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Abstract

A conceptual space represents concepts as001
nodes and semantic relatedness as edges. Word002
embeddings, combined with a similarity met-003
ric, provide an effective approach to construct-004
ing such a space. Typically, embeddings are005
derived from traditional distributed models or006
encoder-only pretrained models, whose objec-007
tives directly capture the meaning of the cur-008
rent token. In contrast, decoder-only models,009
including large language models (LLMs), pre-010
dict the next token, making their embeddings011
less directly tied to the current token’s seman-012
tics. Moreover, comparative studies on LLMs013
of different scales remain underexplored. In014
this paper, we construct a conceptual space us-015
ing word embeddings from LLMs of varying016
scales and comparatively analyze their prop-017
erties. We establish a network based on a lin-018
guistic typology-inspired connectivity hypoth-019
esis, examine global statistical properties, and020
compare LLMs of varying scales. Locally, we021
analyze conceptual pairs, WordNet relations,022
and a cross-lingual semantic network for quali-023
tative words. Our results indicate that the con-024
structed space exhibits small-world properties,025
characterized by a high clustering coefficient026
and short path lengths. Larger LLMs generate027
more intricate spaces, with longer paths reflect-028
ing richer relational structures and connections.029
Furthermore, the network serves as an efficient030
bridge for cross-lingual semantic mapping.031

1 Introduction032

The conceptual space framework, which represents033

concepts (i.e., words) as nodes and connects them034

based on their proximity, has been extensively ap-035

plied in cognitive science, typological linguistics,036

and related fields (Gärdenfors, 2000, 2014; Nosof-037

sky, 1986, 1987, 1992; Shepard, 1964, 1987; Croft,038

2003; Haspelmath, 2003). This framework aims to039

uncover the alignment between surface-level lin-040

guistic structures and deep cognitive processes, of-041

fering a spatial visualization of brain activities or042

concept representations. 043

Existing approaches employ both manual and 044

automated methods to define nodes and edges, 045

thereby constructing the conceptual space. In man- 046

ual methods, linguists either establish direct con- 047

nections between nodes based on connectivity hy- 048

potheses (Croft, 2001) or determine similarity by 049

computing the co-occurrence frequency of two con- 050

cepts (Cysouw, 2007), subsequently generating a 051

low-dimensional network using techniques such 052

as Principal Component Analysis (PCA) (Abdi 053

and Williams, 2010) or Multidimensional Scaling 054

(MDS) (Goldstone, 1994). However, these manual 055

approaches are labor-intensive and inadequate for 056

constructing large-scale conceptual spaces. 057

To address the aforementioned limitations, au- 058

tomated methods utilize embedding models to im- 059

prove efficiency. Traditional embedding models, 060

such as static word2vec (Church, 2017), repre- 061

sent words as dense vectors. However, these mod- 062

els rely on limited datasets and often fail to cap- 063

ture nuanced word meanings. In contrast, pre- 064

trained models like BERT (Devlin et al., 2019) 065

have demonstrated greater effectiveness in word 066

representation (Devlin et al., 2019; Tenney et al., 067

2019) and have become widely adopted across re- 068

lated fields (Moullec and Douven, 2025). As a 069

purely encoder-based model, BERT focuses on re- 070

covering masked words, which gives it a distinct 071

advantage in constructing conceptual spaces. 072

Recently, Large Language Models (LLMs) have 073

demonstrated remarkable performance across a va- 074

riety of understanding and generation tasks (Ope- 075

nAI, 2023). However, research on word embed- 076

dings within LLMs remains relatively limited. Typ- 077

ically, LLMs are decoder-only models trained with 078

the objective of next-token prediction. Conse- 079

quently, it remains unclear to what extent the em- 080

beddings capture the meaning of the current token, 081

as opposed to simply transferring information to 082

the next token (Liu et al., 2024a). Furthermore, 083
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despite their success, LLMs still face challenges in084

terms of interpretability (Zou et al., 2023). In this085

context, we aim to offer a cognitive perspective for086

interpreting LLMs comparatively by constructing087

a conceptual space based on initial input represen-088

tations from LLMs of different scales.089

In this paper, we construct a conceptual space090

based on LLM input embeddings and analyze its091

properties comparatively from both global and lo-092

cal perspectives. Specifically, we treat the LLM093

vocabulary as a set of concepts, with the input094

embeddings serving as node representations. Us-095

ing similarity metrics, we first build a complete096

graph, which we then sparsify based on the mini-097

mal connectivity hypothesis inspired by semantic098

map models (Haspelmath, 2003; Croft, 2003). We099

compare the conceptual spaces of LLMs with simi-100

lar architectures but different parameter scales by101

calculating global network statistics. Our findings102

show that LLM embeddings form a small-world103

network with high clustering coefficients and low104

average path lengths. LLMs with larger parameter105

scales tend to have more complex structures, with106

longer paths and richer relationships. To assess107

the practical utility of the conceptual space, we108

extract local subgraphs for scenarios such as: (1)109

common concepts, (2) WordNet relations, and (3) a110

cross-lingual case study on qualitative words. The111

consistency of these subgraphs with human annota-112

tions confirms the effectiveness of our constructed113

conceptual space. In conclusion, our contributions114

are as follows:115

• We propose a comparative study on concep-116

tual spaces constructed from LLMs of differ-117

ent scales based on the proposed connectivity118

hypothesis.119

• We design three distinct scenarios and con-120

duct an extensive evaluation of the conceptual121

space, considering both global and local per-122

spectives, while comparing models of differ-123

ent scales.124

• We demonstrate that the conceptual spaces125

align with human perception and provide an126

effective representation of concepts and their127

relationships.128

2 Related Work129

2.1 Conceptual Space Modeling130

Conceptual space modeling has been extensively131

studied and applied in fields such as cognitive sci-132

ence (Gärdenfors, 2000, 2014; Nosofsky, 1986, 133

1992), linguistic typology (Croft, 2001; Haspel- 134

math, 2003), and neuroscience (Caglar, 2021). One 135

widely used framework, the Conceptual Space 136

Framework (CSF) proposed by Gärdenfors (2000, 137

2014), introduces the basic concepts of similarity 138

space and conceptual space, with the latter being a 139

prototypical realization based on the former. Subse- 140

quent work has focused on constructing similarity 141

spaces, including the representation of instances 142

and the distance metrics among them. Multidi- 143

mensional scaling (Borg and Groenen, 1999) and 144

spatial arrangement methods (Goldstone, 1994) are 145

two common approaches based on pairwise simi- 146

larity judgments for a set of items. However, these 147

methods are often manual and incur high costs 148

due to the need for extensive data collection or the 149

cognitive demands they impose. Alternatively, a 150

more efficient approach leverages language models 151

and word embeddings, such as word2vec (Mikolov 152

et al., 2013), fastText (Bojanowski et al., 2017), 153

BERT (Devlin et al., 2019), and even LLMs (Tou- 154

vron et al., 2023). Notably, embeddings directly 155

from LLMs exhibit weaker correlation with human- 156

annotated datasets compared to prompt-guided con- 157

structions. Our paper also focuses on embeddings 158

from LLMs, but with more systematic evaluations 159

and a broader set of concepts 1. 160

2.2 Semantic Map Models 161

Semantic map modeling is another framework 162

for constructing conceptual spaces based on 163

cross-lingual co-occurrence of concepts in lin- 164

guistic forms. These forms can include con- 165

tent words (Guo, 2012b; Cysouw, 2007; Perrin, 166

2010), function words (Zhang, 2017), or construc- 167

tions (Malchukov et al., 2007). The concepts are 168

typically represented by the grammatical (Zhang, 169

2017) or content (Guo, 2012b) meanings of these 170

forms. The conceptual space can be constructed in 171

either a bottom-up or top-down manner. A classical 172

bottom-up approach is based on the connectivity 173

hypothesis (Croft, 2001; Haspelmath, 2003; Teng, 174

2015), which posits that concepts involved in a 175

single linguistic form should be connected within 176

the corresponding subgraph. The overall space is 177

then built incrementally, edge by edge. Alterna- 178

tively, a top-down approach (Liu et al., 2024b) first 179

1In this paper, the term “concept” refers to a word without
context, similar to the instances in CSF. Thus, our conceptual
spaces are more akin to similarity spaces within the CSF
framework.
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constructs a similarity graph based on the strength180

of co-occurrence, and then sparsifies the graph ac-181

cording to a refined connectivity constraint. In this182

paper, we treat a concept as a single token without183

explicitly matching form-meaning pairs, and we184

adopt an efficient top-down approach with slightly185

modified constraints to build the conceptual space.186

2.3 Word Embedding and Representation187

Contemporary language models represent words188

or subtokens using continuous vectors based on189

distributed semantics (Boleda, 2020). These190

high-dimensional vectors can be static (Mikolov191

et al., 2013; Bojanowski et al., 2017) or context-192

sensitive (Devlin et al., 2019). While effective,193

they lack the interpretability of linguistic feature-194

based representations (Petersen and Potts, 2023).195

Word embeddings exhibit elegant linear relation-196

ships (Mikolov et al., 2013), high similarity with197

human judgments (Vulić et al., 2020), and mean-198

ingful representations (Turney and Pantel, 2010).199

Static embeddings are particularly suitable for of-200

fline, context-free words, especially monosemous201

ones. These embeddings are used in the input and202

output layers of LLMs. Previous research has ex-203

plored their linear properties (Han et al., 2024),204

conceptual space construction (Moullec and Dou-205

ven, 2025), and other aspects. In this paper, we206

focus on LLM input embeddings, offering a more207

diverse and systematic evaluation through the lens208

of conceptual spaces.209

3 Approach210

In this section, we first introduce the basic notions211

and construct a complete graph connecting all con-212

ceptual nodes. We then sparsify the graph based213

on the revised connectivity hypothesis. Finally, we214

define global and local metrics to evaluate the con-215

ceptual space. The overall pipeline is illustrated in216

Figure 1.217

3.1 Basic Notions218

We define a conceptual space G = {V,E}, where219

V and E are sets of nodes and edges, respectively.220

Each node v ∈ V represents a concept, which221

can be realized by a token, word, or sense. Each222

edge e(u, v) ∈ E connects a pair of nodes (u, v),223

reflecting their degree of association (Guo, 2012a).224

If a path p(u, v) exists between nodes u and v,225

they are connected, with path length L defined as226

the number of edges along the path. If no path227

exists, L = ∞. A conceptual space is considered 228

connected if every pair of nodes is connected. 229

A subgraph G′ = {V ′, E′}, where V ′ ⊂ V and 230

E′ ⊂ E, reflects the local topology of G and typi- 231

cally represents a specific semantic domain, such 232

as adverbs (Zhang, 2017), color adjectives (Gär- 233

denfors, 2014), or qualitative words (Perrin, 2010). 234

Similarly, a subgraph is connected if every pair of 235

nodes has a path. 236

We define a metric M on G to measure the as- 237

sociation or similarity between nodes. A common 238

metric is cosine similarity 2, widely applied in 239

similarity-related tasks. 240

3.2 Complete Graph 241

We use an LLM to extract input embeddings E for 242

all tokens in its vocabulary V , treating each token 243

(the minimal computational unit) as an individual 244

concept. After obtaining the vectorized embed- 245

dings, we compute the cosine similarity between 246

every pair of nodes to define edge weights. Ad- 247

ditionally, we apply centering by subtracting the 248

average vector from each embedding to address 249

anisotropy (Ethayarajh, 2019). This results in a 250

complete graph C, where every pair of concepts is 251

connected. 252

3.3 Conceptual Space 253

We derive a sparsified graph, denoted as the con- 254

ceptual space G, from the complete graph C. We 255

propose a minimum connectivity hypothesis, which 256

states that G must remain connected while using the 257

fewest edges possible. The “connectivity” ensures 258

that every pair of concepts is connected, forming 259

a valid space. The “minimum” condition favors 260

sparse connections, inspired by the top-down con- 261

struction of semantic map models, which even use 262

trees (with the least number of edges) to main- 263

tain connectivity. To achieve this sparsity, we rank 264

edges by weight and retain the top K ratio of edges, 265

as higher weights indicate more important connec- 266

tions. 267

A well-defined G is also a discrete topological 268

space {G, T }, where T is the collection of all sub- 269

sets. We define a subgraph G′ as a subset of G, and 270

it is considered an open set. This is because the 271

intersection and union of any two subgraphs GA 272

and GB still belong to T : 273

∀GA,GB ∈ T , GA ∩ GB ∈ T , GA ∪ GB ∈ T . (1) 274

2While cosine distance violates the triangle inequality re-
quired by strict distances, we relax this constraint due to its
simplicity and widespread use.
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Figure 1: Outline of our conceptual space construction. First, we extract the input word embeddings (E) for the
LLM vocabulary (V). Next, we build a complete graph C by calculating the cosine similarity between all embedding
pairs. Finally, we retain edges based on similarity, from highest to lowest, until the graph G is connected. We then
focus on specific connected subgraphs G′ representing certain domains at a local level.

This is ensured by the “connectivity” condition,275

while a “minimum” topological space is required276

for the conceptual structure.277

3.4 Evaluation278

We evaluate the conceptual space from both global279

and local perspectives.280

Globally, we compute network statistics to ana-281

lyze basic properties, connectivity, and small-world282

characteristics of the spaces built by two mod-283

els. Small-world characteristics are indicated by a284

higher clustering coefficient and a shorter shortest285

path, which are described in detail in Section 5.1.286

Locally, we analyze a subgraph G′ of the con-287

ceptual space G in three scenarios. Scenario 1 ex-288

amines common concepts across ten semantic cate-289

gories, each containing monosemous words, com-290

paring shortest paths within and between groups.291

Scenario 2 explores shortest-path connections for292

various WordNet relations. Scenario 3 evaluates a293

conceptual space of qualitative words, comparing it294

to the corresponding LLM subgraph. Beyond topol-295

ogy and connectivity, we assess node degree cor-296

relations and measure recall and precision against297

the ground truth.298

4 Experimental Design299

4.1 Large Language Models300

We adopt the Llama series as our LLMs, includ-301

ing Llama2-7B and Llama2-70B (Touvron et al.,302

2023). The dimension of the input embedding is303

4096 and 8192, for Llama2-7B and Llama2-70B304

respectively. Also, they share the vocabulary for305

both models, with the size of vocabulary 32,000.306

The tokens in the vocabulary are obtained by Byte307

Pair Encoding (Sennrich et al., 2016), merging the308

frequent characters. Thus, many tokens are part 309

of a whole word. Besides, tokens with a whites- 310

pace or appearing at the beginning of a sentence 311

are different from those in other places, i.e., the end 312

part of a word. For example, “man” in “policeman” 313

and “man” are different units in the vocabulary. We 314

identify the token appearing the end part of a word 315

by add “#” at the beginning of the token, such as 316

“#man”. 317

4.2 Scenario 1: Common Concepts 318

We collect nine semantic groups to represent com- 319

mon concepts, each containing 10 tokens or con- 320

cepts: NUMBER, NAME, MONTH, COLOR, 321

CITY, NATION, PLACE, HUMAN, and FURNI- 322

TURE. Additionally, we include a semantic group 323

of RANDOM concepts. A full list of the concepts 324

is provided in Table 4 in Appendix A.1. This sce- 325

nario primarily examines the length of the shortest 326

path within and between semantic groups. 327

4.3 Scenario 2: WordNet Relations 328

In Scenario 2, we explore a subgraph of WordNet 329

instances and their structural relationships. We ex- 330

tract a subset from the public WN18 dataset (Bor- 331

des et al., 2013), consisting of 40,943 WordNet 332

synsets and 18 relation types. The dataset is filtered 333

by the following conditions: (1) after converting 334

synsets to words, the words must be in the Llama 335

vocabulary; (2) only the first sense of each synset 336

is retained for its stereotypical meaning; (3) a rela- 337

tion must involve at least 10 words; (4) symmetric 338

relation pairs, such as hypernym and hyponym, are 339

merged. Additionally, we define two wordform re- 340

lations: tokenization variant, distinguishing tokens 341

with and without a leading underscore (e.g., “man” 342

vs. “#man”), and uppercase variant, differentiating 343
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capitalized and non-capitalized forms (e.g., “red”344

vs. “Red”). In total, we consider eight relation345

types, listed in Table 1.346

Index Relation Type Count

A Member of Domain Topic 51
B Verb Group 10
C Hypernym 464
D Has Part 22
E Also See 95
F Derivationally Related Form 388
G Tokenization Variant 1685
H Uppercase Variant 1788

Table 1: WordNet Relations and Instance Counts

4.4 Scenario 3: SMM of Qualitative Words347

In Scenario 3, we utilize a cross-lingual seman-348

tic map for adjectives and qualitative words (Per-349

rin, 2010), which includes 22 African languages,350

French, and English. Polysemes in each language351

are connected to indicate conceptual proximity.352

The domain spans dimension, age, value, color,353

etc., with capitalized English words representing354

concepts, such as BIG, SMALL, LONG, SHORT,355

WIDE, and DEEP for dimension. We filter out356

words not present in the Llama vocabulary, result-357

ing in 75 concepts. The final set of concepts and358

the human-annotated graph are presented in Ap-359

pendix A.2.360

5 Results and Analysis361

In this section, we first construct the conceptual362

space based on the minimum connectivity approach363

described in Section 3.3. We then evaluate the364

space in three distinct scenarios.365

5.1 Graph Construction366

Choice of K. To ensure the graph is minimally367

connected, we extract the top K ratio of edges,368

where the edge weights are determined by cosine369

similarity. We incrementally increase the value of370

K while monitoring the number of connected com-371

ponents (CC), as shown in Figure 2. The graph first372

becomes connected when the log of the number of373

CC reaches zero. In our experiments, we selected374

K = 0.002, at which point both models become375

connected. This choice ensures that the same num-376

ber of edges are used for both models, making the377

comparison fair.378

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
K ratio (×10 3)

0

2

4

6

8

NC
C 

(lo
g)

Llama2-7B
Llama2-70B

Figure 2: Logarithm of the number of connected com-
ponents as the top K ratio increases for Llama2-7B and
Llama2-70B. A value of zero indicates a fully connected
network, while the dotted line marks the first ratio at
which both models become connected.

Statistics Llama2-7B Llama2-70B

Basic

#Nodes 32,000 32,000
#Edges 1,024,000 1,024,000
Avg. Degree 64 64
Std. Degree 68.39 58.96

Weighted

Avg. Degree_W 8.76 12.23
Std. Degree_W 13.78 14.02
Threshold 0.095 0.147

Small-world

GCC (↑) 0.325 0.215
ALCC (↑) 0.183 0.174
Diameter (↓) 6 6
ASPL (↓) 3.392 3.353

Table 2: Statistics for Llama2-7B and Llama2-70B. In
the “Small-world” section, GCC refers to global clus-
tering coefficient, ALCC to average local clustering
coefficient, and Diameter and ASPL refer to the longest
and average shortest path lengths, respectively.

Global Statistics. We present the statistics of the 379

conceptual spaces for both models in Table 2, di- 380

vided into three parts. The Basic section includes 381

the number of nodes (#Nodes), edges (#Edges), 382

and the average (Avg. Degree) and standard de- 383

viation (Std. Degree) of degrees. The Weighted 384

section calculates the average and standard devia- 385

tion of weighted degrees (also called Strength or 386

Traffic), along with the equivalent threshold—the 387

minimum weight value in the final graph G. The 388

last section focuses on Small-world effects. The 389
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COLO
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RNITU
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NDOM

0.45 2.94 2.02 2.8 3.03 3.05 3.53 2.83 3.38 2.76

2.94 0.76 2.21 2.67 2.46 2.63 2.96 2.65 2.91 3.07

2.02 2.21 0.45 3.06 2.14 2.29 2.88 2.96 3.11 2.59

2.8 2.67 3.06 0.45 2.94 3.15 2.94 2.65 2.87 3.4

3.03 2.46 2.14 2.94 0.67 1.64 3.06 3.01 3.13 2.92

3.05 2.63 2.29 3.15 1.64 0.45 3.09 2.95 3.1 2.67

3.53 2.96 2.88 2.94 3.06 3.09 0.84 2.76 2.61 3.18

2.83 2.65 2.96 2.65 3.01 2.95 2.76 0.76 2.91 2.92

3.38 2.91 3.11 2.87 3.13 3.1 2.61 2.91 0.92 3.23

2.76 3.07 2.59 3.4 2.92 2.67 3.18 2.92 3.23 1.04
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0.5 3.3 2.63 3.15 3.49 3.43 3.85 3.34 4.01 2.78

3.3 0.87 2.76 3.24 2.66 2.74 3.48 2.97 3.52 2.91

2.63 2.76 0.45 3.53 2.63 2.37 3.34 3.22 3.65 2.69

3.15 3.24 3.53 0.47 3.37 3.62 3.93 3.26 4.03 3.4

3.49 2.66 2.63 3.37 0.74 1.94 3.27 3.21 3.57 3.0

3.43 2.74 2.37 3.62 1.94 0.58 3.26 3.18 3.56 2.75

3.85 3.48 3.34 3.93 3.27 3.26 1.11 3.38 3.64 3.16

3.34 2.97 3.22 3.26 3.21 3.18 3.38 0.98 3.71 3.05

4.01 3.52 3.65 4.03 3.57 3.56 3.64 3.71 1.64 3.5

2.78 2.91 2.69 3.4 3.0 2.75 3.16 3.05 3.5 0.89 0.5

1.0
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3.0
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(a) Llama-7B (b) Llama-70B

Figure 3: Shortest path lengths among semantic groups for Llama2-7B (left) and Llama2-70B (right).

global clustering coefficient (GCC) measures graph390

transitivity—the fraction of actual triangles among391

all possible triangles in G. The local cluster-392

ing coefficient (ALCC) is calculated as the aver-393

age of actual connections within neighbors for all394

nodes. The network diameter is the longest path be-395

tween any two nodes. Smaller diameters and larger396

GCC/ALCC values indicate stronger small-world397

effects. We also calculate the average shortest path398

length (ASPL) for both models.399

Llama2-7B and Llama2-70B share similar graph400

structures, both using the same number of edges.401

The average degree is 64, but 7B has a flatter de-402

gree distribution with a larger standard deviation.403

In the weighted version, 7B’s degree distribution404

is more concentrated. As shown in Figure 11 (Ap-405

pendix A.3), 7B exhibits a long-tailed distribution,406

indicating fewer high-degree (central) nodes.407

Both models exhibit strong small-world cluster-408

ing, with high GCC and ALCC values and a short409

diameter. In contrast, random networks with the410

same edge count have much lower GCC (0.0032)411

and ALCC (0.0020). The observed diameter of412

6 aligns with the Six Degrees of Separation the-413

ory (Milgram, 1967), commonly found in social414

networks (Watts and Strogatz, 1998) and web struc-415

tures (Réka Albert and Barabási, 1999).416

5.2 Scenario 1417

In this scenario, we evaluate the conceptual spaces418

of both models by calculating the shortest path419

length between any pair of nodes within and be-420

tween semantic groups. The shortest path is com-421

puted using Dijkstra’s algorithm from the Net-422
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0.05 * 0.36 *** 0.61 *** 0.35 *** 0.46 *** 0.38 *** 0.32 *** 0.51 *** 0.63 *** 0.02

0.36 *** 0.11 ** 0.55 *** 0.57 *** 0.20 *** 0.11 * 0.52 *** 0.32 *** 0.61 *** -0.16 *

0.61 *** 0.55 *** 0.00 0.47 *** 0.49 *** 0.08 0.46 *** 0.26 *** 0.54 *** 0.10

0.35 *** 0.57 *** 0.47 *** 0.02 0.43 *** 0.47 *** 0.99 *** 0.61 *** 1.16 *** 0.00

0.46 *** 0.20 *** 0.49 *** 0.43 *** 0.07 * 0.30 *** 0.21 *** 0.20 *** 0.44 *** 0.08

0.38 *** 0.11 * 0.08 0.47 *** 0.30 *** 0.13 *** 0.17 ** 0.23 *** 0.46 *** 0.08

0.32 *** 0.52 *** 0.46 *** 0.99 *** 0.21 *** 0.17 ** 0.27 *** 0.62 *** 1.03 *** -0.02

0.51 *** 0.32 *** 0.26 *** 0.61 *** 0.20 *** 0.23 *** 0.62 *** 0.22 *** 0.80 *** 0.13 *

0.63 *** 0.61 *** 0.54 *** 1.16 *** 0.44 *** 0.46 *** 1.03 *** 0.80 *** 0.72 *** 0.27 ***

0.02 -0.16 * 0.10 0.00 0.08 0.08 -0.02 0.13 * 0.27 *** -0.15 **
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Figure 4: Shortest Path Length Difference (Llama2-
70B Minus Llama2-7B) Across Semantic Groups. The
number of stars indicate the degree of the significance
level of the difference.

workX package 3 . The average lengths for Llama2- 423

7B and Llama2-70B are shown in Figure 3. Fig- 424

ure 4 presents the difference heatmap, where the 425

difference is computed as the average length of 426

Llama2-70B minus that of Llama2-7B. The signif- 427

icance of the differences is indicated by the num- 428

ber of stars (one, two, or three), corresponding to 429

p-values of 0.05, 0.01, and 0.001 in the t-test, re- 430

spectively. 431

Our results show that Llama2-70B generally has 432

longer path lengths than Llama2-7B, both within 433

and between semantic groups, except in the RAN- 434

DOM vs. NAME or PLACE comparison. This 435

suggests that Llama2-70B follows more complex 436

3https://networkx.org/documentation/stable/
reference/algorithms/shortest_paths.html
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Figure 5: Paths between “bar” and “library” for Llama2-
7B. Edge width reflects weight values. Nodes and edges
along the shortest path in terms of the summed weights
are marked in red.
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Figure 6: Paths between “bar” and “library” for Llama2-
70B. Edge width represents weight values. Nodes and
edges in the shortest path are highlighted in red. The
paths illustrate a complex relationship involving simi-
lar word forms, multilingual links, and disambiguation
groups.

paths to uncover relationships. Figures 5 and 6437

illustrate this with the six shortest paths from “bar”438

to “library.” The shortest path (red) in Llama2-70B439

shows greater variation in word form and conju-440

gation. Additionally, its other paths include multi-441

lingual instances and diverse connections, aiding442

disambiguation—for example, distinguishing “li-443

brary” as a building from its software-related mean-444

ing.445

When analyzing per group, both models show446

shorter paths within the same group, and the trends447

are similar for different group pairs. Among the448

groups, COLOR shows the shortest paths, while449

FURNITURE exhibits the longest. This may be450

due to polysemy in FURNITURE, where terms451

collection

sets

#Set

collections

list

Set

set

Figure 7: Paths between “collection” and “set” in
Llama2-7B. The red line represents the shortest path
in terms of the summed weights.
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#CollectionView
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sets

subsets

Selection

set

#Collection

Figure 8: Paths between “collection” and “set” in
Llama2-70B. The red line indicates the shortest path,
which follows a more logical transition from a singular
concept to a plural one.

like “chair” refer to both furniture and a human 452

(e.g., a person referred to as a “chair”). This is 453

further supported by the longer paths when com- 454

paring FURNITURE to other groups. Conversely, 455

NATION and CITY tend to have shorter paths. 456

5.3 Scenario 2 457

In the second scenario, we evaluate the network for 458

word pairs from different relation types, as shown 459

in Table 1. For each pair, we compute the shortest 460

path and display the length for both models. The 461

significance of the differences is indicated by the 462

number of stars. The results are shown in Figure 9. 463

The results are similar to Scenario 1: Llama2- 464

70B generally has longer paths than Llama2-7B. 465

For most relations, the length of 70B is signifi- 466

cantly longer, except for those related to word form, 467
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Figure 9: Averaged shortest path length across relation
types for both models. The number of stars indicates
the significance of the difference.

where both models have direct edges for the word468

pair. Longer paths appear in member of domain469

topic, verb group, and hypernym relations, indicat-470

ing a more complex connection chain. For exam-471

ple, in the hypernym relation between “set” and472

“collection”, Llama2-70B shows a more intricate473

connection, gradually linking the singular “set” to474

the plural “collection” with some conjugation cor-475

relation, as seen in Figures 7 and 8.476

5.4 Scenario 3477

In Scenario 3, we construct a conceptual space for478

qualitative words, with a reference (GT) from cross-479

lingual research. The statistics for the spaces built480

by Llama2-7B (7B), Llama2-70B (70B), and GT481

are shown in Table 3.482

In general, the spaces constructed by the mod-483

els have more edges than those built by human484

experts, with fewer connected components and iso-485

lated nodes. This is because experts create the486

graph by collecting a corpus and adding an edge487

only when at least three languages exhibit concept488

co-occurrence. This process is especially challeng-489

ing for low-resource languages. In contrast, the490

vectorized concepts from models generate a much491

denser graph. Furthermore, Llama2-70B tends to492

be sparser than Llama2-7B. Compared to GT, the493

automatic space aligns well, showing moderate cor-494

relation and coverage (indicated by recall). How-495

ever, the precision is lower due to the larger number496

of edges, suggesting that embeddings could be used497

to initially construct a space, which linguists could498

later refine.499

Statistics 7B 70B GT

Basic

#Nodes 75 75 75
#Edges 293 130 37
Avg. Degree 7.813 3.467 0.987
Std. Degree 5.724 3.021 0.959

Weighted

Avg. Degree_W 0.963 0.611 -
Std. Degree_W 0.736 0.546 -
Avg. Weight 0.123 0.176 -

Connectivity

#Component (↓) 8 17 39
#Single (↓) 7 16 26

Reference with GT

Correlation (↑) 0.466 0.449 1
Recall (↑) 0.568 0.378 -
Precision (↑) 0.072 0.108 -

Table 3: Statistics for Llama2-7B, Llama2-70B, and
GT across four dimensions. “#Component” represents
the number of connected components, and “#Single”
indicates the number of nodes with zero degree. In the
bottom section, we report degree correlation, recall, and
precision.

6 Conclusion 500

This paper investigates the construction of con- 501

ceptual spaces using input embeddings from large 502

language models (LLMs). We analyze and com- 503

pare the network properties of two LLMs with dif- 504

ferent scales across three scenarios. Our findings 505

show that conceptual spaces can be effectively con- 506

structed from embeddings, which exhibit a small- 507

world clustering effect. Additionally, models with 508

more parameters tend to explore longer and more 509

complex paths between concepts, partially support- 510

ing the “scaling law” (Kaplan et al., 2020). This 511

study also provides an efficient approach to con- 512

structing conceptual spaces, potentially benefiting 513

fields such as language typology and cognitive sci- 514

ence. 515

7 Limitations 516

We acknowledge several limitations in our work. 517

First, we represent each concept as a word with- 518

out considering context. However, words can be 519

ambiguous, particularly for homonyms that encom- 520

8



pass multiple unrelated meanings. Second, our521

evaluation is limited to two models, Llama2-7B522

and Llama2-70B. Results may differ with models523

of different architectures or parameter scales. Ad-524

ditionally, we focus only on input embeddings and525

do not explore the properties of output embeddings,526

which may also capture individual word represen-527

tations. Finally, the length of the shortest path528

in conceptual spaces is not a definitive metric for529

embedding quality, and we plan to explore more530

sophisticated metrics to better reflect the character-531

istics of these spaces.532

8 Ethics Statement533

We do not foresee immediate ethical concerns534

arising from our research. However, there may535

be unintended biases in the connections between536

concepts, such as those involving gender and job537

ranks. These biases may stem from biased embed-538

dings (Bordes et al., 2013; Bolukbasi et al., 2016).539
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A Appendix728

A.1 Common Concepts in Scenario 1729

Table 4 lists specific concepts from different seman-730

tic groups, with each group containing ten common731

concepts.732

A.2 Conceptual Spaces in Scenario 3733

Scenario 3 presents a human-annotated conceptual734

space for qualitative words, as shown in Figure 10.735

Each concept is represented by an English word.736

Nodes are connected if a pair of concepts co-occur737

as a polysemous word in at least three languages.738

Nodes marked in red represent federative words,739

indicating a shared concept with a higher degree.740

A.3 Degree Distribution741

We show the distribution of node degrees for spaces742

generated by two models, Llama2-7B and Llama2-743

70B. Figure 11(a) displays the unweighted degree744

distribution, while (b) shows the weighted distribu-745

tion. The results indicate that the 70B model has a746

less pronounced long-tail distribution, with more747

nodes having relatively larger degrees.748
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Figure 10: A semantic map for the domain of qualitative words, with federative notions which have a higher degree
highlighted in red.
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Figure 11: Comparison of the degree distribution for both models: (a) unweighted degree and (b) weighted degree.
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Group Concepts

NUMBER one, two, three, four, five, six, seven, eight, nine, ten
NAME Alice, Bob, Carol, Dave, Francis, Grace, Hans, Ivan, Zach, Mike

MONTH January, February, March, April, May, June, July, August, September, October
COLOR red, orange, yellow, green, blue, brown, black, white, grey, gray

CITY Taiwan, York, Cambridge, Oxford, Berlin, Paris, Washington, Rome, Tokyo, Toronto
NATION China, America, England, UK, Germany, France, USA, Italy, Japan, Spain
PLACE factory, concert, museum, library, bar, zoo, park, theater, hospital, church

HUMAN female, male, man, woman, human, boy, girl, elder, gentleman, guys
FURNITURE chair, desk, table, bed, cabinet, computer, lamp, mirror, house, room

Table 4: Specific concepts from different semantic groups.
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