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ABSTRACT

Forest carbon projects, like those reducing emissions from deforesta-
tion and degradation (REDD+), can help mitigate climate change
by sequestering carbon. Their effectiveness is measured against
a “baseline” scenario, which predicts emissions if no project inter-
vention occurred. To maintain the integrity of carbon credits, it’s
crucial to have accurate baseline emission reduction models with
well-characterized uncertainty. However, recent scrutiny has raised
concerns about the accuracy of emission reduction claims made
by REDD+ projects. These projects rely on ex-ante predictions of
future deforestation risk with no standard approach to quantify
uncertainty. Ex-post (“dynamic”) baselines could reduce this model
uncertainty, but they also lack a standardized framework for un-
certainty. We introduce a dynamic baseline model based on remote
sensing data and nearest neighbors matching and apply a novel
uncertainty quantification framework to assess the accuracy of
this model. Applying our approach to seven REDD+ case study
projects in Brazil, we found several instances of consistent over
or under-estimation of emissions reductions, suggesting potential
inaccuracies in current carbon offset measurements. Our findings
highlight the importance of our dynamic baseline and uncertainty
quantification in enhancing the effectiveness of REDD+ and similar
forest carbon projects.
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1 INTRODUCTION

The market for forest carbon credits has the potential to make a
meaningful contribution to climate mitigation [5]. However, recent
analyses have called into question the accuracy of the baselines
used to compute project emissions reductions [6, 19, 20]. A base-
line represents business-as-usual outcomes without a forest carbon
project. The number of credits issued to a landowner annually is
the difference between project and baseline carbon emissions. For
REDD+ (Reducing Emissions from Deforestation and forest Degra-
dation) projects, the number of credits is determined by reductions
in the rate of forest loss in the project area compared to the baseline.

Advances in remote sensing- and machine learning-based ap-
proaches to forest cover change detection have enabled more ac-
curate estimates of project carbon emissions [7, 13, 14]. However,
there is no established framework to assess the accuracy of REDD+
project baselines [15]. Accurate baselines with well-quantified un-
certainty are necessary to ensure that one credit represents at least
one tonne of carbon dioxide emissions avoided or removed from
the atmosphere. Inaccurate baselines have contributed to several
well-publicized instances of over-crediting in which the number of
credits issued to a project exceeds the emissions reductions achieved
by the project activities [19, 20].

In this work, we propose a pixel-level nearest neighbors-based
approach to algorithmically select a baseline with remote sensing
data. We also implement an uncertainty quantification framework
suitable for validating arbitrary baseline models. We demonstrate
the effectiveness of this approach by using it to assess the addition-
ality of seven REDD+ projects in Brazil. This approach provides
evidence that it is possible to compute accurate estimates of baseline
emissions reductions with well-characterized uncertainty.

2 RELATED WORK

2.1 Current methodologies

Existing methodologies to compute baselines for REDD+ projects
face a number of challenges with respect to baseline accuracy and
uncertainty quantification. In Verra’s VM0015 methodology for
avoided unplanned deforestation, a project developer constructs a
baseline by selecting a reference region deemed by an expert to be
similar to a project. They then train a deforestation risk model on
historical remote sensing data. The project baseline is determined
by running inference with this model to predict future deforestation
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risk in the project area [11, 15]. In other cases, simpler modeling
approaches may be used, like constructing univariate linear or
stepwise regression models of historical deforestation rates, or
assuming the existence of a profit-maximizing agent who would
deforest 100% of the property over a short time horizon [15, 16].

There are several issues with these approaches. One problem is
that it is impossible to quantify the model (epistemic) uncertainty of
the baseline because of the manual steps involved in the modeling
process. To assess model uncertainty, the modeling approach must
be algorithmic, and the validation process must be able to ensure
that the model accurately captures the baseline scenario in areas
similar to the project, but where no intervention occurs. Another
issue is that these approaches are all ex-ante, i.e. they predict fu-
ture deforestation rates in the vicinity of the project. These rates
are difficult to predict and highly sensitive to geopolitical factors—
for example, policies enacted in Brazil by former President Bol-
sonaro contributed to significant increases in deforestation across
the country [1]. A model should be robust to the distributional
shifts imposed by unpredictable changes in regional deforestation
rates.

2.2 Dynamic baselines

Recently, there have been efforts to develop ex-post counterfac-
tual baseline models to independently assess the additionality of
forest carbon projects. [19] introduced the use of the Synthetic
Control Method to construct deforestation counterfactuals. They
selected synthetic controls from “donor pools” of properties based
on accessibility and biophysical characteristics. The project base-
line is equal to a weighted combination of the observed forest loss
rates in these properties, where the weights are the solution to a
bilevel optimization problem. They construct confidence intervals
by applying SCM to the synthetic controls, which provides samples
of the residual distribution of the model. They found little to no
additionality across 12 REDD+ projects in Brazil.

[20] extended this work to analyze 26 REDD+ projects across
Peru, Colombia, and several African countries using a Generalized
Synthetic Control (GSC) method [21]. They extended the work
of [19] across multiple countries by: using a global forest cover
change dataset to estimate forest loss [7]; replacing property-based
synthetic controls with uniformly sampled circles across the juris-
diction; and constraining the circles to have similar deforestation
pressure to the project, as measured by historical forest loss in a 10
km buffer around the boundary.

[6] constructed ex-post baselines with a pixel-based nearest
neighbor selection approach to analyze 40 REDD+ projects across
9 countries. They matched each pixel in the project to a pixel in a
search region using a set of standardized matching covariates. They
restricted their analysis to moist tropical rainforests, where they
leveraged [14] to estimate both deforestation and degradation activ-
ity contributing to forest loss. Due to the high computational com-
plexity of exhaustive k-NN search, they relied on a sub-sampling
approach to select nearest neighbor pixels in a search region. They
quantified aleatoric uncertainty with non-parametric pixel-level
bootstrapping to construct confidence intervals in their baseline
estimates.
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All of these methods are examples of dynamic baselines. A dy-
namic baseline does not attempt to predict future deforestation rates
in the project. Instead, it relies on observing forest cover change in
control areas. These control areas are algorithmically selected to
be similar to the project with respect to the expected forest loss in
the absence of an intervention.

Our approach is novel in several respects. First, we perform ex-
haustive k-NN searches to eliminate the need for sampling design in
[6], matching each project pixel to a nearest neighbor across a large
search area around the project. By leveraging parallel computing
and vertically scaled compute nodes, we were able to substantially
increase the search area compared to prior work to find more ac-
curate nearest neighbor matches. Second, we use remote sensing
data sources for all matching covariates, allowing for improved
spatiotemporal fidelity in matching. This also reduces the possibil-
ity of temporal leakage in our data, e.g. with the introduction of
roads developed after the project start date. Third, we introduce
an uncertainty quantification approach that is generic enough to
characterize model uncertainty of both ex-ante and ex-post baseline
models, allowing for a more standardized validation approach to
compare models.

3 METHODS

3.1 Control area selection: pixel-level matching

We use a k-nearest neighbor (k-NN) algorithm to match the carbon
project to a control area within a search region (Figure 1). Each pixel
is represented by a feature vector consisting of an array of attributes
derived from satellite observations. We match each individual pixel
within the project to its nearest neighbor (i.e. the search region pixel
with the minimum Euclidean distance in feature space). Matching
features are currently weighted equally. The search region is defined
as a 100 km buffer around a project restricted to national boundaries.

All remote sensing features are resampled to 100 meter resolu-
tion. The control area baselines presented here use the following set
of matching features: slope and elevation derived from the SRTM
product [10], annual composites of sub-pixel tree cover from the
MODIS MOD44B product [2]; annual composites of the MODIS
MOD17 gross primary productivity product [12]; distance to re-
cent deforestation as detected by the Global Forest Change product
(GFC) [7]; and distances to water and pasture classified by the
MapBiomas Collection 7 product [13].

We apply masking to ensure that pixels do not match to existing
carbon projects or non-forested areas like water and roads [9, 13].
Additionally, we ensure that the control area pixels lie in regions
with the same protected land status as the project [8].

To construct a baseline from a control area, we observe annual
forest loss identified by GFC within the control area [7]. To estimate
the baseline annual carbon dioxide emissions, we scale the baseline
forest loss rate by the total project forest carbon stock estimated
by the project developer.

3.2 Representative sampling of placebos for
uncertainty quantification

Algorithmic baseline approaches enable validation against indepen-
dent observations using placebos. Placebos are randomly selected
forested areas without a carbon project. Since there is no carbon
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Figure 1: Left: map of sample anonymized carbon project (white) and its k-NN-selected control area (pink). Right: Map of
anonymized carbon project (white) and circular placebo projects (white) used to compute baseline uncertainty. Shaded white
areas are existing protected areas, which we exclude when selecting placebos and control areas.

project, the forest loss predicted by a baseline model should match
the observed forest loss in the placebo. The residual error term can
be defined as the difference between the predicted baseline and the
observed placebo forest loss.

If the placebos are representative of the project, then the residuals
should provide an unbiased sample of the error distribution of the
baseline model. This enables us to estimate standard regression
metrics, such as RMSE, bias, or quantile standard error. Additionally,
we can construct a predictive distribution around the baseline by
applying a residual resampling technique. Let ; ; and y; ; denote
the baseline and observed forest loss in hectares for year t and
placebo i. Let j; denote the baseline forest loss for year ¢ in the
project. Then a sample of the predictive distribution, f/t’i, can be
constructed by scaling the residuals by the predicted forest loss:

fiu = ge+ g 20 = g 22t &

Ye,i Ui
We can also compute cumulative versions of these statistics.
Let §; = X} i and y; = J}; ys; denote the cumulative baseline
and observed placebo forest loss from project start to present day.
Let § denote the baseline forest loss for the project. Then each
residual results in a sample Y; of the cumulative baseline forest loss

distribution:

AL @

A central estimate of this distribution, like the median, can be
used to assess the additionality of a project. To determine if a
baseline independently proposed by a project developer results in
over-crediting relative to the dynamic baseline, we can measure
where the project developer baseline falls relative to the median.

To ensure that the placebos are representative of the project, we
uniformly sample circular boundaries of area equal to the project
and apply several filtering criteria. First, we eliminate boundaries
that contain carbon projects or do not match the project’s protected
land status [8]. Second, we compare zonal statistics of several re-
mote sensing attributes to ensure that the mean of each attribute
in the placebo lies within one standard deviation of the mean in

the project area. Currently, we consider MODIS MOD44B percent
tree cover and distance to recent deforestation [2, 7]. We sample
placebos within a 300 km buffer surrounding the project, restricted
along national boundaries. In our experiments, we have found this
buffer size sufficient to find matching placebos with a sufficient
range of observed deforestation rates. Because an exhaustive k-NN
approach has high computational and memory demands to run
even for a single project, we leveraged distributed computing to
horizontally scale computation across the placebos.

4 EXPERIMENTS

To assess the behavior of our baseline model and uncertainty quan-
tification framework, we analyzed seven REDD+ projects in the
Brazilian Amazon. These projects are presented as case studies.
A larger-scale analysis with reduced model uncertainty would be
necessary to make accurate judgments about the overall prevalence
of over/under-crediting in the global REDD+ voluntary carbon
market.

4.1 Uncertainty quantification

To quantify model performance, we estimated relative root mean
squared error and relative bias using the placebos.

To select the number of placebos, we applied a bootstrapping
approach to determine whether the placebos provided a convergent
estimate of several metrics — relative RMSE, relative bias, and
the 90th percentile of observed deforestation in the placebos. We
observed convergence in these metrics after roughly 10 placebos.
We increased the sample count to 50 to ensure a wide enough range
of observed and baseline forest loss values for residual estimation.

In Table 1 we show uncertainty metrics for the seven REDD+
projects. The range varies significantly on a project-by-project
basis, from a minimum relative RMSE of 12% to a maximum of
335%. In Figure 4, we show scatter plots of the placebo baseline
versus observed forest loss in each of the placebos for each of the
years. We can see that baseline performance varies significantly
by project, year, and observed placebo forest loss. Several projects
have a tight correspondence across all years, but for other projects,
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Project | Relative RMSE | Relative Bias
Project 1 37% -4%
Project 2 335% 149%
Project 3 99% 22%
Project 4 63% 4%
Project 5 12% -5%
Project 6 63% -7%
Project 7 52% 17%
Average 94% 25%

Table 1: Uncertainty metrics for each of the anonymized
REDD+ projects.

we see near-uniform predictions for a particular year (as in Project
1), or a wide range of predicted baseline values in placebos with
near-zero deforestation, as in Project 3.

The high variance in accuracy between projects suggests that
regional, project-agnostic validation of model uncertainty may be
inappropriate when assessing the additionality of specific projects.
Additionally, model-specific uncertainty quantification approaches,
like the donor pool resampling or pixel-level bootstrapping ap-
proaches employed in [6, 19], may result in significant under-
estimation of model uncertainty.

We have also observed that when uncertainty is too high, as in
the case of Project 2, the residual resampling approach may fail to
produce a meaningful predictive distribution. Modifications to this
uncertainty framework, such as restricting the residual resampling
to only include placebos with a similar baseline estimate to the
project, may improve performance.

4.2 Matching quality

To determine whether the k-NN model yields control areas that are
similar to the project, we plotted histograms of the distribution of
matching covariates in the project and control area. Figure 5 shows
the overlap for an example project. This is similar to previous work,
which quantitatively assesses the quality of the dynamic baseline
by computing e.g. the standardized difference of means between
the matching covariates in the project and control [19, 20].

Although high overlap indicates that k-NN is able to find pixels
in the search area that are similar to the project pixels, we have
found that they are not necessarily predictive of the uncertainty
of the baseline model. For example, historical deforestation within
the project is not a meaningful covariate, because the project is
undisturbed at project start by definition, and this covariate does not
capture encroaching deforestation activity outside of the project.
The matching quality only correlates with baseline uncertainty
if the covariate is predictive of future deforestation. Even then,
modeling confounders like feature transformations or the choice of
distance metric may alter the strength of this statistical relationship.

Because of this, we judge that an uncertainty framework like
the placebo approach is ultimately more important for assessing
the quality of the baseline model than other descriptive statistics
or diagnostic figures like differences in covariate means.
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4.3 Assessing the additionality of existing
REDD+ projects

To determine whether an existing REDD+ project is significantly
over-credited, we compare our dynamic baseline results with the
baseline emissions reduction estimates supplied by project devel-
opers. By leveraging the baseline distributions we estimate using
placebos, we can compare credit estimates both annually and cu-
mulatively.

In Figure 2 we show the time series of annual baseline estimates
with confidence intervals for the REDD+ projects. We can see that
in some cases, like Project 5, the degree of over/under-crediting
varies on an annual basis. For several projects, such as Projects 4
and 7, our results indicate substantial over-crediting. Project 1 is
an example where distributional shifts, i.e. accelerating regional
deforestation rates, resulted in under-crediting under the project
developer’s ex-ante baseline.

Figure 3 shows the histograms of the cumulative dynamic base-
line emissions estimates. In several cases, such as that of Project 4,
we can clearly identify substantial over-crediting. In other cases, the
conclusions are less obvious, and the model uncertainty contributes
to wider tails in the distribution.

5 CONCLUSION

In this work, we presented a novel control area-based approach
to assess the additionality of forest carbon offset projects with re-
mote sensing data and a generic baseline uncertainty quantification
framework. We demonstrated its effectiveness on case studies of
Brazilian REDD+ projects, where for several projects we can con-
fidently assert a high degree of over/under-crediting relative to a
project developer baseline. Next steps for this work include:

Improved uncertainty quantification: Ensuring placebo rep-
resentativeness remains a challenge. We have seen that even with
our current filtering criteria, several projects include placebos that
are not similar to the project with respect to properties like the
predicted baseline. Placebos with near-zero observed deforestation
may skew uncertainty metrics like RMSE or bias, as well as the vari-
ance of the predictive distribution. Addressing this may enable us
to remove the scaling factor used to account for heteroskedasticity
in the residual resampling approach.

Reducing uncertainty: Several projects display such high un-
certainty that the baseline cannot be used to reliably assess project
additionality. Reducing uncertainty is necessary to (a) establish
baselines for ex-post crediting of new projects and (b) improve the
veracity of over-crediting assessments in the market. Some exam-
ples of methods to reduce uncertainty include: incorporating addi-
tional remote sensing-based predictors of deforestation; introducing
learned feature representations, e.g. through semi-supervised ap-
proaches like the Vision Transformer [3]; or simpler modifications
like non-linear feature transformations or a non-Euclidean metric
like the Mahalanobis distance.

Geographic expansion: The REDD+ projects analyzed in this
work are located in the Brazilian Amazon. Expanding to other coun-
tries and forest types requires incorporating new data sources. For
example, our land use-based features are derived from MapBiomas,
which is only available in Brazil [13]. The accuracy of forest loss
detection datasets like GFC also varies between moist tropical and
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Figure 2: Baseline time series (green) with P10/P90 confidence intervals for the selected projects (blue), plotted against the
project developer baseline (orange). Project 2 is excluded since there is only one year of verified project developer baseline data.

dry forests [7]. Regions with high cloud cover may require for-
est loss detection models based on synthetic aperture radar rather
than optical imagery. Naively applying the current model to new
regions without accounting for these factors may result in high
model uncertainty or significant underestimates of forest loss.

Market implications: This work focused on assessing the ad-
ditionality of REDD+ projects, where projects are credited based
on reductions in forest loss. A similar framework can be applied
to construct ex-post baselines and quantify uncertainty for other
forest carbon project types. Verra recently approved a dynamic
baseline approach for Improved Forest Management (IFM) projects
[17], and a similar approach is under development for Afforesta-
tion, Reforestation, and Revegetation (ARR) projects [18]. However,
REDD+ projects still rely on ex-ante baselines. There is also signif-
icant room for project developer discretion in baseline construc-
tion across these methodologies, and they still lack a standardized
baseline uncertainty quantification framework to assess and com-
pare accuracy. Adopting an algorithmic crediting approach with
standardized uncertainty quantification would enable a virtuous
cycle of iterative reductions in baseline uncertainty through inter-
comparisons, new data sources, and improved modeling methods.
Ex-post project-level baselines may also fit into jurisdictional cred-
iting approaches in order to attribute jurisdiction-scale reductions
in forest loss to specific project activities [4].
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Figure 3: Histograms of cumulative baseline forest loss over each of the seven projects (blue), compared to the cumulative
project developer baseline estimate (red). We compare this to the median (blue line) and the 84th percentile of the distribution

(green).
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Assessing forest carbon offset additionality with dynamic baselines and uncertainty quantification

Annual deforestation in placebos and their controls
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Figure 4: Scatter plots of observed vs. predicted (baseline) forest loss for placebos around each of the projects. Each color

represents one year of data.
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Figure 5: Histograms of matching covariates distributed
across the project (green) and control area (yellow) for an

example project.
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