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ABSTRACT

General-purpose robots capable of performing diverse tasks require synergistic
reasoning and acting capabilities. However, recent dual-system approaches, which
separate high-level reasoning from low-level acting, often suffer from challenges
such as limited mutual understanding of capabilities between systems and latency
issues. This paper introduces OneTwoVLA, a single unified vision-language-
action model that can perform both acting (System One) and reasoning (System
Two). Crucially, OneTwoVLA adaptively switches between two modes: explicitly
reasoning at critical moments during task execution, and generating actions based
on the most recent reasoning at other times. To further unlock OneTwoVLA'’s rea-
soning and generalization capabilities, we design a scalable pipeline for synthe-
sizing embodied reasoning-centric vision-language data, used for co-training with
robot data. We validate OneTwoVLA’s effectiveness through extensive experi-
ments, highlighting its superior performance across four key capabilities: long-
horizon task planning, error detection and recovery, natural human-robot inter-
action, and generalizable visual grounding, enabling the model to perform long-
horizon, highly dexterous manipulation tasks such as making hotpot or mixing
cocktails. Project page: https://onetwovla-anonymous.github.io.
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Figure 1: Overview. OneTwoVLA is a single unified vision-language-action model capable of both reasoning
and acting. Crucially, OneTwoVLA can adaptively reason at critical moments during execution (e.g., upon
completing subtasks, detecting errors, or requiring human inputs), while generating actions at other times.

1 INTRODUCTION

A distinctive characteristic of human physical intelligence is the ability to both reason and
act (Varela Francisco et al. [T991}; [Anderson, [2003)). Crucially, these processes are not separate
but flexibly interleaved, creating a powerful synergy—reasoning guides our actions, while actions
provide feedback that informs subsequent reasoning. Consider someone preparing a dish: reason-
ing enables them to develop a comprehensive understanding of the scene and goal (e.g., interpreting
the recipe, planning the sequence of steps), while acting corresponds to the physical execution (e.g.,
chopping, mixing) that grounds abstract reasoning in the real world. This paper aims to imbue robots
with a similar synergistic relationship between reasoning and acting.
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Current approaches (Ahn et al.| [2022; |Hu et al.|, 2023} |Shi et al.| [2025; [Team et al., [2025; [Figure,
2025) often draw inspiration from Kahneman’s dual-system framework (Kahneman, 2011). Typ-
ically, a System Two, such as internet-pretrained vision-language models (VLMs) (Beyer et al.,
2024} Karamcheti et al.| [2024)), is dedicated to slow high-level reasoning, generating intermediate
reasoning contents. Meanwhile, a System One, such as vision-language-action models (VLAs) (Kim
et al.,[2024; Black et al.|[2024; Bjorck et al.,[2025)), translates these intermediate contents into precise
low-level robot actions. However, this explicit decoupling results in both systems lacking mutual
awareness of each other’s capabilities; System Two may produce intermediate contents that System
One cannot execute (Shi et al.,2025). Furthermore, in real-world deployment, issues such as latency
may cause System Two to respond belatedly, providing outdated or irrelevant guidance.

We argue that achieving stronger reasoning-acting synergy demands a unified model. Indeed, the
recent trend towards unifying capabilities within single models is proving crucial for advancing
Al (Yao et al) 2023 |OpenAl, [2025), and we believe this approach holds particular promise for
robot learning. In light of this, we introduce OneTwoVLA, a single unified vision-language-action
model capable of both acting (System One) and reasoning (System Two). Importantly, it adaptively
determines when to engage each mode. As shown in Fig. [I] OneTwoVLA triggers natural language
reasoning at key steps — like completing a subtask, detecting an error, or requiring human input
— producing outputs such as scene descriptions, task plans, historical summaries, and next-step
instructions. Otherwise, it generates actions informed by its most recent reasoning outputs. A key
advantage of this unified model is its natural support for co-training with vision-language data, sig-
nificantly enhancing reasoning and generalization. To facilitate this, we develop a scalable pipeline
for synthesizing high-quality, embodied reasoning-centric vision-language data.

Our extensive experiments validate OneTwoVLA'’s effectiveness, demonstrating its ability to inte-
grate diverse capabilities within a single model: 1) Long-horizon task planning: OneTwoVLA rea-
sons to formulate, track, and dynamically adjust task plans based on execution feedback, signifi-
cantly outperforming flat VLA (by 30%) and dual-system VLA (by 24%) baselines. Vision-language
co-training further enables generalization to novel task instructions (e.g., planning coffee prepara-
tion for “Help me stay awake”). 2) Error detection and recovery: OneTwoVLA detects execution
errors in real time, reasons about corrective strategies, and performs agile recovery actions. 3) Natu-
ral human-robot interaction: OneTwoVLA adjusts actions immediately upon human intervention
and proactively seeks clarification when faced with ambiguity. 4) Generalizable visual ground-
ing: OneTwoVLA exhibits superior understanding of spatial relationships, object attributes, and
semantic features, even generalizing to objects absent from its robot training data.

2 RELATED WORK

Vision-Language-Action Models. Initialized from pre-trained vision-language models
(VLMs) (Chen et al.l 2023 Beyer et al., 2024; Liu et al., 2024a; Wang et al., 2024} Lu et al., |2024)),
vision-language-action models (VLAs) (Driess et al., 2023; |Brohan et al., 2023; |Kim et al., 2024;
Black et al., 2024} Pertsch et al.l 2025 [Team et al., 2025} Bjorck et al., 2025; Wen et al.l 2025;
Huang et al., |2025) have emerged as a promising approach for building general-purpose robots.
These VLA, trained on large robot datasets (Mandlekar et al., 2018} |Gupta et al., 2018}, [Dasari et al.,
2019; [Cabi et al., [2019; |[Fang et al., |2020; |Brohan et al., [2022} |Jang et al.} 2022; Walke et al., 2023;
O’Neill et al., [2024; Khazatsky et al.,|2024; [Lin et al.,|2024), can handle a wide range of real-world
manipulation tasks. However, these VL As exhibit limited reasoning capabilities (Hu et al.,2023;|Shi
et al.| 2025} Bjorck et al. 2025)), showing vulnerability when confronted with long-horizon tasks or
complex dynamic environments. Moreover, their generalization performance degrades substantially
when facing novel objects or instructions outside the training distribution (Kim et al., [2024; Black
et all 2024). In contrast, our work enhances reasoning and generalization capabilities through a
unified model architecture and a co-training framework.

Reasoning for Robot Control. Previous works (Stone et al., |2023; [Huang et al., 2023} |Li et al.,
2023a; Belkhale et al.| [2024; [Liu et al.| [2024b; |Shi et al., 20245 [Zhi et al., 2024} Zhao et al., 2025;
Li et al., 2025) demonstrate that high-level reasoning can enhance low-level policy performance in
robot control. In particular, many studies (Ahn et al.| 2022} |Huang et al.| 2024} [Hu et al., 2023} |Shi
et al., 2025; Team et al., [2025} |Bjorck et al., [2025} |[Figure, [2025) explore dual-system frameworks,
where a foundation model (e.g., a VLM) serves as System Two to perform high-level reasoning,
while a low-level policy operates as System One to generate actions based on reasoning outputs.



Under review as a conference paper at ICLR 2026

Task Times with Reasoning

Algorithm 1 Inference Pipeline of OneTwoVLA 3007 L ontime
Require: VLA model 7y, language instruction £ 550 || = Ressoning tme 260
. [ Simul. E&R Time

1: t + 0, I" « initial image, R < none

2: while R # “Task Finished” do 3 2004

3: DT ~ mg.decide(-|I}'™, IL", £, R) v

4 if DT = [BOR] then £ 150/

5: R ~ mp.reason(-|[IF™, IL", £, R) %

6: Re R, I I 2 1001

7: elseif DT = [BOA] then -~

8: Ay ~ mg.act(JIF", TN €, R, s¢)

9: Execute A 1

10: end if Mo Dual-System OneTwoVLA
11 tet+ 1 Figure 2: Task completion times on Tomato-Egg.
12: end while For experimental settings, see Sec.@

While this dual-system framework proves effective for accomplishing long-horizon manipulation
tasks, it inherently suffers from limitations such as the two systems lacking mutual awareness of
each other’s capabilities (Shi et al., as well as latency issues with System Two. Recently,
mo.5 (Intelligence et al, [2025) employs a single model to predict a subtask before each action, but
this reasoning is simple and information-limited. If this inflexible paradigm generates extensive
reasoning at every step, it significantly impacts inference efficiency (Zawalski et al., [2024). To
mitigate this, ECoT-Lite 2025)) avoids producing reasoning during test time, but this
leads to degraded performance and prevents effective human-robot interaction. To address these
limitations, we propose a unified model capable of adaptively deciding when to reason versus when
to act, allowing for both informative reasoning and efficient execution. For related work on co-
training for robot learning, please refer to the Appendix [B]

3 METHOD

In this section, we first introduce the framework of OneTwoVLA in Sec. |3;1'|, including its formu-
lation, adaptive inference, and model instantiation. We then describe how we curate robot data to
enable synergistic reasoning and acting in Sec.[3.2] Finally, we present our scalable pipeline for
synthesizing vision-language data enriched with embodied reasoning in Sec. [3.3]

3.1 FRAMEWORK OF ONETWOVLA

Problem Formulation. The central problem investigated in this work is how to develop a robotic
control policy 7y capable of both reasoning and acting, with the critical ability to autonomously
decide at each timestep ¢ whether to reason or act. Formally, the policy operates in two modes.
When in reasoning mode, the policy takes as input the current image observations from multiple
cameras I}, ..., I (denoted as I}, where n is the number of cameras), the reference images from
the latest reasoning timestep I} ., I (denoted as I, which introduces observation histories

ref? - - ref >
to prevent ambiguous states), the language instruction ¢, and the latest reasoning content R. The

policy performs reasoning in the form of textual output, generating updated reasoning content R ~
mo(-| I}, I 0, R). Sec. provides further details on the specific content of this reasoning
process. In acting mode, the policy 7 additionally incorporates the robot’s proprioceptive state s; and

generates an action chunk A; based on the latest reasoning content: A; ~ 7y (+|1, tlm, Irle:f”, LR, sy).

Adaptive Inference of OneTwoVLA. In Algorithm[T} we present the detailed process of how OneT-
woVLA autonomously decides whether to reason or act. We introduce two special decision tokens
(DT): beginning of reasoning ([BOR]) and beginning of action ([BOA]). Given the prefix (com-
prising image observations I}", reference images I 1", instruction ¢, and the latest reasoning con-
tent R), the model first predicts either [BOR] or [BOA]. When [BOR] is predicted, the model
enters reasoning mode and generates textual reasoning content R until producing an end of sentence
([EOS]) token. Conversely, when [BOA] is predicted, the model enters acting mode and directly
generates the action chunk A;. This adaptive framework yields high inference efficiency: during
task execution, the model operates primarily in acting mode, invoking reasoning only at a few crit-
ical steps, which adds only minimal overhead. As shown in Fig. [2] for completing a long-horizon
task, OneTwoVLA achieves total times that match those of a flat VLA without language reason-
ing (mo (Black et al] [2024)). In contrast, a Dual-System approach that “always reasons” (e.g., Hi
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Robot 2025), ViLa (Hu et al.| 2023))) incurs significant latency due to extensive reasoning.

Moreover, our framework inherently supports error recovery and human-robot interaction: when the
policy detects an error (e.g., failing to grasp an object), it autonomously enters reasoning mode to
determine a corrective strategy and execute agile recovery actions. When human interaction occurs,
any interaction text will be consistently added to the language instruction ¢ in subsequent steps.

Model Instantiation. OneTwoVLA is Reasoning Mode: [80R] ;‘,f‘:figi;jgiii:__?‘_‘
designed to be general, allowing most N paramEs Action Chunk
existing VLAs to be integrated with Acting Mode:_ [i:;i S0 om 7
minimal modifications. For a specific . —
instance, we employ 7y (Black et al.|
2024)) as the base VLA, which demon- Vision Language Model Action Expert
strates strong performance across vari-
ous tasks. The vision-language model .*... ot + +

. p ,‘.Q; - “Please make me aglass  “Scene: syrupis at ...
of m auto-regressively generates textual B ook Siee: I need to add syrup.”
reasoning during inference and is su-

. g . g B /ve “Give me the object used | “Scene: trowel is at .. gx -llizls _"f:., g'ﬁ
pervised via a cross-entropy loss during for digging in soil.” I need to pick up trowel.” A
trainin . T() mOdel comy lex Continuous Obs Ref Img Instruction Reasoning State Noise

g P
action distributions, we inherit the action Figure 3: Inference flow of OneTwoVLA in two modes.

expert architecture from 7y and train it
using a flow matching loss (Lipman et al. 2022} [Liu, 2022). OneTwoVLA's inference flow is de-
tailed in Fig.[3] See Appendix [F.2]for more training details.

3.2 CURATING ROBOT DATA WITH EMBODIED REASONING

Most existing robotic manipulation datasets consist primarily of observation-action pairs and lack
associated reasoning information. To address this gap, we introduce a novel robot data format. For
a given task, we first collect demonstration trajectories provided by human experts. Subsequently,
each trajectory is segmented into a sequence of intervals. There are two types of intervals: reason-
ing intervals, which capture key steps requiring model reasoning (e.g., upon completing subtasks,
detecting errors, or when human interaction is required), which we further annotate with textual
reasoning content; and acting intervals, in which the model primarily learns to predict actions based
on observations and the latest reasoning content. During training, we supervise the decision tokens
according to the interval type and the freshness of reasoning content R. In reasoning intervals, the
ground-truth decision token is [BOR] if the current reasoning R is stale (i.e., needs updating); once
R has been updated, the ground truth becomes [BOA]. In acting intervals, the model always learns
to predict [BOA]. See Appendix [FI|for more details.

Next, we elaborate on the embodied reasoning content. As shown in Fig. ] left, it consists of four
components: 1) a detailed scene description, primarily focusing on the locations of task-relevant
objects; 2) a high-level plan that outlines the sequential steps to accomplish the task; 3) a concise
historical summary to keep the model informed about the task’s progress; and 4) the immediate next
step that the robot needs to execute. This comprehensive reasoning content encourages the model
to understand the visual world, learn high-level planning, and track task progress. Furthermore,
to equip the policy with error detection and recovery capabilities, we specifically collect and label
robot data focused on recovery from failure states. To enable natural human-robot interaction, we
annotate certain intervals of the demonstrations with interaction context (e.g., the robot’s question
and the human’s answer shown in Fig. [ left).

We design a two-stage fully automated pipeline for labeling reasoning intervals and generating their
reasoning content. In the first stage, inferval annotation, we predefine a high-level plan with K
ordered subtasks P = (p1, ..., px). From each demonstration, we uniformly subsample N = 32
frames S = {I;, }'_; and prompt Gemini 2.5 to 1dent1fy reasonlng intervals immediately after each

subtask completion, yielding K + 1 intervals R = {(r5,7$)}. In the second stage, reasoning

content generation, for each interval (r$ € R we take its midpoint frame and denote it as I

,75)
P75

We then construct four reasoning fields: 1) a scene description D; generated by Gemini from I j, 2)
the high-level plan P; 3) a historical summary H; = (p1,...,p;); and 4) the next step X; = p,41.
The tuple (D;, P, H;, X;) serves as the reasoning content for interval j. This automated pipeline
produces high-quality annotations. For example, in the Tomato-Egg task, 81.5% of intervals
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Figure 4: Left. Example of robot data with reasoning content. The reasoning content comprises a scene de-
scription, a high-level plan, a historical summary, and the next-step instruction. Interaction texts (e.g., the robot
question and the human answer) are appended after the instruction. Right. Examples of synthetic embod-
ied reasoning-centric vision-language data. The top two examples illustrate visual grounding tasks, while the
bottom two demonstrate long-horizon tasks. More examples are provided in Appendix

are judged correct by human annotators, and 83.3% of scene descriptions are deemed reasonable.
Additional prompts and extensions to error recovery are provided in Appendix [D}

3.3 SCALABLE SYNTHESIS OF VISION-LANGUAGE DATA WITH EMBODIED REASONING

The carefully curated robot data described in Sec. 3.2] allows the model to directly learn the de-
sired task, but its size scales linearly with the costly human effort, making large dataset creation
impractical. To endow our model with stronger generalization and the ability to cope with highly
varied scenarios, we leverage off-the-shelf foundation models and design a fully scalable pipeline
that synthesizes vision-language data enriched with embodied reasoning. This pipeline consists of
three steps: 1) We prompt Gemini 2.5 Pro to generate diverse textual descriptions of tabletop layouts
featuring common household items; 2) Based on these textual descriptions, we employ the text-to-
image generation model FLUX.1-dev to synthesize high-quality images depicting the
tabletop layouts. We further augment the synthetic images by randomly applying fisheye distortion
or compositing a robot gripper with adaptive brightness, making the visuals more closely resemble
real robot observations; 3) Finally, we utilize Gemini again to generate task instructions and corre-
sponding reasoning contents for each synthesized image. Through this pipeline, we automatically
generated 16,000 data samples, with examples shown in Fig. A right.

The generated task instructions fall into two categories: 1) Visual grounding tasks
[2018}; Bhat et al., 2024} [Kim et al.},[2023)), where the instruction implicitly refers to an object in the
image through spatial relationships, attributes, or semantic features. The accompanying reasoning
must reveal the object’s explicit name and, optionally, its location; 2) Long-horizon tasks, where
the instruction describes an extended, multi-step objective. The reasoning must supply a high-level,
step-by-step plan for completing the task. For part of the dataset, we additionally instruct Gemini
to incorporate elements of human—robot interaction into the plan. A detailed quality analysis of the
synthetic data, along with additional examples, is provided in Appendix [E}

4 EXPERIMENTS

In this section, we evaluate OneTwoVLA through extensive real-world experiments, demonstrat-
ing its superior performance in versatile capabilities: long-horizon task planning (Sec. i), error
detection and recovery (Sec. @), natural human-robot interaction (Sec. @, and visual ground-
ing (Sec.[#-4). Additionally, we show that co-training with our synthetic vision-language data yields
generalizable behaviors and open-world visual grounding capabilities on unseen scenarios and tasks.
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Figure 5: Task illustrations and reasoning examples. In the three leftmost columns, we present three chal-
lenging, long-horizon manipulation tasks. Completing these tasks requires not only planning abilities, but also
error detection and recovery capabilities, as well as the the ability to interact naturally with humans. In the
rightmost column, we demonstrate two tasks drawn from our experiments on generalizable planning. For every
task, we include a sample of the model’s reasoning content. See Appendixfor additional reasoning examples.

4.1 LONG-HORIZON TASK PLANNING

Hardware. We utilize two robot platforms. The primary platform consists of a single 7-DoF Franka
arm equipped with a parallel jaw gripper. A wrist-mounted GoPro camera with fisheye lens provides
wide field-of-view observations. Most of our experiments are conducted using this setup. Addition-
ally, we employ a dual-arm platform featuring two 6-DoF ARX arms with three cameras (two wrist
and one base), primarily for generalizable planning experiments. See Appendix [H|for further details.

Long-horizon Tasks. We design three challenging long-horizon tasks (shown in Fig. [5), each re-
quiring the robot to understand the scene, plan accordingly, accurately track task progress, and
generate precise actions throughout execution. We briefly describe these tasks here, with more de-
tails provided in Appendix[C.I} 1) Tomato-Egg: The robot pours oil followed by tomato and egg
liquid into a cooking machine. Once cooking completes, it uses a spoon to scoop the scramble onto
a plate—a contact-rich action demanding fine precision. 2) Hotpot: Four plates containing differ-
ent food items are placed on the table, and their relative ordering is randomized. The robot must
sequentially dip beef and one vegetable type, precisely place them into a strainer, and finally lift the
strainer. 3) Cocktail: The robot mixes one of three cocktails (Mojito, Mountain Fuji, or
Vodka Sunrise), each requiring 3-4 steps of ingredient pouring. The robot must distinguish be-
tween nearly ten visually similar ingredients and pour accurately. For all tasks, the initial placement
of all manipulated objects is randomized within a 10 x 10 cm? area.

Baselines. We compare OneTwoVLA against two baselines: 1) a state-of-the-art VLA model
mo (Black et al, [2024), which does not perform reasoning. To ensure fair comparison, we fine-
tune 7y on the same dataset used for training OneTwoVLA; and 2) a dual-system approach inspired
by Hi Robot 2025), in which Gemini 2.5 Pro serves as the high-level System Two that
decomposes complex instructions into sequences of atomic commands (i.e., the next step field in
OneTwoVLA’s reasoning content). In practice, we invoke System Two at fixed intervals (i.e., effec-
tively “always reasoning”). For System One, we annotate our dataset with atomic commands and
fine-tune 7 to execute the commands produced by System Two.

Experimental Results. As shown in Fig. [6] left, OneTwoVLA achieves an average success rate of
87% across the three challenging tasks, outperforming my by 30% and the dual-system approach
by 24%. OneTwoVLA consistently generates correct plans, accurately tracks task progress, and
outputs precise actions. In contrast, lacking explicit reasoning and historical context, my some-
times loses track of its current step — such as staying stuck at the initial position when preparing
Mo jito or repeatedly picking up beef in the Hotpot task. We also observe that explicit reasoning
facilitates more fine-grained action learning; my sometimes struggles to grasp ingredients precisely
in Hotpot task or scoops too lightly in the Tomato-Egg task, whereas OneTwoVLA performs
these delicate actions accurately. Regarding the dual-system approach, we found limitations arising
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Figure 6: Left: evaluation results on long-horizon tasks. OneTwoVLA excels in long-horizon task planning
compared to baselines. Right: evaluation results on generalizable planning tasks. By co-training with
synthetic vision-language data, OneTwoVLA-VL further enhances its generalization to novel tasks. In both
figures, each method is evaluated over 20 trials per task.

from the lack of mutual awareness between the two systems’ capabilities. System Two occasionally
outputs atomic commands that are infeasible for System One to execute (e.g., instructing to add
green onion in the Tomat o-Egg task when none is present). Additionally, the significant inference
latency of Gemini 2.5 Pro may prevent System Two from promptly updating its reasoning content,
causing System One to encounter out-of-distribution states during execution.

Generalizable Planning. We investigate how co-training with vision-language (VL) data can
improve OneTwoVLA’s ability to generalize in task planning. Specifically, we collect additional
demonstration data for various atomic skills (e.g., pick, place, open, etc.) across two robot plat-
forms. We then co-train OneTwoVLA on these robot data together with the with 16,000 VL sam-
ples synthesized by the pipeline described in Sec. We denote this variant as OneTwoVLA-VL,
while the model trained exclusively on robot data is denoted as OneTwoVLA. During evaluation,
the policy receives instructions that never appear in the robot data (e.g., Fig.[3] last column). We test
on four challenging tasks that demand deep commonsense reasoning (see Appendix [C.2]for details).

As shown in Fig. [f] right, OneTwoVLA-VL exhibits strong generalization, transferring knowledge
from VL data to robot control. The model proactively searches for non-visible cola by opening
the refrigerator in Get Icy Cola, handles complex spatial relationships and occlusion by first
removing fruits before retrieving the plate in Empty Plate, recognizes the need for a tool and
uses a nearby stick to sweep distant objects within reach in Tool Use. Furthermore, it exhibits
sophisticated scene-aware human intent understanding in Prepare Drinks, preparing coffee for
“Help me stay awake”, kale juice for “I want something healthy”. In contrast, 7y executes random
atomic skills when faced with such novel tasks, and OneTwoVLA without VL co-training produces
entirely incorrect plans—both exhibiting only minimal generalizable planning abilities.

4.2 ERROR DETECTION AND RECOVERY

Recovering from mistakes is a critical ca-

pability for general-purpose robots. OneT- |Hotpot Tomato-Egg|  Total
woVLA can detect errors in real-time, OneTwoVLA| 5/6 3/4 |8/10 (80.0%)
rapidly reason about recovery strgtegies, o | 3/7 57 18714 (57.1%)
and subsequently generate corrective ac-

tions learned from collected robot recovery ~ Dual-System | 475 37 | 7/12(58.3%)

data. Table [I] presents a quantitative com-
parison of error recovery performance on
two tasks: Hotpot and Tomato-Egg. In
the Hotpot task, the robot occasionally fails to grasp the strainer due to misalignment. We there-
fore collect 200 demonstrations containing recovery actions (600 demonstrations in total). After
retraining, OneTwoVLA reasons to retract, reposition to align with the strainer and try grasping
again, subsequently succeeding in lifting it up. In contrast, 7y frequently ignores errors and contin-
ues to lift the gripper despite not having grasped the strainer. In the Tomat o-Egg task, sometimes
the oil bottle slips from the gripper while pouring; we collect 100 recovery demonstrations (200 in
total). OneTwoVLA recognizes the error, reasons to adjust its grasp for increased firmness and retry
the action. However, the dual-system approach fails to respond promptly due to latency issues. Sys-
tem Two only alerts that the oil bottle is not grasped after the robot has already reached the pouring
pose, by which time recovery is hard because the robot has entered an out-of-distribution state.

Table 1: Error Detection and Recovery Results. Values
are reported as # successful recoveries / # error occurrences.
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4.3 NATURAL HUMAN-ROBOT INTERACTION

Deploying robots in human-centric scenarios requires natural interaction with peo-
ple. We conduct 10 human-robot interactions for OneTwoVLA and the Dual-System
baseline (my is omitted as it cannot generate language outputs) on the Hotpot
and Cocktail tasks, with subtask-level interaction results shown in Table [2
Due to its adaptive nature and explicit rea-
soning process, OneTwoVLA is able to en-
gage with humans in a natural way — seam-
lessly handling human interventions and proac- OneTwoVLA| 10/10  10/10 |20/20 (100%)
ti_Vely_seek clarification vyhen faced with am- Dual-System ‘ 8/10 5/10 ‘ 13 /20 (65%)
biguities. For example, in the Hotpot task,
when a human interrupts by requesting, “Could Table 2: Human-Robot Interaction Results. Each en-
you also dip another vegetable for me?” OneT- try is reported as # successes / # interactions.

woVLA immediately responds by clarifying,

“Sure! Would you like green bok choy, enoki mushrooms, or cabbage?” In the Cocktail task,
when the robot is preparing a Vodka Sunrise and the human interrupts with, “I don’t want or-
ange vodka, I want lemon-flavored one,” OneTwoVLA immediately reasons that it needs to put
down the orange vodka, retrieve the lemon vodka, and generate action sequences that align with the
human’s intent. In contrast, the dual-system approach frequently loses context during interaction
and struggles to maintain a coherent reasoning process, merely picking up the lemon vodka without
continuing to prepare the cocktail in the example above.

‘ Hotpot Cocktail‘ Total

Generalizable Human-Robot Interaction. We further evaluate generalization on the Hotpot and
Cocktail tasks by testing 20 novel interaction scenarios that never appear in the robot training
data. With vision-language data co-training, OneTwoVLA-VL achieves a 72.5% success rate. In the
Hotpot task, OneTwoVLA-VL demonstrates proactive reasoning by asking “Which plate of meat
would you like me to cook?” when given the instruction “cook meat” with two meat plates present.
It also effectively handles unseen dynamic interruptions — when picking up enoki mushrooms, if
interrupted with, “I don’t want enoki mushrooms, please cook some green bok choy instead,” it
immediately switches to executing the new instruction. In contrast, OneTwoVLA without VL data
co-training fail to interpret such unseen interaction commands, exhibiting poor generalization.

4.4 ENHANCED VISUAL GROUNDING Single-Env Open-World

Grounding objects in language instructions to
the visual world is a prerequisite for robots
to accomplish more complex tasks. We cat-
egorize visual grounding into three key as- &0 A >
pects (Shridhar & Hsu, [2018} |[Bhat et al.; 2024}  |hstruction: SO EeaE

Kim et al., 2023 Shridhar et al. 2020): spa-  “Get the object for computer ~ “Hand me the

tial relationships, object attributes, and seman- tasks. )

tic features. To validate OneTwoVLA's ef- ~ Feasoning: somputer Reasoning:
fectiveness in these aspects, we design ex- tasks. | need to pick up black | need to
periments where instruction following requires ~ [Mouse to the left of cube, pick up fgjd#yh;etatro\m?;ﬁﬂ
non-trivial object grounding capabilities. Fur- . provides sun protection.

thermore, to demonstrate the impact of our syn- Figure 7: Illustrations of visual grounding tasks.

thetic vision-language data, we conduct exper- In the Single—-Env setting, we provide task instruc-

}ments mn Opep-world settings Wl.le.re diverse ong that require understanding of spatial relation-
items and environments pose additional chal-  ghips, object attributes, or semantic features. In the

lenges. The specific experimental settings are  Open-World setting, we further evaluate the model’s
described below (shown in Fig.[7): generalizable visual grounding capabilities.

1) Single-Env: Four objects are randomly arranged on a tabletop in a single environment. We
collect 50 picking-up demonstrations for each object using the UMI (Chi et al., 2024) device, total-
ing 200 demonstrations. For testing, we perform 40 trials per method in the same environment using
the same four objects. 2) Open-World: We collect demonstrations in 16 diverse in-the-wild en-
vironments, totaling 933 valid demonstrations using the UMI device. Each demonstration involves
moving the gripper to a randomly selected object within the scene, collectively including 180 dis-
tinct household items. For testing, we evaluate each method across 8 unseen environments, testing




Under review as a conference paper at ICLR 2026

5 times per environment, each time randomly selecting one from 20 objects: 5 objects seen in robot
data, 10 objects unseen in robot data but present in synthetic vision-language data, and 5 objects
unseen in either dataset. In both settings, training and test instructions refer to target objects using
their names or through spatial relationships, attributes, or semantic features. Our annotated reason-
ing explicitly identifies the target object’s name and includes additional information about it. We
compare three methods: 7y, OneTwoVLA, and OneTwoVLA-VL. Both 7y and OneTwoVLA are
trained exclusively on robot data, whereas OneTwoVLA-VL is additionally co-trained with 16,000
synthetic vision—language samples. Further details are provided in Appendix [C.3]

Explicit reasoning facilitates visual grounding. In
the Single-Env setting, as shown in Table [3
OneTwoVLA achieves a success rate of 78%, signif- o ‘ 5% ‘ 3%
icantly outperforming my, which has a success rate OneTwoVLA | 78% \ 8%
f’f only 5%. Iq most cases, .OneT\yoVLA.accurately OneTwoVLA-VL| 38% | 3%
interprets spatial relationships, object attributes, and
semantic features described in the instructions, rea- Table 3: Evaluation results on visual ground-
sons about the correct object, and then successfully ing tasks. OneTwoVLA exhibits strong visual
picks up the target object. In stark contrast, 7y con- grounding capabilities, and co-training with VL
sistently fails to comprehend the instructions, even data further enhances its generalization.

when the target object is explicitly named. mg typ-

ically extends the gripper forward aimlessly or randomly picks up the closest object. This clear
performance gap demonstrates that explicitly learning to reason helps the model truly understand
the visual world rather than attempting to find shortcuts to overfit actions. Moreover, we find that
the reasoning content also aids the model in fitting actions, as evidenced by 7y s action mean squared
error (MSE) on the validation set being 62% higher than OneTwoVLA’s.

‘ Single—Env‘ Open-World

Reasoning-centric vision-language data enables generalizable visual grounding. In the
Open-World setting, OneTwoVLA-VL achieves a 73% success rate, significantly outperform-
ing both OneTwoVLA and 7. In most cases, OneTwoVLA-VL can correctly handle objects unseen
in the robot data but present in vision-language (VL) data, effectively transferring commonsense
knowledge from VL data to the robot policy. Remarkably, OneTwoVLA-VL generalizes even to
novel objects that appear in neither the robot nor VL training data (e.g., Sprite, GoPro). We at-
tribute this exceptional generalization capability to VL data co-training, which better activates web
knowledge already encoded in the pretrained vision-language model. In contrast, OneTwoVLA and
mo frequently exhibit aimless reaching behaviors — even for objects present in the training data —
indicating that they merely overfit to action training data without developing genuine understanding
of the visual environment in this complex and diverse setting.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we present OneTwoVLA, a single unified model capable of both reasoning and acting,
and adaptively switching between these two modes. This synergy is enabled by our meticulously
designed framework and reasoning-enriched robot data curation. Moreover, we propose a scal-
able pipeline for synthesizing embodied reasoning-centric vision-language data to further enhance
the model’s reasoning and generalization capabilities. Extensive experiments demonstrate OneT-
woVLA’s superior performance across four key abilities: long-horizon task planning, error detection
and recovery, natural human-robot interaction, and generalizable visual grounding.

There are several limitations that future work can address. First, OneTwoVLA relies on hand-
selected heuristics to determine which steps require reasoning. Analogous to supervised fine-tuning
(SFT) in LLMs, this strategy aligns the policy with a set of candidate reasoning steps and content;
however, achieving more optimal reasoning likely requires reinforcement learning (RL). Future
work could investigate RL-based training to further strengthen the reasoning capabilities of VLA
models. Second, although our adaptive framework allows the model to reason only at a few critical
steps during task execution, the robot still needs to pause for two to three seconds while reasoning
occurs. Future research could explore the design of asynchronous architectures, enabling simulta-
neous reasoning and action generation. Third, we have not optimized action inference efficiency.
As our single unified model scales to larger parameter sizes, the time cost of action inference may
become a bottleneck. We anticipate that incorporating advanced inference techniques from the LLM
literature could help accelerate action inference in future work. Finally, due to resource constraints,
we only investigate the effect of high-quality synthetic vision-language data on VLA reasoning ca-
pabilities. Future work could explore the impact of vision-language data from various sources.



Under review as a conference paper at ICLR 2026

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Michael L Anderson. Embodied cognition: A field guide. Artificial intelligence, 149(1):91-130,
2003.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. arXiv
preprint arXiv:2403.01823, 2024.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vim for transfer. arXiv preprint arXiv:2407.07726, 2024.

Vineet Bhat, Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Hifi-cs: Towards
open vocabulary visual grounding for robotic grasping using vision-language models. arXiv
preprint arXiv:2409.10419, 2024.

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. my: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Serkan Cabi, Sergio Gémez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling data-
driven robotics with reward sketching and batch reinforcement learning. arXiv preprint
arXiv:1909.12200, 2019.

William Chen, Suneel Belkhale, Suvir Mirchandani, Oier Mees, Danny Driess, Karl Pertsch,
and Sergey Levine. Training strategies for efficient embodied reasoning. arXiv preprint
arXiv:2505.08243, 2025.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil
Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin, Piotr Padlewski, et al. Pali-3 vision lan-
guage models: Smaller, faster, stronger. arXiv preprint arXiv:2310.09199, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching with-
out in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
arXiv preprint arXiv:1910.11215, 2019.

Ria Doshi, Homer Walke, Oier Mees, Sudeep Dasari, and Sergey Levine. Scaling cross-embodied
learning: One policy for manipulation, navigation, locomotion and aviation. arXiv preprint
arXiv:2408.11812, 2024.

10



Under review as a conference paper at ICLR 2026

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-
timodal language model. arXiv preprint arXiv:2303.03378, 2023.

Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. Graspnet-1billion: A large-scale bench-
mark for general object grasping. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 11444-11453, 2020.

Figure. Helix: A vision-language-action model for generalist humanoid control, 2025. URL
https://www.figure.ai/news/helixl

Abhinav Gupta, Adithyavairavan Murali, Dhiraj Prakashchand Gandhi, and Lerrel Pinto. Robot
learning in homes: Improving generalization and reducing dataset bias. Advances in neural infor-
mation processing systems, 31, 2018.

Joey Hejna, Chethan Bhateja, Yichen Jiang, Karl Pertsch, and Dorsa Sadigh. Re-mix: Optimizing
data mixtures for large scale imitation learning. arXiv preprint arXiv:2408.14037, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic
manipulation through spatial constraints of parts with foundation models. In 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 9488-9495. IEEE, 2024.

Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken Gold-
berg, and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual feature
extraction. arXiv preprint arXiv:2503.03734, 2025.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, et al. Grounded decoding: Guiding text generation
with grounded models for embodied agents. Advances in Neural Information Processing Systems,
36:59636-59661, 2023.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. 7y 5: a vision-language-action
model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991-1002. PMLR, 2022.

Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
In Forty-first International Conference on Machine Learning, 2024.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-

lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Junghyun Kim, Gi-Cheon Kang, Jaein Kim, Suyeon Shin, and Byoung-Tak Zhang. Gvcci: Life-
long learning of visual grounding for language-guided robotic manipulation. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 952-959. IEEE, 2023.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

11


https://www.figure.ai/news/helix

Under review as a conference paper at ICLR 2026

Black Forest Labs. Flux. https://github.com/black—-forest—labs/flux, 2024.

Boyi Li, Philipp Wu, Pieter Abbeel, and Jitendra Malik. Interactive task planning with language
models. arXiv preprint arXiv:2310.10645, 2023a.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023b.

Yi Li, Yuquan Deng, Jesse Zhang, Joel Jang, Marius Memmel, Raymond Yu, Caelan Reed Garrett,
Fabio Ramos, Dieter Fox, Anqi Li, et al. Hamster: Hierarchical action models for open-world
robot manipulation. arXiv preprint arXiv:2502.05485, 2025.

Fangi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen, Jiacheng You, and Yang Gao. Data scaling
laws in imitation learning for robotic manipulation. arXiv preprint arXiv:2410.18647, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296-26306, 2024a.

Peiqi Liu, Yaswanth Orru, Jay Vakil, Chris Paxton, Nur Muhammad Mahi Shafiullah, and Lerrel
Pinto. Ok-robot: What really matters in integrating open-knowledge models for robotics. arXiv
preprint arXiv:2401.12202, 2024b.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Abhiram Maddukuri, Zhenyu Jiang, Lawrence Yunliang Chen, Soroush Nasiriany, Yuqi Xie,
Yu Fang, Wenqi Huang, Zu Wang, Zhenjia Xu, Nikita Chernyadey, et al. Sim-and-real co-training:
A simple recipe for vision-based robotic manipulation. arXiv preprint arXiv:2503.24361, 2025.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao,
John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform for robotic
skill learning through imitation. In Conference on Robot Learning, pp. 879-893. PMLR, 2018.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. Advances in Neural Information Processing Systems, 36:25081-25094, 2023.

Soroush Nasiriany, Sean Kirmani, Tianli Ding, Laura Smith, Yuke Zhu, Danny Driess, Dorsa
Sadigh, and Ted Xiao. Rt-affordance: Reasoning about robotic manipulation with affordances. In
CoRL 2024 Workshop on Mastering Robot Manipulation in a World of Abundant Data, 2024.

OpenAl. Introducing 40 image generation, 2025. URL https://openai.com/index/
introducing—-4o-image—generation/.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892-6903. IEEE, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Archit Sharma, Karl Pertsch, Jianlan Luo, Sergey
Levine, and Chelsea Finn. Yell at your robot: Improving on-the-fly from language corrections.
arXiv preprint arXiv:2403.12910, 2024.

12


https://github.com/black-forest-labs/flux
https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/

Under review as a conference paper at ICLR 2026

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction
following with hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417,
2025.

Mohit Shridhar and David Hsu. Interactive visual grounding of referring expressions for human-
robot interaction. arXiv preprint arXiv:1806.03831, 2018.

Mohit Shridhar, Dixant Mittal, and David Hsu. Ingress: Interactive visual grounding of referring
expressions. The International Journal of Robotics Research, 39(2-3):217-232, 2020.

Alexander Soare. Does diffusion policy produce multi-modal actions?, 2024. URL
https://github.com/alexander—soare/little_experiments/blob/main/
action_multimodality.mdl

Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul
Wohlhart, Sean Kirmani, Brianna Zitkovich, Fei Xia, et al. Open-world object manipulation using
pre-trained vision-language models. arXiv preprint arXiv:2303.00905, 2023.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025.

J Varela Francisco, Thompson Evan, and Rosch Eleanor. The embodied mind: Cognitive science
and human experience, 1991.

Quan Vuong, Sergey Levine, Homer Rich Walke, Karl Pertsch, Anikait Singh, Ria Doshi, Charles
Xu, Jianlan Luo, Liam Tan, Dhruv Shah, et al. Open x-embodiment: Robotic learning datasets and

rt-x models. In Towards Generalist Robots: Learning Paradigms for Scalable Skill Acquisition @
CoRL2023, 2023.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
for robot learning at scale. In Conference on Robot Learning, pp. 1723-1736. PMLR, 2023.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025.

Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv Shah, Quan Vuong, Chelsea Finn, Dorsa
Sadigh, and Sergey Levine. Pushing the limits of cross-embodiment learning for manipulation
and navigation. arXiv preprint arXiv:2402.19432, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Wentao Yuan, Jiafei Duan, Valts Blukis, Wilbert Pumacay, Ranjay Krishna, Adithyavairavan Murali,
Arsalan Mousavian, and Dieter Fox. Robopoint: A vision-language model for spatial affordance
prediction for robotics. arXiv preprint arXiv:2406.10721, 2024.

Michat Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models. arXiv preprint arXiv:2503.22020, 2025.

13


https://github.com/alexander-soare/little_experiments/blob/main/action_multimodality.md
https://github.com/alexander-soare/little_experiments/blob/main/action_multimodality.md

Under review as a conference paper at ICLR 2026

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Peiyuan Zhi, Zhiyuan Zhang, Yu Zhao, Muzhi Han, Zeyu Zhang, Zhitian Li, Ziyuan Jiao, Baoxiong
Jia, and Siyuan Huang. Closed-loop open-vocabulary mobile manipulation with gpt-4v. arXiv
preprint arXiv:2404.10220, 2024.

Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng, Ran
Cheng, Yaxin Peng, Chaomin Shen, et al. Chatvla: Unified multimodal understanding and robot
control with vision-language-action model. arXiv preprint arXiv:2502.14420, 2025.

Minjie Zhu, Yichen Zhu, Jinming Li, Zhongyi Zhou, Junjie Wen, Xiaoyu Liu, Chaomin Shen, Yaxin
Peng, and Feifei Feng. Objectvla: End-to-end open-world object manipulation without demon-
stration. arXiv preprint arXiv:2502.19250, 2025.

14



Under review as a conference paper at ICLR 2026

APPENDIX

Please visit our anonymous website to view robot rollout videos: |https://onetwovla-
anonymous.github.io,

A LARGE LANGUAGE MODELS USAGE STATEMENT

We used large language models only for light grammar checking and language polishing. All content
was written by the authors.

B MORE RELATED WORK

Co-training for Robot Learning. Co-training with data from diverse sources has been shown to
benefit robot learning (Vuong et al., 2023; Driess et al.l [2023; L1 et al., 2023bj Nasiriany et al.,
2024; Hejna et al., 2024} |Yang et al.| 2024} Doshi et al., 2024} |Yuan et al., 2024} [Maddukuri et al.,
20235). In particular, several prior works (Brohan et al., 2023; Mu et al., [2023; [Zhu et al.l 2025;
Zhou et al., |2025)explore co-training robot policies with action-free vision-language data alongside
robot data, demonstrating improvements in policy generalization. However, these methods (Brohan
et al., [2023; Mu et al., [2023} [Zhou et al., 2025) typically either rely on existing vision-language
datasets, which suffer from limited quality due to their significant domain gap from robot application
scenarios; or manually collect vision-language datasets (Zhu et al., |2025), which are inherently
limited in size and difficult to scale up. To address these limitations, we propose a scalable pipeline
for synthesizing vision-language data rich in embodied reasoning. Our pipeline ensures both high
quality and scalability, significantly enhancing policy’s reasoning and generalization capabilities.
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C TASKS AND EVALUATIONS

In this section, we provide a detailed description of the tasks and evaluations.

C.1 LONG-HORIZON TASKS

Figure 8: Execution processes of three long-horizon tasks: Tomato-Egg, Hotpot, and Cocktail (ex-
emplified by Mountain Fuji preparation).

Fig. [8shows the complete execution progress of the three long-horizon tasks. Detailed descriptions
of these tasks are as follows:

1) Tomato-Egg: The robot first pours oil, then tomato and egg liquid into a cooking machine.
Once cooking is finished, the robot picks up a spoon hanging on a rack, scoops out the tomato-
egg scramble, transfers it onto a plate, and finally places the spoon into the cooking machine. We
observe that sometimes the robot fails to grip the oil bottle firmly enough, causing it to slip from the
gripper. We collect dedicated recovery data for re-grasping the oil bottle more securely after it has
slipped. This enables the robot to automatically perform this recovery if it encounters a bottle slip
during testing. We collect 200 robot demonstrations for this task.

2) Hotpot: Four plates containing beef, green bok choy, enoki mushrooms, and cabbage are placed
on a table with randomized relative positions. A hotpot with a strainer is positioned to the right of
the plates. For each test, the human instructs the robot to dip beef and one type of vegetable. The
robot must accurately pick up the ingredients sequentially, place them in the strainer, wait for them
to cook, and then lift the strainer. Notably, for OneTwoVLA and the dual-system approach, in 10 of
the experiments, the initial instruction is only to dip the beef. While waiting for the beef to cook,
the human interacts with the robot saying, “Could you also dip another vegetable for me?”, requiring
the robot to ask, “Sure! Would you like green bok choy, enoki mushrooms, or cabbage?” Following
the human’s specification, the robot then proceeds to dip the requested vegetable. This interaction
step is omitted for my due to its lack of text output capabilities. Furthermore, we observe instances
where the robot fails to grasp the strainer. To address this, we specifically collect recovery data for
correcting misaligned grasps. This enables the robot to automatically perform this recovery if it fails
to pick up the strainer during testing. We collect 600 robot demonstrations for this task.

3) Cocktail: The robot is instructed to prepare one of three cocktails: Mojito, Mountain
Fuji, or Vodka Sunrise. Each cocktail requires pouring 3-4 different ingredients. For OneT-
woVLA and the dual-system approach, in 10 trials, the initial human instruction is general: “Make
me a cocktail.” The robot must clarify by asking: “Which cocktail would you like?”, and then pro-
ceed based on the human’s specific cocktail choice. This interaction step is again omitted for 7.
Additionally, during 3 separate Vodka Sunrise trials, the human interrupts with, “I don’t want
orange vodka, I want lemon-flavored one,” requiring the robot to put down the orange vodka and
pick up lemon vodka instead. We collect 100 robot demonstrations for each type of cocktail, totaling
300 demonstrations.
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C.2 GENERALIZABLE PLANNING TASKS

Figure 9: Execution processes of four generalizable planning tasks: Get Icy Cola, Empty Plate,
Prepare Drinks (exemplified by kale juice preparation) and Tool Use.

We collect 2,000 robot demonstrations using the single-arm Franka system and dual-arm ARX sys-
tem. Each demonstration belongs to one category of atomic skill, including pick, place, move, open,
close, and pour. The task instructions and corresponding reasoning contents for these demonstra-
tions focus on short-horizon atomic skills. Training solely on this data limits the model’s generaliz-
able long-horizon planning capabilities. OneTwoVLA overcomes this limitation through co-training
with our synthesized embodied reasoning-centric vision-language data, which equips it to general-
ize to previously unseen tasks. Fig.[9|shows the complete execution progress of these unseen tasks.
Detailed descriptions of these tasks are as follows:

1) Get Icy Cola: The instruction is “Get me a can of icy cola.” The challenge is that a cola can
is not directly visible in the scene. The robot must infer that “icy cola” implies the cola is stored in
the fridge and therefore plan the necessary steps to open the fridge, locate the cola, and retrieve it.

2) Empty Plate: The instruction is “Pass me an empty plate”. However, the plate in the scene
is not empty, as it contains apples and grapes. The robot needs to remove each fruit from the plate
before finally picking up the empty plate.

3) Tool Use: The instruction is “Pick up the cocoa powder can, which is out of reach”. The
primary difficulty here is that the target object is not within the robot’s direct reach. The robot must
recognize the need for a tool (a nearby stick), plan to first grasp the stick, use it to sweep the distant
cocoa powder can within reach, and only then proceed to pick up the can.

4) Prepare Drinks: The robot needs to plan and prepare appropriate drinks based on user
intent: such as coconut latte for “Help me stay awake,” kale juice for “I want something
healthy,” and a blue mood cocktail for “I’'m feeling down.” This task requires scene-aware user
intent understanding capability.

C.3 VISUAL GROUNDING TASKS

Task descriptions can be found in Sec. 4] In the Single-Env setting, each robot demonstra-
tion is paired with 11 instruction-reasoning pairs. These instructions refer to target objects using
their names (2 instances), spatial relationships (3 instances), attributes (3 instances), or semantic
features (3 instances). In the Open-World setting, each demonstration includes a total of 17
instruction-reasoning pairs, broken down as 2 using direct names, 5 using spatial relationships, 5
using attributes, and 5 using semantic features. All instruction—reasoning pairs are first generated
with Gemini 2.5 Pro and then verified by human annotators.

During testing, we evaluate each method 40 times in both settings. This consists of 10 tests for each
reference type. Table[d presents the experimental results broken down by these four types.
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Here we list the objects used in visual grounding tasks. The Single-Env task uses four objects:
blue cube, eggplant toy, coconut water bottle, and black mouse. For the Open-Wor1d task evalua-
tion, we use the following objects (shown in Fig.[T0):

1) 5 objects seen in robot data: flower, mouse, cardholder, tissue, and glasses case.

2) 10 objects unseen in robot data but present in synthetic vision-language data: globe, teddy bear,
straw hat, binoculars, trowel, croissant, map, magnifying glass, VR headset, lantern.

3) 5 objects unseen in either dataset: GoPro, Sprite, Starbucks Coffee, HDMI cable, Captain Amer-
ica model.

Fig.[TT]displays the 16 training environments for the Open-Wor1d task, while Fig. [I2]shows the 8
evaluation environments.

Single-Env Open-World

Name  Spatial  Attribute  Semantic ~ Total = Name  Spatial  Attribute  Semantic  Total

OneTwoVLA-VL  10/10 8/10 8/10 9/10 35/40 8/10 6/10 7/10 8/10 29/40
OneTwoVLA 10/10 5/10 8/10 8/10 31/40 2/40 0/10 1/10 0/10 3/40
To 2/10 0/10 0/10 0/10 2/40 1/10 0/10 0/10 0/10 1/40

Table 4: Experimental results for the visual grounding tasks. Results are broken down by the four instruction
reference types: direct names, spatial relationships, object attributes, and semantic features.

Objects seen in robot data

Figure 10: Objects for Open—-World task evaluation.
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Figure 11: Training environments for Open—-Wor1ld visual grounding task.
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Figure 12: Evaluation environments for Open-Wor1d visual grounding task.

20



Under review as a conference paper at ICLR 2026

D MORE REASONING EXAMPLES

Detailed OneTwoVLA reasoning examples during task execution are presented in this section. These
include examples for long-horizon task planning (Table [3]), generalizable planning (Table [6)), error
detection and recovery (Table [/)), natural human-robot interaction (Table B]) Single—-Env visual
grounding (Table[9)), and Open-Wor1ld visual grounding (Table [I0).

We provide prompt templates for annotating reasoning intervals (Fig.[I3) and for generating reason-
ing content (Fig.[T4).

Our template can readily extend to error detection/recovery and human—robot interaction (HRI) via
a plan-augmentation step. Given the original high-level plan P = (p1,...,pk ), we construct an
augmented plan P by inserting explicit substeps that represent anticipated recovery events and in-
teraction turns (e.g., “detect failure,” “retract,” “retry,” “ask question,” “receive answer”’). We use P
to prompt Gemini in both stages—(i) interval annotation and (ii) reasoning-content generation—so
that reasoning intervals and their fields align with these events.

9 ¢ 99 < 99 ¢

Error detection and recovery. Using P encourages the annotator to place reasoning intervals
around failure and recovery micro-steps (e.g., a failed grasp followed by a retraction). During as-
sembly, however, we map back to the original plan P. The reasoning tuple remains (D;, P, H;, X;),
where H; = render(ps,...,p;) over P. If a failure occurs on py, we set the next step to a retry ac-
tion conditioned on py, (e.g., X; = retry(ps)), optionally preceded by a retraction, without altering
P itself.

Human-robot interaction. In P we insert explicit interaction substeps, such as the robot asking
a question and the human providing an answer (e.g., “Which cocktail should I make?” — “Mo-
jito”). During assembly, we extend the reasoning tuple to (D;, P;, Hj, X;, Q;, A;), where Q; is
the robot’s question and A; is the human’s answer (empty if no interaction). The plan is updated
around the dialogue: before the interaction we use a provisional plan P}”e, and after observing A;

we synthesize a conditioned plan P]POSt that replaces the remaining substeps; thus P; = P;*° before

the dialogue and P; = PJPOSt after. The historical summary H; records the newly acquired informa-
tion (i.e., 4;), and the next step X; is conditioned on A; (e.g., proceed to gather ingredients for a
Mojito). Interaction boundaries are marked as reasoning intervals during annotation.
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Instruction: Dip the beef and the green bok choy.

Reasoning:

Scene description: The beef is located on the bottom-right plate. The green
bok choy is on the top-right plate. The pot is in the center-right area of the
table and contains a hotpot strainer.

Plan: 1. Put the beef into the hotpot strainer. 2. Put the green bok choy into
the hotpot strainer. 3. Wait for the ingredients to cook and then pick up the
hotpot strainer.

What | have done: Nothing.

Now | need to: Put the beef into the hotpot strainer.

Instruction: Make me a plate of tomato-egg scramble.

Reasoning:

Scene description: The oil bottle is located at the front of the table. The
cooking machine is on the left side of the table.

Plan: 1. Pour the oil into the cooking machine. 2. Pour the tomatoes and egg
liquid into the cooking machine. 3. Wait for the cooking process to finish,
then pick up the spoon. 4. Scoop out the tomato-egg scramble, transfer it
onto the plate, and place the spoon into the cooking machine.

What | have done: Nothing.

Now | need to: Pour the oil into the cooking machine.

Instruction: Make me a cup of Mountain Fuji cocktail.

Reasoning:

Scene description: The orange-flavored vodka is the second from the left
on the bottom shelf. The Blue Curacao is the second from the right on the
bottom shelf. The lemon juice is the second from the left on the top shelf.
The yogurt is located in the middle of the top shelf.

Plan: 1. Pour the orange-flavored vodka into the glass. 2. Pour the Blue
Curacao into the glass. 3. Pour the lemon juice into the glass. 4. Pour the
yogurt into the glass.

What | have done: Nothing.

Now | need to: Pour the orange-flavored vodka into the glass.

Table 5: Reasoning examples for long-horizon task planning.
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Instruction: Give me an icy cola.

Reasoning:

Scene description: The cola is out of sight, maybe in the fridge.

Plan: 1. Open the fridge door. 2. Pick up the icy cola bottle and place it on
the table. 3. Close the fridge door.

Instruction: Pass me an empty plate.

Reasoning:

Scene description: The grapes and apple are on the plate.

Plan: 1. Pick up the grapes and place them on the table. 2. Pick up the apple
and place it on the table. 3. Pick up the empty plate.

Instruction: I’'m exhausted — can you make me a drink to keep me awake?
Reasoning:

I need to make a coconut latte.

Plan: 1. Add thick coconut milk to the coffee cup. 2. Pour espresso into the
cup. 3. Drop in ice cubes.

Instruction: I’ve been eating clean and need a nutritious drink.

Reasoning:

I need to make a glass of kale juice with some kale leaves and ice cubes.
Plan: 1. Pour kale juice into the cup. 2. Put a kale leaf in the cup. 3. Add ice
cubes to the cup.

Instruction: I’'m feeling kind of down today. Can you fix me a drink?
Reasoning:

I need to make a Blue Mood cocktail.

Plan: 1. Pour in white rum. 2. Add Blue Curacao. 3. Mix in lemon juice. 4.
Drop in ice cubes.

Instruction: Pick up the cocoa powder bottle that is out of reach.
Reasoning:

Scene description: The cocoa power bottle is out of reach. There is a
wooden stick nearby.

Plan: 1. Grasp the stick. 2. Sweep the cocoa powder bottle closer with the
stick and put down the stick. 3. Pick up the cocoa powder bottle.

Table 6: Reasoning examples for generalizable planning.
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Instruction: Dip the beef and the enoki mushrooms.

Reasoning:

Scene description: Some of the beef and the green bok choy are in the
hotpot strainer. But I fail to grasp the hotpot strainer due to misalignment.
Plan: 1. Put the beef into the hotpot strainer. 2. Put the enoki mushrooms
into the hotpot strainer. 3. Wait for the ingredients to cook and then pick up
the hotpot strainer.

What | have done: 1. Put the beef into the hotpot strainer. 2. Put the enoki
mushrooms into the hotpot strainer.

Now | need to: Retract, reposition to align with the strainer, and try
grasping again.

Instruction: Make me a plate of tomato-egg scramble.

Reasoning:

Scene description: The oil bottle is located at the front of the table. The
cooking machine is on the left side of the table. But I discover that the oil
bottle slips from the gripper.

Plan: 1. Pour the oil into the cooking machine. 2. Pour the tomatoes and egg
liquid into the cooking machine. 3. Wait for the cooking process to finish,
then pick up the spoon. 4. Scoop out the tomato-egg scramble, transfer it
onto the plate, and place the spoon into the cooking machine.

What | have done: Nothing.

Now | need to: Retry to grasp the oil bottle with increased firmness.

Table 7: Reasoning examples for error detection and recovery.
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Instruction: Dip the beef for me.

Human: Could you also dip another vegetable for me?

Robot: Sure! Would you like green bok choy, enoki mushrooms, or cabbage?
Human: / want some green bok choy.

Reasoning:

Scene description: Some of the beef is in the hotpot strainer. The green bok
choy is on the top-left plate.

Plan: 1. Put the beef into the hotpot strainer. 2. Put the green bok choy into
the hotpot strainer. 3. Wait for the ingredients to cook and then pick up the
hotpot strainer.

What | have done: 1. Put the beef into the hotpot strainer.

Now | need to: Put the green bok choy into the hotpot strainer.

Instruction: Make me a cup of Vodka Sunrise.

Human: / don’t want orange vodka, I want lemon-flavored one.
Reasoning:

Scene description: The grenadine syrup and orange juice have been poured
into the glass. The lemon-flavored vodka is the second from the right on the
top shelf.

Plan: 1. Pour the grenadine syrup into the glass. 2. Pour the orange juice
into the glass. 3. Put down the orange vodka, and retrieve the lemon vodka.
What | have done: 1. Pour the grenadine syrup into the glass. 2. Pour the
orange juice into the glass.

Now | need to: Put down the orange vodka, and retrieve the lemon vodka.

Table 8: Reasoning examples for natural human robot interaction.

Instruction: Pick up the black mouse.

Reasoning:

I need to pick up the black mouse, which is to the left back of the eggplant,
has a smooth, arching shape that fits the palm, and is a key component of a
typical office workstation.

Instruction: Pick up the object which is to the left back of the coconut water
bottle.

Reasoning:

I need to pick up the blue cube, which is identified by its blue shade, and is a
solid form useful for creating stable structures.

Instruction: Pick up the object which exhibits a purple coloration.
Reasoning:

I need to pick up the eggplant, which is to the right of the coconut water
bottle, and is a common ingredient in ratatouille.

Instruction: Pick up the object which is a packaged drink.

Reasoning:

I need to pick up the coconut water bottle, which is to the left back of the
blue cube, and has a cylindrical form.

Table 9: Reasoning examples for Single-Env visual grounding.
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Instruction: Bring me the Sprite.

Reasoning:

I need to pick up green Sprite, which is a model of a drink, located on the
right side of the table.

Instruction: Give me the object behind the seashell.

Reasoning:

I need to pick up the lantern to the left of the croissant, which is black with a
metal structure, and holds light and can be carried.

Instruction: Hand me the object which is black and round.
Reasoning:
I need to pick up the alarm clock sitting on the left side of the table.

Instruction: I need something to get a closer look at this fine print.
Reasoning:

I need to pick up the magnifying glass, which is to the right of the red pepper,
and has a wooden handle and a circular lens.

Table 10: Reasoning examples for Open-Wor1ld visual grounding.
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(. N

You are given:

A step-by-step plan for a tabletop robot task, recorded by a wrist-mounted camera.
A set of sampled frames from the video, named by integer frame IDs.

Each image is introduced by a text line “Frame <id>" followed by the image itself.

Goal:

Annotate “boundary intervals” between consecutive steps in the plan. A boundary interval is a
contiguous range of frames [start_id, end_id] such that:

1) From the visual evidence, the previous step has clearly been completed.

2) The next step has not yet started.

3) The tabletop is substantially visible across the interval (i.e., a relatively complete view of the
workspace surface; avoid frames where the table is mostly occluded by the robot or out of view).

4) Gripper-state criterion for all selected intervals: the gripper is open, the gripper holds no object
(empty), and it is positioned relatively far from the tabletop (i.e., retracted or clearly above the surface
rather than near contact). Prefer intervals where this is directly visible.

Additionally:

Typical step structure involves: pick a tool/object, perform an operation, then place/put the tool
elsewhere. Favor boundary intervals after “place/release” of the prior step and before the approach to
the next target, where the gripper is open, empty, and away from the tabletop.

If the gripper is temporarily occluded or out of view, accept frames where other cues strongly indicate
open/empty/away (e.g., no contact, no object in jaws across adjacent frames). If not confirmable, keep
the interval minimal and lower the confidence, but still follow the schema.

Include a pre-task boundary interval that begins at frame 0 (implicit) and ends just before Step 1 visibly
begins, while satisfying tabletop visibility and the gripper-state criterion.

Include a post-task boundary interval that starts right after the final step is complete and ends at the
last frame (implicit), while satisfying tabletop visibility and the gripper-state criterion.

Intervals must be non-overlapping, ordered, and as long as possible while respecting the rules above.
Prefer intervals with at least 2-3 frames where possible. If only a single frame satisfies the conditions,
use a single-frame interval [k, K].

If some step transition has no frames that both (a) show previous-step-complete and next-step-not-
started and (b) maintain tabletop visibility and (c) meet the gripper-state criterion, pick the closest
visually justifiable frame(s) and keep the interval minimal, but never violate chronological order.

Assumptions and cues:

“Previous step completed” cues can include: the target object placed in its goal pose, gripper
released/open, robot no longer manipulating that object, or the scene stabilized.

“Next step not started” cues can include: the gripper has not yet approached/touched the next target,
no new object interaction has begun, or no evident motion initiating the next step.

The camera is on the wrist; favor frames where the tabletop surface is broadly visible and not heavily
occluded by the manipulator.

Input you receive:

Step plan (numbered 1..N).

A list of frames; each is introduced by the line “Frame <id>” followed by its image. Frame IDs are
chronological and unique. The first frame ID is 0; the last is given.

Output format (return ONLY this JSON; no extra text):

{"version":"v1","total_frames":"","steps":["<step 1 text>","<step 2 text>","..."],"intervals":
[{"label":"pre_step_1","end":"","tabletop_visible":true,"confidence":"<float 0..1>"},
{"label":"between_step_1_2","start":"","end":"","tabletop_visible":true,"confidence":"<float 0..1>"},
{"label":"...","start":"","end":"", "tabletop_visible":true,"confidence":"<float 0..1>"},
{"label":"between_step_(N-1)_N","start":"","end":"","tabletop_visible":true,"confidence":"<float 0..1>"},
{"label":"post_step_N","start":"","tabletop_visible":true,"confidence":"<float 0..1>"}]}

J

Figure 13: Prompt template for annotating reasoning interval.
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You are given:

A central frame image (the current interval’s keyframe).

The task’s high-level plan as an ordered list of substeps P = (p1, ..., pK).
The list of completed substeps up to the current interval.

The next substep (or “Task Finished” if the task is finished).

Your goal:

1) Produce the "scene description" for the current interval focusing strictly on task-relevant objects for
the given plan and substeps.

2) Output must be valid JSON only, matching the schema below.

Position frame of reference:

“front” = nearest edge of the table to the camera/viewer.

“back” = farthest edge of the table from the camera/viewer.

“left/right” = viewer’s left/right.

You may also use “center/middle,” “front-left,” “front-right,” “back-left,” “back-right,” and proximity
phrases like “near the left edge,” “near center,” “near the back edge.”

Rules:

Write a concise scene summary (2-4 sentences).

List only task-relevant objects on the table (tools, containers, parts, targets, intermediates).

One sentence per object describing its absolute position on the table using the frame above.

Do not hallucinate; if uncertain or partially occluded, lower confidence and note the uncertainty.
If multiple similar objects exist, disambiguate with indices (e.g., “blue block #1”, “blue block #2”)
based on spatial layout.

If an object is not on the table or not visible, omit it from the objects list.

Use brief, literal attributes (e.g., color, material, state like “open/closed,” “full/empty”).

Output must be valid JSON only. Do not include any extra text or formatting outside JSON.

Inputs:

TASK_NAME: {TASK_NAME}

HIGH_LEVEL_PLAN (ordered): {HIGH_LEVEL_PLAN_AS_LIST}
COMPLETED_SUBSTEPS (up to current interval): {COMPLETED_SUBSTEPS_AS_LIST}
NEXT_SUBSTEP: {NEXT_SUBSTEP_OR_DONE}

IMAGE: [central frame image provided as input]

Output JSON schema:

{ "scene_summary": "string, 2—4 sentences describing the visible scene and its relevance to the task.",
"objects": [ { "name": "string, concise object name (e.g., 'red mug', 'blue block #1')", "attributes":
["string", "..."], "position_sentence": "string, exactly one sentence stating the object’s absolute position

on the table (front/back/left/right/center + optional proximity/edge terms).", "position_tags": ["front]|
back|left|right|center", "optional tags like 'front-left’, 'near-left-edge', 'near-back-edge'"], "confidence":
0.0}], "uncertain_observations": ["string notes about any ambiguities, occlusions, or visibility issues

(optional; omit if none)"] }

(. N

Figure 14: Prompt template for generating reasoning content (scene descriptions).
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E SYNTHETIC VISION-LANGUAGE DATA EXAMPLES

Our 16,000 synthetic images are entirely annotated by Gemini 2.5 Pro, without any human inter-
vention. For 6,000 of these images, we generate visual grounding tasks. Each of these images is
annotated with 17 instruction-reasoning pairs, with the instructions referring to objects using their
direct names (2 instances), spatial relationships (5 instances), attributes (5 instances), and semantic
features (5 instances). For the remaining 10,000 images, we annotate a long-horizon planning task
along with a corresponding high-level, step-by-step plan for task completion. We also attempt to
use GPT-40 for annotating our synthetic images but find its spatial understanding to be weak. We
therefore use Gemini 2.5 Pro, which demonstrates strong spatial reasoning capabilities.

We present illustrative examples synthesized by our embodied reasoning-centric visual-language
data synthesis pipeline. Table[T2]and Table[I3|show samples of synthesized data for visual grounding
and long-horizon tasks, respectively, each including textual descriptions of tabletop layouts, synthe-
sized images corresponding to these descriptions, and the accompanying instruction-reasoning pairs
(for visual grounding example, we only show one pair for each of the four reference types). Fig.
illustrates the effects of applying fisheye distortion or compositing a robot gripper with adaptive
brightness to the synthetic images.

Moreover, Fig. and [T8] detail the specific prompts used with Gemini 2.5 Pro throughout our
pipeline: Fig.[TI6[shows the prompt for generating diverse tabletop descriptions, while Fig.[I7]and[T§]
illustrate the prompts for generating visual grounding and long-horizon task instructions and their
associated reasoning, respectively.

Data Quality. We randomly sample 50 instances from the synthetic dataset and identify the follow-
ing types of errors: 1) Wrong Image: the presence of hallucinated objects or implausible physics; 2)
Wrong Text: reasoning that contradicts the corresponding image or common sense. If the generated
image is incorrect, we do not evaluate its text. The results are summarized in Table

Wrong Image  Wrong Text  All Correct
2 8 40

Table 11: Frequency of errors and fully correct cases in 50 randomly sampled synthetic data instances.
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Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, observe a medium-sized, rectangular driftwood
table with a natural, uneven texture. On it are displayed seashells, a coral
sculpture, a nautical map under a magnifying glass, a vintage lantern, and a
model sailboat, backed by a beach house and ocean view.

Direct instruction: Can you pass me the map?
Reasoning: I need to pick up the map, located towards the center of the table.

Spatial instruction: Get me the object sitting on the back right area of the
paper item.

Reasoning: I need to pick up the miniature sailboat model, which is placed
on the map near the top right corner of the map.

Attribute instruction: I need the item
Reasoning: I need to pick up the large piece of coral positioned at the left
side of the table.

Semantic instruction: Could you pass me the device used for seeing small
details much larger?

Reasoning: I need to pick up the magnifying glass situated on the map near
the bottom right corner of the map.

Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, observe a large, oval, stone table with a rough
texture, set outdoors in a mountain retreat. On it, a hearty meal of grilled
trout, wild rice, steamed vegetables, a jug of water, and a lantern. The rugged
outdoor setting is enhanced by the surrounding pine trees and the fading
twilight.

Direct instruction: Can you hand me the lantern?
Reasoning: I need to pick up the black lantern situated at the back left of the
rock table.

Spatial instruction: Pass me the item directly to the left of the grilled trouts.
Reasoning: I need to pick up the fork sitting to the immediate left of the
grilled trouts.

Attribute instruction: Please give me the plate

Reasoning: I need to pick up the plate containing the two cooked fish
positioned in front of the vegetable bowl.

Semantic instruction: Hand me that grain-based side dish, please.
Reasoning: I need to pick up the plate of wild rice located at the back left, to
the left of the vegetable bowl.

Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, observe a rectangular maple table with a honey
finish, placed in a sunny conservatory. A watering can, a terracotta pot with
blooming flowers, a gardening book, gloves, and a small birdhouse are
charmingly scattered on it. Glass panels reveal a lush garden outside.

Direct instruction: Can you pass me the watering can?
Reasoning: I need to pick up the green watering can positioned on the back
left side of the table.

Spatial instruction: I want the item located on the front right side of the
table.

Reasoning: I need to pick up the pair of gardening gloves, situated on the
front right area of the table surface.

Attribute instruction: I need the object .
Reasoning: I need to pick up the book, which is open and located between
the watering can and the brown gloves.

Semantic instruction: Please pass me the item that could provide shelter for
small birds.

Reasoning: I need to pick up the wooden birdhouse, sitting on the back right
side of the table.

Table 12: Examples of synthetic vision-language data for visual grounding tasks.
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Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a rustic
wooden surface covered in vibrant fresh ingredients like tomatoes, peas,
herbs, and spices. A cutting board, knife, spoon, and book are laid out,
bathed in bright light, against a backdrop of softly visible shelves with plants.

Instruction: Prepare a Fresh Herb and Tomato Relish.

Reasoning:

Plan: 1. Chop the tomatoes using the knife and cutting board. 2. Chop the
fresh basil and parsley. 3. Combine the chopped tomatoes, basil, and parsley
in a bowl. 4. Add the green peas and the dried herbs and spices from the
piles on the board to the bowl. 5. Mix all ingredients thoroughly using the
wooden spoon.

Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a low
Japanese tea table with a woven tatami mat beneath it, showcasing a tea set, a
small bonsai tree, and a scroll. The scene plays out indoors, in a serene,
minimalist room, emphasizing peaceful tranquility.

Instruction: Prepare and serve tea.

Reasoning:

Plan: 1. Pick up the teacup and place it next to the teapot. 2. Fill the teapot
with hot water. 3. Pour tea from the teapot into the teacup. 4. Place the
teapot on the table. 5. Serve the teacup to the guest.

Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a small
potted plant beside an empty terracotta pot. A soil bag, a silver trowel, and
various tools are scattered across the worn wooden surface. The scene takes
place outdoors, in a garden full of flowers, bathed in warm afternoon light.

Instruction: Repot the small plant into the larger terracotta pot.
Reasoning:

Plan: 1. Remove the plant from its current small pot. 2. Add soil from the
bag into the bottom of the larger terracotta pot using the trowel. 3. Place the
plant in the center of the larger pot. 4. Fill the remaining space in the larger
pot with soil from the bag using the trowel. 5. Use the trowel to gently firm
the soil around the base of the plant.

Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a white
folding table at an outdoor market. Assorted fruits, vegetables, and price tags
cover the table. The bright, natural light enhances the colors of the produce.

Instruction: Prioritize fresh produce to boost your daily vitamin intake.

Reasoning:

Plan: 1. Pick up some tomatoes and place them in the basket. 2. Pick up
some lemons and place them in the basket. 3. Pick up some oranges and
place them in the basket. 4. Carry the basket to checkout.

Table 13: Examples of synthetic vision-language data for long-horizon tasks.
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Figure 15: Augmentations for our synthetic images. From left to right: original synthetic images, synthetic
images with fisheye distortion, synthetic images with a robot gripper composited with adaptive brightness, and
synthetic images with both fisheye distortion and compositing a robot gripper with adaptive brightness.
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Create 30 detailed 50-word prompts that describe scenes from a 45-degree top-down view of a table.
The table should have a clear description of its shape, size, texture, and color. On the table, place
around five objects, describing each object in detail and their positions relative to each other (e.g.,
object A is placed above object B). The background and environment should be clearly defined, either
indoor or outdoor, and the scene should be rich in detail. Ensure there is no blurriness or out-of-focus
areas, and the lighting and atmosphere should enhance the realism.

Please ensure each of the following prompts is unique and creatively different, varying the table,
objects, environment (like indoor or outdoor), lighting, and overall atmosphere.

Each prompt should start with "The entire scene is sharp and focused. From a 45-degree overhead
view, observe ...", followed by a description of the table's **COLOR** (this could be diverse across
different prompts), shape, texture, size, etc.

Use the following format to separate each prompt:
**START Prompt <Prompt ID>**

[Detailed description of the scene]

**END Prompt <Prompt ID>**

Repeat this process for 30 distinct prompts. Request to generate all at once.

Figure 16: Prompt used to generate tabletop descriptions.
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4 N
In the provided image, you will notice several items placed on a table. Your task is to come up with 17

different instructions based on these items. These tasks will be categorized into three types based on object
properties: spatial, semantic, and attribute.

Spatial pertains to the object's position in space (e.g., on top of the plate, to the right of the book, or at the
bottom right corner of the table).

Semantic refers to the object's general, high-level meaning (e.g., sushi is a type of Japanese food, a kettle is
used for boiling water, a book is meant for reading, etc.).

Attribute is concerned with the object's specific features or characteristics (e.g., a ball is round, a handle is
made of wood, etc.).

For the objects on the table in the image, your task is to create 17 instructions, which can either directly ask
for an object or describe it using its spatial, semantic, or attribute properties (e.g., "pass me the item on the
plate," "give me something that helps with drying hair," or "hand me the yellow object").

Each task is essentially a "pick" task, but the instruction should sound natural and realistic.

After giving the instruction, provide a more specific description that starts with "l need to pick up," and then
clearly name the object, possibly with some additional spatial details to help locate it.

When describing a location, try to be as accurate as possible. Avoid using vague descriptions such as "in
the middle/center of the table," "near," "beside," or "next to," as these could apply to many objects.
Instead, use precise relative positioning, such as "to the left front of an object," "on top of an object,"
"between object A and object B," "to the right back of an object," or "behind an object.”

When giving instructions, avoid mentioning the specific name of the object and instead use pronouns like
"item," "object," or "device."

When providing attribute instructions, only list 1 or 2 properties of the object.

Your Tasks:

First, generating 2 tasks with direct references to the object name.

Then, generate 5 tasks **only* related to spatial properties (focusing on the location of the objects).
Next, generate 5 tasks related to semantic properties (focusing on the general meaning or purpose of the
objects).

Finally, generate 5 tasks related to attribute properties (focusing on specific features of the objects).

For each task, follow this format:
**Start Task <task id>**
Instruction: ...

| need to pick up ...

**End Task <task id>**

Separate these 4 types of tasks by

#i## Tasks Related to Spatial Properties
### Tasks Related to Semantic Properties
### Tasks Related to Attribute Properties

Figure 17: Prompt used to generate visual grounding task instructions and reasoning.
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In the given image, there is a table with several items placed on it in a messy manner.

Your task is to first imagine a long-horizon task based on the items in the image (such as organizing the
table, making a sandwich, etc.). This task needs to be relatively long-term, meaning it should require about
several steps to complete.

The second step is to provide a plan, where each step is a brief action description (e.g., Pick up sth and
place it somewhere, Close sth, Open sth, Move sth to somewhere, etc.).

Output in the following format:
**Start Task™*

Instruction: ...

1.

2.

N.
**End Task™*

If you cannot think of an interesting task, simply output "Fail to think of a plan.”

Note that the instruction and plan should be brief and precise.

Figure 18: Prompt used to generate long-horizon task instructions and reasoning.
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F IMPLEMENTATION DETAILS

F.1 ROBOT DATA INTERVALS

As mentioned in Sec. we segment robot demonstrations into two types of intervals: reasoning
intervals and acting intervals. Below, we detail what OneTwoVLA learns in each interval type.

1) Reasoning intervals, OneTwoVLA learns to:

e Predict [BOR] and the updated reasoning content R based on the latest reasoning content R.

* Predict [BOA] and actions based on the updated reasoning content R.

* Predict actions based on the latest reasoning content R without supervising [BOA]. This is to
prevent incorrect action prediction if the model fails to update the reasoning promptly during
deployment.

2) Acting intervals, OneTwoVLA learns to:

* Predict [BOA] and actions based on the latest reasoning content .

* (Optional) Predict [BOR] based on outdated reasoning without supervising the reasoning con-
tent. This is included because we observe that during deployment, the model sometimes fails
to enter the reasoning mode. Since predicting decision tokens is essentially a binary classifica-
tion problem, and acting intervals are typically significantly longer than reasoning intervals, the
model predominantly learns to predict [BOA], leading to an imbalanced classification problem.
This optional training helps to increase the proportion of [BOR] predictions.

Additionally, it is important to note that reasoning interval during training is designed to encourage
the model to learn the reasoning process more effectively. In real-world deployment, the robot
only reasons at a small number of steps (rather than continuous intervals), ensuring that the overall
operational efficiency is almost unaffected.

F.2 PoLICY TRAINING

As shown in Sec. @ we use 7y as our base model. For each task, we train the model for 30,000
steps on 8xH100 GPUs, requiring approximately 10 hours. We adopt training hyperparameters from
mo. We make two modifications to the original my’s input. Firstly, we use the current image I;
and the reference image I..s as image observations. We incorporate s because the textual scene
descriptions in reasoning may become outdated as the task progresses (e.g., an object’s position
described relative to the gripper becomes invalid upon gripper movement). Including I.¢r, which
corresponds to the image observation for the current reasoning content, helps prevent model confu-
sion that might arise from potentially outdated textual descriptions. Second, we input not only the
current robot proprioceptive states but also the proprioceptive states from 0.05 and 0.25 seconds ear-
lier. This temporal context allows the model to generate more consistent and smooth actions during
execution.

F.3 DEPLOYMENT

In real-world deployment, we use the temporal ensemble (Zhao et al., [2023)) technique to ensure
smooth action execution. Specifically, in acting mode, the policy generates temporally overlapping
action sequences every 0.2 seconds. At any given timestep, multiple predicted actions are averaged
using exponential weighting to determine the actual executed actions.

Table |14] lists the computation time for 7, along with the computation time for OneTwoVLA in
acting mode for varying input token counts and in reasoning mode for varying output token counts,
all of which are tested while processing two image inputs on an NVIDIA 4090 GPU. In acting
mode, although OneTwoVLA has additional reasoning content as input and outputs an extra [BOA]
compared to 7y, this has minimal impact on computation time and remains well below 0.2 seconds,
thus execution efficiency is not affected in this mode. In reasoning mode, when the reasoning token
count is low (less than 20 tokens), execution efficiency is unaffected; however, when reasoning
content is lengthy (exceeding 100 tokens), the robot needs to pause for a few seconds. Nevertheless,
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reasoning only occurs at a few critical moments, resulting in minimal impact on overall execution
efficiency. For example, in one trial of the Tomat o-Egg task, the entire long-horizon task takes 183
seconds, with reasoning occurring 5 times, totaling 16 seconds of reasoning time, which accounts
for 8.7% of the total duration. Similarly, in one trial of the preparing Mountain Fuji task, the
entire long-horizon task takes 135 seconds, with reasoning occurring 5 times, totaling 14 seconds of
reasoning time, which accounts for 10.4% of the total duration.

| #input tokens | # output tokens | computation time

0 20 0.082 s
OneTwoVLA-Act-20 20 1 0.102 s
OneTwoVLA-Act-200 200 1 0.104 s

OneTwoVLA-Reason-20 200 20 0.853 s
OneTwoVLA-Reason-100 200 100 2346 s
OneTwoVLA-Reason-200 200 200 4.361 s

Table 14: Computation times of 7o and OneTwoVLA. 7’s input tokens consist solely of instruction /.
OneTwoVLA’s input tokens are typically longer, including instruction and latest reasoning content (¢ and R).
In acting mode (OneTwoVLA-Act rows), OneTwoVLA’s output token is a single [BOA]. While in reason-
ing mode (OneTwoVLA-Reason rows), OneTwoVLA outputs [BOR] and updated reasoning content, R. We
showcase computation times when its output token length is 20, 100, and 200.
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G OTHER FINDINGS

gl i o]

Instruction: “Grasp cube.” Instruction: “Grasp cube.” Instruction: “Grasp bottle.” Instruction: “Grasp bottle.”
Reasoning: Reasoning: Reasoning: Reasoning:

There are two cubes on the There are two cubes on the There are two bottles onthe  There are two bottles on the
table. | choose the left one to  table. | choose the right one to table. | choose the left one to  table. | choose the right one to
grasp. grasp. grasp. grasp.

Execution: . B ~ ||Execution:

Figure 19: Multi-modality task illustration. Two cubes and two bottles are symmetrically placed on the table.
When the instruction doesn’t specify grasping the left or right object, OneTwoVLA can reason to grasp either
the left or the right object, producing multi-modal actions.

G.1 ONETWOVLA PRODUCES MULTI-MODAL ACTIONS

In this section, we design experiments to show OneTwoVLA’s capability to produce multi-modal
actions.

Tasks and Evaluations. Two identical cubes are symmetrically placed on a table, each with an iden-
tical bottle positioned symmetrically behind it. Using the UMI device, we collect 50 demonstrations
for each of these four objects (totaling 200 demonstrations). Each demonstration instruction is either
“Grasp the cube” or “Grasp the bottle,” without specifying left or right. During testing, the object
positions and the robotic gripper’s initial pose remain fixed. Each method is tested 20 times per
instruction.

Comparative Methods. 1) OneTwoVLA: For each demonstration, we explicitly include disam-
biguating reasoning content (e.g., specifying picking up the left or right object) to resolve the ambi-
guity. 2) mo: The model receives the original instruction directly, without explicit disambiguation.

Experimental Results. As shown in Fig.[T9 OneTwoVLA demonstrates multi-modal action capa-
bility by alternating between reasoning to grasp objects from either side. Specifically, in the “grasp
cube” experiment, OneTwoVLA grasps the left cube 9 times and the right cube 11 times. In the
“grasp bottle” experiment, it grasps the left bottle 8 times and the right bottle 12 times. OneT-
woVLA achieves this balanced left-right performance because its reasoning process is probabilistic,
which means the model can sample different decisions (such as whether to grasp from the left or
right) based on predicted token probabilities, much like language models generate varied responses
from the same input. In contrast, although flow matching (Lipman et al. 2022} [2022)) or dif-
fusion (Ho et al, 2020} [Chi et all,[2023)) algorithms theoretically enable multi-modality, o consis-
tently selects only the right-side objects, exhibiting only unimodal behavior, similar to observations
in some other studies 2024). Additionally, the disambiguating reasoning content helps the
model fit actions more accurately. This is evidenced by my occasionally failing to grasp the block,
while OneTwoVLA consistently achieves precise grasps. Moreover, m(’s action mean squared error
(MSE) on the validation dataset is 56% higher than OneTwoVLA’s. This interesting finding suggests
that when training on large-scale, variable-quality robot datasets, detailed annotation of reasoning
content may enhance action learning.

G.2 ONETWOVLA PRODUCES REASONING-COMPLIANT ACTIONS

Our experiments show that the actions generated by OneTwoVLA consistently align with its reason-
ing, even when the reasoning itself is incorrect. This finding is similar to observations in previous
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work (Zawalski et al.,[2024)). For example, in the Hotpot task, if OneTwoVLA occasionally rea-
sons incorrectly about food locations, it proceeds to reach toward those incorrect positions. Simi-
larly, in the Open-Wor1d experiment, OneTwoVLA moves to the object specified in its reasoning,
even if that object does not align with the instruction. This indicates that OneTwoVLA’s cognition
and behavior are highly unified, showcasing synergistic reasoning and acting. Additionally, this
interesting phenomenon may indicate that improving the model’s reasoning ability (e.g., through
additional vision-language data, using more powerful VLM as the base model, or more precise rea-
soning annotations) may contribute to generating more appropriate actions.

H HARDWARE SETUP

GoPro 10

Realsense D405

Franka Arm - - -}

- = = ARX Arm

Llftmg. Table WSG-50 Gripper

Figure 20: Robot platform overview. We employ two robot platforms: a single-arm Franka system (left) and
a dual-arm ARX system (right).

We utilize two robot platforms. The primary platform (Fig. [20] left) is a single 7-DoF Franka arm
equipped with a Weiss WSG-50 parallel-jaw gripper. A wrist-mounted GoPro camera with fisheye
lens provides wide-angle observations. The arm is mounted on a custom height-adjustable table that
can be pushed by a person—while not autonomous, this mobility allows us to evaluate the policy
beyond traditional laboratory environments. The action space is 7-dimensional (6-DoF end-effector
pose plus gripper width). Expert demonstrations for this platform are collected using UMI (Chi
et al.l [2024).

The second platform (Fig. 20] right) features two 6-DoF ARX arms with parallel-jaw grippers and
a three-camera system (two wrist-mounted and one base-mounted). It also includes a holonomic
wheeled base and a 1-DoF torso lift mechanism, though these components have not yet been utilized
in our experiments. The resulting action space is 14-dimensional (2 x 7). Expert demonstrations
are collected via teleoperation using a Meta Quest headset.
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I FAILURE CASES

\,* " N

Instruction: “Prepare a plate  Instruction: “Dip the beef and
of tomato-egg scramble.” the green bok choy.” of Vodka Sunrise.” small basketball toy.”

Figure 21: Failure cases of OneTwoVLA.

Despite the promising performance of OneTwoVLA, it still makes mistakes. Fig. 21]illustrates the
main failure cases of OneTwoVLA. In the Tomat o-Egg task, OneTwoVLA occasionally fails to
grip the yellow plate containing tomato and egg liquid firmly enough, resulting in the plate being
dropped (see the first column in Fig. 2T). In the Hotpot task, OneTwoVLA sometimes misidenti-
fies the location of the target ingredient. For instance, as shown in the Fig. 21| second column, the
robot is instructed to pick up green bok choy but instead it attempts to pick up enoki mushrooms.
The third column of Fig. 21| shows a case in Cocktail task, where OneTwoVLA fails to pour the
orange juice accurately while preparing the Vodka Sunrise, causing the juice to spill. In the
Open-world experiments, OneTwoVLA shows vulnerability when encountering objects that are
not present in either the robot data or our synthesized vision-language data. For instance, as illus-
trated in the Fig.[21]fourth column, the robot consistently moves toward the chessboard despite being
instructed to pick up the small basketball toy. We believe that training on larger robot datasets, as
well as co-training with richer vision-language data, can further facilitate OneTwoVLA in learning
fine-grained actions and improve generalization capabilities.
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