexibility. These efforts
unify the separate drug discovery tools under a single natural language interface, enabling cross-tool
reasoning and orchestrating a scientific workflow with multiple capabilities.

To evaluate GENIEAGENT, we also propose and perform a large-scale evaluation mechanism that
simulates the drug discovery conversation based on real-world drug discovery experiments. We
create test cases consisting of scientific intentions, model selections, prepared data, and model con-
figurations induced from real-world scientific research logs. We then propose an evaluation agent
bounded with information leaking tools that gradually provide more complete and clear goals and
data, simulating a vague-to-concrete scientific exploration process. This evaluation framework en-
ables us to do large-scale scientific discovery agent evaluation and ablation studies.

We perform quality assessments with both automatic pipelines and expert ratings based on scientist-
in-the-loop conversations with chemists and molecular biologists who perform real-world drug dis-
covery campaigns. The result indicates that GENIEAGENT can deliver the majority of the needs of
molecular biologists or medicinal chemists with high reliability and robustness in terms of scientific
factuality. Compared with existing agent designs like ReAct, the unique design of GENIEAGENT
demonstrates significant superiority for overall success rate and turn-level quality.

2 RELATED WORKS

Existing works explore using LLM agents for scientific discovery (Gao et al., 2024). Some works
frame the scientific discovery tasks in a closed environment with verifiable outcomes, such as code
generation for scientific problems Laurent et al. (2024); Swan et al. (2023); Romera-Paredes et al.
(2024) or conducting research in a virtual simulated environment Jansen et al. (2024). Some works
focus on training LMs to directly equip them with scientific reasoning and action capabilities, e.g.
manipulating protein sequence or changing protein properties (Ma et al., 2024). Boiko et al. (2023)
incorporate tools for Google searching, Python code execution, searching documentation and call-
ing experiment API for autonomous chemical research. McNaughton et al. (2024); Kang & Kim
integrate a number of tools to an agent with a simple framework such as ReAct (Yao et al., 2023).
Similar designs are used for various scientific tasks, such as catalyst design Sprueill et al. (2023),
gene-editing experiments Huang et al. (2024), genomics question answering Jin et al. (2024), and
material design Kang & Kim (2024). Ye et al. (2023) rely on a single LLM to do all tasks while spe-
cific training data and architectures are needed for different tasks, limited by its poor performance
and scalability. The simplicity of the agent design, the limited integrated tools’ scope, and the lack of
iterative dynamic conversation capabilities make the adaptation and application of existing scientific
discovery agents particularly challenging.

3 DRUG DISCOVERY CAPABILITY ECOSYSTEM

3.1 SPECIALIZED DRUG DISCOVERY MODELS

Antibody design and small molecule design are both crucial yet highly challenging aspects of drug
discovery. Antibodies offer high specificity and affinity, but designing them requires balancing
stability, manufacturability, and immune evasion (Frey et al., 2023). Small molecule design in-
volves navigating vast chemical space to find compounds with optimal pharmacokinetics, target
specificity, and minimal off-target effects Pinheiro et al. (2023). Both processes involve multiple
constraints, making them ideal for AI-driven approaches like GENIEAGENT, which can efficiently
explore molecular spaces, predict interactions, and suggest novel candidates.
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GENIEAGENT orchestrates a wide range of drug discovery models that span the entire drug design
pipeline for both antibodies and small molecules, from sequence design to property optimization.
We lay out model details and input-output specifications in Table 4.

Generative models proposing candidate molecules. The method suite includes generative mod-
els that propose candidate molecules, such as an antibody design method with implicit guidance
(Tagasovska et al. (2024), Table 4, row 1), affinity-guided antibody maturation (Gruver et al.
(2023b), row 2), and a latent 3D generative approach for small molecule design (Nowara et al.
(2024), row 3).

Property prediction models. These generative tools are complemented by multiple property pre-
diction models, including antibody developability assessment using molecular surface descriptors
(Park & Izadi (2024), row 4), antibody expression and antibody-antigen complex prediction (Gru-
ver et al. (2023a), row 5), and antibody profiling based on hydrophobicity and charge descriptors
(Raybould & Deane (2022), row 6).

Structural analysis methods. Additional structural analysis methods provide insights into anti-
body properties, including ABangle for orientation characterization (Dunbar et al. (2013), row 7),
PEP-Patch for electrostatic surface patch estimation (Hoerschinger et al. (2023), row 8), and spa-
tial aggregation propensity scoring for identifying aggregation-prone regions (Waibl et al. (2022),
row 9). We include multiple tools for molecular docking and scoring. Protein structures are pre-
pared using SPRUCE (Baell & Holloway (2010), row 10), ensuring compatibility with docking
pipelines. Ligand docking is performed using POSIT (row 11) and HYBRID (row 12), which
generate ligand poses within binding pockets(Baell & Holloway, 2010). Docking poses are then
evaluated using HYBRID scoring (row 13), as well as GNINA (rows 14 and 15), which integrates
deep learning-based pose scoring with traditional docking methods (McNutt et al., 2021). Finally,
metabolite prediction models (row 16) assist in evaluating small molecule modifications, identify-
ing metabolic transformations of drug candidates and their corresponding probabilities(Coley et al.,
2017; Djoumbou-Feunang et al., 2019).

Together, this diverse set of tools provides a comprehensive suite for generative design, molecular
property assessment, and docking-based screening in drug discovery.

3.2 AUXILIARY AND GENERAL TOOLS

We introduce additional tools to access enhanced scientific knowledge and support personalized user
queries. We also include a Python code interpreter tool to execute Python scripts to facilitate ad-hoc
calculation, data processing of the provided file, presenting aggregated results and open-ended data
analysis.

Scientific search tools. We build semantic indexes for PubMed and ScienceDirect and develop a
search tool to retrieve the relevant context and evidence for the user query. Another tool connects
to DuckDuckGo and provides web search results to access broad, up-to-date information. All these
search tools return a list of relevant paragraphs.

Personalized execution retrieval tools. GENIEAGENT also supports personalized scientific discov-
ery by allowing users to query and reason based on their previous experiments. Scientists’ actions
and experiments are saved for future queries. To enable the scientists to interact with their historic
experiments and previous efforts, we introduce a user log retrieval tool to query the database and
retrieve recent experiment logs related to a specified model or around a specific time. The func-
tion would return the records of the matched experiments, including input, produced results, and
metadata.

4 GENIEAGENT DESIGN

GENIEAGENT is designed to assist drug discovery scientists in progressively conducting experi-
mentation, predicting, and processing actions through a multi-turn conversation between users and
the agent. The conversation starts with a high-level scientific intention from the user and ends after
appropriate actions are conducted. Different from the agents that take initial instructions and then
autonomously act, our design puts scientists in the loop. The agent is expected to respond and adapt
to additional information, requests, and instructions provided during each user’s turn.

We introduce the overall architecture of GENIEAGENT in section 4.1. We then introduce three
aspects of novel techniques to address the key challenges of large-scale scientific discovery agent
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Sentence: The drug cartel funneled millions 
of dollars of illegal funds through a network 

of shell companies in different countries.

Event Type: Laundering

Event Definition: Money Laundering is the 
process of moving illicit funds through 

complex financial transactions, disguising 
the origin of the money and making them 

seem legitimate.

Parent Event: Fraud. Sons: Electoral Fraud, 
Laundering, Tunneling.

So what is the trigger?

Drug discovery tool ecosystem

🤖
Agent 

Foundation

Agent

Bridging Scientific 
Intention and Actions

Navigating Tool Ecosystem

Guided Routing 
with Hint Nodes

Reference 
intentions & 

actions

...

Action 
verification 

hints

Specialized 
assistant for 
a capability🤔

Intentions
? 👩🔧

Actions

Condition 
check: before critical 

action / 

Action 
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Hallucination 
prevention hints

Hint nodes to add pseudo hint 
messages to the agent memory

before critical 
actions after model 

execution

key data 
provided

Search capabilities by 
accepted data🔎

Search by 
produced data

Search by 
description

Search by 
execution time

Retrieve evidence 
from associated paper

Validate input Launch execution on VM

For each sophisticated capability

Figure 1: Agent design of GENIEAGENT. The agent design uses a synthesized intention-action pool
to inform the agent of possible trajectories to bridge scientists’ high-level intention with concrete
steps. GENIEAGENT uses index-inspired searching tools and specialized agents for each capability
to make sure the agent scales and can handle large action space. Finally, it uses hint nodes to add
timely reminders to the memory to guide the agent routing.

design. First, the significant gap between the users’ high-level intention and concrete tool-calling
actions challenges the reasoning and planning capabilities of the agent. We bridge this gap by re-
trieving reference intention-action pairs shown in section 4.2. Second, the large number of supported
tools makes it difficult for LLMs with existing agent design, e.g. ReAct, to navigate the ample ac-
tion space. The specialized assistant design and indexing tools introduced in section 4.3 address the
challenge of the large action space. Finally, we use hint nodes as part of the agent routing graph
described in section 4.4, balancing guidance and flexibility to keep the conversation on track toward
the goal and prevent hallucination.

4.1 OVERALL ARCHITECTURE

GENIEAGENT is built on top of an LLM with an assigned system role (shown in Appendix A.2.1)
as the primary agent and a memory that keeps the conversation histories. A state dictionary is main-
tained to explicitly track the action plan (e.g. prepare protein structures with SPRUCE, then generate
ligand poses within binding pockets using POSIT) and values (e.g. heavy and light chains, antigen
sequences) to be used as potential input for the models. The action space state parameters help the
agent keep progressing for multi-step actions, and the values make the essential input unchanged
and easily recalled after long conversations.

We design a supervisor agent architecture with shared memory among agent profiles. The primary
agent has access to the auxiliary and general tools introduced in section 3.2. The primary agent fo-
cuses on planning actions according to the user’s intention and assists in exploring agent capabilities.
For each sophisticated model in section 3.1, the specialized agent is created to handle model-specific
queries. We further describe the interactions between two kinds of agents in section 4.3.

4.2 BRIDGING SCIENTIFIC INTENTION AND ACTIONS

The expanding nature, large option pool and fine-grained difference of the supporting capabilities
in the tool ecosystem make it unrealistic for users to be aware of potential concrete actions. The
users’ utterances, especially in the early stage of the conversation, would mostly be about their high-
level scientific intentions without mentioning specific models to be used. The agent is required to
create action plans according to the intentions by understanding the potential sub-steps, requesting
clarification and additional input from users, and navigating skill information. We synthesize a pool
of initial intentions and corresponding action chains and use them as references for the planning
agent to bridge the intention-to-action gap.

Constructing intention-action pairs. There is no existing data that includes drug discovery in-
tentions and corresponding steps to address them. To obtain a reasonable size of intention-action
pairs without expensive expert annotation, we propose a self-play agent to produce both intention
and action chains. According to the input and output specification defined as parts of the tools, we
first curate a set of valid action chains where the upstream model’s output data type overlaps with
the downstream model’s input. We then reversely generate potential intention that leads to an action
chain with a self-play agent based on GPT-4o. We provide the actions with related descriptions to
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enrich the context of the considered steps in the action chains, in addition to a few similar action
chains as negative examples to guide the LLM in generating an intention that only applies to the
target positive action chain.

Referencing similar intention and actions. When the primary agent responds to each turn, we find
the top intentions in the reference pool that semantically match the user query and then append the
selected intentions and their action chains as part of the conversation history. These references are
added before any tool-calling and reasoning of the primary agent so that the references benefit all
primary agent operations. Note that the reference retrieval module is not used as a tool, optionally
called by the primary agent, which would limit its effective scope. We also do not use the retrieval
results as in-context examples as part of the agent query since the query can fall into a wide range
of topics and may not directly benefit from the references.

4.3 NAVIGATING LARGE ACTION SPACE OF DRUG DISCOVERY CAPABILITIES

The size of the capability ecosystem is large, and many models can be hard to distinguish without
domain expertise or understanding the model details. Configurations of all capabilities might not
even fit in the context of some base LMs. Instead of binding all tools directly to the LLM, we use
searching utility tools inspired by different indexing of the capabilities to locate the appropriate con-
crete models. We offload model-specific tools, such as model-specific QA, receiving and validating
input data and launching execution, to specialized agents.

Metadata-indexed searching tools. We created multiple searching tools that return the appropriate
list of recommended capabilities given a query of model description, required input, or expected
output data formats. These utility tools are part of the primary agent to facilitate the action planning
stage. These categorizations based on different organizational criteria match the potential source of
a drug discovery initiative. When the scientist has a certain kind of data in hand, searching with
acceptable input can be recommended as the first step. For the tasks with a firm expectation of
certain types of results, categorizing capabilities by output would be called.

Specialized agents for capability-focused tasks. The supervising specialized agent design sepa-
rates the execution process from the planning phase done by the primary agent. The supervisor agent
separation design enables the scalability of GENIEAGENT to accommodate any number of drug dis-
covery capabilities. When new capabilities are added, there is no additional context window taken
for the primary agent as the model information is obtained through the metadata-indexed searching
tools. When responding to queries of a specific model (e.g. , asking about the training data being
used and the evaluation performance of the model) or executing a specific model, these capability-
specific tasks are done by the corresponding specialized agents without distracting and potentially
noisy information about other capabilities.

Sophisticated drug discovery capabilities, like the ML models, are complicated actions involving
acquiring, processing, and validating the input, data loading, and asynchronous execution in virtual
machines. A specialized agent is created for each sophisticated action with a separate system role
and access to the model-specific tools. The specialized agent is instructed to prompt the user to
provide the required input data, validate the input with a validation tool, and confirm the filled data
is correct. After receiving the confirmation, the specialized agent calls a launch tool to launch a
script on a virtual machine with the provided data.

After the primary assistant has confirmed the action plan, the execution is done by specialized as-
sistants for corresponding skills. The primary agent can choose to route to one of the specialized
assistants once an action plan is created. A proxy tool node for each specialized assistant is created
and bonded to the primary agent, where each tool calling would route the agent flow to the mapped
specialized assistant. When the current state is in a specialized agent, the router can choose to jump
out of it and route back to the primary agent if the specialized one detects that the user’s query is
beyond the focused scope.

4.4 GUIDED ROUTING WITH HINT NODES

Hint nodes to balance controlled flow and flexibility. Dynamic instructions to the agent emerge
on the fly depending on the outcome of upstream conversations. Including all instructions in the
static system role is not feasible. On the other hand, defining a fixed routing graph limits the gener-
alizability and flexibility of the agent. Thus, we introduce the hint routing nodes to guide the agent
with dynamic instruction by appending system turns to the conversation history with a reminder
message. The hint node is implemented as a routing node for the agent, if the certain condition is
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met, then the only operation of this node is to add a hint conversation turn. This technique enables
us to guide the agent with the following functions while keeping flexibility enabled by the strong
reasoning skills of the underlying LLMs.

Verifying critical actions. We require the agent to confirm that the user is satisfied with the pro-
duced action plan before entering specialized assistants to prepare the input and execute it. Ad-
ditionally, before launching the execution jobs given user-provided data, we require the agent to
confirm the inputs are correct from the user. To achieve both confirmations, before entering special-
ized assistants or execution, hint nodes are added to remind the agent to receive confirmation from
the users. The hind message is provided in Appendix A.2.3.

Following action plan. Since each skill’s execution can potentially require dozens of turns to receive
input, validate and launch the job, the primary agent could easily lose track of the remaining actions
in the plan. Thus, a hint node reminding the agent of the saved plan in the state is added after
routing back to the primary agent from a specialized one. The action plan is saved as a natural
language sentence right before entering any specialized agents. In the hint message, we retrieve the
plan from the tracked state and include it as part of the pseudo-utterance, as further elaborated in
Appendix A.2.4.

Handling hallucinated values. After receiving user input, such as heavy and light chain sequences,
those values are saved to the state memory of the agent. If the input to a drug discovery ML model
is not part of the user query, it could be hallucinated by the LLM if the user does not explicitly
ask the LLM to generate candidate values from scratch. In that case, a hallucination handling hint
node is added before executing the job to remind the agent to confirm the source of input values and
potentially correct values with unknown sources.

5 AUTOMATIC AGENT EVALUATION WITH MULTI-AGENT CONVERSATION
SIMULATION

To achieve a scalable and fine-grained agent conversation assessment for the drug discovery domain,
we need to have ground-truth results and a mechanism to handle multi-turn conversations. Existing
works either use human annotators to provide such ground truth or rewrite existing test instances for
enhanced diversity (Zhu et al.). However, there is no such dataset with drug discovery scientists’
intentions paired with experiments. When handling multi-turn conversations, most of the existing
works do not provide a fine-grained turn-wise evaluation. Some works simulate a close environ-
ment (Zhou et al., 2024), such as web and OS (Xie et al., 2024), or match the generated conversation
with reference multi-turn dialogue (Liu et al., 2024). However, these methods are infeasible to
extend to open-ended drug discovery tasks.

We propose a novel evaluation framework for the open-ended drug discovery setting consisting of
1) test case creation inspired by real-world drug discovery efforts illustrated in section 5.1, 2) multi-
agent high-quality scientific discovery conversation simulation that mimics the scientific thinking
processes shown in section 5.2, and 3) automatic scoring for outcome and process quality evaluation
introduced in section 5.3. In this section, we introduce the evaluation setup. We then report the auto-
matic evaluation results in section 6 and additionally provide human evaluation results in section 7.
This automatic evaluation framework enables scalable quality assessment of the agent design.

The end-to-end agent evaluation starts with an initial intention that the scientists would like to
achieve with the agent, carries out multi-turn conversation to concertize the action plan and ex-
plicitly observe the detailed intention, and ultimately takes the actions to perform corresponding
experiments.

5.1 TEST CASES CREATION INSPIRED BY REAL EXPERIMENTS

We create a set of test cases consisting of three items: 1) the initial scientific intentions, 2) the
prepared data (antibody sequence or PDB files) and configurations (such as model hyperparameters),
and 3) corresponding concrete model selection actions (such as one or more capabilities listed in
Table 4) based on the specified capability ecosystem. The prepared data and model selections are
based on experiment logs in real-world drug discovery efforts. However, the intentions that lead
to those actions are not recorded and would be expensive to annotate due to the expert cost. We
propose to generate those intentions as silver-labeled starting points for each conversation.

When scientists approach GENIEAGENT, they are mostly not even clear about their intention and
finalize the data to be used. To simulate the scientific thinking process and make the test cases more
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realistic, we need several versions of the intentions and data. These versions should include a clearer
and more concrete one with all the details possible, along with some versions with less information,
incorrect format and misleading instructions.

Real-world drug discovery experiments. We collect 343 drug discovery experiments performed
by scientists using the same drug discovery capability ecosystem introduced in section 3. These jobs
are launched by real biologists and bioinformatics scientists for real-world drug development. 54%
of these experiments focus on taking the heavy and light chains as inputs, 14.7% of these efforts
take a PDB file as input, and 11% of them work on SMILES sequence.

Iterative vague intention generation. Given the input and configurations of these experiments,
the intentions and goals of the scientists while these experiments are launched are not recorded.
We conduct an iterative process to reduce the information and details from the complete input and
model selection judgment to produce several versions of compromised and vague user intention.
We prompt a GPT-4o model to generate a summarized potential intention of the scientist. The
input prompt includes the model selection, model description and the type of the model (ranking,
scoring or generation). Given all these inputs, we generate two variants, a 1-2 sentence one and a
5-10 word one. Based on these two variants, we iterate the generation again by only providing the
generated abstract intentions and prompt the GPT-4o model to summarize the two intentions to be
more abstract and vague, producing another two variants of the user intentions.

Compromised input generation. User inputs, such as heavy chains, light chains, and SMILES
sequences, are what the scientists expect the agent to launch experiments on. These input arguments
are not prepared ahead of time, and the scientist might change their mind during the conversation
with the risk that the agent could hallucinate random input. To simulate the process of concertizing
the exact input, we iteratively generate several compromised versions reversely from the ground-
truth input and configurations. We use heuristic functions to compromise the input by removing an
input argument entirely, producing a shorter version, or replacing it with a similar but ungrounded
input generated by GPT-4o without any evidence.

With these techniques, we obtain four user intention variants and three user input variants. In total,
343 test cases with compromised intention and input are generated for conversation simulation.

5.2 MULTI-AGENT EXPERT CONVERSATION SIMULATION

🤖
Eval Agent

🤖
Main Agent

You are a drug 
discovery assistant …

Complete 
user input

Compromised 
user input Empty values

LLM 
generated 

intent

Abstract 
intent

More abstract 
intent

Multi-turn self-play

Get more concrete data 

Get more concrete intent 

Figure 2: Multi-agent expert conversa-
tion simulation.

We construct an evaluation agent acting as a drug dis-
covery scientist to chat with GENIEAGENT as illustrated
in figure 2. The evaluation agent is able to simulate the
scientific discovery process with the aid of an agent due
to 1) specialized system role and 2) iterative detail ex-
posure with tool use. The evaluation agent is based on
GPT-4o with two tools bound. It acts based on a sys-
tem role instruction that contains the most abstract in-
tention and most compromised input, both generated in
section 5.1. We provide a tool that could return a more
concrete user intention, and another tool that could re-
turn a more complete user input and configurations, for
the evaluation agent. The evaluation agent is instructed
to call these tools if it decides that more information or
clarification is needed. During the conversation, the evaluation agent treats the response from GE-
NIEAGENT as the user utterance, simulating the scientific discovery process where the scientist be-
comes more aware of their goals and finalizes their input choices. The simulated conversation ends
when GENIEAGENT finishes the execution of all planned actions or the evaluation agent produces
the ending signal, which is part of its system instruction. The results of the simulation would be a
multi-turn conversation and the ultimate capability selections made by the evaluating target agent
GENIEAGENT.

5.3 OVERALL AND TURN-LEVEL METRICS AND LLM-BASED SCORING

We evaluate the agent’s capabilities with metrics reflecting both ultimate and intermediate results
annotated by experienced drug discovery experts. For the end-to-end evaluation, overall success
rate is calculated to reflect the percentage of successful execution of the correct input arguments and
configuration parameters. To be successful, three conditions have to be met: 1) the agent chooses
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the same chain of capabilities as the ground-truth action chains in the test cases, 2) the input data
to all models when executing those models is correct, and 3) the configuration input to all models
must match the gold labels. We additionally report the model selection success rate to reflect the
percentage that the agent chooses the correct model(s) to meet users’ needs. The overall success is
a stricter criterion than the model selection success.

For turn-level intermediate performance, we annotate the quality of each turn according to the fol-
lowing dimensions. We then average ratings of each dimension across all turns from various simu-
lated conversations to produce the final turn-level scores. These dimensions include: 1) Factuality:
whether the output from the agent is free from scientific errors; 2) Progressiveness: whether the
output helps to make progress toward the ultimate goal of launching the correct experiment; 3) In-
formativeness: whether the output makes the user more clear about what happens and what will
happen without confusion about the agent’s actions.

We use an LLM as the judge for each quality dimension with separate system role profiles. An
expert-curated system role includes the definition of each metric, the comprehensive information
from the test cases (i.e. , ultimate model selection, complete input data, full configurations for the
selected models), and the instruction to rate the quality of each turn from 1-5. Previous turns are
also provided for better judgment of the target turn.

6 AUTOMATIC EVALUATION RESULT

6.1 EVALUATION SETUP

Baselines. We compare the performance of GENIEAGENT with two baselines supporting multi-turn
conversation. LLM with Tools is a simple agent based on GPT-4o with access to the tools that could
directly launch the supporting models described in section 3. The descriptions and IO specifications
of all capabilities are passed to the LM’s context. ReAct with Tools is an agent with the same
design as the first baseline but using a ReAct agent framework. Both comparing designs use the
same system role as GENIEAGENT.

6.2 RESULTS FROM AUTOMATIC EVALUATION ON SIMULATED DRUG DISCOVERY
CONVERSATIONS

Table 1: Drug discovery model orchestration performance for simulated conversation generated by
the multi-agent evaluation framework. We provide the tools that could accept input and invoke the
corresponding models for the two baselines. Overall scores are calculated by matching the ground-
truth input and model selection of the test cases. The turn-level ratings are averaged across LLM-
judged annotation for each turn’s quality in terms of actuality, progressiveness, and informativeness.
We use GPT-4o for all experiments.

Method Overall (0-100%) Turn-level (Averaged 1-5 ratings)
Overall SR Model Selection SR Factuality Progressiveness Informativeness

1 LLM with Tools 12 24 3.4 2.7 3.2
2 ReAct with Tools 14 34 3.1 3.1 3.5
3 GENIEAGENT 64 72 4.8 4.6 4.8

Table 1 presents the performance comparison for drug discovery model orchestration capabilities.
We observe that GENIEAGENT can achieve the user’s intended goals in most cases with an overall
success rate of 64% and a model selection success rate of 72%. GENIEAGENT also yields an almost
perfect rating for turn-level actuality and informativeness.

Though ReAct is better than plain LLM, both baselines perform much worse than GENIEAGENT
with at least a 50% difference for overall success rate. GENIEAGENT achieves 89% execution suc-
cess rate once the correct model is selected, while the ReAct agent’s execution success rate is 41%.
In case studies, we observe that plain LLM and ReAct agents tend to hallucinate input arguments
(such as generating a random SMILES sequence or small molecule chains), significantly jeopar-
dizing the execution success rate. The turn-level ratings of the two baselines are also significantly
worse than GENIEAGENT. Even though both baselines have access to the scientific searching tools
described in section 3.2, the factuality performance is still much worse than GENIEAGENT.
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Table 2: Drug discovery model orchestration performance for conversations with experts.

Method Overall (0-100%) Turn-level (Averaged 1-5 ratings)
Overall SR Model Selection SR Factuality Progressiveness Informativeness

GENIEAGENT 50 60 4.6 4.3 4.8

7 EXPERT RATINGS BASED ON EXPERT-INITIATED CONVERSATIONS

7.1 EVALUATION SETUP

Four experienced biologists conduct 14 sessions of free-form conversations with the GENIEAGENT.
They are not aware of the supported models and the scope of the drug discovery capability ecosys-
tem. They also do not have access to the descriptions or details of each model. Besides participating
in the conversation, the experts provide the ratings of whether the conversations end with their needs
solved and the ratings of each turn. The expert ratings follow the same metric design described in
section 5.3.

7.2 RESULTS FROM EXPERT EVALUATION

The performance is demonstrated in Table 2. We observe that the overall success rate and model se-
lection rate are lower than the ones generated by the multi-agent evaluation framework because the
experts’ questions are more open-ended, in which many questions fall out of the capabilities of GE-
NIEAGENT. The turn qualities mostly fall between 4 to 5, indicating the reliability and helpfulness
of GENIEAGENT.

8 ABLATION STUDIES

Table 3: Ablation study of various agent design choices.

Method Overall SR Model Selection SR

1 Fixed Workflow 39 68
2 No intention-action 48 57
3 No index search 37 45
4 No specialized agents 34 65
5 No hint nodes 57 70

6 GENIEAGENT 64 72

We study the effectiveness of the proposed technique in section 4 by ablation study. For fixed
workflow, we implement a sequential workflow consisting of several steps for executing a model in
the specialized agent. For “no index search”, we provide all capabilities as tools directly bind to the
primary agent.

The results in Table 3 demonstrate the following observations. 1) Using fixed workflow limits flexi-
bility and hurts the model execution performance, which is handled mainly by specialized agents. 2)
Removing reference intention-action retrieval hurts the model selection hit rate by 15 points, indicat-
ing the importance of the intention-to-action bridging. 3) Both index searching tools and specialized
agents are helpful when selecting the capabilities among the large set of available models. 4) The
hint nodes are crucial for keeping the execution on the right track since both hallucinated input and
divergent execution steps would compromise the execution success rate.

9 CONCLUSION

In this paper, we introduced GENIEAGENT, a novel and scalable drug discovery agent designed
to address the limitations of current drug discovery tools. By integrating multiple models under a
unified natural language interface, GENIEAGENT streamlines the drug discovery process, enabling
cross-tool reasoning, automated model orchestration, and personalized scientific assistance. Our
evaluation framework, simulating real-world drug discovery conversations, demonstrates the ro-
bustness and reliability of GENIEAGENT, with strong performance in both automated and expert-led
evaluations. The results of our large-scale study show that GENIEAGENT significantly outperforms
baseline agents, achieving high success rates in model selection and execution, and delivering accu-
rate and informative responses at each turn. Despite the challenges posed by open-ended questions,
GENIEAGENT consistently provided solutions to drug engineers’ needs, demonstrating its potential
as a powerful tool for accelerating early-stage drug development.

9
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A APPENDIX

A.1 DETAILS OF THE DRUG DISCOVERY MODELS USED IN THE TOOL ECOSYSTEM

We present the name, source, type, description, input and output data of all models used in the tool
ecosystem in Table 4.

Table 4: Machine learning models used as tools in GENIEAGENT for drug discovery.

Method Type Description Input Output

1 Property Enhancer
(PropEn) for
implicitly-guided
antibody generation
(Tagasovska et al.,
2024)

generative Uses an encoder-decoder approach to opti-
mize any property of an antibody by pairing
similar sequences based on the defined cri-
teria

heavy chain, light
chain (AHo-
numbered), property

heavy chain, light
chain, edit distance to
initial antibody

2 Antibody maturation
with guided sampling
Gruver et al. (2023b)

generative Samples from multi-task fine-tuned pro-
tein language model and uses the antibody-
antigen binding predictions for guidance

heavy chain, light
chain, target, ob-
jective to guide
sampling, regions
to redesign, max
number of edits,
hyperparameters

heavy chain, light
chain

3 Small molecule gen-
eration with neural
empirical Bayes
(NEBULA) (Nowara
et al., 2024)

generative Uses a latent 3D generative model for the
scalable generation of large molecular li-
braries around a seed compound of interest.
Sampling is performed in the learned latent
space of a vector-quantized variational au-
toencoder

SMILES SMILES

4 Developability
predictions (InSili-
coMA) Park & Izadi
(2024)

scoring Predicts antibody developability by assess-
ing a set of structural and physics-based
molecular surface descriptors

heavy chain, light
chain

electrostatic potential,
accessibility, binding
motifs, electrostatic
and hydrophobic
interactions

5 Antibody expression
and antibody-antigen
complex predic-
tion (Gruver et al.,
2023a)

scoring Uses a multi-task fine-tuned protein lan-
guage model to predict antibody-antigen
complex property prediction

heavy chain, light
chain, antigen se-
quence

probability of bind-
ing, binding KD,
expression probabil-
ity, expression yield

6 Therapeutic Antibody
Profiler (hydropho-
bicity & charge
descriptors) Raybould
& Deane (2022)

scoring A high-throughput computational developa-
bility assessment tool that assesses the
physicochemical “druglikeness” of an anti-
body candidate

heavy chain, light
chain

CDR length, patches
of surface hydropho-
bicity, patches of pos-
itive charge, patches
of negative charge and
structural charge sym-
metry

7 ABangle Dunbar et al.
(2013)

scoring Calculates the relative orientation between
the variable domains orientation for any an-
tibody and compares with all other known
structures

heavy chain, light
chain

abangle, main de-
scriptor, other meta-
data

8 PEP-Patch (elec-
trostatics estima-
tion) Hoerschinger
et al. (2023)

scoring Visualizes and quantifies the electrostatic
potential on the protein surface in terms of
surface patches, denoting separated areas of
the surface with a common physical prop-
erty

a topology with bonds
in PDB file, struc-
ture file or trajectory,
SMILES string used
to assign bond orders
to the topology

positive and negative
patch
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Table 5: Machine learning models used as tools in GENIEAGENT for drug discovery (continued).

Method Type Description Input Output

9 Hydrophobicity esti-
mation Waibl et al.
(2022)

scoring Computes the Spatial Aggregation Propen-
sity (SAP) score, a predictive measure of
protein aggregation based on molecular sim-
ulations. Identifies hydrophobic regions
prone to aggregation and estimates per-
residue contributions to overall hydropho-
bicity

heavy chain, light
chain

SAP score, estimated
hydrophobicity of
full Fv, per residue
decomposition,
aggregation-prone
region identification

10 Protein preparation
with SPRUCE Baell
& Holloway (2010)

scoring Automates the process of converting experi-
mentally solved or modeled protein and nu-
cleic acid structures into formats suitable
for downstream applications like docking or
molecular simulations

REC file OEDesignUnit

11 Small molecule dock-
ing with POSIT Baell
& Holloway (2010)

scoring Performs ligand docking by leveraging
known experimental binding modes to guide
the placement of small molecules in the
receptor binding site, improving accuracy
when structural information is available

REC file, SMILES docked ligand poses,
ranked by predicted
binding affinity

12 Small molecule
docking with HY-
BRID Baell &
Holloway (2010)

scoring Utilizes a combination of ligand-based and
structure-based docking approaches to pre-
dict binding poses, incorporating both recep-
tor shape and chemical similarity to known
binders for enhanced accuracy

REC file, SMILES docked ligand poses,
ranked by predicted
binding affinity

13 Scoring poses using
HYBRID Baell &
Holloway (2010)

scoring Evaluates docked ligand poses based on
a hybrid scoring function that considers
receptor-ligand interactions and known lig-
and similarities, producing affinity estimates
for each pose

protein PDB file, lig-
and PDB file

docking score, ranked
ligand poses

14 GNINA scoring Mc-
Nutt et al. (2021)

scoring Uses a deep learning-based scoring function
to evaluate docked ligand poses against a re-
ceptor, assigning a ranking score to reflect
binding affinity

protein PDB file, lig-
and PDB file

docking score, rank-
ing of ligand-protein
interactions

15 GNINA docking Mc-
Nutt et al. (2021)

scoring Performs molecular docking using a deep
learning-based scoring function to predict
the optimal binding pose of a ligand in a
protein’s binding site. The method outputs a
ranked list of poses based on predicted affin-
ity

REC path and
SMILES, scoring
function

file containing ligands
and pockets, ranked
poses

16 Drug metabolite
prediction Coley et al.
(2017); Djoumbou-
Feunang et al. (2019)

generative Predicts how a small-molecule drug design
gets metabolized by the liver and generates
structure(s) of drug metabolites and/or sites
of metabolism (nodes in the input structure)

SMILES metabolites,
metabolic reac-
tion description,
metabolite probabil-
ity, confidence scores

A.2 PROMPTS

A.2.1 SYSTEM ROLE OF THE PRIMARY AGENT

You are an assistant for scientists working on drug discovery. You need to use the provided tools
to find the helpful functions to help the scientist to call the functions and generate new molecule
sequences. If a user shows an intention to call a specific model, call the corresponding function
directly, do not ask for input needed for that model from the user.

A.2.2 SYSTEM ROLE FOR THE SPECIALIZED AGENT

You are a specialized assistant for handling the execution of the drug discovery model
MODEL NAME. The primary assistant delegates work to you whenever the user needs help to
execute MODEL NAME.

You will first introduce this model to the user using the information provided by the ‘intro-
duce MODEL ID‘ tool. Then you should ask the user to provide input arguments. Do not hal-
lucinate or guess the arguments, the arguments have to be part of the user input. After that, you will
need to validate the input arguments on your own with the ‘get input MODEL ID‘ tool. You will
then verify the input arguments with the user to obtain their confirmation. After getting confirmation,
you can execute the model with ‘execute MODEL ID‘ tool.

When you confirm the input arguments, use a markdown table to show the existing arguments.
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If you need more information or the user changes their mind, escalate the task back to the principal
assistant. Remember that execution isn’t completed until after the ‘execute MODEL ID‘ tool has
successfully been used.

If the user needs help, and none of your tools are appropriate for it, then ”CompleteOrEscalate” the
dialog to the host assistant. Do not waste the userś time. Do not make up invalid tools or functions.

A.2.3 HINT MESSAGE FOR VERIFYING CRITICAL ACTIONS

All inputs are provided for the MODEL ID model. Remember to request explicit confirmation to
make sure all inputs are correct before executing the model!

A.2.4 HINT MESSAGE FOR FOLLOWING ACTION PLAN

You just finish the execution of an action MODEL ID. Please recall that the complete action plan is
ACTION PLAN FROM MEMORY. Make sure you continue following the plan and executing the
next planned model.

A.2.5 HINT MESSAGE FOR HANDLING HALLUCINATED VALUES

A new value is saved to memory. If this value is not provided by the user explicitly or the user
explicitly asked you to generate this sequence, this value might be hallucinated. Do not include the
values in the input if you think they are generated incorrectly.
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