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Alleviating the Equilibrium Challenge with Sample Virtual
Labeling for Adversarial Domain Adaptation

Anonymous Author(s)∗

ABSTRACT
Numerous domain adaptive object detection (DAOD)methods lever-
age domain adversarial training to align the features to mitigate
domain gap, where a feature extractor is trained to fool a domain
classifier in order to have aligned feature distributions. The dis-
crimination capability of the domain classifier is easy to fall into
the local optimum due to the equilibrium challenge, thus cannot
effectively further drive the training of feature extractor. In this
work, we propose an efficient optimization strategy called Virtual-
label Fooled Domain Discrimination (VFDD), which revitalizes the
domain classifier during training using virtual sample labels. Such
virtual sample label makes the separable distributions less separable,
and thus leads to a more easily confused domain classifier, which
in turn further drives feature alignment. Particularly, we introduce
a novel concept of virtual label for the unaligned samples and pro-
pose the Virtual-H -divergence to overcome the problem of falling
into local optimum due to the equilibrium challenge. The proposed
VFDD is orthogonal to most existing DAOD methods and can be
used as a plug-and-play module to facilitate existing DAOD models.
Theoretical insights and experimental analyses demonstrate that
VFDD improves many popular baselines and also outperforms the
recent unsupervised domain adaptive object detection models.

CCS CONCEPTS
• Computing methodologies→ Object detection.
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1 INTRODUCTION
Object detection has shown great success in the deep learning era [2,
3, 30, 37, 38, 53]. However, these methods assumes that source do-
main and target domain have the identical data distribution, which
is not applicable in real-world scenarios. In addition, collecting
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Figure 1: Illustration of our motivation. In the case of Pen-
rose triangle, even identical objects are challenging to ideally
deceive domain classifiers (i.e., probabilities of domain clas-
sifier close to 0.5) due to variations in target angles, which in
turn provides less driving power to the feature extractor for
alignment and prevents effective optimization.

large amounts of labeled samples is a time-consuming and labori-
ous project. Unsupervised Domain Adaptation (UDA) [8, 12, 26, 34]
serves as a promising solution to solve this problem by transferring
knowledge from a labeled source domain to a fully unlabeled target
domain.

Regarding UDA, [1] conducted theoretical analysis, demonstrat-
ing that minimizing the domain divergence between the source and
target domains can effectively lower the upper bound of the target
domain error. Many UDA for object detection (DAOD) methods
[5, 19, 46, 48, 51] have recently attempted to learn domain invariant
feature representations within de facto detection frameworks, e.g.,
Faster RCNN [38] and Deformable DETR [54]. Inspired by the Gen-
erative Adversarial Networks (GANs) [16], adversarial learning has
been successfully applied for DAOD. The core idea behind adversar-
ial learning methods involves training a domain classifier (i.e,D) to
distinguish between the source (i.e, D𝑠 , domain label=1) and target
(i.e, D𝑡 , domain label=0) domains, while simultaneously training
the feature generator (i.e, G) to minimize the feature discrepancy
between the domains, aiming to fool the discriminator in a minmax
two-player game. Formally,

min
G
𝑑H (D𝑠 ,D𝑡 ) ∝ min

G
2(1 − min

𝑑∈D
𝑒𝑟𝑟 (𝑑 (𝑥)))

∝ min
G

max
𝑑∈D

𝑒𝑟𝑟 (𝑑 (𝑥))) (1)

Where 𝑒𝑟𝑟 (𝑑 (𝑥)) denotes the prediction error of the domain classi-
fierD andmin𝑑∈D 𝑒𝑟𝑟 (𝑑 (𝑥)) means the minimum prediction error
of an ideal domain classifier. It is worth noting that the domain di-
vergence 𝑑H (D𝑠 ,D𝑡 ) is inversely proportional to the error rate of the
domain classifier D. All of the existing DAOD methods generally
believe that directly fooling the domain discriminator to minimize
the H -divergence will help to align the domains. However, [31]
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claim that there is no guarantee that the two domains can be per-
fectly aligned due to the equilibrium challenge in adversarial
learning.

Taking the Penrose Triangle as an example in Figure 1, simply
due to different visual angles, the source domain may be recog-
nized as a ‘⌞’ while the target domain may be recognized as ‘△’.
Consequently, the domain classifier cannot be impeccably deceived,
leading to domain classification outcomes deviating significantly
from the ideal equilibrium point 0.5. Such imperfect classification
by the domain classifier in turn provides less driving power for align-
ment in the feature extractor, impeding effective optimization, even
though there are still not aligned samples in the feature space.
In other words, matching the feature distributions between do-
mains inevitably results in sub-optimal risk due to the equilibrium
challenge of adversarial learning, which makes it impossible to
completely confuse the domain classifier during training. This un-
aligned phenomenon would be more severe in cross-domain object
detection, given the complex combinations of various objects and
the differentiated scene layouts between domains.

To further verify the above observations, we conduct some exper-
iments on real cross-domain object detection scenarios. Figure. 2(a)
shows one representative example of the probability distribution
of instance-level features extracted by DAF [5] on the task from
Cityscapes [6] (i.e., domain label=1) to Foggy Cityscapes [40] (i.e.,
domain label=0). Ideally, the probabilities of instance-level features
obtained by adversarial alignment are evenly distributed around
0.5. However, in Figure 2(a), we can clearly observe that the predic-
tions of source and target are distributed around 0.5260 and 0.4743
(by observing the horizontal and vertical coordinates), respectively.
Therefore, a mechanism that could ideally fool the domain classifier
to re-energize the adversarial training of feature generator is highly
desired. This issue is rarely investigated in previous works, but it is
a meaningful topic worthy of attention.

In this paper, to solve the aforementioned problem, we propose a
simple but effective strategy named Virtual-sample Fooled Domain
Discrimination (VFDD) which aims to fool the domain classifier to
re-energize the feature generator during the training. Particularly,
as illustrated in Figure 3, instead of fooling the domain classifier
using real source and target samples, we propose to exploit vir-
tual domain samples, where we copy the “unaligned” samples, i.e.,
those far from the equilibrium point 0.5, as virtual samples, in each
mini-batch to be optimized/trained. The rational behind is that,
for the VFDD adversarial alignment, using the same instance (i.e.,
virtual vs. real) features of the source or the target domains for
alignment can naturally maximize the error rate of the domain
classifier D, which enables the features domain-invariant in the
course of the optimization. As a result, the detector will produce
more confusing instance features. One evidence is shown in Figure.
1(b), in which we implement the VFDD on DAF [5]. We can see that
the probability distributions of different domains are more similar,
which means that using the VFDD can better bridge the domain gap.
Besides, we provide a theoretical analysis of the proposed Virtual–
H -divergence that it has a smaller upper-bound than the standard
H -divergence. Therefore, the effectiveness of VFDD is guaranteed.
The proposed VFDD is universal and can be quickly embedded in
alignment-based unsupervised domain adaptive object detection

Figure 2: Visualization of the relationship between probabil-
ity distributions of domain classifier on the source and target
domains and the instance-wise t-SNE of feature generator on
the closed-set scenario task from cityscape to foggy cityscape.
In column 1, the horizontal axis corresponds to the proba-
bility distribution of the source domain, while the vertical
axis represents that of the target domain. The intensity of
the color gradient in the plot reflects the density of the dis-
tributions, with brighter colors indicating denser regions. In
column 2, orange signifies the source domain and blue signi-
fies the target domain. Clearly, the probability distributions
of the source and target become closer to the ideal saddle
point of 0.5 and the feature distributions of the source and
target domains become more consistent with ours VFDD.

methods. The main contributions and novelties of this paper are
summarized as follows:

• We pinpoint that the popular adversarial domain adaptive
object detection approaches in general face optimization
difficulty, which is caused by the deteriorated extraction ca-
pability of feature generator as the domain classifier falling
into local optimum in training.

• Wepropose an efficient optimization strategy namedVirtual-
sample Fooled Domain Discrimination (VFDD), which is
capable of re-energizing the feature generator by ideally
fooling the domain classifier during training which in turn
further drives feature alignment. Figure 3 is a representative
and illustrative example to depict the usage of VFDD.

• Extensive experiments validate the effectiveness and univer-
sality of VFDD on various benchmark databases on several
DAOD baselines. More insights and analyses of our model
are also provided to justify the reasonability of VFDD and
demonstrate its superiority.

2 RELATEDWORK
ClassificationBasedUDA.Unsupervised domain adaptation (UDA)
is extensively studied, which aims to apply model learned from
labeled source domain samples to relevant and unlabeled target
domain samples [18, 33, 45]. At present, the mainstream approaches
for UDA tend to realize domain alignment by adversarial learning
domain-invariant feature representations across domains. Domain

2
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Figure 3: An overview of the proposed Virtual-sample Fooled Domain Discrimination (VFDD) approach to domain adaptive
object detection. Gray shapes are data of target domain and shapes in color are data of source domain. Different kinds of shapes
indicate different classes. (a) An example of domain adaptation problem, there are source and target domains with different
styles. (b) Previous methods align domain distributions by adversarially training the domain classifier with domain labels
of the samples. Some samples are already aligned (i.e., the intersection of two circles) while some other samples are still not
aligned, which is the well-known local optimum caused by equilibrium challenge.(c) We introduce the virtual source samples
(i.e, V-Source) and virtual target (i.e., V-target) samples for the unaligned well samples to ideally fool the domain classifier to
disrupt the domain classifier from being trapped in local optima, consequently revitalizing the feature extractor. (d) Depicts the
state post final distribution alignment, target data are close to their source domain counterparts. (e) Illustration of introducing
corresponding virtual samples for unaligned well samples. Note that the manipulation of virtual copy means the domain label
(either real or virtual) is changed but without changing the feature representation of each sample. Best viewed in color.

Adversarial Neural Network (DANN) [14] is a representative work,
where a domain classifier is connected to the feature extractor
via a gradient reversal layer (GRL)[12]. Subsequently, CDAN [31]
proposes an adversarial adaptation model for the discriminative
information transmitted in the prediction of the classifier. GVB [9]
learns the domain-invariant feature representations by applying
the gradually vanishing bridge mechanism on the feature generator.
DWL [50] dynamically weights the learning losses of alignment
and discriminability by introducing the degree of alignment and
discriminability. Nevertheless, these studies focus on the image
classification and segmentation (a.k.a. pixel classification), rather
than the task of object detection, which faces more challenges.
Object Detection Based UDA. Driven by domain adaptation the-
ory, researchers have proposed various approaches to alleviate the
problem of domain gap in cross-domain object detection. DAF [5]
proposes an adaptive Faster-RCNN [38] method, which achieves
image-level and instance-level feature alignment by using adversar-
ial gradient reversal for the first time. Building upon this, MAF [19]
introduces a hierarchical adversarial feature alignment strategy
that reduces domain disparity at different scales. HTCN [4] employ
CycleGAN for data augmentation, generating intermediate domain
images to facilitate model alignment between source and target
domains. VDD [49] tackles the problem by disentangling domain-
invariant and domain-specific representations using vector decom-
position, while also exploring the extraction of instance-invariant
features [48]. IDF [28] propose a non-adversarial domain discrimi-
nator to extract domain-specific features. Additionally, PTMAF[21]
and PAATF[22] introduce additional constraints during the adver-
sarial learning stage. Recently, regarding the Transformer object
detector, existing adaptation techniques for DETR [3] predomi-
nantly rely on model-based approaches SFA [47], aiming to reduce
the distribution shift between different domains through sequence
feature alignment.

However, as the optimization of the min-max game in domain ad-
versarial adaptation proceeds, domain classifier is inevitably prone

to falling into local optimum due to the equilibrium challenge,
which reduces the driving power for the feature alignment. In this
work, we introduce the virtual source and virtual target samples
to disrupt the domain classifier from being trapped in local op-
tima, enabling the domain classifier to be perfectly fooled, thus re-
energizing the feature extractor to acquire more domain-invariant
features.

3 OUR VFDD METHOD
Following the general formula of domain adaptive object detection,
we denote the labeled source domain as D𝑠 = {𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
}𝑛𝑠
𝑖=1 with 𝑛𝑠

samples covering 𝐶 classes, and the unlabeled target domain as
D𝑡 = {𝑥𝑡

𝑖
}𝑛𝑡
𝑖=1 with 𝑛𝑡 samples that belong to the same 𝐶 classes.

D𝑠 and D𝑡 share the same feature space and category space, but
have different data distributions. DAOD aims to utilize the labeled
data D𝑠 and unlabeled data D𝑡 to learn a deep model, which can
accurately predict the class label of samples in the target domain.

3.1 A General Framework of DAOD
Adversarial learning has proven to be an effective method for do-
main alignment, starting from Domain Adversarial Neural Network
(DANN) [14]. The basic idea is to use the feature generator G to
generate features to trick the domain discriminatorD. Then the do-
main classifier predicts whether the generated feature by G is from
the source domain or the target domain. The training of domain
alignment is achieved through the game between generator and
domain classifier. The parameter 𝜃𝑔 of generator G and the param-
eter 𝜃𝑑 of domain discriminator D are optimized by the following
domain alignment objective function.

L𝑎𝑑𝑣 (𝜃𝑔, 𝜃𝑑 ) =E𝑥𝑠𝑖 ∼D𝑠
log

[
D(G(𝑥𝑠𝑖 ))

]
+E𝑥𝑡

𝑖
∼D𝑡

log
[
1 − D(G(𝑥𝑠𝑖 ))

] (2)

In order to improve the classification performance of the target
domain samples, we must first ensure that the classifier C can

3
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correctly classify the samples from the source domain. Thus, the
supervised classification loss can be described as:

L𝑐𝑙𝑠 (𝜃𝑔, 𝜃𝑐 ) =
1
𝑛𝑠

𝑛𝑠∑︁
𝑖=1

L𝑐𝑒 (C(G(𝑥𝑠𝑖 ;𝜃𝑔);𝜃𝑐 ), 𝑦
𝑠
𝑖 ) (3)

where L𝑐𝑒 is the standard cross-entropy loss function. During
training stage, the existing methods usually jointly optimize the
two objective functions (L𝑑𝑜𝑚 and L𝑐𝑙𝑠 ). The overall minimax
objective function is:

min
𝜃𝑔,𝜃𝑐

max
𝜃𝑑

L𝑐𝑙𝑠 + 𝜂L𝑎𝑑𝑣 (4)

where 𝜃𝑔 , 𝜃𝑑 , 𝜃𝑐 denote the parameters of feature generator, do-
main discriminator and category classifier, respectively. 𝜂 denotes
a hyper-parameter for balancing the losses.

3.2 Theoretical Motivation of VFDD
During the training, the discrimination capability of the domain
classifier is easy to fall into the local optimum due to the equilib-
rium challenge. This in turn negatively influences the effectiveness
of the optimization towards feature alignment. Thus, with the ad-
versarial optimization objectives as in Eq.4, the networks converge
to states that are less than optimal. Even though the distributions
are not fully aligned, the deteriorated discrimination capability of
the domain classifier cannot further efficiently drive the feature
alignment.

We introduce the virtual source and virtual target samples for
the unaligned samples to perfectly fool the domain classifier to
re-energize the feature extractor to acquire more domain-invariant
features, which then formulates the proposed VFDD technique. As
described in Eq.1, the domain distance between source and target
is inversely proportional to the error rate of the domain classi-
fier D. Intuitively, larger domain prediction error means smaller
domain discrepancy. Thus, in order to fully fool the domain, we
propose the Virtual-H -divergence which aims at minimizing the
domain discrepancy without information loss. Instead of directly
calculating the distance between D𝑠 andD𝑡 viaH -divergence (i.e.,
𝑑H (D𝑠 ,D𝑡 ) in Eq.1 ), we introduce the concept of virtual domain
samples and learn domain invariant features between virtual and
real domain to implicitly align the features across source and target
domains. Specifically, we introduce the virtual source domain D̂𝑠

with domain label 𝑑 = 0 instead of 𝑑 = 1 and the virtual target
domain D̂𝑡 with domain label 𝑑 = 1 instead of 𝑑 = 0, by simply
copying the feature matrices of real source D𝑠 (𝑑 = 1) and real
target D𝑡 (𝑑 = 0) for easier manipulation. We propose to measure
the distances between D𝑠 and D̂𝑠 and the distances between the
D𝑡 and D̂𝑡 by:

𝑑H (S, Ŝ) = 2[1 −min(𝑒𝑟𝑟 (D(𝑥𝑠 )) + 𝑒𝑟𝑟 (D(𝑥𝑠 )))]
𝑑H (T̂ ,T) = 2[1 −min(𝑒𝑟𝑟 (D(𝑥𝑡 )) + 𝑒𝑟𝑟 (D(𝑥𝑡 )))]

(5)

Due to the 𝑒𝑟𝑟 (·) refers to the cross entropy loss, the Virtual-H -
divergence can be written as:

𝑑𝑉 −H (S,T) = 1
2
[𝑑H (S, Ŝ) + 𝑑H (T̂ ,T)]

= 2 −min
(
𝑒𝑟𝑟

(
D(𝑥𝑠 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑠 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑡 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑡 )

) )
= 2

[
1 −min

(
𝑒𝑟𝑟

(
D(𝑥𝑠 ⊕ 𝑥𝑡 )

)
+ 𝑒𝑟𝑟

(
D(𝑥𝑠 ⊕ 𝑥𝑡 )

) )]
= 𝑑H (S ⊕ T̂ , Ŝ ⊕ T )

(6)

where ⊕ denotes the union operator. Because the features of the
(S ⊕ T̂ ) and (Ŝ ⊕ T ) are identical except for the domain labels, the
error rate of the domain classifier D is very large. This means the
value of 𝑑H (S⊕ T̂ , Ŝ ⊕T ) is much smaller than 𝑑H (S⊕S,T ⊕T).
Formally,

𝑑𝑉 −H (S,T) = 𝑑H (S ⊕ T̂ , Ŝ ⊕ T )
≤ 𝑑H (S ⊕ S,T ⊕ T) = 𝑑H (S,T)

(7)

In this way, such virtual sample makes the separable distributions less
separable, and thus leads to a more easily confused domain classifier,
which in turn further drives feature alignment. As revealed in Figure 2
(a) and (b), after applying VFDD, the domain-invariant information
extraction capability of the feature extractor is stronger than the
baseline.

Based on the above novel Virtual-H -divergence, the expected
error on target samples 𝜖T is bounded as,

𝜖T ≤ 𝜖S + 1
2
𝑑𝑉 −H (S,T) + 𝜆

≤ 𝜖S + 1
2
𝑑H (S,T) + 𝜆

(8)

where 𝜖S is the expected error on the source domain, 𝜆 is the ideal
joint hypothesis. In this way, the upper bound of the expected target
error, i.e., 𝜖T can be effectively reduced in our work. We show the
derivation of Inequality 8 in the supplementary material.

3.3 Proposed Training Strategy VFDD+DAOD
With the general DAOD (i.e., Eq. 4) described in Section 3.1 and
the VFDD based Virtual-H -divergence strategy in Eq. 6, a balanced
DAOD model can be trained and implemented.
Measurement of Alignment for a Sample. To virtual copy the
“unaligned” samples (i.e., as shown in Figure 3 (e)), we need to eval-
uate whether a sample is “unaligned” or not. As we know, when
a sample is more aligned, it is harder for the domain classifier to
identify its domain and has a higher uncertainty w.r.t. to the pre-
dicted domain label of this sample. Correspondingly, the entropy of
domain classification of this sample is in general higher. Therefore,
we measure how well a target sample is aligned with the source
domain by simply using the entropy of domain classification,

𝐻 (𝑝) = −𝑝 log(𝑝) − (1 − 𝑝) log(1 − 𝑝) (9)
4
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where 𝑝 denotes the probability of predicting a sample 𝑥 , i.e., 𝑝 =

D(G(𝑥). The larger the entropy value, the larger the ambigu-
ity/uncertainty of the discriminator has when identifying which
domain it belongs to, and the more aligned the sample is. Note
that there may exist other more accurate or advanced measurement
metrics, but this is not the focus of this paper and we use this simple
one here.
Unaligned Sample Selection and Virtual Copy. For a given
sample, when it can be well distinguished by the domain classifier,
it could be considered approximately unaligned. In other words,
when the entropy of the domain classifier prediction is smaller than
a threshould 𝜏 , we define it as a “unaligned” sample and introduce
a corresponding virtual sample (as shown in Figure 3 (e)). 𝜏 is a
hyper-parameter that controls the strictness of the definition of
“unalign”. We will study its influence in the experiments.
When to start VFDD. Intuitively, we could start our virtual copy
strategy to fool the domain classifier whenever its discrimination
capability begins to fall into local optimum. In general, at the early
training stage, the optimization of the domain discriminator persis-
tently improves its discrimination capability. It is thus unnecessary
to enable the virtual copy strategy. Inspired by the popular learn-
ing rate (lr) adjustment algorithms [36] which adjust the learning
rate if no improvement is seen for a “patience” number of epochs
(where “patience” is usually set to 2 to 10) , we start VFDD if no
improvement of the discrimination capability is seen for a “patience”
number of epochs and we denote this hyper-parameter as 𝐾 .
Adversarial Training. As is done in previous adversarial domain
adaptation methods, we perform mini-batch level optimization
where a batch consists of both source and target domain samples.
Once VFDD is activated, for eachmini-batch, we first checkwhether
each sample should be copied as a virtual sample and copy them
if deemed so. Then the adversarial training is performed between
the virtual and real domain labels. The novel domain alignment
objective function for the unaligned samples can be expressed as:

L𝑉
𝑎𝑑𝑣

(𝜃𝑔, 𝜃𝑑 ) =E𝑥𝑠𝑖 ∼D𝑠
log

[
D(G(𝑥𝑠𝑖 ))

]
+E𝑥𝑡

𝑖
∼D𝑡

log
[
1 − D(G(𝑥𝑡𝑖 ))

]
+E

𝑥𝑡
𝑖
∼D̂𝑡

log
[
D(G(𝑥𝑡

𝑖
))
]

+E
𝑥𝑠
𝑖
∼D̂𝑠

log
[
1 − D(G(𝑥𝑠

𝑖
))
] (10)

Thus, the domain alignment objective function for the all source
and target samples can be expressed as:

L𝑎𝑙𝑙
𝑎𝑑𝑣

(𝜃𝑔, 𝜃𝑑 ) =
{
L𝑎𝑑𝑣 (𝜃𝑔, 𝜃𝑑 ) 𝐻 (𝑝) ≥ 𝜏
L𝑉
𝑎𝑑𝑣

(𝜃𝑔, 𝜃𝑑 ) 𝐻 (𝑝) ≤ 𝜏
(11)

whereL𝑎𝑑𝑣 (𝜃𝑔, 𝜃𝑑 ) andL𝑉
𝑎𝑑𝑣

(𝜃𝑔, 𝜃𝑑 ) are calculated by the Eq.2 and
Eq.10, respectively. The domain classifier is updated by maximizing
the domain classification loss (i.e., adversarial loss as in Eq.11) over
the updated source set and target set. Simultaneously, the feature
extractor is trained to acquire more domain-invariant (confused)
features. Note that the virtual copy strategy has no impact on object
classification loss.

With the thoughts above, the overall training objective is:

min
𝜃𝑔,𝜃𝑐

max
𝜃𝑑

L𝑐𝑙𝑠 + L𝑎𝑙𝑙
𝑎𝑑𝑣 (12)

The pseudo code is presented in the Algorithm 1, showing the
training process of VDFF+DAOD. This endeavor will contribute to
a more precise assessment of our research. The code will be made
publicly available.

Algorithm 1 VFDD+DAOD Optimization Algorithm

Require: A source set D𝑠 = {𝑥𝑠
𝑖
, 𝑦𝑠

𝑖
}𝑛𝑠
𝑖
, including the images and

labels (i.e., bounding box coordinates and category labels).
An unlabeled target training set D𝑡 = {𝑥𝑡

𝑖
}𝑛𝑡
𝑖
.

Ensure: A detector adaptive to different domains.
1: Initialization. The iteration counter 𝑛, the total iteration num-

ber𝑚.
2: Load the parameters of the pre-trained model (i.e., VGG-16 or

ResNet-50) to the VFDD+DAOD.
3: Repeat:
4: Take the samples from the source setD𝑠 , including the image

𝑥𝑠
𝑖
and label 𝑦𝑠

𝑖
. Take the samples 𝑥𝑡

𝑖
from the target set D𝑡 .

5: Feed the source sample and corresponding labels into the
VFDD+DAOD part, and compute L𝑐𝑙𝑠 in Eq.(3) in our man-
uscript.

6: Feed the source and target samples into the VFDD+DAOD
part. Unaligned samples selection and virtual copy with the
threshold 𝜏 , then compute the adversarial learning loss L𝑎𝑙𝑙

𝑎𝑑𝑣
in Eq.(11) in our manuscript.

7: Compute the total loss Eq.(12) and gradient, and update the
parameters of the VFDD+DAOD part.

8: 𝑛 = 𝑛 + 1
9: until 𝑛 =𝑚

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup
Datasets and Settings. We test our method on Cityscapes [7],
Foggy Cityscapes [41], Sim10k [25], and BDD100k [52]. These
datasets cover diverse and challenging scenarios for domain adap-
tation tasks:

• Weather Adaptation. In this scenario, we use Cityscapes
as the source dataset, consisting of 2,975 training images
and 500 evaluation images. The counterpart, known as
Foggy Cityscapes, is derived from Cityscapes through a
fog synthesis algorithm. These datasets enable us to assess
the effectiveness of our method in adapting object detection
models from clear weather to foggy conditions.

• Synthetic to Real Adaptation. In this particular scenario,
we leverage Sim10k as the source domain, generated using
the Grand Theft Auto game engine. Sim10k includes 10,000
training images with 58,701 bounding box annotations. For
the target domain, we utilize car instances from Cityscapes
for training and evaluation.

• Scene Adaptation. In this condition, Cityscapes functions
as the source dataset, while the target dataset is the daytime
subset of BDD100k. The BDD100k subset comprises 36,728
training images and 5,258 validation images, all meticu-
lously annotated with bounding boxes. This subset encom-
passes a wide array of scenes captured during daylight
hours.
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Table 1: Results of different methods for weather adaptation, i.e., Cityscapes to Foggy Cityscapes. FRCNN and DefDETR are
abbreviations for Faster RCNN based on the VGG-16 and Deformable DETR based on the ResNet-50, respectively.

Methods Detector person rider car truck bus train mcycle bicycle mAP
FRCNN FRCNN 24.1 33.1 34.3 4.1 22.3 3.0 15.3 26.5 20.3
DAF FRCNN 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
MAF FRCNN 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
ATF FRCNN 34.6 48.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7
HTCN FRCNN 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
UMT FRCNN 33.0 45.9 48.6 34.1 56.5 46.8 30.4 37.3 41.7
PAATF FRCNN 37.9 49.6 52.8 27.0 46.6 48.7 33.6 39.5 42.0
PTMAF FRCNN 37.3 49.4 52.2 26.7 49.5 34.5 34.9 41.2 40.7
IDF FRCNN 37.4 50.1 52.8 31.3 50.6 42.0 33.7 41.7 42.4
DAF+VFDD FRCNN 31.4(+6.4) 40.8(+9.8) 43.3(+2.8) 16.4(-5.7) 38.7(+3.4) 27.6(+7.4) 23.5(+3.5) 33.2(+6.1) 31.9(+4.3)
MAF+VFDD FRCNN 30.6(+2.4) 41.7(+2.2) 46.1(+2.2) 24.7(+0.9) 42.0(+2.1) 43.1(+9.8) 30.7(+1.5) 35.5(+1.6) 36.8(+2.8)
IDF+VFDD FRCNN 38.2(+0.8) 51.3(+1.2) 54.4(+1.6) 33.1(+1.8) 50.7(+0.1) 43.3(+1.3) 34.8(+1.1) 42.3(+0.6) 43.5(+1.1)
DefDETR DefDETR 37.7 39.1 44.2 17.2 26.8 5.8 21.6 35.5 28.5
SFA DefDETR 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3
SFA+VFDD DefDETR 47.2(+0.7) 50.1(+1.5) 65.5(+2.9) 25.7(+0.6) 47.3(+1.1) 31.1(+1.7) 31.7(+3.4) 45.7(+1.7) 43.0(+1.7)

Implementation Details.We benchmark our approach against
cutting-edge domain adaptation methods across two categories: (1)
The Faster RCNN series, including DAF [5], MAF [19], ATF [20],
HTCN [4], UMT [10], PAATF [22], PTMAF [21], and IDF [28]. (2)
The Deformable DETR series, encompassing SFA [47]. In addition,
we also compare our VFDD with the image classification task, and
more details will be presented in the Supplementary.

We validate the effectiveness and versatility of ourmethod against
various baselines, including DAF, MAF, IDF, and SFA. By default,
we employ ImageNet pre-trained ResNet-50 [17] and VGG-16 [42]
as CNN backbones in all experiments. Aligning with the Faster
RCNN series, we train the network using the SGD optimizer with
a momentum of 0.9 and a weight decay of 5 × 10−4. The initial
learning rate is set to 1 × 10−3 and is reduced to 1 × 10−4 after 5
epochs. A total of 15 epochs are conducted, with a batch size of 2
maintained throughout. In line with the Deformable DETR series,
we utilize the Adam optimizer [27] for training over 50 epochs. The
learning rate is initialized at 2 × 10−4 and reduced by a factor of
0.1 after 40 epochs. A batch size of 4 is employed consistently in all
experiments. All these experiments are conducted using NVIDIA
Tesla V100 GPUs.

4.2 Comparisons with SOTA Methods
Weather Adaptation. To assess the reliability of object detectors
under varying weather conditions, we conduct cross-domain trans-
fers of models from Cityscapes to Foggy Cityscapes. The outcomes
are presented in Table 1. Notably, the application of VFDD yields
marked improvements in mAP for various methods. Specifically,
DAF, MAF, IDF, and SFA achieve mAP values of 31.9%, 36.8%, 43.5%,
and 43.0%, respectively, after VFDD integration. Furthermore, the
results demonstrate that VFDD notably amplifies the cross-domain
performance of Deformable DETR, showcasing a substantial abso-
lute mAP gain of 14.5% (28.5% vs. 43.0%). These promising results
highlight the ability of our method to improved performance in
unsupervised domain adaptation for object detection tasks.

Table 2: Results of different methods for synthetic to real
adaptation,i.e., Sim10k to Cityscapes.

Methods Detector car AP
FRCNN FRCNN 34.6
DAF FRCNN 38.9
MAF FRCNN 41.1
ATF FRCNN 42.8
HTCN FRCNN 42.5
UMT FRCNN 43.1
PAATF FRCNN 43.7
PTMAF FRCNN 43.2
IDF FRCNN 43.9
DAF+VFDD FRCNN 41.3(+2.4)
MAF+VFDD FRCNN 43.0(+1.9)
IDF+VFDD FRCNN 45.1(+1.2)
DefDETR DefDETR 47.4
SFA DefDETR 52.6
SFA+VFDD DefDETR 54.7(+2.1)

Synthetic to Real Adaptation. Leveraging economical yet pre-
cise simulation datasets has proven to elevate the performance of
object detectors. Nevertheless, this approach introduces a signif-
icant challenge in the form of a substantial inter-domain gap. In
the context of synthetic-to-real adaptation, we have evaluated the
efficacy of VFDD, our proposed method, as outlined in Table 2. We
can see that our VFDD significantly outperforms the baseline DAF,
MAF, IDF, and SFA by 2.4%, 1.9%,1.2% and 2.1%,respectively.

SceneAdaptation. In real-world applications, such as autonomous
driving, scene layouts are dynamic and subject to frequent changes.
Consequently, model adaptability to scene variations becomes piv-
otal. VFDD, our proposed method, underscores its effectiveness
in scene adaptation, as evidenced in Table 3, where it achieves
state-of-the-art results (SFA+VFDD 31.4%). Notably, performance
improvements are observed across all categories.
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Table 3: Results of different methods for scene adaptation,i.e., Cityscapes to BDD100k daytime subset.

Methods Detector person rider car truck bus mcycle bicycle mAP
FRCNN FRCNN 29.3 28.2 45.7 15.5 16.6 16.0 22.1 24.8
DAF FRCNN 26.9 22.1 44.7 17.4 16.7 17.1 18.8 23.4
SWDA FRCNN 30.2 29.5 45.7 15.2 18.4 17.1 21.2 25.3
DAF+VFDD FRCNN 30.4(+3.5) 29.7(+7.6) 46.0(+1.3) 18.1(+0.7) 18.9(+2.2) 17.9(+0.8) 22.7(+3.9) 26.2(+2.8)
DefDETR DefDETR 38.9 26.7 55.2 15.7 19.7 10.8 16.2 26.2
SFA DefDETR 40.2 27.6 57.5 19.1 23.4 15.4 19.2 28.9
SFA+VFDD DefDETR 42.7(+2.5) 30.1(+2.5) 59.2(+1.7) 22.9(+3.8) 25.1(+1.7) 16.7(+1.3) 23.0(+3.8) 31.4(+2.5)

Figure 4: (a) Qualitative comparison of SFA+VFDD with previous SOTA method and GT in three scenarios. The red circle area
reflects the superiority of our method. (b) In Cityscapes to Foggy Cityscapes, instance-level feature t-SNE results. Colors in the
first row represent classes, while orange signifies the source domain and blue signifies the target domain in second row.

4.3 Visualization and Analysis
Detection Results.We present visualizations of SFA+VFDD out-
comes on three target domain datasets: FoggyCityscapes, Cityscapes,
and BDD100k. These visuals are accompanied by ground truth and
previous SOTAmethods. In Figure 4 (a), Row 1 (Cityscapes to Foggy
Cityscapes), SFA+VFDD exhibits enhanced recall and more accu-
rate classification in scenarios with dense fog occlusion. In Row
2 (Sim10k to Cityscapes), our approach even mitigates label mis-
alignment (car vs. truck) to a certain extent without supervision. In
Row 3 (Cityscapes to BDD100k), our method effectively classifies
and locates objects, even under heavy occlusion or challenging
small sizes. These visuals match quantitative findings, confirming
VFDD’s effectiveness in mitigating domain shifts within the UDA
Transformer detector.
t-SNE Distribution Results. Figure 4 (b) describes the t-SNE [44]
visualizations of features learned by IDF (baseline) and IDF+VFDD
on the weather adaptation. The visualization feature distributions
employed VFDD have better clustering effect and have fewer sam-
ples distributed across class boundaries, which intuitively boosts
the feature discriminability. In addition, visualization results fur-
ther validate the learning ability of our VFDD mechanism. See
Supplementary for more results.

Figure 5: Influence of (a) threshold 𝜏 , and (b) 𝐾 .

4.4 Design Choices
For clear analysis, we do experiments on our scheme VFDD for
design choices study on the weather adaptation.
Influence of Threshold 𝜏 . As described in Section 3.3, we employ
a hyper-parameter 𝜏 as the threshold to determinewhether a sample
is “unaligned”. We study its influence in Figure 5 (a). We can see
that a superior performance is achieved when 𝜏 ranges from 0.63 to
0.69 on two schemes. Similar trends are observed on other datasets.
We set 𝜏 = 0.68 on all datasets.
Influence of 𝐾 . As described in Section 3.3, we start our VFDD
if the domain classifier fall into the local optimum. Figure 5 (b)
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Figure 6: Comparison of performance improvement of
RADA and VFDD under MAF (a) and SFA (b) benchmarks
in cityscape to foggy cityscape scenarios.

illustrates the impact of 𝐾 . We find optimal performance when 𝐾
falls between 4 and 6. If 𝐾 is too small, assessing improvement
becomes unreliable due to noise sensitivity. Conversely, if 𝐾 is too
large, the optimization strategy’s full potential cannot be harnessed.

4.5 Discussion
Comparison with RADA RADA [24] utilizes dynamic domain
label adjustments for the ‘well-aligned’ samples to re-energize the
domain classifier. Conversely, our VFDD uses a unique strategy
by giving ‘unaligned’ samples virtual labels to deceive the domain
classifier. This encourages the feature generator to produce fea-
tures that are indistinguishable between domains, leading to better
alignment. As depicted in Figure 6, VFDD outperforms various
baseline methods, exhibiting positive outcomes across diverse cate-
gories. Conversely, RADA occasionally yields negative outcomes.
This unequivocally demonstrates VFDD’s superiority in enhancing
learning and adaptation across domains compared to RADA.

Experimental Results on Classification To showcase the
effectiveness of VFDD, we extend our experimentation to the im-
age classification datasets of Digits, as presented in Table 4. The
table reveals that, under the optimization coordination of VFDD,
the classification accuracy of MCD has reached 96.3%, 96.5%, and
95.1% on tasks 𝑀 → 𝑈 , 𝑈 → 𝑀 , and 𝑆 → 𝑀 respectively. This
demonstrates that VFDD is a powerful auxiliary tool to help to
achieve better object Classification performance. Further, we can
observe that our method VFDD can be easily plugged and played
in the existing alignment-based UDA methods to enhance their
recognition performance on image classification task.

Convergence Analysis We present the convergence curves of
test accuracy with respect to the number of iterations on tasks of
𝑈𝑆𝑃𝑆 → 𝑀𝑁𝐼𝑆𝑇 as shown in Figure 7 (a). The blue line represents
the test error of baselines MCD, and the red line represents the
test accuracy of MCD+VFDD. Obviously, compared with baseline,
MCD+VFDD has a faster convergence speed and higher test accu-
racy. This fully illustrates that VFDD plays an active coordination
role in practical optimization process, which promotes the develop-
ment of domain alignment task and classification task towards a
benign direction.

Alignment Analysis We present the convergence curves of
Maximum Mean Discrepancy (MMD) concerning the number of
iterations on the 𝑀𝑁𝐼𝑆𝑇 → 𝑈𝑆𝑃𝑆 tasks, as illustrated in Figure
7 (b). The blue line represents the alignment state of the baseline
method MCD, while the red line represents the alignment state of

Table 4: Performance (%) comparisons with the previous
UDA approaches on Digits Datasets( MNIST(M), USPS (U) and
SVHN (S)). All experiments are conducted based on ResNet-
50 pre-trained on ImageNet.

Methods M→ U U → M S →M Average
DANN[13] 80.3 77.8 73.5 77.2
DRCN [15] 91.8 73.7 82.0 82.5
CoGAN [29] 91.2 89.1 - -
ADDA [43] 89.4 90.1 76.0 85.2
CAT[11] 90.6 80.9 98.1 89.9
TPN [35] 92.1 94.1 93.0 93.1
CDAN [32] 93.9 96.9 88.5 93.1
CyCADA [23] 95.6 96.5 90.4 94.2
MCD [39] 94.2 94.1 94.5 94.3
CDAN(baseline) 93.9 96.9 88.5 93.1
CDAN+VFDD 94.4(+0.5) 97.5(+0.6) 89.5(+1.0) 93.8(+0.7)
MCD(baseline) 94.2 94.1 94.5 94.3
MCD+VFDD 96.3(+2.1) 96.5(+2.4) 95.1(+0.6) 96.0(+1.7)

Figure 7: (a) Convergence curves of MCD and MCD+VFDD on
the test accuracy (%). (b) Alignment state measured by MMD.

MCD combined with VFDD. Clearly, as training progresses, the
MMD value gradually decreases, indicating a diminishing dispar-
ity between the source and target domains. Under the influence
of VFDD, the MMD value is further diminished compared to the
baseline, highlighting the efficacy of VFDD in narrowing the gap
between domains. This outcome also validates the effectiveness of
our proposed Virtual-H -divergence (i.e., Eq. 6).

5 CONCLUSION
In this paper, we propose an effective optimization strategy for
adversarial domain adaptation, termed as Virtual-sample Fooled
Domain Discrimination (VFDD), which aims to prevent the domain
classifier from getting stuck in local optima and simultaneously
enhance feature alignment. We achieve this by copying the “un-
aligned” samples as virtual domain samples, which encourages
the exploration of virtual domain labels, disrupting potential local
optima entrapment of the domain classifier, and revitalizing the fea-
ture extractor in a dynamic manner. Extensive experiments across
diverse benchmarks and various networks have consistently show-
cased the potency and broad applicability of our VFDD strategy.
These results underscore its effectiveness in achieving robust and
generalized adversarial domain adaptation. We aim to inspire fur-
ther research to infuse greater dynamism into adversarial domain
adaptation, thereby enhancing training effectiveness.
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