
Under review as a conference paper at ICLR 2023

A NOVEL FAST EXACT SUBPROBLEM SOLVER FOR
STOCHASTIC QUASI-NEWTON CUBIC REGULARIZED
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we describe an Adaptive Regularization using Cubics (ARC) method
for large-scale nonconvex unconstrained optimization using Limited memory Quasi-
Newton (LQN) matrices. ARC methods are a relatively new family of second-order
optimization strategies that utilize a cubic-regularization (CR) term in place of trust-
regions or line-searches. Solving the CR subproblem exactly requires Newton’s
method, yet using properties of the internal structure of LQN matrices, we are able
to find exact solutions to the CR subproblem in a matrix-free manner, providing
very large speedups. Additionally, we expand upon previous ARC work and
explicitly incorporate first-order updates into our algorithm. We provide empirical
results for different LQN matrices and find our proposed method compares to or
exceeds all tested optimizers with minimal tuning.

1 INTRODUCTION

Scalable second-order methods for training deep learning problems have shown great potential, yet
ones that build on Hessian-vector products may be prohibitively expensive to use. In this paper, we
focus on algorithms that require information similar to Stochastic Gradient Descent (SGD) Ruder
(2016), namely, stochastic gradients calculated on mini-batches of data. Quasi-Newton (QN) methods
are a natural higher-level alternative to first-order methods, in that they seek to model curvature
information dynamically from past steps based on available gradient information. Thus, they can
work out of the box in the same settings as SGD with little model-specific coding required.

However, this comes with possible instability of the step size. Controlling the step size can be
done using line-searches along a given direction s or using trust-regions to find the best s for a
given step size. A relatively recent alternative to the mentioned approaches is known as cubic
regularization Nesterov and Polyak (2006); Cartis et al. (2011); Tripuraneni et al. (2018), which
shows very promising results. In detail, we study the minimization problem of

minimize
s∈Rn

mk(s)
def
= f(xk) + sT gk +

1

2
sTBks+

1

3
σk||s||3, (1)

for a given xk, where gk
def
= ∇f(xk), Bk is a Hessian approximation, σk an iteratively chosen

adaptive regularization parameter, and f(xk) is the objective function to minimize evaluated at xk.
Equation 1 is also known as the CR subproblem. Cubic regularization shows promise because it can
be shown that if ∇2f is Lipschitz continuous with constant L, then f(xk + s) ≤ mk(s) whenever
σk ≥ L and Bks = ∇2f(x)s Nesterov and Polyak (2006). Thus if the Hessian approximation
Bk behaves like∇2f(x) along the search direction s, the model function mk(s) becomes an upper
bound on the objective f(x + s). In such cases a line-search would not be needed as reduction in
mk(s) translates directly into reduction in f(x+ s), removing the risk that the computational work
performed minimizing mk(s) is wasted.

We propose an efficient exact solver to Equation 1 using Newton’s method which is tractable in
large-scale optimization problems under near-identical conditions to those in which SGD itself
is commonly applied. As Newton’s method corresponds to much of the computation overhead
when solving Equation 1, a dense approach such as that described in Cartis et al. (2011) would be

1

Under review as a conference paper at ICLR 2023

prohibitive. However, by exploiting properties of LQN methods described in Erway and Marcia
(2015) and Burdakov et al. (2017) (and further applied in other papers Chen et al. (2014); pei Lee
et al.; Lee et al. (2022)), we can instead perform Newton’s method in a reduced subspace such that the
cost per Newton iteration is reduced from O(mn) to O(m), where n is the problem dimension and
m is the history size, commonly chosen to be an integer between 5 and 20. The full-space solution to
Equation 1 can then be recovered for a cost identical to that of classic LQN methods.

To the best of our knowledge, all previous attempts to use LQN methods in the context of the ARC
framework have necessarily had to change the definition of mk(s) in order to find an approximate
solution Andrei (2021); Liu et al. (2021); Ranganath et al. (2022). Remarkably, we present a
mechanism for minimizing mk(s) using similar computational efforts to a single matrix inversion of
a shifted LQN matrix, which itself is a lower bound of the complexity of traditional LQN approaches.
Further, we show that by applying Newton’s method in the reduced subspace, we can achieve
speed improvements of more than 100x over a naive (LQN inversion-based) implementation. In
the numerical results section we further show that this modification permits the application of LQN
matrices with exact cubic regularization as a practical optimizer for large DNNs.

2 RELATED WORK

Second-order methods in machine learning are steadily growing more common Berahas et al. (2021);
Brust et al. (2017); Chen et al. (2020); Goldfarb et al. (2020); Ma (2020); Ramamurthy and Duffy
(2016); Yao et al. (2021). Limited-memory SR1 (LSR1) updates are studied in the context of ARC
methodology using a “memory-less" variant in Andrei (2021). As we will describe in Section 3,
many QN methods iteratively update Bk matrices with pairs (sk, yk) such that Bksk = yk, where yk
denotes the difference of the corresponding gradients of the objective functions. In Andrei (2021), yk
is a difference of the gradients of mk(s). Liu et al. (2021) approximately minimize mk(s) by solving
shifted systems of form (Bk + σ∥sk−1∥I)sk = −g, where the norm of the previous step is used as
an estimate for the norm of ∥sk∥ to define the optimal shift. As described in Theorem 1 in Section 3,
the optimal solution necessarily satisfies a condition of the form (Bk + σ∥sk∥I)sk = −g. Since
the norm of ∥sk∥ may vary greatly between iterations, this solution is a noisy approximation. They
further simplify the sub-problem using only the diagonals of Bk + σ∥sk−1∥I when generating sk.

Ranganath et al. (2022) solve a modified version of the problem using a shape-changing norm as the
cubic overestimation that provides an analytical solution to Equation 1. They transform mk(s) using
similar strategies to those advocated in this paper. However, this norm definition is dependent on the
matrix Bk and thus makes the definition of the target Lipschitz constant, L, dependent as well. A
nontrivial distinction in our approaches is that theirs requires a QR factorization of matrices of size
n×m. This may be prohibitive for deep learning problems, which may have billions of parameters.
Bergou et al. (2017) explores a similar idea of making the norm dependant on the QN matrix. In Park
et al. (2020), the ARC framework with stochastic gradients is used with a Hessian-based approach
first advocated by Martens et al. (2010). In this case,∇2f(x) is approximated within a Krylov-based
subspace using Hessian-vector products with batched estimates of ∇2f(x). They then minimize
mk(s) with this small-dimensional subspace.

An alternative to ARC methods is the use of trust-regions or line-searches. Though fundamentally
different approaches, we can often borrow technology from the trust-region subproblem solver space
to adapt to the ARC context. For example, Brust et al. (2017) outlines mechanisms for efficiently
computing (Bk +λI)−1g and implicit eigendecomposition of Bk +λI when solving the trust-region
subproblem of minimizing qk(s)

def
= f(xk) + sT gk + 1

2s
TBks while subject to ∥s∥ ≤ δ. Burdakov

et al. (2017) significantly reduces the complexity and memory cost of such algebraic operations
while solving the same problem. We thus adopt select operations developed therein when applicable,
to adapt the method of Cartis et al. (2011) to the LQN context. Unlike the approach advocated
in Burdakov et al. (2017), we avoid inversions of potentially ill-conditioned systems to improve the
stability of the approach while simultaneously reducing computation overhead costs.

Note that we further extend Cartis et al. (2011) to the stochastic optimization setting. Thus we also
share relation to past stochastic QN approaches. Erway et al. (2020) use the tools described in Brust
et al. (2017) to create a stochastic trust-region solver using LSR1 updates. Schraudolph et al. (2007)
generalizes BFGS and LBFGS to the online convex optimization setting. Mokhtari and Ribeiro (2014)
studies BFGS applied to the stochastic convex case and develops a regularization scheme to prevent

2

Under review as a conference paper at ICLR 2023

the BFGS matrix from becoming singular. Sohl-Dickstein et al. (2014) explores domain-specific
modifications to SGD and BFGS for sum-of-functions minimization, where the objective function is
composed of the sum of multiple differential subfunctions. Byrd et al. (2016) considers not using
simple gradient differencing for the BFGS update, but instead more carefully building (sk, yk) pairs
using Hessian-vector products; Berahas et al. (2021) also explores a similar idea of carefully choosing
sk and yk. Wang et al. (2016) tries to prevent ill-conditioning of Bk for BFGS updates, similar to
Mokhtari and Ribeiro (2014), but explicitly for the nonconvex case. Keskar and Berahas (2016)
present an optimizer designed specifically for RNNs that builds on Byrd et al. (2016).

Our Contributions.

1. A fast O(mn) approach for exactly solving the cubic regularization problem for any limited
memory quasi-Newton approximation that lends itself to an efficient eigendecomposition
such as LBFGS and LSR1,

2. A hybrid first and second-order stochastic Quasi-Newton ARC framework that is competitive
with current SOTA optimizers,

3. Convergence theory that proves convergence in the nonconvex case, and
4. Strong empirical results of this optimizer applied to real-life nonconvex problems.

3 ALGORITHM

In this section we describe the proposed algorithm. We will first provide a brief introduction to
LQN matrices, then describe how to exactly and efficiently solve Equation 1 when Bk is defined by
an LQN matrix. We will demonstrate that the computational complexity of ARCLQN (detailed in
Algorithm 3) is similar to that of classical LQN solvers. Later in this section we describe how to solve
the nonlinear optimization problem (Algorithm 2) using this subproblem solver. Until Section 3.2, for
simplicity, we will motivate the problem by largely considering full-batch gradient descent. However,
the techniques being developed in this paper will largely be applied in the stochastic setting.

Popular Quasi-Newton updates such as BFGS, DFP, and SR1 are based on iteratively updating an
initial matrix B0 = γI with rank one or two corrections with pairs (sk, yk) such that the property
Bksk = yk is maintained each update (Nocedal and Wright, 2006). For example, the popular SR1
update formula is given by the recursive relation:

Bk+1 ← Bk +
(yk −Bksk)(yk −Bksk)

T

sTk (yk −Bksk)
, (2)

where yk
def
= gk − gk−1 and sk

def
= xk − xk−1. To verify that the update is well-defined,

∥sTk (yk −Bksk)∥ > ϵ∥sk∥∥yk −Bksk∥ (3)
is checked with a small number ϵ. If condition 3 is not satisfied, Bk+1 ← Bk. This helps ensure that
Bk remains bounded. While for much of this paper we will focus on the SR1 update, we stress that
the exact subproblem solver proposed in this section will hold for all QN variants described in Erway
and Marcia (2015). We discuss many of such variants later in Section 3.2.

Note that if Bk is explicitly formed, the computational and memory costs are at least O(n2);
as such, for large-scale problems, limited-memory variants are popular. For such cases, only
the most recent m ≪ n pairs of (s, y) are stored in n × m matrices Sk and Yk, where
Sk

def
= (sk−m+1, . . . , sk) and Yk

def
= (yk−m+1, . . . , yk). In the limited memory case, Bk is never

explicitly formed, and operations using Bk are performed using only γ, S, and Y using O(mn)
operations. How this is done specifically for the cubic-regularized case will become clearer later
in this section. Before proceeding, we will next briefly describe the approach used by Cartis et al.
(2011) for the case where Bk is dense. Later we describe how to adapt their dense approach to the
limited-memory case.

3.1 SOLVING THE CUBIC REGULARIZED SUB-PROBLEM

In this section we focus on efficiently finding a global solution to the cubic regularized subproblem
given in Equation 1, restated here for convenience:

3

Under review as a conference paper at ICLR 2023

minimize
s∈Rn

mk(s)
def
= f(xk) + sT gk +

1

2
sTBks+

1

3
σk∥s∥3. (1)

We start by describing a Newton-based approach proven to be convergent in Cartis et al. (2011).
Though their approach targets dense matrices Bk where Cholesky factorizations are viable, we
subsequently show in this section how to efficiently extend this approach to large-scale limited
memory QN matrices. The Newton-based solver for Equation 1 is based on the following theorem:

Theorem 1 ((Cartis et al., 2011)). Let Bk(λ)
def
= Bk + λI, λ1 denote the smallest eigenvalue of

Bk, and u1 its corresponding eigenvector. A step s∗k is a global minimizer of mk(s) if there exists a
λ∗ ≥ max(0,−λ1) such that:

Bk(λ
∗)s∗k = −gk, (4)

∥s∗k∥ =
λ∗

σk
, (5)

implying Bk(λ
∗) is positive semidefinite. Further, only if Bk is indefinite, uT

1 gk = 0, and ∥(Bk +
λ1I)

†gk∥ ≤ −λ1/σk, then λ∗ = −λ1.

For simplicity we define s(λ) def
= −(B+λI)−1g, where the pseudo-inverse is used for the case where

λ = −λ1. We can then see that for the case where λ∗ ≥ −λ1, s∗k is given by the solution to the
following equation:

ϕ1(λ)
def
=

1

||s(λ)||
− σ

λ
= 0. (6)

Note the authors of Cartis et al. (2011) show that when Bk indefinite and uT
1 g = 0, the solution s∗k

is given by s∗k = s(−λ1) + αu1 where α is a solution to the equation −λ1 = σ||s(−λ1) + αu1||.
That is, whenever Equation 6 fails to have a solution (the “hard-case”), s∗k is obtained by adding a
multiple of the direction of greatest negative curvature to the min-two norm solution to Equation 4 so
that Equation 5 is satisfied. The authors of (Cartis et al., 2011) thus apply Newton’s method to ϕ1(λ)
resulting in Algorithm 1. This corresponds to Algorithm (6.1) of Cartis et al. (2011).

Algorithm 1 Newton’s method to find s∗ and solve ϕ1(λ) = 0

if B indefinite, uT
1 g = 0 then

if ∥s(−λ1)∥ < λ
σ then

Solve −λ1 = σ||s(−λ1) + αu1|| for α
s∗ ← s(−λ1) + αu1

else
s∗ ← s(−λ1)

end if
else

Let λ > max(0,−λ1).
while ϕ1(λ) ̸= 0 do

Solve for s:
(B + λI)s = −g. (7)

Let B + λI = LLT .
Lw = s. (8)

Compute the Newton correction

∆λN def
=

λ
(
||s|| − λ

σ

)
||s||+ λ

σ

(λ||w||2
||s||2

) (9)

Let λ← λ+∆λN .
end while
s∗ ← s(λ)

end if

4

Under review as a conference paper at ICLR 2023

At first glance, Algorithm 1 may not look feasible, as Equation 8 requires the Cholesky matrix L,
which is only cheaply obtained for small dense systems. Looking closer, we note that to execute
Algorithm 1 one need not form s and w, as only their corresponding norms are needed to compute
∆λN . Relevantly, it has been demonstrated that matrices in the Quasi-Newton family have compact
matrix representations of the form

B = γI +ΨM−1ΨT , (10)

further detailed in Byrd et al. (2016). For example, for LSR1 Ψ = Y − γS and M = (E − γSTS)
where E is a symmetric approximation of the matrix STY, whose lower triangular elements equal
those of STY (Erway and Marcia, 2015). They further show that for matrices of this class, anO(mn)
calculation may be used to implicitly form the spectral decomposition B = UΛUT , where U is never
formed but stored implicitly and Λ satisfies

Λ =

(
γI 0

0 Λ̂

)
(11)

where Λ̂ ∈ Rk×k is the diagonal matrix defined in Erway and Marcia (2015) to be diag(λ1, ..., λm).
Thus we know that B will have a cluster of eigenvalues equal to γ of size n− k. We can exploit this
property to further reduce the computational complexity of Algorithm 1. Note again that ∆λN in
Equation 9 can be computed as long as ∥s∥ and ∥w∥ are known. Using the eigendecomposition of
Bk, we get

∥s∥2 = gTU(Λ + λI)−2UT g

∥w∥2 = sTL−TL−1s = sT (B + λI)−1s = gTU(Λ + λI)−3UT g.

Note here that λ denotes the parameter optimized in Algorithm 1 and not the diagonal values of Λ. If
we then define U block-wise we can define the components ĝ1 and ĝ2 as follows:

U = (U1 U2)⇒ UT g =

(
UT
1 g

UT
2 g

)
=

(
ĝ1
ĝ2

)
. (12)

Thus we can compute ∥s∥ and ∥w∥ in O(m) operations assuming ĝ is stored, giving

∥s∥2 =
∥ĝ1∥2

(λ+ γ)2
+

m∑
i=1

ĝ2(i)
2

(λ̂i + λ)2
(13)

∥w∥2 =
∥ĝ1∥2

(λ+ γ)3
+

m∑
i=1

ĝ2(i)
2

(λ̂i + λ)3
(14)

Using this, the computation cost of Newton’s method is reduced to an arguably inconsequential
amount, assuming that ∥ĝ1∥ and ĝ2 required by Equations 13 and 14 can be efficiently computed. We
dub this optimization the “norm-trick”. We additionally note that Y and S both change by only one
column each iteration of Algorithm 3 (defined later). Thus with negligible overhead we can cheaply
update the matrix ΨTΨ ∈ Rm×m each iteration by retaining previously computed values that are
not dependent on the new (s, y) pair. Making the following two assumptions, we can then show that
Algorithm 1 can be solved with negligible overhead compared to classical LQN approaches.
Assumption 1. The matrix T = ΨTΨ is stored and updated incrementally. That is, if Ψ has one
column replaced, then only one row and column of T is updated.
Assumption 2. The vector ū = ΨT g is computed once each iteration of Algorithm 3 and stored.

We note that classic LQN methods at each iteration must update Bk and then solve a system of the
form s = −(Bk + λI)−1g for some λ ≥ 0. This creates an O(mn) computational lower bound
that we aim to likewise achieve when generating an optimal step for Equation 1. In contrast to the
approach described in Ranganath et al. (2022) that uses a QR factorization of Ψ, we use an analogous
approach to that described in Burdakov et al. (2017) for trust-region methods to perform the majority
of the required calculations on matrices of size m×m in place of n×m. This saves significantly
on both storage and computational overhead. Note that unlike Burdakov et al. (2017) we do not
explicitly compute M−1 as we have found this matrix can periodically become ill-conditioned.

Using the techniques detailed here (but proven in Section D of the appendix), we can form a very
efficient solver for Equation 1 (using a modified version of Algorithm 1). Using the norm-trick, we

5

Under review as a conference paper at ICLR 2023

can avoid explicitly forming s and w, reducing complexity of a Newton iterate fromO(mn) toO(m).
Using Equations 13 and 14 and Assumptions 1-2, we can thus solve λ∗ = σ∥s∗∥ from Algorithm 1
in O(m3) additional operations once T and ū are formed. Finally, once λ∗ is recovered, we can
form s∗ in O(mn), a single inversion of a shifted system, the same complexity of classical LQN
approaches. Full derivation and proof are available in Section D of the appendix.

3.2 SOLVING THE NONLINEAR OPTIMIZATION PROBLEM

In this section we focus on solving the problem

min
x∈Rn

f(x) =
∑N

i=1fi(x), (15)

where fi(x) is defined as the loss for the i-th datapoint, using the subproblem solver defined in
Section 3.1. We follow the ARC framework as described in Cartis et al. (2011), stated here as
Algorithm 2. A benefit of the algorithm defined in Algorithm 2 is that first-order convergence is
proven if Bk remains bounded and f(x) ∈ C1(Rn). Thus the condition that Bk = ∇2f(x) is greatly
relaxed from its predecessors such as Nesterov and Polyak (2006).

Algorithm 2 Adaptive Regularization using Cubics (ARC). Blue text in Equation 18 indicates our
modification to default to an SGD-like step on failure.
Given x0, σ0 > 0, γ2, γ1, η2 > η1 > 0, α > 0, for k = 0, 1, . . . , until convergence,

1. Compute update s∗k such that:
mk(s

∗
k) ≤ mk(s

c
k) (16)

where the Cauchy point sck = −υc
kgk and υc

k = argmin
υ∈R+

mk(−υgk).

2. Compute ratio between the estimated reduction and actual reduction

ρk ←
f(xk)− f(xk + s∗k)

f(xk)−mk(s∗k)
(17)

3. Update

xk+1 ←
{
xk + s∗k if ρk ≥ η1
xk−αgk otherwise

(18)

4. Set

σk+1 in

(0, σk] if ρk > η2
[σk, γ1σk] if η2 ≥ ρk ≥ η1
[γ1σk, γ2σk] otherwise

(19)

In Algorithm 2, we first solve the CR subproblem (Equations 1,16; Algorithm 1) to find our step,
s∗k. We then determine if the step is accepted by examining if the ratio between the decrease in the
objective (f(xk)− f(xk + s∗k)) and the predicted decrease in objective (f(xk)−mk(s

∗
k)) is large

enough (Equations 17-18). Then, depending on ρk, η1 and η2, we adjust our regularization parameter
σk: the ‘better’ the step is, the more we decrease σk+1, and the worse it is, the more we increase it
(Equation 19). The amount of increase and decrease is governed by two hyperparameters, γ1 and γ2.

We note one important modification to the ARC framework: if we find that ρ < η1, we take an
SGD step instead of just setting xk ← xk−1 (Equation 18). While, empirically, rejected steps are
not common, we find that reverting to SGD in case of failure can save time in cases where Bk is
ill-conditioned. One may note that we have no guarantees that f(xk)− f(xk−αgk) > 0, which may
seem to contradict the ARC pattern detailed in Cartis et al. (2011) which only accepts steps which
improve loss. However, Chen et al. (2018) proves that in a trust-region framework, if you accept all
steps, ρk need only be positive half of the time for almost sure convergence (Paquette and Scheinberg
(2020) proves a similar result for first-order methods). It has also been shown that noisy SGD steps
improve performance of final solution quality (Zhang et al., 2017; Zou et al., 2021). Implementation
details regarding Algorithm 2 can be found in Section B of the appendix and Algorithm 3.

6

Under review as a conference paper at ICLR 2023

Joining the optimizations presented in Section 3.1 with the modifications in Section 3.2, we can form
the full ARCLQN algorithm, explicitly described in Algorithm 3. It is worth noting that while much
of the above discussion assumes our Hessian approximation Bk is an LQN matrix with a compact
representation, this is not required. Indeed, any Hessian approximation which lends itself to a fast
eigendecomposition and inversion may be applied to this modified ARC framework, with the caveat
that Algorithm 1 may be slower if the norm-trick cannot be used. We explore this potential extension
more in Section 4.3, where we use the positive-definite Hessian approximation proposed in Ma
(2020). We also provide theoretical analysis of the proposed framework in Section E of the appendix,
where we prove that under moderate assumptions ARCLQN converges in the nonconvex case.

Algorithm 3 ARCLQN, our proposed algorithm for solving Algorithm 2 under memory constraints.

Require: Given x0 : initial parameter vector
Require: 0 < η1 < η2 : hyperparameters to measure the level of success of a step
Require: D, q : dataset and minibatch-size, respectively.
Require: σ0 : starting regularization parameter
Require: ϵ, δ : tolerance parameters
Require: f(x, b) : objective function with inputs parameters x and minibatch b
Require: α1, α2 : learning rates

1: Initialize B0 = I .
2: for k = 1, 2, . . . do
3: Let bk be a minibatch sampled randomly from D of size q
4: gk ← ∇xf(xk−1, bk)
5: Calculate λ1 of Bk−1

6: Let λ← max(−λ1, 0) + ϵ
7: Compute s∗k (using Algorithm 1)
8: Calculate ρ (as in Equation 17)
9: if ρ ≥ η1 then

10: xk ← xk−1 + α1s
∗
k

11: y ← ∇xf(xk, bk)− gk
12: Update Bk using Bk−1, α1s

∗
k, y if update and resulting Bk are well-defined

13: if ρ ≥ η2 then
14: σk ← max(σk−1

2 , δ)
15: end if
16: else
17: σk ← 2 · σk−1

18: xk ← xk−1 − α2gk
19: y ← ∇xf(xk, bk)− gk
20: Update Bk using Bk−1,−α2gk, y if update and resulting Bk are well-defined
21: end if
22: end for

4 NUMERICAL RESULTS

4.1 COMPARISON TO SR1

We start by benchmarking the optimized CR subproblem solver alone, without integration into the
larger ARCLQN optimizer.1 These results are summarized in Table 1. All timing information is
reported as the average across 10 runs. We see that the dense SR1 solver fails to scale to more than
10,000 variables. We also see that the traditional LSR1 solver becomes computationally prohibitive
for higher dimensions. For example, when n = 108, the positive-definite test case takes 274 seconds
to converge for the inversion-based solver, whereas following steps outlined in Section 3.1, it is
reduced to 2.33 seconds, a speedup of over 100x. Considering that the CR subproblem represents
the bulk of the computation of any given optimization step, this performance improvement greatly
increases the scalability of the algorithm. In the next section, we use the enhancements highlighted
here to provide preliminary results using Algorithm 3.

1All experiments in this section were run on two Intel Xeon Gold 6150 processors.

7

Under review as a conference paper at ICLR 2023

Table 1: Timing information for solving the CR subproblem, Equation 1. A hyphen indicates that the test did not
terminate within 300 seconds. SR1 corresponds a dense SR1 implementation. LSR1 corresponds to ARCLQN
without the norm trick. For limited memory experiments, m = 3 was used. Cases are detailed in section 3. All
other columns correspond to the problem dimension, and entries correspond to time (in seconds) required to find
the global minimizer s∗ using CPU.

Time (in seconds) to solve CR subproblem of given dimension

Method Case 1e2 1e3 1e4 1e5 1e6 1e7 1e8

SR1 Hard 3.71e-3 2.79e-1 1.03e2 - - - -
LSR1 Hard 4.47e-4 8.05e-4 3.16e-3 5.72e-3 4.05e-2 8.75e-1 7.41e0
ARCLQN Hard 4.31e-4 7.34e-4 1.68e-3 4.47e-3 2.66e-2 6.44e-1 5.64e0

SR1 Indefinite 1.93e-3 8.53e-2 1.17e1 - - - -
LSR1 Indefinite 1.49e-3 3.54e-3 1.90e-2 4.40e-2 7.78e-1 8.55e0 8.14e1
ARCLQN Indefinite 8.02e-4 1.69e-3 1.99e-3 2.79e-3 1.90e-2 2.59e-1 2.39e0

SR1 Positive Definite 1.39e-3 9.65e-1 9.23e1 - - - -
LSR1 Positive Definite 7.85e-3 1.64e-2 9.09e-2 1.48e-1 2.12e0 3.06e1 2.74e2
ARCLQN Positive Definite 3.64e-3 6.03e-3 6.45e-3 7.90e-3 2.68e-2 2.70e-1 2.33e0

4.2 AUTOENCODING

We also experiment with using ARCLQN as an optimizer for an autoencoder, as detailed in Good-
fellow et al. (2016).2 We use CIFAR-10 Krizhevsky (2009) as our dataset and compare against a
number of recent optimizers Kingma and Ba (2015); Ruder (2016); Ma (2020); Yao et al. (2021).
Hyperparameters are detailed in Section C of the appendix. For this experiment, as our Hessian
approximation, we use an LSR1 matrix Ramamurthy and Duffy (2016). Results are summarized in
Figure 1 and Table 2. All numbers reported are averaged across 10 runs. It is worth noting that while
LBFGS converges more rapidly (by number of steps), it is over twice as slow as our approach (by
wall clock time) and suffers from numerical stability issues: of the 10 runs performed, 2 failed due to
NaN loss.

Figure 1: Test set loss of the trained CIFAR-10 autoen-
coder, evaluated at the end of each epoch.

Table 2: The amount of time taken to achieve best
recorded test loss, relative to SGD. Timing infor-
mation included all parts of training, but excluded
calculation of test set loss.

Optimizer Cost (×SGD)
SGD 1.00
Adam 1.00

AdaHessian 1.01
Apollo 1.00
LBFGS 5.45

ARCLQN 1.95

4.3 IMAGE CLASSIFICATION

We additionally perform experiments on image classification using the ImageNet dataset Deng et al.
(2009).3 Motivated by Chrabaszcz et al. (2017) and a lack of computational resources, we resize
ImageNet to 32x32. Following Ma (2020), we use a modified version of ResNet-18 (dubbed ResNet-
110) adapted for smaller image sizes. Additionally, we use the best hyperparameters from Ma (2020),
namely, the learning rate, epsilon, and momentum for all optimizers. Here we use the positive-definite
diagonal Hessian approximation presented by Ma (2020) as our Bk. Unlike the other optimizers
which received extensive hyperparameter searches, ARCLQN achieves strong results using the same

2All experiments in this section were run on a single NVIDIA V100 GPU over 2 days.
3All experiments in this section were run on a single NVIDIA A100 GPU over 3 days.

8

Under review as a conference paper at ICLR 2023

hyperparameters as in the CIFAR-10 experiments. This is of significance: our proposed method
outperforms or compares to all optimizers considered without expensive hyperparameter tuning or
hacking. It is worth noting that Apollo, the optimizer proposed by Ma (2020), requires a long warmup
period for good performance. Our approach has no such requirement. We theorize this result is due
to a combination of defaulting to SGD on failure and the ARC framework preventing any steps that
would otherwise degrade performance. Finally, in Table 3, we can see that ARCLQN is associated
with both the highest Top-1 accuracy and the lowest computational cost.

Figure 2: Average training loss for each epoch. Figure 3: Test set accuracy for each epoch.

Table 3: Table summarizing performance of different optimizers. The cost corresponds to the amount of time
taken to achieve best recorded test accuracy, relative to SGD. Timing information included all parts of training,
but excluded calculation of test set accuracy.

Optimizer Best Top-1 Accuracy Best Top-5 Accuracy Cost (×SGD)
SGD 35.89 60.09 1.0
Adam 36.12 59.85 0.86

RAdam 34.89 62.06 0.90
AdaBelief 34.61 61.38 0.96

Apollo 36.38 61.74 0.76
ARCLQN 36.59 61.76 0.69

5 CONCLUSION AND DISCUSSION

Conclusion. We have introduced a new family of optimizers, referred to as ARCLQN, which utilize
a novel fast large-scale solver for the CR subproblem. We demonstrate very large speedups over
a baseline implementation, and we find that ARCLQN is competitive with modern first-order and
second-order optimizers on real-world nonconvex problems with minimal tuning. To the best of
our knowledge, ARCLQN is the first extension of the ARC framework to the limited memory case
without major modification of the core framework. We additionally expand upon ARC, explicitly
incorporating first-order updates into our methodology. Finally, we provide convergence analysis of
the modified framework which proves convergence even for the nonconvex case.

Limitations. While we have introduced an optimization framework that is applicable to any Hessian
approximation that has a fast eigendecomposition, we do not consider Hessian approximations
for which this information is not readily available. Additionally, if our Hessian approximation’s
eigenvalues differ greatly between steps, this can lead to oscillation in the calculated ∥sk∥. Future
work may also include a wider variety of evaluated Hessian approximations, as there are many which
were not tested here.

Reproducibility Statement In this paper we provide all details to recreate our implementation, in-
cluding algorithms matching how the optimizer is written in code. These are located in Section 3. We
also provide all implementation details and hyperparameters in Section B and Section C respectively.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Neculai Andrei. Accelerated modified memory-less SR1 method with cubic regularization for
unconstrained optimization, 2021. URL https://camo.ici.ro/neculai/XXITR6.pdf.

A. S. Berahas, M. Jahani, P. Richtárik, and M. Takáč. Quasi-newton methods for machine learn-
ing: forget the past, just sample. Optimization Methods and Software, 0(0):1–37, 2021. doi:
10.1080/10556788.2021.1977806. URL https://doi.org/10.1080/10556788.2021.
1977806.

El Houcine Bergou, Youssef Diouane, and Serge Gratton. On the use of the energy norm in trust-region
and adaptive cubic regularization subproblems. Computational Optimization and Applications, 68
(3):533–554, 2017. URL https://doi.org/10.1007/s10589-017-9929-2.

Johannes J. Brust, Jennifer B. Erway, and Roummel F. Marcia. On solving L-SR1 trust-region
subproblems. Computational Optimization and Applications, 66:245–266, 2017.

Oleg Burdakov, Lujin Gong, Spartak Zikrin, and Ya-xiang Yuan. On efficiently combining limited-
memory and trust-region techniques. Mathematical Programming Computation, 9(1):101–134,
2017.

R. H. Byrd, S. L. Hansen, Jorge Nocedal, and Y. Singer. A stochastic quasi-newton method for
large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016. doi: 10.1137/
140954362. URL https://doi.org/10.1137/140954362.

Coralia Cartis, Nicholas I. M. Gould, and Philippe L. Toint. Adaptive cubic regularisation methods for
unconstrained optimization. part i: motivation, convergence and numerical results. Mathematical
programming, 127(2):245–295, April 2011. ISSN 0025-5610. doi: 10.1007/s10107-009-0286-5.

Huiming Chen, Ho-Chun Wu, Shing-Chow Chan, and Wong-Hing Lam. A stochastic quasi-newton
method for large-scale nonconvex optimization with applications. IEEE Transactions on Neural
Networks and Learning Systems, 31(11):4776–4790, 2020. doi: 10.1109/TNNLS.2019.2957843.

R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-region method and
random models. Mathematical Programming, 169(2):447–487, Jun 2018. ISSN 1436-4646. doi: 10.
1007/s10107-017-1141-8. URL https://doi.org/10.1007/s10107-017-1141-8.

Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale l-bfgs using mapreduce.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
e49b8b4053df9505e1f48c3a701c0682-Paper.pdf.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets, 2017. URL https://arxiv.org/abs/1707.08819.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Jennifer B Erway and Roummel F Marcia. On efficiently computing the eigenvalues of limited-
memory quasi-newton matrices. SIAM Journal on Matrix Analysis and Applications, 36(3):
1338–1359, 2015.

Jennifer B Erway, Joshua Griffin, Roummel F Marcia, and Riadh Omheni. Trust-region algo-
rithms for training responses: machine learning methods using indefinite hessian approximations.
Optimization Methods and Software, 35(3):460–487, 2020.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 2386–2396. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
192fc044e74dffea144f9ac5dc9f3395-Paper.pdf.

10

https://camo.ici.ro/neculai/XXITR6.pdf
https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1080/10556788.2021.1977806
https://doi.org/10.1007/s10589-017-9929-2
https://doi.org/10.1137/140954362
https://doi.org/10.1007/s10107-017-1141-8
https://proceedings.neurips.cc/paper/2014/file/e49b8b4053df9505e1f48c3a701c0682-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/e49b8b4053df9505e1f48c3a701c0682-Paper.pdf
https://arxiv.org/abs/1707.08819
https://proceedings.neurips.cc/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf

Under review as a conference paper at ICLR 2023

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Nitish Shirish Keskar and Albert S. Berahas. adaqn: An adaptive quasi-newton algorithm for training
rnns. In Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and Jilles Vreeken, editors, Machine
Learning and Knowledge Discovery in Databases, pages 1–16, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-46128-1.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. CoRR, abs/1706.02515, 2017. URL http://arxiv.org/abs/1706.02515.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Ching-pei Lee, Po-Wei Wang, and Chih-Jen Lin. Limited-memory common-directions method for
large-scale optimization: convergence, parallelization, and distributed optimization. Mathematical
Programming Computation, Mar 2022. ISSN 1867-2957. doi: 10.1007/s12532-022-00219-z.
URL https://doi.org/10.1007/s12532-022-00219-z.

Y Liu, M Zhang, Z Zhong, and X. Zeng. AdaCN: An Adaptive Cubic Newton Method for Nonconvex
Stochastic Optimization. Comput Intell Neurosci, 2021:5790608, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Xuezhe Ma. Apollo: An adaptive parameter-wise diagonal quasi-newton method for nonconvex
stochastic optimization, 2020. URL https://arxiv.org/abs/2009.13586.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pages
735–742, 2010.

Aryan Mokhtari and Alejandro Ribeiro. Res: Regularized stochastic bfgs algorithm. IEEE Transac-
tions on Signal Processing, 62(23):6089–6104, 2014. doi: 10.1109/TSP.2014.2357775.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Jorge Nocedal and Stephen J Wright. Quasi-newton methods. Numerical optimization, pages
135–163, 2006.

Courtney Paquette and Katya Scheinberg. A stochastic line search method with expected complexity
analysis. SIAM Journal on Optimization, 30(1):349–376, 2020. doi: 10.1137/18M1216250. URL
https://doi.org/10.1137/18M1216250.

Seonho Park, Seung Hyun Jung, and Panos M. Pardalos. Combining stochastic adaptive cubic regular-
ization with negative curvature for nonconvex optimization. 184(3), 2020. ISSN 0022-3239. doi: 10.
1007/s10957-019-01624-6. URL https://doi.org/10.1007/s10957-019-01624-6.

Ching pei Lee, Po-Wei Wang, Weizhu Chen, and Chih-Jen Lin. Limited-memory Common-directions
Method for Distributed Optimization and its Application on Empirical Risk Minimization, pages
732–740. doi: 10.1137/1.9781611974973.82. URL https://epubs.siam.org/doi/abs/
10.1137/1.9781611974973.82.

Vivek Ramamurthy and Nigel Duffy. L-SR1 : A novel second order optimization method for deep
learning. 2016.

Aditya Ranganath, Mukesh Singhal, and Roummel Marcia. L-SR1 adaptive regularization by cubics
for deep learning, 2022. URL https://openreview.net/forum?id=dHd6pU-8_fF.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
https://doi.org/10.1007/s12532-022-00219-z
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://arxiv.org/abs/2009.13586
https://doi.org/10.1137/18M1216250
https://doi.org/10.1007/s10957-019-01624-6
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.82
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.82
https://openreview.net/forum?id=dHd6pU-8_fF

Under review as a conference paper at ICLR 2023

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016. URL http://arxiv.org/abs/1609.04747.

Nicol N. Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton method for online
convex optimization. In Marina Meila and Xiaotong Shen, editors, Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, volume 2 of Proceedings of
Machine Learning Research, pages 436–443, San Juan, Puerto Rico, 21–24 Mar 2007. PMLR.
URL https://proceedings.mlr.press/v2/schraudolph07a.html.

Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. Fast large-scale optimization by unifying
stochastic gradient and quasi-newton methods. In ICML, 2014.

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic
regularization for fast nonconvex optimization. Advances in neural information processing systems,
31, 2018.

Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27, 07 2016. doi: 10.1137/
15M1053141.

Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W Mahoney. Adahessian: An
adaptive second order optimizer for machine learning. AAAI (Accepted), 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

W. Zhou, I. Akrotirianakis, S. Yektamaram, and J. Griffin. A matrix-free line-search algorithm for
nonconvex optimization. Optimization Methods and Software, pages 1–24, 2017.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean Foster, and Sham M. Kakade.
The benefits of implicit regularization from SGD in least squares problems. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=4XOrn_Y-dqp.

12

http://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/v2/schraudolph07a.html
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=4XOrn_Y-dqp

Under review as a conference paper at ICLR 2023

A ETHICAL CONSIDERATIONS

With the ever-increasing utilization and adoption of more powerful models, it is more and more
important for authors to consider the ethical aspects of their work. Our work presented here is very
general in nature, as it is possible to use ARQLQN as an optimizer for any function where gradient
information is easily available. A major positive impact from this paper and subsequent research
may be substantial reductions in power consumption, as is seen preliminarily in the significantly
reduced runtime in Table 3. Additionally, as a general-purpose optimizer, this work may help progress
societally beneficial research (such as in medicine). However, it also holds the ability to be misused
(e.g., being used to train unethical models that discriminate based of protected personal attributes).
This potential for misuse is inherent to all general-purpose optimization research. Avoidance of this
may be impractical, and is beyond the scope of this work.

In our numerical results section (Section 4), we use two image based datasets: CIFAR-10 and
ImageNet. Improper or careless use of datasets that contain sensitive information should be avoided
where possible. We believe both CIFAR-10 and the version of ImageNet we used pose very little risk,
as both of the datasets are at 32x32 resolution, hiding most sensitive information. The research done
in this paper abides by the licenses provided by the authors of the datasets.

B IMPLEMENTATION DETAILS

Second-order methods can at times be unstable. To achieve good performance and stable training,
it is important to use heuristics to prevent or alleviate this instability. For the sake of complete
transparency, we share all used heuristics and modifications not explicitly detailed elsewhere. It is
worth explicitly noting that none of the parameters below have been tuned for performance, and
instead have been chosen either arbitrarily, or via test-runs on toy problems. There may be significant
room for improvement with tuning of these parameters, and we leave that to future work.

B.1 GENERAL DETAILS

An important detail is that we do not check if ϕ1(λ) = 0 when using Newton’s method in Algorithm 1.
Instead, we repeat the while loop until ∥s∥ − λ

σ < ν. For CIFAR-10 and ImageNet experiments, we
set ν = 1e-5. For comparison to SR1, we set ν = 1e-7. We empirically find that for larger scale
problems, ν can be set higher, as ϕ1(λ) does not change much at the final iterations of Algorithm 1.
For CIFAR-10 experiments, we do not take an actual SGD step, but instead use an Adam step Kingma
and Ba (2015). Finally, we also bound σ above, as rarely ρ < η1 can occur multiple times in a row,
which can lead to many very small steps being taken with little effect on performance.

B.2 LSR1 SPECIFIC

If we repeatedly take very similar or very small steps, we can run into issues with Sk being singular
or Bk being ill conditioned. We use two heuristics to detect and fix this. First, before updating Bk

on lines 12 and 20 of Algorithm 3, we set y ← y
max(∥s∥,κ) and s ← s

max(∥s∥,κ) . This prevents Bk

from becoming ill-conditioned if ∥s∥ is very small. Additionally, we also reset Bk if the minimum
eigenvalue of ST

k Sk is less than κ. When we ‘reset’ Bk, we drop the first and last column of Sk and
Yk instead of setting Bk ← I; this helps us prevent resetting from destroying too much curvature
information. We set κ = 1e-7.

C HYPERPARAMETERS

This section will detail optimizer settings not otherwise explicitly mentioned in the paper. For all
experiments, default dataset splits are used.

C.1 CIFAR-10.

The hyperparameters used to generate Figure 1 can be found in Table 4. For CIFAR-10 experiments,
α2 = 0.005 for ARCLQN was set arbitrarily. For ARCLQN, we use η1 = 0.05, η2 = 0.6; these

13

Under review as a conference paper at ICLR 2023

hyperparameters were not tuned, but instead set to be similar to Cartis et al. (2011). For all optimizers
with momentum, β values were left at their defaults and not tuned. Since the Apollo paper emphasizes
that warmup is extremely important for their method, we use linear warmup over 500 steps Ma
(2020). We performed a hyperparameter search over learning rates in α ∈ {.001, .01, .1, .75, 1} for
all optimizers. For applicable optimizers, we also searched for the optimal ϵ ∈ {1e-4, 1e-8, 1e-16}.
For each optimizer, we chose the hyperparameter settings that lead to the lowest test loss after 10
epochs. For limited memory methods, we fixed the history size at m = 5. We use a convolutional
neural network Goodfellow et al. (2016) with 3 convolutional layers, then 3 transposed convolutional
layers. For all layers, padding and stride are set to 1 and 2 respectively. Between all layers (except
the middle one), SeLU Klambauer et al. (2017) activations are used; the final layer uses a sigmoid
activation. Layers have 3, 12, 24, 48, 24, and 12 input channels respectively; minibatch size is fixed
as 128. We use binary cross-entropy as our loss function.

Table 4: Hyperparameter settings for the optimizers used in the CIFAR-10 autoencoding experiments. A dash
indicates that the optimizer does not have a given hyperparameter.

Optimizer α β ϵ
SGD 0.01 0.9 -
Adam 0.001 (0.9, 0.999) 1e-8
Apollo 0.01 0.9 1e-8

AdaHessian 0.1 (0.9, 0.999) 1e-4
LBFGS 1 - -

ARCLQN (.75, 0.005) (0.9, 0.999) 1e-4

C.2 IMAGENET

The hyperparameters used to generate Figure 2-3 and Table 3 can be found in Table 5. For AR-
CLQN, we use the same hyperparameters as in Table 4. We use the cosine learning rate annealing
scheduler Loshchilov and Hutter (2017), in line with Ma (2020), from which we take many of our
hyperparameters.

Table 5: Hyperparameter settings for the optimizers used in the ImageNet classification experiments. A dash
indicates that the optimizer does not have a given hyperparameter.

Optimizer α β ϵ
SGD 0.1 0.9 -
Adam 0.001 (0.9, 0.999) 1e-8

RAdam 0.001 (0.9, 0.999) 1e-8
AdaBelief 0.001 (0.9, 0.999) 1e-4

Apollo .01 0.9 1e-4
ARLQN (.75, 0.005) - 1e-4

D PROOF OF SUBPROBLEM SOLVER COMPLEXITY

This section contains the full proof of many of the claims located in Section D. We will restate the
assumptions made there, then progress with the proofs.
Assumption 1. The matrix T = ΨTΨ is stored and updated incrementally. That is, if Ψ has one
column replaced, then only one row and column of T is updated.
Assumption 2. The vector ū = ΨT g is computed once each iteration of Algorithm 3 and stored.

Unlike trust-region methods, the cubic-regularization search steps can sometimes quickly grow
when negative curvature is found. To stabilize the approach we assume a safeguard is used (as in
line-search methods Zhou et al. (2017)) that uniformly bounds the second-order correction matrix
from singularity.
Assumption 3. The final search direction has form

s = −UT Λ̄−1Ug.

14

Under review as a conference paper at ICLR 2023

where Λ̄ii = max(τ,Λii + λ∗) for small positive constant τ where Λ is given by Equation 11 and λ∗

denotes the optimal shift found by Algorithm 1.

The following theorem shows that given T and ū defined in Assumptions 1 and 2, that the optimal λ∗

can be cheaply obtained by Algorithm 1 using O(m3) operations.

Theorem 2. Suppose that B def
= γI +ΨM−1ΨT as defined in Equation 10 and that (V,Λ) solves

the generalized eigenvalue problem Mv = λTv. Then U2 as defined in 12 is given by U2 = ΨV.

Further the corresponding eigenvalues Λ̂ from Equation 11 are given by Λ̂ = (γI +Λ−1). We can
then recover ĝ2 = V T ū, and ∥ĝ1∥ = gT g − ĝT2 ĝ2.

Proof. Rather than inverting M we can simply solve the generalized eigenvalue problem [V,Λ] =
eig(M,ΨTΨ), where

MV = ΨTΨV Λ

V TMV = Λ

V TΨTΨV = I,

where Λ is the diagonal matrix of generalized eigenvalues for the system Mv = λΨTΨv. Then we
have U2 = ΨV implying

BU2 = γU2 +ΨM−1ΨT (ΨV ΛΛ−1) = γU2 +ΨM−1MV Λ−1 = U2(γI + Λ−1).

Thus we can can set Λ̂ from equation 11 as Λ̂ = (γI + Λ−1). Further we can recover ĝ2 = UT
2 g =

V TΨT g = V T ū and ∥ĝ1∥ = gT g − ĝT2 ĝ2.

Using the previous theorems and Equations 13 and 14 we can thus obtain λ∗ = σ∥s∗∥ from
Algorithm 1 in O(m3) additional operations once T and ū are formed. We now show how to
efficiently recover the optimal s∗ from Equation 1 using O(mn) operations.
Theorem 3. Using the same assumptions and definitions as in Theorem 2, given any λ >

max(0,−λ1), the solution s = −(B + λI)−1g is given by − 1

λ+ γ
g − ΨV r, where r can be

formed with O(m2) computations.

Proof. Note we can further save on computation by storing ΨT g for later calculations when we
recover the final search direction. Note that the very end we must form the search direction by solving
the system (B + λI)s = −g with the optimal value of λ. This implies

s = −U(Λ + λI)−1UT g

= − 1

λ+ γ
U1U

T
1 g − U2(Λ̂ + λI)−1UT

2 g

= − 1

λ+ γ

(
U1U

T
1 g + (U2U

T
2 g − U2U

T
2 g)

)
− U2(Λ̂ + λI)−1UT

2 g

= − 1

λ+ γ
g − U2[(Λ̂ + λI)−1 − 1

λ+ γ
I]UT

2 g

= − 1

λ+ γ
g −ΨV ĒV TΨT g,

where E = (Λ̂ + λI)−1 − (λ+ γ)−1I).

Theorem 4. Let (λ1, u1) denote the eigenpair corresponding to the most negative eigenvalue of the
matrix B. Then, if γ < min(diag(Λ̂)), u1 can be formed as u1 = r̂/∥r̂∥ where r̂ = (I − U2U

T
2)r

for any vector r in Rn such that ∥r̂∥ > 0. Otherwise u1 = Ψvk where vk is a column of V that
corresponds to the smallest eigenvalue of Λ̂.

Proof. Note that (I − U2U
T
2) is the projection matrix onto the subspace defined by the span(U1)

implying U2r̂ = 0, then Br̂ = γU1U
T
1 r̂ = γ(I − U2U

T
2)r̂ = γr̂, since r̂ has already been projected.

Thus r̂ is an eigenvector of γ. If γ is not the smallest eigenvalue of B, then by design u1 can be
obtained from U2e1 assuming the eigenvalues of Λ̂ are sorted smallest to largest.

15

Under review as a conference paper at ICLR 2023

E CONVERGENCE ANALYSIS

Several useful assumptions are given to establish the global convergence of Algorithm 3. Let b below
denote a minibatch.
Assumption 4. The function f(x) is bounded below by a scalar Lf .
Assumption 5. ∇f(x) is Lipschitz continuous for all x. That is, ∥∇f(x)−∇f(y)∥ ≤ L1∥x− y∥.
Assumption 6. H(x) is Lipschitz continuous for all x. That is, ∥H(x)−H(y)∥ ≤ L2∥x− y∥.
Assumption 7. For any iteration k, we have that E[g(xk, b)] = ∇f(xk).
Assumption 8. For any iteration k, we have that the gradient for that minibatch g(xk, b) is bounded
for all xk. That is, ∥g(xk, b)∥ ≤ Lg .
Assumption 9. For any iteration k, we have that the hessian for that minibatch H(xk, b) is bounded
for all xk. That is, ∥H(xk, b)∥ ≤ LH .

From the results below, Algorithm 3 will iteratively reduce f(x) with probability one when αk goes
to 0. Thus, it is expected that Assumptions 8 and 9 can be satisfied.

In Algorithm 3, α1 and α2 are used as the learning rates. To simplify the notation, αk is used in this
section as either of them for a given iteration k. The following assumption is then given.
Assumption 10. The sequence of learning rates αk in Algorithm 3 is chosen such that:

1.
∑+∞

i=1 αi = +∞

2.
∑+∞

i=1 α2
i < +∞

The first theorem below ensures Algorithm 1 will solve problem 1, and it can be found in Cartis
et al. (2011).
Theorem 5. (Cartis et al. (2011)) Algorithm 1 converges to the global solution of problem 1
whenever the initial λ satisfies max(0,−λ1) < λ < σ∥s∥ where λ1 denotes the smallest eigenvalue
of Bk.

Note that an initial λ for the preceding theorem is easily found by choosing λ suitably close to its
lower bound.

The following lemma can be found in Berahas et al. (2021):
Lemma 6. (Berahas et al. (2021)) Suppose that xk is generated by Algorithm 3 and assumption 5
holds, and also Bk is the Hessian approximations updated by Equation 2 when the new curvature
pair satisfies Equation 3. Then there exists a constant c1 > 0 such that ∥Bk∥ ≤ c1.

Using Lemma 6, the following important theorem can be derived.
Theorem 7. Suppose that xk is generated by Algorithm 3 and assumption 5 holds, and also Bk is the
Hessian approximations generated by Equation 2 when the new curvature pair satisfies Equation 3,
then there exists a constant c2 > 0 such that ∥Bk + σk∥sk∥I∥ ≤ c2

Proof. We will first show that σk∥sk∥ is always bounded for all k.
Let Bk

def
= UTΛU , and where Λ is a diagonal matrix and UTU = I ,

Then, we have:
Bk + σk∥xk∥I = UT (Λ + σk∥sk∥I).U

Therefore,

(Bk + σk∥sk∥I)(Bk + σk∥sk∥I) = UT (Λ + σk∥sk∥I)(Λ + σk∥sk∥I)U

Because of Lemma 6, there exists λk
min and λk

max such that

(σk∥sk∥+ λk
min)

2 ≤ xT (Bk + σk∥sk∥I)(Bk + σk∥sk∥I)x
xTx

≤ (σk∥sk∥+ λk
max)

2, (20)

16

Under review as a conference paper at ICLR 2023

for all nonzero x. Note that λk
min and λk

max are bounded by c1.
Set x = sk+1 in Equation 20, and because of sk+1 is solution of Problem 1, we have:

(σk∥sk∥+ λk
min)

2 ≤ gTk gk
sTk+1sk+1

≤ (σk∥sk∥+ λk
max)

2 (21)

There are two scenarios now.

1.
gTk gk

sTk+1sk+1
is bounded. Because of Equation 21, we can easily conclude that σk∥sk∥ is

bounded. Thus, the lemma follows.

2.
gTk gk

sTk+1sk+1
is unbounded. That is, there exists Mk →∞ such that

gTk gk
sTk+1sk+1

≥Mk.

Because of Assumption 8, gTk gk is bounded. We have that sTk sk → 0 as
gTk gk

sTk+1sk+1
is

unbounded. Using Taylor expansion, we note that from Equation 17,

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)

=
f(xk)−mk(sk)−O(∥s∥3)

f(xk)−mk(sk)
(22)

But as ∥gk∥ ≥Mk∥sk∥, we have:

f(xk)−mk(sk) = −gTk sk − sTkBksk

≥ −Mk∥sk∥2 − c1∥sk∥2, (23)

when ∥s∥ is small. Therefore, when sk is very small, combining Equation 22 and 23, we
have:

|ρk − 1| =
O(∥s∥3)

f(xk)−mk(sk)

≤ O(∥s∥3)
Mk∥sk∥2 + c1∥sk∥2

Because Mk → ∞, we can now conclude that ρk → 1 as ∥sk∥ → 0. This means that σk

is bounded. Therefore when
gTk gk

sTk+1sk+1
is unbounded, we have that ∥sk∥ → 0 and σk is

bounded. Therefore σk∥sk∥ is bounded.

We can then conclude that ∥Bk + σk∥sk∥I∥ is bounded.

We now focus on the proof of the convergence of Algorithm 3.
Lemma 8. Suppose that xk is generated by Algorithm 3 and assumptions 3, 5, 6, 7, 8, and 9 hold.
Then, there exists c4 > 0 such that:

E[f(xk+1)] ≤ E[f(xk)]−
αk

c3
E[∥∇f(xk)∥2] +

α2
k

2
c4 (24)

Proof. Because of Assumption 3, we have that there exists a c3 > 0 such that

sT (Bk + σk∥sk∥I)s ≥ c3∥s∥2 (25)

holds for all the s and iterations k.

Now suppose xk+1 = xk + αksk. From the Taylor theorem, there exist θk such that:

f(xk+1) = f(xk) + αks
T
k∇f(xk) +

α2
k

2
sTkH(θk)sk. (26)

Now there are two scenarios.

17

Under review as a conference paper at ICLR 2023

1. ρ ≥ η1, So sk is the solution of the cubic regularized subproblem. Thus, Equation 26
becomes

f(xk+1) = f(xk)− αkg
T
k (Bk + λk∥sk∥I)−1∇f(xk) +

α2
k

2
sTkH(θk)sk. (27)

Let ∇f(xk) = gk + ξk. By Assumption 7, we have E(ξk|xk) = 0.

So from Equation 27, now we have:

f(xk+1) = f(xk)− αk∇f(xk)
T (Bk + λk∥sk∥I)−1∇f(xk)+

αkξ
T
k (Bk + λk∥sk∥I)−1∇f(xk) +

α2
k

2
sTkH(θk)sk. (28)

Note that because of Equation 25 and Assumption 8, we have:

c3∥sk∥2 ≤ sTk (Bk + λkI)sk ≤ ∥sk∥∥gk∥ ≤ Lg∥sk∥. (29)

Thus, sk is bounded.

Because of Equation 28, we further have:

f(xk+1) ≤ f(xk)−
αk

c3
∥∇f(xk)∥2 +

+αk∇f(xk)
T (Bk + λk∥sk∥I)−1ξk +

α2
k

2
sTkH(θk)sk.

Because of Assumptions 6 and 9, the above equation becomes:

f(xk+1) ≤ f(xk)−
αk

c3
∥∇f(xk)∥2+

αk∇f(xk)
T (Bk + λk∥sk∥I)−1ξk +

α2
k

2
(L2∥sk∥+ LH)∥sk∥2. (30)

We now take the expected value of both sides of the above inequality, Because of E(ξk|xk) =
0, we have:

E[f(xk+1)|xk] ≤ f(xk)−
αk

c3
∥∇f(xk)∥2 +

α2
k

2
(L2

Lg

c3
+ LH)(

Lg

c3
)2. (31)

2. ρ < η1, that is, the SGD direction is used as sk. Similarly, we have:

E[f(xk+1)|xk] ≤ f(xk)− αk∥∇f(xk)∥2 +
α2
k

2
L2
g (32)

Thus, combining with Equations 31 and 32, we have that there exists c4 > 0 such that:

E[f(xk+1)|xk] ≤ f(xk)−
αk

c3
∥∇f(xk)∥2 +

α2
k

2
c4. (33)

Thus Lemma 8 holds.

Theorem 9. Suppose that xk is generated by Algorithm 3 and assumptions 3, 4, 5, 6, 7, 8, and 9
hold. Then, we have:

lim
k→∞

E[∥∇f(xk)∥] = 0. (34)

Proof. Because of Lemma 8, we have:

N∑
k=1

E[f(xk+1)] ≤
N∑

k=1

E[f(xk)]−
N∑

k=1

αk

c3
E[∥∇f(xk)∥2] +

N∑
k=1

α2
k

2
c4.

18

Under review as a conference paper at ICLR 2023

That is,

N∑
k=1

αk

c3
E[∥∇f(xk)∥2] ≤

N∑
k=1

E[f(xk)]−
N∑

k=1

E[f(xk+1)] +

N∑
k=1

α2
k

2
c4.

Thus,

N∑
k=1

αk

c3
E[∥∇f(xk)∥2] ≤ f(x1)− f(xN+1) +

N∑
k=1

α2
k

2
c4. (35)

Note:

E[∥∇f(xt)∥2] =
1

(
∑N

i=1 αi)

N∑
k=1

αkE[∥∇f(xk)∥2]. (36)

So, from Equation 35 and 36, we have:∑N
i=1 αi

c3
E[∥∇f(xt)∥2] =

N∑
k=1

αk

c3
E[∥∇f(xk)∥2]

≤ f(x1)− f(xN+1) +

N∑
k=1

α2
k

2
c4.

That is,

E[∥∇f(xt)∥2] ≤
c3∑N
i=1 αi

(f(x1)− f(xN+1)) +

∑N
k=1 α

2
k∑N

i=1 αi

c3c4
2

. (37)

Because of Assumption 4 and 10, we have:

lim
k→∞

E[∥∇f(xk)∥2] = 0. (38)

Thus, the theorem follows.

19

	Introduction
	Related Work
	Algorithm
	Solving the cubic regularized sub-problem
	Solving the nonlinear optimization problem

	Numerical Results
	Comparison to SR1
	Autoencoding
	Image Classification

	Conclusion and Discussion
	Ethical Considerations
	Implementation Details
	General Details
	LSR1 Specific

	Hyperparameters
	CIFAR-10.
	ImageNet

	Proof of Subproblem Solver Complexity
	Convergence analysis

