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Abstract

We introduce a method to measure uncertainty in large language models. For
tasks like question answering, it is essential to know when we can trust the natural
language outputs of foundation models. We show that measuring uncertainty
in natural language is challenging because of ‘semantic equivalence’—different
sentences can mean the same thing. To overcome these challenges we introduce
semantic entropy—an entropy which incorporates linguistic invariances created
by shared meanings. Our method is unsupervised, uses only a single model, and
requires no modifications to ‘off-the-shelf’ language models. In comprehensive
ablation studies we show that the semantic entropy is more predictive of model
accuracy on question answering data sets than comparable baselines.

1 Introduction
Despite progress in natural language generation (NLG) tasks like question answering or abstractive
summarization [Brown et al., 2020, Hoffmann et al., 2022, Chowdhery et al., 2022], there is little
understanding of uncertainty in foundation models. Without measures of uncertainty in transformer-
based systems it is hard to use generated language as a reliable source of information. Reliable
measures of uncertainty have been identified as a key problem in building safer AI systems [Amodei
et al., 2016, Hendrycks et al., 2022].

Unfortunately, uncertainty in free-form NLG faces unique challenges. This limits how much we can
learn from uncertainty estimation techniques in other applications of deep learning [Gal et al., 2016,
Lakshminarayanan et al., 2017, Ovadia et al., 2019] which focuses especially on image classification
[Kendall and Gal, 2017] or regression in low-dimensional data spaces [Kuleshov et al., 2018].

The key challenges come from the importance in language of meanings and form. This corresponds
to what linguists and philosophers call the semantic content of a sentence and its syntactic or lexical
form. Foundation models output token-likelihoods—representing lexical confidence. But for almost
all applications we care about meanings! For example, a model which is uncertain about whether to
generate “France’s capital is Paris” or “Paris is France’s capital” is not uncertain in any important
sense. Yet, at a token-level the model is uncertain between two forms of the same meaning. Existing
unsupervised methods (e.g., Malinin and Gales [2020]) ignore this distinction.

To address semantic equivalence, we estimate semantic likelihoods—probabilities attached to mean-
ings of text rather than standard sequence-likelihoods. We introduce an algorithm for clustering
sequences that mean the same thing based on the principle that two sentences mean the same thing
if you can infer each from the other. We then use these semantic-likelihoods to estimate semantic
uncertainty—uncertainty over different meanings. In particular, we compute the entropy of the
probability distribution over meanings. Adjusting for semantic equivalence in this way offers better
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Figure 1: (a) Our semantic entropy (blue) predicts model accuracy better than baselines on the
free-form question answering data set TriviaQA (30B parameter OPT model). Normalised entropy
reimplements single-model variant of Malinin and Gales [2020], entropy and p(True) reimplement
Kadavath et al. [2022]. (b) Our method’s outperformance increases with model size while also doing
well for smaller models.

uncertainty estimation than standard entropy and also greatly improves over methods for model
self-evaluation [Kadavath et al., 2022]. In addition, semantic entropy scales better with model size
and makes better use of increasing numbers of samples than baselines.

Our main contributions are thus as follows:

• We explain why uncertainty in free-form NLG is different from other settings (section 2).
• We introduce semantic entropy—a novel entropy-based uncertainty measure which uses our

algorithm for marginalising over semantically-equivalent samples (section 2) and show that
it outperforms comparable baselines in extensive ablations with both open- and closed-book
free-form question answering using TriviaQA and CoQA (section 3).

• Through hyperparameter ablations we suggest how to balance the trade-off between sampling
diverse and accurate generations for our method as well as baselines (appendix E.1) and
show that far fewer samples are needed for effective uncertainty than prior work presumes.

We focus on free-form question answering (QA) because it is a difficult and important use of NLG
with high-stakes applications. At the same time, it is easier to establish a ground truth without
expensive human evaluation than more nebulous tasks like summarisation.

Ultimately, we show that semantic entropy is an effective unsupervised way to estimate uncertainty in
NLG. As an unsupervised method, it requires no further training or data-gathering, unlike supervised
methods including Lin et al. [2022], Kadavath et al. [2022]. Semantic entropy is designed to work
with existing foundation and large language models with no modifications ‘out-of-the-box’. Our
experiments use OPT [Zhang et al., 2022] but semantic entropy works with any similar model.

Background on Uncertainty Estimation Our method draws inspiration from probabilistic tools
for uncertainty estimation, which have been extensively employed in settings like deep image
classification [Gal et al., 2016]. Although these methods are often used in Bayesian models, we
emphasise that our method does not require any special training or architectural modifications and is
not limited to Bayesian settings.

The total uncertainty of a prediction can be understood as the predictive entropy of the output
distribution. This measures the information one has about the output given the input. This entropy is
highest when the output is minimally informative—predicting the same probability for all possible
outcomes. The predictive entropy for a point x is the conditional entropy of the output random
variable Y with realisation y given x: PE(x) = H(Y | x) = −

∫
p(y | x) ln p(y | x)dy. We

provide additional background information on uncertainty estimation in appendix A.

Direct application of language models to uncertainty. In contrast to our approach using prob-
abilistic methods, recent work has sought to use the generating language model itself to estimate
its own uncertainty. For example, Lin et al. [2022] finetune language models to verbally describe
their confidence. Meanwhile, Kadavath et al. [2022] sample multiple generations and return the
completion to an NLG prompt asking if a proposed answer is true (further detail in appendix F.4).
Both Lin et al. [2022] and Kadavath et al. [2022] also propose ways to finetune predictors on the
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Answer
s

Likelihood
p(s | x)

Semantic likelihood∑
s∈c p(s | x)

Paris 0.7 0.7
Rome 0.2 0.2
London 0.1 0.1

Entropy 0.8 0.8

(a) No semantic equivalence

Answer
s

Likelihood
p(s | x)

Semantic likelihood∑
s∈c p(s | x)

Paris 0.7
}

0.9It’s Paris 0.2
London 0.1 0.1

Entropy 0.8 0.33

(b) With semantic equivalence

Table 1: Answers to the question “What is the capital of France?” (a) When all generations from the
model mean different things, semantic clustering has no effect—the entropy and semantic entropy
are identical. (b) When some of the answers are semantically equivalent (“Paris” and “It’s Paris”) the
semantic entropy does a better job of capturing the actually low uncertainty.

embeddings of generating models to predict models uncertainty. While promising, these approaches
need task-specific labels, additional training, and seem to be unreliable out-of-distribution. We further
discuss related work in appendix D.

2 Semantic Uncertainty
The problem of semantic equivalence for uncertainty estimation in NLG. Approaches to NLG
uncertainty might treat the language model as a black-box (e.g., asking it if its answer is correct) or
alternatively focus on the probabilistic model without accounting for the special characteristics of
language (e.g., measuring predictive entropy). Our unsupervised approach instead uses the powerful
tools of probabilistic modelling, but also recognises the unique challenges posed by free-form NLG.
In this section, we critically analyse the probabilistic interpretation of language models in order to
ground both our method and future exploration of the field.

Most machine learning problems have mutually exclusive outputs. An image in class 17 is not class
29 as well; a regression output of 23.1 is not anything else; an RL agent going left does not go right.
In contrast, for free-form text generation an output usually means the same thing as many other
outputs. For example, “The capital of France is Paris” means the same thing as “France’s capital
is Paris”. Linguists and philosophers distinguish text’s meaning—its semantic content—from its
syntactic and lexical form. The syntax is the grammatical structure while its lexical form is the
specific words used. Lexical equivalence entails the other two, but not the reverse.

We almost always care about the semantic content of a sentence. For decision-problems relying on
NLG, meaning is usually an invariance in output-space which is not present in the model specification.
This is true for question answering, summarization, artificial assistants. Meanings are especially
important for trustworthiness: a system can be reliable even with many different ways to say the
same thing but answering with inconsistent meanings shows poor reliability. We formalise semantic
equivalence in appendix C.4 and describe other challenges for uncertainty estimation in NLG in
appendix B.

Semantic Entropy. We have introduced the idea that uncertainty over meanings is more important
for most situations than uncertainty over the exact tokens used to express those meanings. Our method
examines uncertainty in meaning-space—the entropy of the random variable representing the output
distribution in the semantic event-space. This is in contrast to entropy in the usual token event-space.
To do this we introduce a novel algorithm for estimating the semantic equivalence relation as well as
a novel uncertainty estimation algorithm for semantic entropy. Our approach consists of the following
steps.

Step 1: Generating a set of answers from the model. First we sample M sequences
{s(1), . . . , s(M)} which we will use later to estimate the uncertainty. These sequences must be
sampled according to the distribution p(s | x). In this paper, we sample these sequences only from
a single model using either multinomial sampling or multinomial beam sampling. We show in
appendix E.1, that the choice of sampling temperature and sampling method can have a significant
impact on the performance of both our method and the baselines. Unlike Malinin and Gales [2020],
we do not use an ensemble of models. Ensembling would probably improve performance, but the
cost of training multiple independent foundation models is often prohibitive.

Step 2: Clustering by semantic equivalence. In appendix C.4, we formalised semantic equivalence
by introducing the semantic equivalence relation, E(·, ·), which induces semantic equivalence classes
which are sets of sequences that share a meaning. Recall that the equivalence class c is a set of
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sequences s such that ∀s, s′ ∈ c : E(s, s′). We operationalise E(·, ·) using the idea of bi-directional
entailment. A sequence, s, means the same thing as a second sequence, s′, if and only if they entail
(i.e. logically imply) each other. E.g., “The capital of France is Paris.” entails “Paris is the capital of
France.” because they mean the same thing.

For a given pair of answers, we evaluate whether bi-directional entailment holds between them by
using a Deberta-large model [He et al., 2020] finetuned on the natural language inference data set
MNLI [Williams et al., 2017]. See appendix C.5 for additional details.

Importantly, we require that the sequences mean the same thing with respect to the context—key
meaning is sometimes contained within the context. For example, “Paris.” does not entail “The
capital of France is Paris.” because “Paris.” is not a declarative sentence without context. But within
the context of the question, the one-word answer does entail the fuller answer.

Step 3: Computing the semantic entropy. Having determined the clusters of generated sequences
that mean the same thing, we add their likelihoods following appendix C.4 as a way of determining
the likelihood of each meaning, rather than each sequence. We then compute the semantic entropy
(SE) as the entropy over the meaning-distribution SE(x) = -

∑
c p(c | x) log p(c | x)

= −
∑

c

((∑
s∈c

∏
i p(si | s<i, x)

)
log

[∑
s∈c

∏
i p(si | s<i, x)

])
.

We do not have access to every possible meaning-class c. Instead, we can only sample c from the
sequence-generating distribution induced by the model. To handle this, we estimate the expectation
in section 2 using Monte Carlo integration over the semantic equivalence classes C from algorithm 1
SE(x) ≈ −|C|−1

∑|C|
i=1 log p(Ci | x). This is an unbiased estimator of the entropy in section 2.

In addition, in some cases we use length-normalisation as described in eq. (1) and explained in
appendix B.3.

3 Empirical evaluation
We demonstrate that semantic entropy is an effective way to quantify the uncertainty of NLG on
free-form QA tasks. Effective uncertainty measures should offer information about how reliable the
model’s answers are—that is, very uncertain generations should be less likely to be correct.

Performance evaluation. Following prior work (e.g., Filos et al. [2019]), we evaluate uncertainty by
treating uncertainty estimation as the problem of predicting whether to rely on a model generation
for a given context—whether to trust an answer to a question. The area under the receiver operator
characteristic curve (AUROC) metric is equivalent to the probability that a randomly chosen correct
answer has a higher uncertainty score than a randomly chosen incorrect answer. Higher scores are
better, with perfect uncertainty scoring 1 while a random uncertainty measure would score 0.5.

Model. We use the GPT-like OPT models [Zhang et al., 2022]. We vary the size of the model
between 2.7B, 6.7B, 13B and 30B parameters, while our headline results are all reported using the
largest computationally feasible model, with 30B parameters. In all cases we use only a single
un-modified model. There is no ensembling and no stochastic or Bayesian modification. We chose
this because in most cases cutting-edge foundation models are not available as ensembles and are too
large to efficiently perform approximate Bayesian inference with. We do not fine-tune these models
on TriviaQA or CoQA but use them in their pre-trained form.

Datasets. We use CoQA Reddy et al. [2019] as an open-book conversational question answering
problem (in which the model answers a question using a supporting paragraph). We use the devel-
opment split (∼8000 questions). We also use TriviaQA [Joshi et al., 2017] as a closed-book QA
problem (in which the model must answer a question without access to a supporting paragraph). We
use a subset of 8000 questions of the training split to match the size of CoQA.

We evaluate correctness of our model’s generations on the underlying dataset using the a fuzzy
matching criterion: L(s, s′) = 1RougeL(s,s′)<0.3. That is, we consider an answer s to be correct if its
Rouge-L [Lin and Och, 2004] — a measure of the longest common subsequence — with regards to
the reference answer is larger than 0.3. In appendix F.2 we study other objective functions such as
exact matching and Rouge-1 and find our method to be robust to these choices.

Baselines. We compare our method against predictive entropy, length-normalised predictive entropy
[Malinin and Gales, 2020], and p(True) [Kadavath et al., 2022]. Predictive entropy is a widely used
measure of uncertainty in other domains, and has been used as a baseline without length-normalisation
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in, e.g., Kadavath et al. [2022]. Here, the score is just the predictive entropy of the output distribution
as described in section 1. Length-normalised predictive entropy divides the joint log-probability of
each sequence by the length of the sequence, as proposed by Malinin and Gales [2020] in the case of
NLG uncertainty and further discussed in appendix B.3. Note that unlike Malinin and Gales [2020],
we use only a single model, not an ensemble, and use multinomial sampling as we do for all other
methods. p(True) proposed by [Kadavath et al., 2022] as a way to estimate the probability that a
model’s generation is correct by ‘asking’ the model if its answer is correct. They propose sampling
M answers and constructing a new natural language question using these possible answers as context
before asking whether the proposed answer is correct and measuring the probability of the completion
being True. An example of the format is provided in appendix F. Note that our implementation of
this uses OPT models with up to 30B parameters, while Kadavath et al. [2022] use a proprietary 52B
parameter model. We are also limited computationally to 10-shot prompting while the original paper
uses 20-shot prompting.

Semantic Entropy uncertainty. For both TriviaQA and CoQA, semantic entropy improves over
baselines in predicting whether a model’s answer to a question is correct. For TriviaQA, using the
largest model we show in fig. 1a we show that semantic entropy has a significantly higher AUROC
than entropy in sequence-probability-space with and without length-normalisation. At the same
time, it performs dramatically better than p(True). Similarly, we find in fig. 1b that our method
outperforms more for larger model sizes and continues to steadily improve as the model size increases,
with the performance of the p(True) baseline added in fig. 4b (not shown in the opening figure
for visual clarity). For CoQA, in fig. 4a we show that semantic entropy predicts model correctness
significantly better than the baselines at larger model sizes.

The ground truth answers for TriviaQA are generally single words or very short phrases, while CoQA
contains both longer and shorter ground truth answers. This is why performing length-normalisation
has a large effect for CoQA but no effect for TriviaQA (compare fig. 4a and fig. 4b). TriviaQA is also
a more challenging dataset: accuracy of 50.6% against 82.3% for CoQA.

Finally, we can see that much of the performance gain comes from making better use of more samples.
In fig. 2a we show that for both CoQA (top) and TriviaQA (bottom) the gap between semantic entropy
and length-normalised entropy widens as the number of samples increases. In appendix E, we show
that to get reliable uncertainty measures, sampling hyper-parameters should be chosen in a way that
yields both accurate and diverse sample answers.

4 Discussion

Many natural language problems display a crucial invariance: sequences of distinct tokens mean the
same thing. Addressing this directly, we introduce semantic entropy—the entropy of the distribution
over meanings rather than sequences—and show that this is more predictive of model accuracy on
QA than strong baselines. Our unsupervised approach using ‘out-of-the-box’ models improves repro-
ducibility and is easier to deploy. Unsupervised uncertainty may also help address the observation
raised in prior work that supervised uncertainty measures struggle with distribution shift.

For semantic entropy, we introduce a novel bidirectional entailment clustering algorithm which
uses a smaller natural language inference model. Our method therefore represents a middle ground
between fully probabilistic methods and methods that use language models to exploit aspects of
natural language that are not transparently present in the model activations. We believe that this
sort of joint approach is more promising than relying on either perspective on its own, especially as
language models continue to improve. This will become more important in cases where language
models are capable of deception, something which our method does not protect against, rather than
merely being uncertain between many possible meaningful options. By combining model internals
with model prediction one can hope to stay a step ahead of model capabilities.

We focus on question answering because this is a particularly important free-form NLG problem with
relatively clear ground truths. In the future, however, we hope our work on semantic equivalence can
pave the way towards progress in settings like summarisation where correctness requires more human
evaluation. Semantic likelihoods could also be extended to other tools for probabilistic uncertainty
like mutual information, potentially offering new strategies for NLG uncertainty.
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A Additional Background on uncertainty estimation
For sequence-prediction tasks like NLG, the probability of the entire sequence, s, is the product
of the conditional probabilities of new tokens given past tokens, whose resulting log-probability is
log p(s | x) =

∑
i log p(si | s<i), where si is the i’th output token and s<i denotes the set of previous

tokens. Sometimes, instead of the entropy of these probabilities, the geometric mean token-probability
is used instead [Malinin and Gales, 2020] becoming an arithmetic mean log-probability

1
N

∑N
i log p(si | s<i). (1)

Despite empirical success Murray and Chiang [2018], so far this has little theoretical justification.

One can further distinguish aleatoric uncertainty—uncertainty in the underlying data distribution—
and epistemic uncertainty—resulting from missing information [Kendall and Gal, 2017]. Epistemic
uncertainty, measured using a mutual information, can be useful but is hard to estimate, especially
for very large models, requiring special methods and computational expense. We do not use mutual
information in this work, because our focus is on existing foundation models ‘off-the-shelf’. Similarly,
while, e.g., Malinin and Gales [2020] use ensembles of models to estimate the integral in section 1
we use samples from a single model’s output distribution.

B Further challenges for uncertainty estimation in NLG
B.1 Unequal token importance.

From the perspective of meaning, some tokens can matter more than others—key words. Naive
methods like predictive entropy do distinguish between key words or unimportant tokens. Supervised
uncertainty methods that make use of language models in the uncertainty evaluation can potentially
take this into account better. In addition, our semantic entropy approach partly adjusts for this, as
discussed in appendix C.7.

B.2 Sampling the extremely high-dimensional language-space

Recall from section 1 that estimating predictive entropy requires taking an expectation in output-space.
However, the output-space of natural language has O(|T |N ) dimensions. Moreover, while we can
sample from our autoregressive token-model, we lack a normalized probability density function over
sentences. The expectation must be approximated by Monte Carlo integration—sampling a finite set
of sentences from the output distribution and averaging their likelihoods to compute the entropy. For
entropies the average is dominated by low-probability sentences (whose logs are large and negative)
making Monte Carlo integration difficult [Mackay, 2003].

B.3 Variable length generations

Sentences of natural language have different lengths. As is widely noted [Murray and Chiang,
2018] and especially in the context of NLG uncertainty by Malinin and Gales [2020], in expectation
longer sequences have lower joint likelihoods because of the conditional independence of the token
probabilities. The joint likelihood of a sequence of length N shrinks exponentially in N . Its negative
log-probability therefore grows linearly in N , so longer sentences tend to contribute more to entropy.

We therefore interpret length-normalising the log-probabilities when estimating the entropy as
asserting that the expected uncertainty of generations is independent of sentence length. Sometimes,
this is approximately valid. Other times, longer sentences may well be usually more uncertain (e.g.,
when the goal is to exactly match a typically short reference answer, such as for TriviaQA). In
these cases, the advantages of length-normalisation become less clear-cut, as we show empirically in
section 3. This offers some guidance a priori on cases when length-normalisation is appropriate.

C Further details on Semantic Uncertainty
C.1 Further discussion of semantic equivalence

We illustrate the distinction between different kinds of equivalence in table 3. Lexically equivalent
sequences use exactly the same symbols. They are always also semantically and syntactically
equivalent (in a given context). Syntactically equivalent sentences have the same grammatical form.
But they can have different meanings (not semantically equivalent) and can use different symbols
(not lexically equivalent). Semantically equivalent sentences mean the same thing, but they might
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Table 2: Incorrectly answered questions have more semantically distinct answers than correct ones.
On its own, this count is a reasonable uncertainty measure, though semantic entropy is better.

Dataset Average # of semantically distinct answers AUROC

Correctly answered Incorrectly answered Semantic entropy # distinct answers

CoQA 1.27 1.77 0.77 0.66
TriviaQA 1.89 3.89 0.83 0.79

Equivalence

Sentence A Sentence B Lexical Syntactic Semantic

Paris is the capital of France. Paris is the capital of France. ! ! !

Berlin is the capital of France. !

France’s capital is Paris. !

Table 3: Illustration of semantic, syntactic, and lexical equivalence. Work with foundation models
implicitly focuses on lexical equivalence, which entails the others, but we usually care about semantic
equivalence.

have different grammatical form (not syntactically equivalent) or symbols (not lexically equivalent).
Two sentences can also be both syntactically and semantically equivalent but not lexically equivalent
if they match up to a synonym.

Soft equivalence and transitivity. Formally, semantic equivalence is transitive. That is, if E(s, s′)
and E(s′, s′′) then it follows that E(s, s′′). However, the implementation of our bidirectional
equivalence algorithm permits some classification errors and it is slightly ‘soft’—it will sometimes
return equivalent for pairs that are not quite equivalent. As a result, it is not strictly true that our
equivalence relation is transitive, and therefore not strictly true that there is a unique set of equivalence
classes. For example, the clusters might depend on the order in which the comparisons are made.
In practice, however, we find that this does not pose a noticeable problem—usually, inspecting the
outputs shows that the equivalence appears clear cut. However, we acknowledge this potential issue
as an area for improvement in future clustering algorithms.

C.2 Why we use AUROC as a metric

The AUROC is a better measure of uncertainty for free-form question answering and NLG than
calibration measures like the Brier score, which are often used in classification or for multiple choice
QA. This is because the language model outputs a likelihood for a given token-sequence, but not
for an entire meaning. In order to estimate the Brier score, we would need to estimate the entire
probability mass assigned to any possible way of saying the correct answer. This is intractable for
free form text where we do not have access to probabilities about meanings. In contrast, we can
estimate the entropy because it is structured as an expected information, which makes Monte Carlo
integration suitable.

C.3 Further algorithmic details

In addition to the description of the method provided in the main body, in algorithm 1 we provide the
pseudocode for our bi-directional entailment algorithm.

C.4 Formalisation of semantic equivalence

We can formalize semantic equivalence mathematically. Let the space of tokens in a language be
T . The space of all possible sequences of tokens of length N is then SN ≡ T N . For some sentence
s ∈ SN , a sequence of tokens si ∈ T there is an associated meaning.2

Let us introduce a placeholder semantic equivalence relation, E(·, ·), which holds of any two
sentences that mean the same thing—we operationalise this in section 2. Recall that an equivalence
relation is any reflexive, symmetric, and transitive relation, and that any equivalence relation on a

2Theories of meaning are contested [Speaks, 2021]. However, for specific models and deployment contexts
many considerations can be set aside. Care should be taken comparing very different models and contexts.
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Algorithm 1 Bidirectional Entailment Clustering

Require: context x, set of seqs. {s(2), . . . , s(M)}, NLI classifierM, set of meanings C = {{s(1)}}
for 2 ≤ m ≤M do

for c ∈ C do ▷ Compare to already-processed meanings.
s(c) ← c0 ▷ Use first sequence for each semantic-class.
left←M(cat(x, s(c), “<g/>′′, x, s(m))) ▷ Does old sequence entail new one?
right←M(cat(x, s(m), “<g/>′′, x, s(c))) ▷ Vice versa?
if left is entailment and right is entailment then

c← c
⋃
s(m) ▷ Put into existing class.

end if
end for
C ← C

⋃
{s(m)} ▷ Semantically distinct, gets own class.

end for
return C

set corresponds to a set of equivalence classes. Each semantic equivalence class corresponds to one
possible meaning that our text can have. That is, for the space of semantic equivalence classes C the
sentences in the set c ∈ C all share a meaning such that ∀s, s′ ∈ c : E(s, s′).

Ordinarily, large language models produce conditional distributions over tokens and their resulting
sequences. That is, the probability of the sequence conditioned on the context comes from conditional
token probabilities p(s | x) =

∏
i p(si | s<i, x). Instead, we focus on the probability of the model

generating any sequence that shares some meaning. This can be written as p(c | x) =
∑

s∈c p(s | x)
=

∑
s∈c

∏
i p(si | s<i, x). Formally, this treats the output random variable whose event-space is C, a

sub-σ-algebra of the standard event-space S.

C.5 Semantic equivalence detection

In general, any natural language inference classification system can be used for our bidirectional
entailment clustering algorithm. In our case, we use a Deberta-large model [He et al., 2020] that
is fine-tuned on the natural language inference data set MNLI Williams et al. [2017]. For each
pair of sequences in our set of samples, s and s′, we detect whether it is possible to infer the
concatenation of the context and s from the concatenation of the context and s′ and vice versa. In
order to do this we concatenate each of the two question/answer pairs, and then concatentate them
both together separated by a special token. The Deberta model then classifies this sequence into one
of: entailment, neutral, contradiction. We compute both directions, and the algorithm as a
whole returns equivalent if and only if both directions were entailment. A sequence is part of a
semantic equivalence class if it shows bidirectional equivalence with any other member of that class.
Algorithm pseudocode is provided in appendix C.3.

C.6 Computational cost

The bidirectional equivalence algorithm is combinatorially complex in M , it requires M2-many
comparisons in the worst-case. In practice, however, the computational cost is small compared to
the cost of generating sequences. First, as we show in appendix E.1, M < 20 is often sufficient
for good uncertainty. Second, because the Deberta-large model is so much smaller than the main
language model (1.5B parameters), each pair comparison is much faster than generating even one
token from the main model. Third, because semantic equivalence is transitive we only need to
compare one member of each equivalence class to remaining sequences. The more samples mean
the same thing, therefore, the smaller the effective number of samples is. Typically, we find that
generated sequences often share a meaning on QA tasks. However, because our experiments use
M ≤ 20, the bi-directional entailment algorithm was so cheap we did not need to use this.

C.7 How the semantic entropy addresses the challenges of NLG

The main inspiration of semantic entropy is to address the semantic invariance of natural language
head-on by converting the problem of uncertainty estimation into meaning-space. In addition,
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semantic entropy goes some way towards addressing unequal token importance. Generations whose
meanings are the same but differ on unimportant tokens will be added together, reducing the effect of
the likelihoods of unimportant tokens. However, this challenge is only partially addressed: semantic
entropy will still pay too much attention to non-keyword likelihoods. This is one area where
supervised language-model-based uncertainty tools [Lin et al., 2022, Kadavath et al., 2022] might
enable future improvements that handle this challenge better. We address the challenges of sampling
and variable-length generation using specific details of our sampling procedure in section 2.

D Related Work
Prior work on uncertainty in foundation models for NLP has largely focused on the calibration
of classifiers [Jiang et al., 2021, Desai and Durrett, 2020] while we argue that generative natural
language poses important further challenges. Jiang et al. [2021] do examine calibration in generative
question answering and find only a weak correlation between the log-likelihood models assign to
their answer and the answer’s correctness. In section 3 we explain however why semantic equivalence
in natural language makes calibration a problematic evaluation for generative language models.

Some research has addressed uncertainty or calibration in NLG either by prompting the models
to evaluate their own generations or by fine-tuning the generating model to predict its uncertainty
[Mielke et al., 2020, Lin et al., 2022, Kadavath et al., 2022]. These methods need further training
and supervision. Because they need additional training and supervision, they are hard to reproduce,
expensive to create, and have been shown to be sensitive to distribution shift. For example, we
were unable to implement one proposal by Kadavath et al. [2022] to train a language model to
directly predict confidence due to hardware limitations. Our unsupervised method which uses models
‘off-the-shelf’ avoids these limitations.

Many of the issues that make probabilistic uncertainty estimation in NLG difficult also make automatic
evaluation of NLG difficult. Ott et al. [2018], for instance, study how the performance of machine
translation models suffers because one sentence can be translated in multiple ways. Similarly, Sai
et al. [2022] discuss how paraphrase detection can be used to evaluate NLG and other related methods
might transfer to uncertainty estimation.

E Additional experimental results
E.1 Hyperparameters for effective sampling

Adjusting the temperature used for multinomial sampling has two competing effects on the generated
sequences produced by the model. Increasing the temperature increases the diversity of samples
(fig. 2b, bottom figure, solid line). One would expect more diverse generations to cover the space
of possible meanings more fully. Here we measure the diversity using the average overlap of the
longest sub-sequence among sampled answers (1−M2−1

∑
s̸=s′∈C Rouge− L(s, s′)). At the same

time, reducing the temperature improves the average correctness of the answer (fig. 2b, bottom figure,
dashed line). Typically, more accurate models are also better at estimating uncertainty.

In fact, we find that these two effects compete and the highest AUROC for semantic entropy and
length-normalised entropy is optimised by an intermediate temperature of 0.5 (fig. 2b, top figure). A
lower temperature would improve accuracy, while a higher temperature would improve diversity. A
similar figure for CoQA can be found in appendix F. Note that prior work using predictive entropy as
a baseline uses a temperature of 1.0 [Kadavath et al., 2022], which our evaluation suggests would
significantly weaken the baseline relative to our implementation.

E.2 Predictive value of number of semantically distinct answers in answer set

We can better understand the mechanism of action for semantic entropy by examining the differ-
ence between incorrect and correct answers generated by the model. In table 2 we show that the
average number of semantically distinct clusters of answers (|C|) from the 30B parameter model is
significantly greater for incorrectly answered questions than correctly answered ones. This fits our
predictions, which is that the model is more likely to generate incorrect answers when it is uncertain
about the most likely generation. There are 10 answers generated per question, so there is substantial
overlap in meaning. We also show that simply using the number of semantically distinct answers as
an uncertainty measure on its own performs reasonably well. Semantic entropy has a higher AUROC
than the number of distinct answers, especially for CoQA whose difficulty causes greater spread in
predicted probabilities between possible answers.
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Figure 2: (a) Semantic entropy makes better use of additional samples because it handles duplication
better, the performance gap therefore continues to improve. (b) (bottom) Higher temperatures result
in more diversity but less accurate generations. (top) The best performing uncertainty comes from an
intermediate temperature that balances these two forces. Results on TriviaQA.
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Figure 3: CoQA temperature ablation. (bottom) Similar to TriviaQA, higher temperatures mean
higher diversity and lower accuracy. (top) The best performance for both methods comes at a
temperature of 0.5. Unlike TriviaQA, normalised entropy outperforms semantic entropy at high
temperatures.

E.3 Impact of sampling method on quality of uncertainty estimate

We further analyse major challenges for measuring uncertainty in NLG. We show empirically how
sampling a set of model answers to estimate entropies in NLG must balance sample accuracy
and diversity, which significantly strengthens the baselines we compare against relative to prior
implementations. We also examine the situational heuristic of length-normalising predictive entropies.

In section 2, we study the impact of the temperature hyper-parameter on the performance of the
uncertainty measures. Here, we show a variant of fig. 2b for the CoQA dataset showing an almost
identical pattern. Like TriviaQA, the optimal temperature is 0.5 despite a significantly harder
problem with lower accuracy, suggesting that this choice hyperparameter may generalize well. Unlike
TriviaQA, normalised entropy outperforms semantic entropy at high temperatures.

Beyond the temperature, there are a number of other design choices to be made when sampling: the
sampling method and hyper-parameters such as top-p and top-k. Our contribution in this paper is to
show the importance of these choices for uncertainty estimation which has been overlooked previously,
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Table 4: Multinomial beam search sampling produces sampled answers that are less diverse and thus
less useful for uncertainty estimation than multinomial sampling.

Sampling method Semantic Entropy AUROC Diversity of answers

Multinomial sampling 0.758 0.490
Multinomial beam search sampling 0.735 0.258

and study the temperature in particular. While we leave the detailed study of these hyperparameters to
future work, we do compare our default multinomial sampling method, to multinomial beam search
sampling which focuses more on high-likelihood regions of the output space.

In table 4 we show that multinomial beam search sampling yields uncertainty measures that are less
predictive of model accuracy than multinomial sampling. Beam search also generates much less
diverse samples. We conjecture that multinomial beam search sampling focuses too much on the
most likely sequences. The diversity of this beam search corresponds to the lowest temperature result
in fig. 3. As in the main body of the paper, we measure diversity as the average lexical overlap of the
answers in the answer set.

F Experimental details and ablations
We use both the OPT models3 and the Deberta-large model4 via the HuggingFace transformers library
which can be easily adopted for reproducibility. All of our code is open-source and relies on no
proprietary models. It will be made available after publication.

We use the following functions of the HuggingFace API to sample the most likely answers, and the
set of answers:

• To obtain the answer which is compared to the reference answer, which determines whether
the question is correctly answered, we use beam search using the generate() function
with num_beams = 5 and do_sample = True .

• To obtain the answer set for uncertainty estimation, by default we use multinomial sampling,
that is generate() using do_sample = True and num_beams = 1 . If indicated explic-
itly, we use beam multinomial sampling, that is generate() using num_beams = 5 and
do_sample = True.

We run all of our experiments on 80GB NVIDIA A100s.

Testing up to 20 samples per answer on the 2.7B, 6.7B and 13B CoQA experiments, we conclude
that using more than 10 samples does not significantly improve the performance of the uncertainty
measure, we use 10 sampled answers per question in the remaining experiments on TriviaQA. Note,
that in table 2 we compare the 30B model on CoQA and TriviaQA where in both settings we use
answer sets of size 10.

We use the following prompts on CoQA and TriviaQA. We find that on CoQA, we obtain accurate
model results with zero-shot prompting. While we have to use few-shot prompting to obtain accurate
answers on closed-book TriviaQA. We use the following prompts for each of the settings:

CoQA:

[The provided context paragraph]
[additional question-answer pairs]
Q: [Provided question]
A:

where additional question-answer pairs are preceding turns of the conversation about the
paragraph consisting of questions and reference answers.

TriviaQA:

For TriviaQA, we use a 10-shot prompt of the format:
3https://huggingface.co/docs/transformers/model_doc/opt
4https://huggingface.co/docs/transformers/model_doc/opt
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Figure 4: (a) On CoQA open-book question answering semantic entropy demonstrates better uncer-
tainty than ordinary predictive entropy with and without normalisation at larger model sizes. It also
performs significantly better than p(True). (b) TriviaQA shows similar results. Identical to fig. 1b
with the addition of p(True), which was previously omitted to avoid stretching the scale.

Q: Which Oscar-nominated film had You Sexy Thing as its theme song? A:
The Full Monty Q: Which Joan’s career revived in Whatever Happened to Baby
Jane? A: Crawford Q: Which much-loved actor won the Best Actor Oscar for
The Philadelphia Story? A: James Stewart (...) Q: In which river is the
Boulder Dam? A:

To account for generations where the model continues the Q:...A:... pattern after providing an
answer to the given question, we trim all generations by pattern matching for a selection of stop-words
that we observe in the generations: Q:, Question:, QUESTION: and questions:.

F.1 Testing the bi-directional entailment classifier

To the best of our knowledge, this paper is the first application of the bi-directional entailment
approach to identifying answers with the same meaning in question answering. Since this is a core
component of our approach, we verify how accurately this approach identifies model answers with
the same meaning. To this end, we manually label 300 samples for each of TriviaQA and CoQA
produced by the 13B parameter model to provide a ground truth as to whether or not they mean the
same thing. We find that the model achieves an accuracy of 92.7% and 95.3% respectively.

F.2 Sensitivity of results to accuracy metric

In principle, the choice of metric to decide whether or not an answer is ‘correct’ might have a large
effect on the assessment of our method and baselines. However, we find empirically that our results
are relatively insensitive to the choice of accuracy metric.

In table 5 we show that for TriviaQA the choice of accuracy metric for the question answering
has almost no effect on the measured AUROC of the uncertainty estimation, despite making the
measured accuracy of the model’s generation significantly different. In particular, the exact matching
requirement reduces the accuracy significantly but has little effect on the AUROCs.

For CoQA, which is an open-book QA task with greater answer variability and longer answers the
results are broadly similar (see table 6) except for the exact matching accuracy criterion which is too
demanding because of the much larger variety of possible answers for this task.

F.3 Accuracy ablations with model size

We confirm that increasing the model size improves the accuracy of the generations on both QA
datasets (see fig. 5a and fig. 5b). Semantic entropy’s uncertainty performance is also shown for
context.

F.4 Example p(True) format

The format of the prompt, reproduced here for convenient reference from the original source Kadavath
et al. [2022], is:
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Table 5: TriviaQA: the exact choice of accuracy metric for the free-form QA task has little effect on
the assessment of the quality of the uncertainty measure.

Metric AUROC Accuracy

Semantic entropy Normalised entropy

Rouge− L(y, y′) > 0.3 0.828 0.802 0.506
Rouge− L(y, y′) > 0.5 0.835 0.810 0.456
Rouge− 1(y, y′) > 0.5 0.835 0.810 0.457
Exact matching 0.828 0.808 0.394

Table 6: CoQA: the exact choice of the accuracy metric for the free-form open-book QA task has
little effect on the assessment of the quality of the uncertainty measure except for the use of exact
matching. For CoQA, getting an exact match is significantly harder.

Metric AUROC Accuracy

Semantic entropy Normalised entropy

Rouge− L(y, y′) > 0.3 0.7672 0.7533 0.8239
Rouge− L(y, y′) > 0.5 0.7379 0.7290 0.7657
Rouge− 1(y, y′) > 0.3 0.7672 0.7533 0.8239
Rouge− 1(y, y′) > 0.5 0.7397 0.7309 0.7677
Exact matching 0.6749 0.6727 0.6459

Question: Who was the third president of the United States?
Here are some brainstormed ideas: James Monroe
Thomas Jefferson
John Adams
Thomas Jefferson
George Washington
Possible Answer: James Monroe
Is the possible answer:
(A) True
(B) False
The possible answer is:
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Figure 5: Accuracy improves with model size, as does semantic entropy’s uncertainty performance.
At the smallest model size, both accuracy and uncertainty diminish.
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where the “brainstormed answers” are from the set of sampled answers and P(True), i.e. the likelihood
of the next token being True is taken as the uncertainty measure. The authors note that doing the
above needs to be done in a few-shot manner and does not work well as in a zero-shot format. In our
experiments, we use a few-shot prompt with 10 examples.

16


	Introduction
	Semantic Uncertainty
	Empirical evaluation
	Discussion
	Additional Background on uncertainty estimation
	Further challenges for uncertainty estimation in NLG
	Unequal token importance.
	Sampling the extremely high-dimensional language-space
	Variable length generations

	Further details on Semantic Uncertainty
	Further discussion of semantic equivalence
	Why we use AUROC as a metric
	Further algorithmic details
	Formalisation of semantic equivalence
	Semantic equivalence detection
	Computational cost
	How the semantic entropy addresses the challenges of NLG

	Related Work
	Additional experimental results
	Hyperparameters for effective sampling
	Predictive value of number of semantically distinct answers in answer set
	Impact of sampling method on quality of uncertainty estimate

	Experimental details and ablations
	Testing the bi-directional entailment classifier
	Sensitivity of results to accuracy metric
	Accuracy ablations with model size
	Example p(True) format


