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Abstract

A conceptual space represents concepts as
nodes and semantic relatedness as edges. Word
embeddings, combined with a similarity met-
ric, provide an effective approach to construct-
ing such a space. Typically, embeddings are
derived from traditional distributed models or
encoder-only pretrained models, whose objec-
tives directly capture the meaning of the cur-
rent token. In contrast, decoder-only models,
including large language models (LLMs), pre-
dict the next token, making their embeddings
less directly tied to the current token’s seman-
tics. Moreover, comparative studies on LLMs
of different scales remain underexplored. In
this paper, we construct a conceptual space us-
ing word embeddings from LLMs of varying
scales and comparatively analyze their prop-
erties. We establish a network based on a lin-
guistic typology-inspired connectivity hypoth-
esis, examine global statistical properties, and
compare LLMs of varying scales. Locally, we
analyze conceptual pairs, WordNet relations,
and a cross-lingual semantic network for quali-
tative words. Our results indicate that the con-
structed space exhibits small-world properties,
characterized by a high clustering coefficient
and short path lengths. Larger LLMs generate
more intricate spaces, with longer paths reflect-
ing richer relational structures and connections.
Furthermore, the network serves as an efficient
bridge for cross-lingual semantic mapping.

1 Introduction

The conceptual space framework, which represents
concepts (i.e., words) as nodes and connects them
based on their proximity, has been extensively ap-
plied in cognitive science, typological linguistics,
and related fields (Gérdenfors, 2000, 2014; Nosof-
sky, 1986, 1987, 1992; Shepard, 1964, 1987; Croft,
2003; Haspelmath, 2003). This framework aims to
uncover the alignment between surface-level lin-
guistic structures and deep cognitive processes, of-
fering a spatial visualization of brain activities or

concept representations.

Existing approaches employ both manual and
automated methods to define nodes and edges,
thereby constructing the conceptual space. In man-
ual methods, linguists either establish direct con-
nections between nodes based on connectivity hy-
potheses (Croft, 2001) or determine similarity by
computing the co-occurrence frequency of two con-
cepts (Cysouw, 2007), subsequently generating a
low-dimensional network using techniques such
as Principal Component Analysis (PCA) (Abdi
and Williams, 2010) or Multidimensional Scaling
(MDS) (Goldstone, 1994). However, these manual
approaches are labor-intensive and inadequate for
constructing large-scale conceptual spaces.

To address the aforementioned limitations, au-
tomated methods utilize embedding models to im-
prove efficiency. Traditional embedding models,
such as static word2vec (Church, 2017), repre-
sent words as dense vectors. However, these mod-
els rely on limited datasets and often fail to cap-
ture nuanced word meanings. In contrast, pre-
trained models like BERT (Devlin et al., 2019)
have demonstrated greater effectiveness in word
representation (Devlin et al., 2019; Tenney et al.,
2019) and have become widely adopted across re-
lated fields (Moullec and Douven, 2025). As a
purely encoder-based model, BERT focuses on re-
covering masked words, which gives it a distinct
advantage in constructing conceptual spaces.

Recently, Large Language Models (LLMs) have
demonstrated remarkable performance across a va-
riety of understanding and generation tasks (Ope-
nAl, 2023). However, research on word embed-
dings within LLMs remains relatively limited. Typ-
ically, LLMs are decoder-only models trained with
the objective of next-token prediction. Conse-
quently, it remains unclear to what extent the em-
beddings capture the meaning of the current token,
as opposed to simply transferring information to
the next token (Liu et al., 2024a). Furthermore,



despite their success, LL.Ms still face challenges in
terms of interpretability (Zou et al., 2023). In this
context, we aim to offer a cognitive perspective for
interpreting LLMs comparatively by constructing
a conceptual space based on initial input represen-
tations from LLMs of different scales.

In this paper, we construct a conceptual space
based on LLM input embeddings and analyze its
properties comparatively from both global and lo-
cal perspectives. Specifically, we treat the LLM
vocabulary as a set of concepts, with the input
embeddings serving as node representations. Us-
ing similarity metrics, we first build a complete
graph, which we then sparsify based on the mini-
mal connectivity hypothesis inspired by semantic
map models (Haspelmath, 2003; Croft, 2003). We
compare the conceptual spaces of LLMs with simi-
lar architectures but different parameter scales by
calculating global network statistics. Our findings
show that LLM embeddings form a small-world
network with high clustering coefficients and low
average path lengths. LLMs with larger parameter
scales tend to have more complex structures, with
longer paths and richer relationships. To assess
the practical utility of the conceptual space, we
extract local subgraphs for scenarios such as: (1)
common concepts, (2) WordNet relations, and (3) a
cross-lingual case study on qualitative words. The
consistency of these subgraphs with human annota-
tions confirms the effectiveness of our constructed
conceptual space. In conclusion, our contributions
are as follows:

* We propose a comparative study on concep-
tual spaces constructed from LLMs of differ-
ent scales based on the proposed connectivity
hypothesis.

* We design three distinct scenarios and con-
duct an extensive evaluation of the conceptual
space, considering both global and local per-
spectives, while comparing models of differ-
ent scales.

* We demonstrate that the conceptual spaces
align with human perception and provide an
effective representation of concepts and their
relationships.

2 Related Work
2.1 Conceptual Space Modeling

Conceptual space modeling has been extensively
studied and applied in fields such as cognitive sci-

ence (Gérdenfors, 2000, 2014; Nosofsky, 1986,
1992), linguistic typology (Croft, 2001; Haspel-
math, 2003), and neuroscience (Caglar, 2021). One
widely used framework, the Conceptual Space
Framework (CSF) proposed by Gérdenfors (2000,
2014), introduces the basic concepts of similarity
space and conceptual space, with the latter being a
prototypical realization based on the former. Subse-
quent work has focused on constructing similarity
spaces, including the representation of instances
and the distance metrics among them. Multidi-
mensional scaling (Borg and Groenen, 1999) and
spatial arrangement methods (Goldstone, 1994) are
two common approaches based on pairwise simi-
larity judgments for a set of items. However, these
methods are often manual and incur high costs
due to the need for extensive data collection or the
cognitive demands they impose. Alternatively, a
more efficient approach leverages language models
and word embeddings, such as word2vec (Mikolov
et al., 2013), fastText (Bojanowski et al., 2017),
BERT (Devlin et al., 2019), and even LLMs (Tou-
vron et al., 2023). Notably, embeddings directly
from LLMs exhibit weaker correlation with human-
annotated datasets compared to prompt-guided con-
structions. Our paper also focuses on embeddings
from LLMs, but with more systematic evaluations
and a broader set of concepts !.

2.2 Semantic Map Models

Semantic map modeling is another framework
for constructing conceptual spaces based on
cross-lingual co-occurrence of concepts in lin-
guistic forms. These forms can include con-
tent words (Guo, 2012b; Cysouw, 2007; Perrin,
2010), function words (Zhang, 2017), or construc-
tions (Malchukov et al., 2007). The concepts are
typically represented by the grammatical (Zhang,
2017) or content (Guo, 2012b) meanings of these
forms. The conceptual space can be constructed in
either a bottom-up or top-down manner. A classical
bottom-up approach is based on the connectivity
hypothesis (Croft, 2001; Haspelmath, 2003; Teng,
2015), which posits that concepts involved in a
single linguistic form should be connected within
the corresponding subgraph. The overall space is
then built incrementally, edge by edge. Alterna-
tively, a top-down approach (Liu et al., 2024b) first

'In this paper, the term “concept” refers to a word without
context, similar to the instances in CSF. Thus, our conceptual
spaces are more akin to similarity spaces within the CSF
framework.



constructs a similarity graph based on the strength
of co-occurrence, and then sparsifies the graph ac-
cording to a refined connectivity constraint. In this
paper, we treat a concept as a single token without
explicitly matching form-meaning pairs, and we
adopt an efficient top-down approach with slightly
modified constraints to build the conceptual space.

2.3 Word Embedding and Representation

Contemporary language models represent words
or subtokens using continuous vectors based on
distributed semantics (Boleda, 2020). These
high-dimensional vectors can be static (Mikolov
et al., 2013; Bojanowski et al., 2017) or context-
sensitive (Devlin et al., 2019). While effective,
they lack the interpretability of linguistic feature-
based representations (Petersen and Potts, 2023).
Word embeddings exhibit elegant linear relation-
ships (Mikolov et al., 2013), high similarity with
human judgments (Vuli¢ et al., 2020), and mean-
ingful representations (Turney and Pantel, 2010).
Static embeddings are particularly suitable for of-
fline, context-free words, especially monosemous
ones. These embeddings are used in the input and
output layers of LLMs. Previous research has ex-
plored their linear properties (Han et al., 2024),
conceptual space construction (Moullec and Dou-
ven, 2025), and other aspects. In this paper, we
focus on LLM input embeddings, offering a more
diverse and systematic evaluation through the lens
of conceptual spaces.

3 Approach

In this section, we first introduce the basic notions
and construct a complete graph connecting all con-
ceptual nodes. We then sparsify the graph based
on the revised connectivity hypothesis. Finally, we
define global and local metrics to evaluate the con-
ceptual space. The overall pipeline is illustrated in
Figure 1.

3.1 Basic Notions

We define a conceptual space G = {V, E'}, where
V and F are sets of nodes and edges, respectively.
Each node v € V represents a concept, which
can be realized by a token, word, or sense. Each
edge e(u,v) € E connects a pair of nodes (u, v),
reflecting their degree of association (Guo, 2012a).
If a path p(u,v) exists between nodes u and v,
they are connected, with path length L defined as
the number of edges along the path. If no path

exists, L = oco. A conceptual space is considered
connected if every pair of nodes is connected.

A subgraph G’ = {V’/, E'}, where V' C V and
E’ C E, reflects the local topology of G and typi-
cally represents a specific semantic domain, such
as adverbs (Zhang, 2017), color adjectives (Gér-
denfors, 2014), or qualitative words (Perrin, 2010).
Similarly, a subgraph is connected if every pair of
nodes has a path.

We define a metric M on G to measure the as-
sociation or similarity between nodes. A common
metric is cosine similarity 2, widely applied in
similarity-related tasks.

3.2 Complete Graph

We use an LLM to extract input embeddings & for
all tokens in its vocabulary V), treating each token
(the minimal computational unit) as an individual
concept. After obtaining the vectorized embed-
dings, we compute the cosine similarity between
every pair of nodes to define edge weights. Ad-
ditionally, we apply centering by subtracting the
average vector from each embedding to address
anisotropy (Ethayarajh, 2019). This results in a
complete graph C, where every pair of concepts is
connected.

3.3 Conceptual Space

We derive a sparsified graph, denoted as the con-
ceptual space G, from the complete graph C. We
propose a minimum connectivity hypothesis, which
states that G must remain connected while using the
fewest edges possible. The “connectivity” ensures
that every pair of concepts is connected, forming
a valid space. The “minimum” condition favors
sparse connections, inspired by the top-down con-
struction of semantic map models, which even use
trees (with the least number of edges) to main-
tain connectivity. To achieve this sparsity, we rank
edges by weight and retain the top K ratio of edges,
as higher weights indicate more important connec-
tions.

A well-defined G is also a discrete topological
space {G, T }, where 7T is the collection of all sub-
sets. We define a subgraph G’ as a subset of G, and
it is considered an open set. This is because the
intersection and union of any two subgraphs G 4
and Gz still belong to 7

VGa,Ge €T, GanNGp €T, GaUGpeT. (1)

“While cosine distance violates the triangle inequality re-
quired by strict distances, we relax this constraint due to its
simplicity and widespread use.
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Figure 1: Outline of our conceptual space construction. First, we extract the input word embeddings (£) for the
LLM vocabulary (V). Next, we build a complete graph C by calculating the cosine similarity between all embedding
pairs. Finally, we retain edges based on similarity, from highest to lowest, until the graph G is connected. We then
focus on specific connected subgraphs G’ representing certain domains at a local level.

This is ensured by the “connectivity” condition,
while a “minimum” topological space is required
for the conceptual structure.

3.4 Evaluation

We evaluate the conceptual space from both global
and local perspectives.

Globally, we compute network statistics to ana-
lyze basic properties, connectivity, and small-world
characteristics of the spaces built by two mod-
els. Small-world characteristics are indicated by a
higher clustering coefficient and a shorter shortest
path, which are described in detail in Section 5.1.

Locally, we analyze a subgraph G’ of the con-
ceptual space G in three scenarios. Scenario 1 ex-
amines common concepts across ten semantic cate-
gories, each containing monosemous words, com-
paring shortest paths within and between groups.
Scenario 2 explores shortest-path connections for
various WordNet relations. Scenario 3 evaluates a
conceptual space of qualitative words, comparing it
to the corresponding LLM subgraph. Beyond topol-
ogy and connectivity, we assess node degree cor-
relations and measure recall and precision against
the ground truth.

4 Experimental Design

4.1 Large Language Models

We adopt the Llama series as our LLMs, includ-
ing Llama2-7B and Llama2-70B (Touvron et al.,
2023). The dimension of the input embedding is
4096 and 8192, for Llama2-7B and Llama2-70B
respectively. Also, they share the vocabulary for
both models, with the size of vocabulary 32,000.
The tokens in the vocabulary are obtained by Byte
Pair Encoding (Sennrich et al., 2016), merging the

frequent characters. Thus, many tokens are part
of a whole word. Besides, tokens with a whites-
pace or appearing at the beginning of a sentence
are different from those in other places, i.e., the end
part of a word. For example, “man” in “policeman”
and “man” are different units in the vocabulary. We
identify the token appearing the end part of a word
by add “#” at the beginning of the token, such as
“#man”.

4.2 Scenario 1: Common Concepts

We collect nine semantic groups to represent com-
mon concepts, each containing 10 tokens or con-
cepts: NUMBER, NAME, MONTH, COLOR,
CITY, NATION, PLACE, HUMAN, and FURNI-
TURE. Additionally, we include a semantic group
of RANDOM concepts. A full list of the concepts
is provided in Table 4 in Appendix A.1. This sce-
nario primarily examines the length of the shortest
path within and between semantic groups.

4.3 Scenario 2: WordNet Relations

In Scenario 2, we explore a subgraph of WordNet
instances and their structural relationships. We ex-
tract a subset from the public WN18 dataset (Bor-
des et al., 2013), consisting of 40,943 WordNet
synsets and 18 relation types. The dataset is filtered
by the following conditions: (1) after converting
synsets to words, the words must be in the Llama
vocabulary; (2) only the first sense of each synset
is retained for its stereotypical meaning; (3) a rela-
tion must involve at least 10 words; (4) symmetric
relation pairs, such as hypernym and hyponym, are
merged. Additionally, we define two wordform re-
lations: fokenization variant, distinguishing tokens
with and without a leading underscore (e.g., “man”
vs. “#man”), and uppercase variant, differentiating



capitalized and non-capitalized forms (e.g., “red”
vs. “Red”). In total, we consider eight relation
types, listed in Table 1.

Index Relation Type Count
A Member of Domain Topic 51
B Verb Group 10
C Hypernym 464
D Has Part 22
E Also See 95
F Derivationally Related Form 388
G Tokenization Variant 1685
H Uppercase Variant 1788

Table 1: WordNet Relations and Instance Counts

4.4 Scenario 3: SMM of Qualitative Words

In Scenario 3, we utilize a cross-lingual seman-
tic map for adjectives and qualitative words (Per-
rin, 2010), which includes 22 African languages,
French, and English. Polysemes in each language
are connected to indicate conceptual proximity.
The domain spans dimension, age, value, color,
etc., with capitalized English words representing
concepts, such as BIG, SMALL, LONG, SHORT,
WIDE, and DEEP for dimension. We filter out
words not present in the Llama vocabulary, result-
ing in 75 concepts. The final set of concepts and
the human-annotated graph are presented in Ap-
pendix A.2.

5 Results and Analysis

In this section, we first construct the conceptual
space based on the minimum connectivity approach
described in Section 3.3. We then evaluate the
space in three distinct scenarios.

5.1 Graph Construction

Choice of K. To ensure the graph is minimally
connected, we extract the top K ratio of edges,
where the edge weights are determined by cosine
similarity. We incrementally increase the value of
K while monitoring the number of connected com-
ponents (CC), as shown in Figure 2. The graph first
becomes connected when the log of the number of
CC reaches zero. In our experiments, we selected
K = 0.002, at which point both models become
connected. This choice ensures that the same num-
ber of edges are used for both models, making the
comparison fair.

R —o— Llama2-7B
Llama2-70B

8

NCC (log)

N
N

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
K ratio (x1073)

Figure 2: Logarithm of the number of connected com-
ponents as the top K ratio increases for Llama2-7B and
Llama2-70B. A value of zero indicates a fully connected
network, while the dotted line marks the first ratio at
which both models become connected.

Statistics Llama2-7B Llama2-70B
Basic
#Nodes 32,000 32,000
#Edges 1,024,000 1,024,000
Avg. Degree 64 64
Std. Degree 68.39 58.96
Weighted
Avg. Degree_W 8.76 12.23
Std. Degree_ W 13.78 14.02
Threshold 0.095 0.147
Small-world
GCC (D) 0.325 0.215
ALCC (1) 0.183 0.174
Diameter ({.) 6 6
ASPL ({) 3.392 3.353

Table 2: Statistics for Llama2-7B and Llama2-70B. In
the “Small-world” section, GCC refers to global clus-
tering coefficient, ALCC to average local clustering
coefficient, and Diameter and ASPL refer to the longest
and average shortest path lengths, respectively.

Global Statistics. We present the statistics of the
conceptual spaces for both models in Table 2, di-
vided into three parts. The Basic section includes
the number of nodes (#Nodes), edges (#Edges),
and the average (Avg. Degree) and standard de-
viation (Std. Degree) of degrees. The Weighted
section calculates the average and standard devia-
tion of weighted degrees (also called Strength or
Traffic), along with the equivalent threshold—the
minimum weight value in the final graph G. The
last section focuses on Small-world effects. The
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Figure 3: Shortest path lengths among semantic groups for Llama2-7B (left) and Llama2-70B (right).

global clustering coefficient (GCC) measures graph
transitivity—the fraction of actual triangles among
all possible triangles in . The local cluster-
ing coefficient (ALCC) is calculated as the aver-
age of actual connections within neighbors for all
nodes. The network diameter is the longest path be-
tween any two nodes. Smaller diameters and larger
GCC/ALCC values indicate stronger small-world
effects. We also calculate the average shortest path
length (ASPL) for both models.

Llama2-7B and Llama2-70B share similar graph
structures, both using the same number of edges.
The average degree is 64, but 7B has a flatter de-
gree distribution with a larger standard deviation.
In the weighted version, 7B’s degree distribution
is more concentrated. As shown in Figure 11 (Ap-
pendix A.3), 7B exhibits a long-tailed distribution,
indicating fewer high-degree (central) nodes.

Both models exhibit strong small-world cluster-
ing, with high GCC and ALCC values and a short
diameter. In contrast, random networks with the
same edge count have much lower GCC (0.0032)
and ALCC (0.0020). The observed diameter of
6 aligns with the Six Degrees of Separation the-
ory (Milgram, 1967), commonly found in social
networks (Watts and Strogatz, 1998) and web struc-
tures (Réka Albert and Barabasi, 1999).

5.2 Scenario 1

In this scenario, we evaluate the conceptual spaces
of both models by calculating the shortest path
length between any pair of nodes within and be-
tween semantic groups. The shortest path is com-
puted using Dijkstra’s algorithm from the Net-
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Figure 4: Shortest Path Length Difference (Llama2-
70B Minus Llama2-7B) Across Semantic Groups. The
number of stars indicate the degree of the significance
level of the difference.

workX package > . The average lengths for Llama2-
7B and Llama2-70B are shown in Figure 3. Fig-
ure 4 presents the difference heatmap, where the
difference is computed as the average length of
Llama2-70B minus that of Llama2-7B. The signif-
icance of the differences is indicated by the num-
ber of stars (one, two, or three), corresponding to
p-values of 0.05, 0.01, and 0.001 in the t-test, re-
spectively.

Our results show that Llama2-70B generally has
longer path lengths than Llama2-7B, both within
and between semantic groups, except in the RAN-
DOM vs. NAME or PLACE comparison. This
suggests that Llama2-70B follows more complex

https://networkx.org/documentation/stable/
reference/algorithms/shortest_paths.html
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Figure 5: Paths between “bar” and “library” for Llama2-
7B. Edge width reflects weight values. Nodes and edges
along the shortest path in terms of the summed weights
are marked in red.

Figure 6: Paths between “bar” and “library” for Llama2-
70B. Edge width represents weight values. Nodes and
edges in the shortest path are highlighted in red. The
paths illustrate a complex relationship involving simi-
lar word forms, multilingual links, and disambiguation
groups.

paths to uncover relationships. Figures 5 and 6
illustrate this with the six shortest paths from “bar”
to “library.” The shortest path (red) in Llama2-70B
shows greater variation in word form and conju-
gation. Additionally, its other paths include multi-
lingual instances and diverse connections, aiding
disambiguation—for example, distinguishing “li-
brary” as a building from its software-related mean-
ing.

When analyzing per group, both models show
shorter paths within the same group, and the trends
are similar for different group pairs. Among the
groups, COLOR shows the shortest paths, while
FURNITURE exhibits the longest. This may be
due to polysemy in FURNITURE, where terms

t1)

Figure 7: Paths between “collection” and “set” in
Llama2-7B. The red line represents the shortest path
in terms of the summed weights.

t1)

Figure 8: Paths between “collection” and “set” in
Llama2-70B. The red line indicates the shortest path,
which follows a more logical transition from a singular
concept to a plural one.

like “chair” refer to both furniture and a human
(e.g., a person referred to as a “chair”). This is
further supported by the longer paths when com-
paring FURNITURE to other groups. Conversely,
NATION and CITY tend to have shorter paths.

5.3 Scenario 2

In the second scenario, we evaluate the network for
word pairs from different relation types, as shown
in Table 1. For each pair, we compute the shortest
path and display the length for both models. The
significance of the differences is indicated by the
number of stars. The results are shown in Figure 9.

The results are similar to Scenario 1: Llama2-
70B generally has longer paths than Llama2-7B.
For most relations, the length of 70B is signifi-
cantly longer, except for those related to word form,
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Figure 9: Averaged shortest path length across relation
types for both models. The number of stars indicates
the significance of the difference.
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where both models have direct edges for the word
pair. Longer paths appear in member of domain
topic, verb group, and hypernym relations, indicat-
ing a more complex connection chain. For exam-
ple, in the hypernym relation between “set” and
“collection”, Llama2-70B shows a more intricate
connection, gradually linking the singular “set” to
the plural “collection” with some conjugation cor-
relation, as seen in Figures 7 and 8.

5.4 Scenario 3

In Scenario 3, we construct a conceptual space for
qualitative words, with a reference (GT) from cross-
lingual research. The statistics for the spaces built
by Llama2-7B (7B), Llama2-70B (70B), and GT
are shown in Table 3.

In general, the spaces constructed by the mod-
els have more edges than those built by human
experts, with fewer connected components and iso-
lated nodes. This is because experts create the
graph by collecting a corpus and adding an edge
only when at least three languages exhibit concept
co-occurrence. This process is especially challeng-
ing for low-resource languages. In contrast, the
vectorized concepts from models generate a much
denser graph. Furthermore, Llama2-70B tends to
be sparser than Llama2-7B. Compared to GT, the
automatic space aligns well, showing moderate cor-
relation and coverage (indicated by recall). How-
ever, the precision is lower due to the larger number
of edges, suggesting that embeddings could be used
to initially construct a space, which linguists could
later refine.

Statistics 7B 70B GT
Basic
#Nodes 75 75 75
#Edges 293 130 37
Avg. Degree 7.813 3.467 0.987
Std. Degree 5.724 3.021 0.959
Weighted

Avg. Degree. W 0.963 0.611 -

Std. Degree_ W 0.736  0.546 -
Avg. Weight 0.123 0.176 -
Connectivity
#Component (]) 8 17 39
#Single () 7 16 26
Reference with GT
Correlation (1) 0.466 0.449 1
Recall (1) 0.568 0.378 -
Precision (1) 0.072 0.108 -

Table 3: Statistics for Llama2-7B, Llama2-70B, and
GT across four dimensions. “#Component” represents
the number of connected components, and “#Single”
indicates the number of nodes with zero degree. In the
bottom section, we report degree correlation, recall, and
precision.

6 Conclusion

This paper investigates the construction of con-
ceptual spaces using input embeddings from large
language models (LLMs). We analyze and com-
pare the network properties of two LLMs with dif-
ferent scales across three scenarios. Our findings
show that conceptual spaces can be effectively con-
structed from embeddings, which exhibit a small-
world clustering effect. Additionally, models with
more parameters tend to explore longer and more
complex paths between concepts, partially support-
ing the “scaling law” (Kaplan et al., 2020). This
study also provides an efficient approach to con-
structing conceptual spaces, potentially benefiting
fields such as language typology and cognitive sci-
ence.

7 Limitations

We acknowledge several limitations in our work.
First, we represent each concept as a word with-
out considering context. However, words can be
ambiguous, particularly for homonyms that encom-



pass multiple unrelated meanings. Second, our
evaluation is limited to two models, Llama2-7B
and Llama2-70B. Results may differ with models
of different architectures or parameter scales. Ad-
ditionally, we focus only on input embeddings and
do not explore the properties of output embeddings,
which may also capture individual word represen-
tations. Finally, the length of the shortest path
in conceptual spaces is not a definitive metric for
embedding quality, and we plan to explore more
sophisticated metrics to better reflect the character-
istics of these spaces.

8 Ethics Statement

We do not foresee immediate ethical concerns
arising from our research. However, there may
be unintended biases in the connections between
concepts, such as those involving gender and job
ranks. These biases may stem from biased embed-
dings (Bordes et al., 2013; Bolukbasi et al., 2016).
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A Appendix

A.1 Common Concepts in Scenario 1

Table 4 lists specific concepts from different seman-
tic groups, with each group containing ten common
concepts.

A.2 Conceptual Spaces in Scenario 3

Scenario 3 presents a human-annotated conceptual
space for qualitative words, as shown in Figure 10.
Each concept is represented by an English word.
Nodes are connected if a pair of concepts co-occur
as a polysemous word in at least three languages.
Nodes marked in red represent federative words,
indicating a shared concept with a higher degree.

A.3 Degree Distribution

We show the distribution of node degrees for spaces
generated by two models, Llama2-7B and Llama2-
70B. Figure 11(a) displays the unweighted degree
distribution, while (b) shows the weighted distribu-
tion. The results indicate that the 70B model has a
less pronounced long-tail distribution, with more
nodes having relatively larger degrees.
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Figure 10: A semantic map for the domain of qualitative words, with federative notions which have a higher degree
highlighted in red.
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Figure 11: Comparison of the degree distribution for both models: (a) unweighted degree and (b) weighted degree.
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Group Concepts

NUMBER one, two, three, four, five, six, seven, eight, nine, ten
NAME Alice, Bob, Carol, Dave, Francis, Grace, Hans, Ivan, Zach, Mike
MONTH January, February, March, April, May, June, July, August, September, October
COLOR red, orange, yellow, green, blue, brown, black, white, grey, gray
CITY Taiwan, York, Cambridge, Oxford, Berlin, Paris, Washington, Rome, Tokyo, Toronto
NATION China, America, England, UK, Germany, France, USA, Italy, Japan, Spain
PLACE factory, concert, museum, library, bar, zoo, park, theater, hospital, church
HUMAN female, male, man, woman, human, boy, girl, elder, gentleman, guys
FURNITURE chair, desk, table, bed, cabinet, computer, lamp, mirror, house, room

Table 4: Specific concepts from different semantic groups.
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