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ABSTRACT

Recently, the conditional diffusion models have shown an impressive performance
in many areas, such as text-to-image, 3D, and video. To achieve a better alignment
with the given condition, guidance-based methods are proposed and become a
standard component of diffusion models. Though the guidance-based methods are
widely used, the theoretical guarantee mainly focuses on the variance-preserving
(VP)-based models and lacks current state-of-the-art (SOTA) variance-exploding
(VE) models for conditional generation. In this work, for the first time, we elucidate
the influence of guidance for VE models and explain why VE-based models perform
better than VP models in the context of Gaussian mixture models from classification
confidence and diversity perspectives. For the classification confidence, we prove
the convergence rate for the confidence w.r.t. the strength of guidance η for VE
models is 1− η−1(log η)2, which is faster than 1− η−e

−T

(log η)2e
−T

result for
VP models (T is the diffusion time). This result indicates that the VE models
have a stronger ability to align with the given condition, which is important for the
conditional generation. For the diversity, previous works show that when facing
strong guidance, VP models tend to generate extreme samples and suffer from the
mode collapse phenomenon. However, for VE models, we show that since their
forward process maintains the multi-modal property of data, they have a better
ability to avoid the mode collapse facing strong guidance. The simulation and
real-world experiments also support our theoretical results.

1 INTRODUCTION

Recently, diffusion models have shown an impressive performance in generating diverse, high-quality
samples and show state-of-the-art performance in many areas, such as 2D, 3D, video generation
(Rombach et al., 2022; Ho et al., 2022; Chen et al., 2023; Ma et al., 2024; Chen et al., 2024; Long
et al., 2024). In these areas, the users give a class label or text prompt (the condition y), diffusion
models aims to generate samples with the given condition y. To better align with the given condition,
the guidance-based methods, including classifier guidance (Dhariwal and Nichol, 2021) and classifier-
free guidance (CFG) method Ho and Salimans (2022), are proposed and have been integrated into
diffusion models as a standard operation.

There are two common diffusion models: the variance preserving (VP)-based models (Song et al.,
2020) and the variance exploding (VE)-based models (Song et al., 2020; Karras et al., 2022). The
diffusion process of VP-based models corresponds to an Ornstein-Uhlenbeck process, and the
stationary distribution is N (0, I). The diffusion process of VE-based models has an exploding
variance. Two famous VE-based models are VE (SMLD) (Song et al., 2020) and VE (EDM) (Karras
et al., 2022), where the first achieves a competitive performance with VP-based models, and the latter
achieves SOTA performance (Karras et al., 2024a;b) and is widely used in the one-step generation
task. The basic and important guidance methods, such as the classifier guidance method and the
CFG method, are proposed based on the VP-based models and provide an important boost in the
conditional sampling task. Then, the VE-based diffusion models VE (EDM) with guidance have
recently achieved SOTA performance in conditional image generation (Karras et al., 2024a;b).
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Figure 1: The Influence of Guidance for Classification confidence (VP, VE (SMLD) and VE (EDM)).
The convergence rate for VP (SDE) (green line) is much slower than other three lines.

Despite the great performance of guidance-based models in different diffusion models, the theoretical
insight is lacking and focuses on the VP-based models (Wu et al., 2024; Bradley and Nakkiran, 2024;
Chidambaram et al., 2024; Guo et al., 2024; Li and Jiao, 2025). Some works show the relationship
between the guidance-based method and other methods, such as the predictor-corrector framework
(Bradley and Nakkiran, 2024) and the first-order optimization (Guo et al., 2024). More recently,
some works focus on the influence of the strength parameters of guidance η from the classification
confidence and diversity for VP-based models (Wu et al., 2024; Chidambaram et al., 2024; Li and
Jiao, 2025). For the classification confidence, Wu et al. (2024) show that the convergence rate w.r.t.
the strength of guidance η is different for the stochastic (reverse SDE) and deterministic (reverse
probability flow ODE, PFODE) sampling process, and the deterministic sampling process enjoys
a faster convergence rate. For the diversity, Wu et al. (2024) and Chidambaram et al. (2024) show
that strong guidance will lead to mode collapse and sample extreme samples in the support of
the conditional distribution for VP-based models. Though these works make an important step in
understanding the effect of guidance, the theoretical exploration of guidance for VE-based models
is still lacking, and we can not explain why the VE-based models achieve great performance in the
conditional generation. Therefore, the following natural question remains open:

What is the role of guidance for VE-based models? Why VE (EDM) with guidance achieve SOTA
performance in the conditional generation?

1.1 OUR CONTRIBUTION

In this work, for the first time, we elucidate the role of guidance for VE-based models from the
classification confidence and diversity perspective. From the classification confidence perspective, we
prove the convergence rate w.r.t. the strength of guidance η for VE-based models and show it is faster
than the one for VP-based models. For the diversity, we intuitively explain why VE-based models can
maintain the multi-modal property, meanwhile VP-based models collapse. Based on these results, we
make the first step to explain the success of VE (EDM) with guidance in the conditional generation.
The simulation and real-world experiments also support our theoretical results.

Classification Confidence for VE: Poor Beginning, Fast Improvement. As a start, we first study
the classification confidence (Eq.3) of conditional diffusion models without guidance (Eq. 1) and
prove that VP has the smallest error term exp (−T ), where T is the diffusion time. On the contrary,
VE (EDM) has a polynomial error term 1/

√
T and VE (SMLD) suffers a larger 1/T error, which

indicates that VE models have a worse performance compared with VP models without guidance.

When generating conditional samples, diffusion models usually add additional guidance with strength
η ≥ 1 to guarantee the alignment with the given condition. Hence, as the next step, we study the
convergence guarantee w.r.t. to η for the VE-based models under the stochastic and deterministic
sampling processes. When considering the stochastic sampling process, the convergence guarantee
is still 1 − η−1(log η)2 for the VE-based models. On the contrary, the VP-based models suffer a
significantly slower 1− η−e

−T

(log η)2e
−T

convergence guarantee, which is heavily influenced by
diffusion time T . This result indicates that the VE-based models have a stronger ability to align with
the given condition, which leads to great performance in conditional generation. Our simulation
experiments also exactly support the above discussion (Figure 1).

We also prove the 1− η−1(log η)2 result for the VE-based models under the deterministic sampling
process, which is the same as the results of VP models (Wu et al., 2024). We note that this results also

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: The Influence of Guidance for Multi-modal Property. VP-based models can not maintain
the correct multi-modal property facing strong guidance η.

matches the empirical observation that the deterministic sampling process has a great performance in
the conditional generation 1.

VE Maintain Multi-modal Property Facing Strong Guidance. For VP-based models, a higher
classification confidence usually leads to lower diversity and tends to generate extreme samples
in the support of the conditional distribution (Wu et al., 2024; Chidambaram et al., 2024). As
shown in Figure 2 (a), with strong guidance, VP-based models with guidance can not generate the
central modal (the orange one) and lose the diversity. On the contrary, as shown in Figure 2 (b), the
VE-based models can alleviate the mode collapse phenomenon when facing strong guidance. We
intuitively explain why VE-based models perform better in maintaining the multi-modal property
by analyzing the property of their forward process. More specifically, the diffusion process of VP
gradually removes the multi-modal information from data. On the contrary, the VE models maintain
the multi-modal property during the diffusion process. Since the sampling process is obtained by
reversing the diffusion process, this property holds for the sampling process, which leads to a better
multi-modal ability for VE models facing strong guidance.

The above results show that VE (EDM) has a faster convergence rate than VP models and maintains
the multi-modal property of the target distribution. Compared with VE (SMLD), the classification
confidence for VE (EDM) is higher for ∀η ≥ 1 and both maintain the multi-modal property. Hence,
this work makes the first step to explain why VE (EDM) achieves great performance.

2 RELATED WORK

Theory on Conditional Diffusion Models. There is a series of works to study the conditional
diffusion models (without guidance) from the estimation, reward improvement, and optimization
perspective (Fu et al., 2024; Hu et al., 2024; Yuan et al., 2023; Guo et al., 2024). For the estimation
error, Fu et al. (2024) and Hu et al. (2024) provide the minimax estimation results for conditional
diffusion models with deep ReLU and diffusion transformer (DiT), respectively. Yuan et al. (2023)
study the influence of high reward conditions under the linear subspace assumption and show the
balance between the high reward and the off-support error. Guo et al. (2024) link the condition and
the regularized optimization problem and provide the convergence guarantee for the iteration number.

Theory on Guidance Diffusion Models. There are only a few works analyze the role of additional
guidance of conditional diffusion models and focus on the VP-based models. More specifically,
Bradley and Nakkiran (2024) show the relationship between the classifier-free guidance and the
predictor-corrector framework. Wu et al. (2024) consider a mixture of Gaussian distribution and
prove the convergence guarantee for the classification confidence w.r.t. the strength of guidance
η under the reverse SDE and PFODE setting for VP-based models. Their results also show that

1For the sake of clarity, we do not present model experiments with deterministic samplers for VE (SMLD)
and VE (EDM) in Figure 1. We provide these results in experiments in Appendix B, which fast converge to a
high classification confidence and match our theoretical results.
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the convergence guarantee under the reverse SDE setting is slower than the reverse PFODE setting
for the VP-based models. Chidambaram et al. (2024) use a mixture of bounded data and show
that with a very large η, diffusion models tend to generate extreme samples in the support of the
conditional distribution. Li and Jiao (2025) analyze the role of guidance under a general data
and prove that guidance preferentially enhances the generation of samples associated with higher
classifier probability. Different from the above analysis focusing on VP-based models, this work
aims to explain why VE-based models can achieve great performance in the conditional generation.
For the VE-based models with additional guidance, Li et al. (2025) analyze the CFG method based
on the linear diffusion models family (corresponds to the Gaussian distribution) and explain why
naive conditional sampling is not enough by carefully analyzing each component of the CFG method.
However, Li et al. (2025) do not analyze the convergence rate w.r.t. the guidance strength η and their
setting relies heavily on the linear diffusion models setting and Gaussian target data.

3 PRELIMINARIES

First, we introduce the basic knowledge of conditional diffusion models without guidance and discuss
different diffusion models. Then, Section 3.1 introduces two widely used guidance methods: the
classifier guidance and classifier-free guidance.

Let p∗ be the target distribution over (x, y), where x ∈ Rd is the data (such as images) and y is
the corresponding data label. The conditional diffusion models aim to sample from the conditional
distribution p∗(x|y) when given a label y. Conditional diffusion models consist of two processes:
the forward and reverse processes. The forward diffusion process gradually converts the conditional
distribution to pure Gaussian noise, and the corresponding reverse process removes noise from pure
Gaussian step by step to generate samples from the conditional distribution.

General Forward Process. The general forward process {pt}t∈[0,T ] has the following form:

dz→t = −f(t)z→t dt+ g(t)dBt, z→0 ∼ p∗(·|y) ∈ Rd ,

where f(t) and g(t) is non-negative non-decreasing sequence and (Bt)t≥0 is a d-dimensional
Brownian motion. After determining a forward process and given z→0 , the forward process conditional
distribution z→t |z→0 is exactly N

(
mtz

→
0 , σ2

t Id
)
, where mt and σ2

t is determined by f(t) and g(t).

There are two typical forward processes (Song et al., 2020): (1) Variance exploding (VE) SDE and
(2) variance preserving (VP) SDE. When f(t) = 1 and g(t) =

√
2 2, the process is instantiated as

VPSDE, whose stationary distribution is N (0, I) with mt = e−t and σ2
t = 1 − e−2t. When the

process only contains a diffusion term g(t) =
√

dσ2
t /dt and f(t) ≡ 0, the process is instantiated

as VESDE with mt = 10,∀t ∈ [0, T ]. Two common VE-based models are VE (SMLD) with
σ2
t = t (Song et al., 2020) and VE (EDM) with σ2

t = t2 (Karras et al., 2022). In the early years,
the conditional generation methods are proposed mainly based on VP models, and the VE (EDM)
achieve SOTA performance in the conditional diffusion models. Since previous theoretical works for
conditional diffusion models mainly analyze VP models, we focus on VE-based models and aim to
explain why VE (EDM) performs well in conditional generation.

Two typical Reverse Processes. To generate samples from the conditional distribution, diffusion
models reverse the forward process and obtain the reverse process:

dz←t =

[
f(T − t)z←t +

1 + α2

2
g(T − t)2∇ log pT−t (z

←
t |y)

]
dt+ αg(T − t) dBt , (1)

where z←0 ∼ pT (·|y), (z←t )t∈[0,T ] =
(
z→T−t

)
t∈[0,T ]

and α ∈ [0, 1]. Since the reverse process has the
same marginal distribution pt as the corresponding forward process, diffusion models can run the
above process to generate the conditional distribution p∗(·|y) with the conditional score function
∇ log pT−t (z

←
t |y) (Song et al., 2020). For parameter α, it is used to determine the type of the

reverse process. When α = 0, it is a deterministic process, called the probability flow ODE (PFODE).
When α = 1, this process is a stochastic process, which is called reverse SDE. Due to the additional
randomness, the reverse SDE usually tends to generate more diverse samples. On the contrary, the
reverse PFODE trends to generate samples align more closely with the given condition.

2We note that the VPSDE forward process allows f(t) = βt and g(t) =
√
βt with a bounded βt. In this

work, we adopt the choice βt = 1, ∀t ∈ [0, T ] of Wu et al. (2024).
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3.1 GUIDANCE-BASED DIFFUSION MODELS

Recent works add additional guidance to the score function to generate samples aligned with the target
label (condition). There are two common guidance methods: classifier guidance and classifier-free
guidance. In this work, for the sake of simplicity, we write (zt)0≤t≤T = (z←t )0≤t≤T and use xt

instead of zt when adding additional guidance to the diffusion models.

Classifier Guidance. The classifier guidance method trains an additional classifier and adds the
gradient of the logarithmic prediction probability of the classifier to the conditional score function to
guide the diffusion models to generate data with given y (Dhariwal and Nichol, 2021):

dxt =

[
f(T − t)xt +

1 + α2

2
g(T − t)2(sT−t(xt, y) + η∇ log cT−t(xt, y))

]
dt

+ αg(T − t)dBt, (2)

where the integer η ≥ 0 is the strength of the guidance, sT−t(x, y) is an estimation of ∇ log pT−t(x|y)
and cT−t(x, y) is a probability classifier to estimate the conditional probability pT−t(y|x).
Classifier-free Guidance. Though the classifier guidance method provides an important boost in
developing text-to-image generation, this method requires training an additional classifier and makes
the training process more complex. To address this problem, the CFG method is proposed, which
jointly trains a score st(x, y) containing x and y and uses the following process to generate samples:

dxt =
[
f(T − t)xt +

1+α2

2 g(T − t)2((1 + η)sT−t(xt, y)− ηsT−t(xt, ∅))
]
dt+ αg(T − t)dBt .

We note that when having access to the ground-truth functions st(x, y) = ∇x log pt(x|y), st(x) =
∇x log pt(x) and ct(x, y) = pt(y|x), we can verify that xt of the above two methods is exactly the
same when starting from the same initialization distribution (including pT (·|y) and pure Gaussian
N (0, σ2

T I)). In this work, we adopt the Gaussian mixture models, whose ground-truth functions have
a closed form, to analyze different diffusion models. With this target distribution, we aim to explain
the different performance of VE and VP-based models when facing the same strength guidance.

4 GUIDANCE FOR VE MODELS: POOR BEGINNING, FAST IMPROVEMENT

From the experiments for the reverse SDE (Fig. 1 and 7), we observe that when η is small, VE models
have a lower classification confidence compared with VP models. However, when η becomes larger,
VE models fast converge to a higher classification confidence. In this part, we explain the empirical
observations. When considering the conditional generation with η = 0, we prove that the order of
error term for VE models is 1/σT , which is much larger than the exp (−T ) one for VP models (Sec.
4.2). For positive η, we prove that the convergence rate of VE models is faster than VP, and VE
models with reverse SDE achieve the same classification confidence with reverse PFODE (Sec. 4.3).

4.1 TARGET DISTRIBUTION AND CLASSIFICATION CONFIDENCE

In this work, following the setting of Wu et al. (2024), we consider a mixture of Gaussian target distri-
bution p∗

d
=
∑

y∈Y wyN (µy,Σ) with each modal representing a class, where Y := {1, 2, . . . , |Y|}
and

∑
y∈Y wy = 1. Under this assumption, the st(x, y) and ∇x log ct(x, y) has a close form:

st(x, y) = ∇x log pt(x|y) = −Σ−1t x+mtΣ
−1
t µy

and

∇x log ct(x, y) = ∇x log pt(y | x) = mtΣ
−1
t µy −

∑
y′∈Y

mtqt (x, y
′) Σ−1t µy′ ,

where Σt := m2
tΣ+ σ2

t Id, and

qt(x, y) :=
wy exp

(
mt

〈
Σ−1t µy, x

〉
−m2

t

〈
µy,Σ

−1
t µy

〉
/2
)∑

y′∈Y wy′ exp
(
mt

〈
Σ−1t µy′ , x

〉
−m2

t

〈
µy′ ,Σ−1t µy′

〉
/2
)

is the posterior probability of having label y. In this work, we directly use the above closed form
to do a clearer discussion on the influence of η in generating the target conditional distribution. To
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measure the distance between the generated samples and the target cluster, similar to Wu et al. (2024),
we define the following classification confidence

P(x, y) := q0(x, y) =
wy exp

(〈
Σ−1µy, x

〉
−
〈
µy,Σ

−1µy

〉
/2
)∑

y′∈Y wy′ exp (⟨Σ−1µy′ , x⟩ − ⟨µy′ ,Σ−1µy′⟩ /2)
, (3)

and discuss the influence of η for the classification confidence.

4.2 VE MODELS WITHOUT GUIDANCE HAVE A LOWER CLASSIFICATION CONFIDENCE

Figure 3: Results without Guidance

As shown in Fig. 3, without guidance, the conditional
VE-based diffusion models (η = 0) have a smaller clas-
sification confidence compared with VP-based models.
In this part, we explain why VE-based models without
guidance have a lower classification confidence. With
the GMM p∗, the reverse PFODE (Eq. 1) has the fol-
lowing form for VP and VE-based models (assume our
target class is y):

VP:
dzt
dt

= µye
−T+t ,VE:

dzt
dt

=
g(T − t)(−zt + µy)

2(1 + σ2
T−t)

.

For these processes, we obtain the closed-form solution, which have different dependence on µy .

Theorem 4.1. Considering GMM p∗ with Σ = Id and reverse PFODE process without guidance
(Equation (1), α = 0). Then, for VP-based models, the closed-form solution has the following form:

z(t) = z(0) + µye
−T (et − 1

)
, z(0) ∼ N (0, Id).

For VE-based models, the closed form solution has the following form:

z(t) =

√
1+σ2

T−t

1+σ2
T

z(0) + µy

[
1−

√
1+σ2

T−t

1+σ2
T

]
, z(0) ∼ N (0, σ2

T Id) .

Then, for the VP-based models, we know that zVP(T ) ∼ N ((1− e−T )µy, Id). For the VE-based

models, we have that zVE(T ) ∼ N ((1−
√

1
σ2
T+1

)µy,
σ2
T

1+σ2
T
Id). It is clear that the zVE(T ) is farther

away from the ground truth target distribution N (µy, Id) compared with the VP-based models due to
the Poly(1/T ) instead of exp (−T ) of VP-based models. Hence, without any guidance, VE-based
models have a lower classification confidence. For different VE-based models, the error of VE
(EDM, σ2

t = t2) has the order of 1/T , which is better than the 1/
√
T error of VE (SMLD, σ2

t = t),
which also matches the empirical observation Karras et al. (2022). Our simulation experiment also
supports the theoretical results. As shown in Figure 3, without guidance (η = 0), the classification
confidence of VP is larger than VE, and the confidence of VE (σ2

t = t2) is larger than VE (σ2
t = t).

Furthermore, when T becomes larger, the error of VE (1/σT ) becomes smaller, which leads to a
higher classification confidence.

When considering the reverse SDE, there is an additional Bt term in the closed-form of the VE and
VP due to the Ito integral. Due to the additional randomness, under the reverse SDE setting, the
classification confidence for VP and VE-based models is lower than that under the PFODE setting.
However, since the Brownian motion term Bt exists in both VP and VE settings, the conclusion of
Theorem 4.1 still holds that the classification confidence of VE-based models is still lower than that
of VP-based models under the reverse SDE, which matches our empirical observation.

4.3 VE MODELS ENJOYS A FAST CONVERGENCE RATE W.R.T. THE GUIDANCE STRENGTH

In the above part, we prove that without guidance, VE-based models have a lower classifi-
cation confidence compared with VP-based models. However, as shown in Figure 1, when
the guidance strength η increases fast, the classification confidence of VE models increases
fast and finally achieves the same confidence level as the reverse PFODE. On the contrary,
the VP-based models can not achieve the same confidence with the reverse PFODE setting.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Results with Different T .

In this part, similar to previous theoretical works on
the guidance diffusion Wu et al. (2024); Chidambaram
et al. (2024), we do a detailed analysis on the 2-GMM
case with Σ = Id and let Y = {1, 2}. Without loss,
we assume guidance is towards the cluster that has
label 1 (We discuss the general GMM setting in Corol-
lary 4.5). Then, we prove the convergence guarantee of
the classification confidence w.r.t. the guidance strength
η (compared with conditional VE-based models with-
out guidance) is at least 1−η−1(log η)2, which is much
faster than the one for VP-based models.
Theorem 4.2. Considering 2-GMM p∗ with Σ = Id and reverse SDE process (Eq. 1, α = 1), the
following results hold almost surely

1. If ⟨x0, µ1 − µ2⟩ ≥ ⟨z0, µ1 − µ2⟩, then P (xt, 1) ≥ P (zt, 1) for all t ∈ [0, T ].

2. If ⟨x0, µ1 − µ2⟩ ≥ ⟨z0, µ1 − µ2⟩, then for all t ∈ [0, T ]

P (xT , 1) ≥
P (z̄T , 1)

P (zT , 1) + (1− P (zT , 1)) · exp(−U)
≥ P (zT , 1) (4)

where U is any non-negative number such that

U ≤ 2

1 + T
⟨x0 − z0, µ⟩+

8

3

(
1− 1

(1 + T )3

)
η∥µ∥22 min

{
F
(

max
0≤t≤T

P (zt, 1) ,U
)
, w2

}
,

with µ = (µ1 − µ2)/2, F(p, u) = (1−p)e−u

p+(1−p)e−u , and ∆1 =
∣∣∣∥µ1∥22 − ∥µ2∥22

∣∣∣.
3. By setting e−U = η−1(log η)2, the above inequality holds as η is large enough and the convergence
rate is at least 1−O

(
η−1(log η)2

)
.

Similar to Wu et al. (2024), due to the stochastic property of the reverse SDE, the result only holds
almost surely. Compared with the results 1 − η−e

−T

(log η)2e
−T

of VP-based models under the
reverse SDE setting, it is clear that the results of Theorem 4.2 is faster and not influenced by the
diffusion time T . Our simulation results also support the theoretical results. As shown in Figure 4,
the convergence rate of VE-based models w.r.t. η is not influenced by the diffusion time T . On the
contrary, as T becomes larger, the confidence of VP-based models becomes smaller.

With a similar proof idea, we can also prove the lower bound of the convergence guarantee for
VE-based models with the reverse PFODE process, which has the same order as the reverse SDE.
Corollary 4.3. Considering 2-GMM p∗ with and Σ = Id and reverse PFODE process (Equation (1),
α = 0). Then, if ⟨x0, µ1 − µ2⟩ ≥ ⟨z0, µ1 − µ2⟩, then for all t ∈ [0, T ]

P (xT , 1) ≥
P (zT , 1)

P (zT , 1) + (1− P (zT , 1)) · exp(−U)
≥ P (zT , 1)

where U is any non-negative number such that

U ≤ 2√
1 + T

⟨x0 − z0, µ⟩+
8

5
η(1− 1

(1 + T )2.5
)∥µ∥22 min

{
F
(

max
0≤t≤T

P (zt, 1) ,U
)
, w2

}
.

Furthermore, the convergence rate is at least 1−O
(
η−1(log η)2

)
.

Combined with Theorem 4.2, Corollary 4.3 and the results of Wu et al. (2024), we know that the
convergence guarantee for VE with reverse SDE and PFODE and VP with reverse PFODE are both
1−O

(
η−1(log η)2

)
, which is faster than 1− η−e

−T

(log η)2e
−T

for VP with reverse SDE. Hence,
the first three settings will converge to almost the same confidence level, and the last setting will have
a lower confidence level. Our experiments also support this discussion (Figure 1).

Extension to multi-modal GMM. In this work, we mainly focus on the 2-modal GMM to clearly
explain the phenomenon of VE-based models when facing different strength guidance. Similar
to Assumption 3.1 of Wu et al. (2024), we can extend our convergence guarantee analysis to the
multi-modal GMM with an additional assumption on µy .

7
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Figure 6: Influence of Guidance for VP and VE-based models (Reverse SDE, 4-GMM, η = 80).

Assumption 4.4. There exists µ0 ∈ Rd that satisfies (y is our target class): (1) for ∀y′ ∈ Y ,
|⟨µy − µ0, µy′ − µ0⟩| ≤ ϵ hold for some positive constant ϵ; (2) ϵ ≤ ∥µy − µ0∥22 /3; (3) Σ = Id.

The above assumption indicates that the mean vectors of each cluster are almost orthogonal to
one another and do not influence each other, which simplifies the analysis. With this additional
assumption, for the VE-based models with reverse SDE, we can prove a 1 − η−1(log η)2 result,
which is still faster than the one for VP-based models.
Corollary 4.5. Considering p∗ =

∑
y∈Y wy N(µy,Σ) and reverse SDE process. Assume Assump-

tion 4.4 holds. Let ξw = 1 − wy/ (wy +miny′ ̸=y wy′). Then, if ⟨x0, µy − µy′⟩ ≥ ⟨z0, µy − µy′⟩,
then for all t ∈ [0, T ]

P (xT , 1) ≥
P (zT , 1)

P (zT , 1) + (1− P (zT , 1)) · exp(−U)
≥ P (zT , 1)

where U is any non-negative number such that for any y′ ̸= y

U ≤ 1

1 + T
⟨x0 − z0, µy − µy′⟩

+
2

3

(
1− 1

(1 + T )3

)
ηmin

{
F
(

max
0≤t≤T

P (zt, 1) ,U
)
, ξw

}(
∥µy − µ0∥22 − 3ε

)
.

Furthermore, the convergence rate is at least 1−O
(
η−1(log η)2

)
.

Figure 5: Results for Σ1 = 0.5Id,Σ2 = Id.

Influence of Variance. In the above analysis, we
provide the convergence guarantee with Σ = Id.
However, it is possible for different clusters to have
different variances for real-world datasets. By con-
duct simulate experiments on the 2-modal GMM
with different variance (Σ1 = 0.5Id,Σ2 = Id, Fig.
5 and Σ1 = 2Id,Σ2 = Id, Fig. 13), we show that
VE-based models still have a faster convergence
rate compared with VP models with reverse SDE,
which indicates our theoretical guarantee should
hold for more general GMM (multi-modal and dif-
ferent variance for each cluster).

For the multi-modal GMM, we have provided the guarantee in the above part. For the different
variance, since the (conditional) score has a more complex closed form, we left the theoretical
guarantee for GMM with different variance as an interesting and important future work.

5 VE MAINTAIN MULTI-MODAL PROPERTY DURING GUIDANCE PROCESS

In this part, we analyze a mode collapse example for VP-based models when facing strong guidance
and intuitively explain why VE-based models can alleviate the mode collapse phenomenon. For the
VP-based models, Wu et al. (2024) observe the mode collapse in a 3-modal GMM (which do not
satisfy the additional assumption in Assumption 4.4):

p∗ =
1

3
N (−µ, Id) +

1

3
N (0, Id) +

1

3
N (µ, Id) .

For each modal, Wu et al. (2024) use the guidance corresponding to it to guide diffusion models
to generate samples. As shown in Figure 2 (a), when facing a large guidance and the target modal

8
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Figure 7: Result of Different Forward Processes on MNIST Dataset.

is the modal with 0 mean, the VP-based models can not generate the target distribution, the center
component tends to vanish, and the generated samples are push towards side. In other words, facing
strong guidance, the center mode collapses for the VP-based models.

Our intuitive explanation is that since the VP forward process will convert each modal into N (0, Id):

pt =
1

3
N
(
−e−tµ, Id

)
+

1

3
N (0, Id) +

1

3
N
(
e−tµ, Id

)
,

which indicates that at the end of the forward process, the three modals are almost the same and both
have a 0 mean. Then, when diffusion models reverse the process and generates models, diffusion
models is hard to distinguish the center modal with 0 mean and then is guided to the side with a
strong non-zero guidance 3. However, for the forward process of VE-based models, the mean (modal)
information of the target distribution is preserved:

pt =
1

3
N
(
−µ, (1 + σ2

t )Id
)
+

1

3
N
(
0, (1 + σ2

t )Id
)
+

1

3
N
(
µ, (1 + σ2

t )Id
)
.

Then, the corresponding reverse process is more sensitive to each modal (even using pure Gaussian
N (0, σ2

T Id) instead of pT ) and can alleviate the mode collapse phenomenon. To support our intuition,
we also do simulation experiments on the different VE-based models. As shown in Figure 2 (b), the
VE-based models maintain the 3-modal distribution instead of ignoring the center modal when facing
strong guidance. We also do more experiments beyond the 3 GMM target distribution. As shown in
Figure 6, the VP-based models still suffer from the mode collapse, meanwhile the VE-based models
can still generate the correct number of modals. We also conduct experiments for VP, VE (SMLD),
and VE (EDM) under the reverse PFODE setting (3 GMM and 4 GMM) in Appendix A, which have
similar results to Figure 2 and Figure 6.

6 EXPERIMENTS

In this section, we conduct experiments on the MNIST, CIFAR10 and CELEBA datasets to show that
VE-based models perform better than VP-based models, which supports our theoretical guarantee.
From a quantitative perspective, as shown Figure 7 and Figure 8, with a large guidance, VE-based
models have a better performance and diversity. On the contrary, when facing strong guidance, VP-
based models generate samples with low diversity (for example, VP models have a high probability
to generate red cars) or distorted images (distorted male faces in CelebA64 experiments), which
supports our results that VE has a better ability to maintain the multi-modal property.

From the classification confidence, we evaluate performance on MNIST using two quantitative
metrics: (1) Confidence, measured by the average probability assigned to target labels by the pre-
trained classifier; (2) Accuracy, measured by the probability of successful predictions. As shown in
Figure 7, when using a small guidance scale, the confidence and accuracy have been improved for all
models, which indicates the guidance-based method is helpful in conditional generation. However, as
the guidance scale increased, the VE and VP-based models showed different performances. For the
VP-based models, a large guidance leads to distorted images, which suffer from lower confidence and
accuracy. On the contrary, the VE-based models enjoy a higher confidence level and substantially
lower distortion. For the diversity, similar to Zhu et al. (2017), we evaluate on CIFAR10 with the
LPIPS metric. More specifically, we generate samples by the model and calculate the LPIPS between

3We note that Wu et al. (2024) provide a precise theoretical analysis for this phase shift under the VP-based
models, and this part mainly provide an intuitive discussion for VP and VE-based models.
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Figure 8: Experiments on CIFAR10 and CELEBA64 Dataset. For CIFAR10, the targe label is car.
For CELEBA64, the target lable is male images.

samples. Then, a higher LPIPS indicates better diversity. Without any guidance, the LPIPS for
VP and VE based models are 0.1777 and 0.1772, respectively. However, when guidance becomes
larger (η = 2), the LPIPS becomes 0.1364 for VP models, indicating that these models suffer from
mode collapse. On the contrary, with (η = 2), LPIPS is 0.1731 for VE models, which means these
models maintain the multi-modal property. The above results indicate that VE-based models are
more suitable for conditional generation and support our theoretical guarantee.

We note that this experiment aims to illuminate the interplay between guidance and different models,
rather than to achieve state-of-the-art generation performance on complex datasets. An interesting
future direction would be to extend this analysis to large-scale datasets and discuss how to design
guidance methods with VE property.

7 CONCLUSION

In this work, we elucidate the influence of guidance for VE-based models and explain why VE
(EDM) achieves SOTA performance in the conditional generation from the classification confidence
and diversity perspectives. For the classification confidence, we prove that under the reverse SDE
setting, the convergence rate w.r.t. the guidance strength η is 1− η−1(log η)2 for VE (EDM), which
is much faster than the one 1 − η−e

−T

(log η)2e
−T

of VP models and achieve the same rate with
the deterministic sample process. As a result, the VE (EDM) can be more aligned with the given
condition, which leads to better results in the condition generation. For the diversity, we intuitively
explain why VE (EDM) can preserve the multi-modal property and VP models suffer the mode
collapse phenomenon by analyzing the forward diffusion process of different models.

Combined with these two results, we show that VE (EDM) has a stronger ability in aligning the given
condition and maintaining the multi-modal property from the theoretical perspective, which explains
the great performance of VE (EDM) in the conditional generation task. Our theoretical results are
supported by the simulation and real-world experiments.

Future work and limitation. In this work, we analyze the GMM distribution and explain the
success of VE (EDM) in the conditional generation. Though the multi-modal property of GMM
distribution is an important feature of real-world data, it is an interesting future work to analyze
the role of guidance for VE-based models in a general distribution. Furthermore, when considering
diversity, we provide an intuitive explanation to show why VE-based models perform better in
maintaining the multi-modal data. In future work, our aim is to provide a strict theoretical guarantee
for the diversity of VE-based models when facing different strength guidance. We also regard the
impact of guidance on rectified flow models as interesting future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics statement. Our work aims to deepen the understanding of the great performance of the
guidance-based method for the conditional generation. Therefore, this work can be viewed as an
important step in improving the quality of conditional generative models, and the societal impact is
similar to general generative models (Mirsky and Lee, 2021).

Reproducibility statement. The detail and description of the real-world experiments are pro-
vided in Appendix B.2 and Appendix G. We detail the model architectures, training configurations,
hyperparameters, and evaluation protocols to ensure full reproducibility.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As a theoretical work, large language models were only used for checking grammar. All analysis,
experiments, writing decisions and discussion are completed entirly by the authors.

B ADDITIONAL EXPERIMENTS

B.1 THE INFLUENCE OF GUIDANCE FOR REVERSE PFODE

As a supplement to Figure 1, we provide the convergence rate w.r.t. the η under the reverse SDE and
PFODE simultaneously. As shown in Figure 9, the classification confidence for the reverse PFODE
(including VP, VE (SMLD) and VE (EDM)) and reverse SDE for VE-based models (VE (SMLD) and
VE (EDM)) fast converge to 1. On the contrary, the VP-based models can not achieve the same order
classification confidence and are slower than other models. These results also match our theoretical
results that for reverse PFODE and reverse SDE with VE forward process, the convergence guarantee
is 1 − η−1(log η)2 . For the VP-based models with reverse SDE, the convergence guarantee is a
slower one 1− η−e

−T

(log η)2e
−T

.

(b) T=50 (c) T=100(a) T=20

Figure 9: Influence of Guidance for Classification confidence (VP, VE (SMLD) adn VE (EDM)).

B.2 THE EXPERIMENTS ON THE STRONG GUIDANCE

In this part, we provide the simulation results for different diffusion models when facing strong
guidance under the PFODE setting. Then, similar to the reverse SDE setting, we show that VE-based
models have a strong ability to maintain the multi-modal property. On the contrary, the VP-based
models suffer from modal collapse.

Figure 10: The Influence of Guidance for Multi-modal Property (3GMM, reverse PFODE).
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Figure 11: The Influence of Guidance for Multi-modal Property (4GMM, reverse PFODE).

Figure 12: The Influence of Guidance for Multi-modal Property (4GMM Type 2, reverse SDE).

B.3 THE INFLUENCE OF CLUSTER VARIANCE

Figure 13 shows that even though each cluster of GMM has a different variance, VE-based models
still have a better performance compared with VP-based models, which provides some intuition that
our theoretical guarantee has the potential to extend to a more general setting.

Figure 13: The Experiments with different variance.

The above experiments are conducted on a GeForce RTX 4090. For the score function, we adopt the
closed-form solution of the score for the GMM target distribution. Hence, we do not need to train
a neural network. For the stepsize of diffusion models in the sampling process, we adopt uniform
steps with 0.1 stepsize, and the diffusion time T is provided in the figures. Each experiment takes 3
minutes.
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C THE CALCULATION OF POSTERIOR PROBABILITY FOR VE-BASED MODELS

As a starting point, we first provide an upper bound for qT−t(x, y) under the general diffusion process.
We know that
qT−t (xt, y)

=
wy

wy +
∑

y′ ̸=y wy′ exp
(
mT−tΣ

−1
T−t ⟨xt, µy′ − µy⟩ −m2

T−tΣ
−1
T−t

(
∥µy′∥22 − ∥µy∥22

)
/2
)

=
q̃T−t (xt, y)

q̃T−t (xt, y) + (1− q̃T−t (xt, y)) · exp
(
−
(
m2

T−t −mT−t
)
Σ−1T−t

(
∥µy′∥22 − ∥µy∥22

)
/2
)

≤ q̃T−t (xt, y)

q̃T−t (xt, y) + (1− q̃T−t (xt, y)) · exp (−C(∆,mT ,m0,Σ0,ΣT ))
,

where

q̃T−t (xt, y) =
wy

wy +
∑

y′ ̸=y wy′ exp
(
mT−tΣ

−1
T−t ⟨xt, µy′ − µy⟩ −mT−tΣ

−1
T−t

(
∥µy′∥22 − ∥µy∥22

)
/2
) ,

and C(∆,mT ,m0,Σ0,ΣT ) is a constant depends on ∆ and the forward process.

For the VE-based diffusion models, since mt = 1, we have the following inequality

qT−t (xt, y) ≤
q̃T−t (xt, y)

q̃T−t (xt, y) + (1− q̃T−t (xt, y))

For the VP-based diffusion models, we have that

qT−t (xt, y) ≤
q̃T−t (xt, y)

q̃T−t (xt, y) + (1− q̃T−t (xt, y)) · exp(−∆/(8max{σ2, 1}))
.

Hence C(∆,mT ,m0,Σ0,ΣT ) = 0 for the VE-based models and is equal to ∆/(8max{σ2, 1})
for VP-based models. In the following process, without ambiguity, we will abbreviate
C(∆,mT ,m0,Σ0,ΣT ) to C.

If exp
(
⟨xt, µy⟩ − ∥µy∥22 /2

)
= maxy′∈Y exp

(
⟨xt, µy′⟩ − ∥µy′∥22 /2

)
, then one can verify that

q̃T−t (xt, y) =
wy exp

(
mT−tΣ

−1
T−t ⟨xt, µy⟩ −m2

T−tΣ
−1
T−t ∥µy∥22 /2

)
∑

y′∈Y wy′ exp
(
mT−tΣ

−1
T−t ⟨xt, µy′⟩ −m2

T−tΣ
−1
T−t ∥µy′∥22 /2

) ≤ P (xt, y) .

On the other hand, if exp
(
⟨xt, µy⟩ − ∥µy∥22 /2

)
̸= maxy′∈Y exp

(
⟨xt, µy′⟩ − ∥µy′∥22 /2

)
, we

know that q̃T−t (xt, y) ≤ wy/ (wy +miny′ ̸=y wy′), which indicates

qT−t (xt, y) ≤
wy

wy +miny′ ̸=y wy′ exp(−C)
.

Combined with these two situations, we have the following bound for qT−t(xt, y):

qT−t (xt, y) ≤ max

{
G (P (xt, y)) , G

(
wy/

(
wy + min

y′ ̸=y
wy′

))}
,

where G(x) := x/(x+ (1− x) · exp(−C)) is a function that maps [0, 1] to [0, 1] (with the definition
of C for the VP and VE-based models). We note that for ∀x ∈ [0, 1],

G′(x) =
exp(−C)

[x+ (1− x) · exp(−C)]2
∈ [exp(−C), exp(C)] .

Let ξw := 1 − wy/ (wy +miny′ ̸=y wy′) > 0. We note that G(1) = 1, which indicates 1 −
G (P (xt, y)) ≥ exp(−C) · (1− P (xt, y)) and 1−G (1− ξw) ≥ exp(−C) · ξw.

When considering 2-modal GMM setting (used in Theorem 4.2 and Corollary 4.3) , the above results
is simplified to

1−G (P (xt, 1)) ≥ e−C (1− P (xt, 1)) , 1−G (w1) ≥ e−C (1− w1) .

Then, we know that
1− qT−t (xt, 1) ≥ e−C min {1− P (xt, 1) , 1− w1} (5)
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D CLASSIFICATION CONFIDENCE CONVERGENCE GUARANTEE

Theorem 4.2. Considering 2-GMM p∗ with Σ = Id and reverse SDE process (Eq. 1, α = 1), the
following results hold almost surely

1. If ⟨x0, µ1 − µ2⟩ ≥ ⟨z0, µ1 − µ2⟩, then P (xt, 1) ≥ P (zt, 1) for all t ∈ [0, T ].

2. If ⟨x0, µ1 − µ2⟩ ≥ ⟨z0, µ1 − µ2⟩, then for all t ∈ [0, T ]

P (xT , 1) ≥
P (z̄T , 1)

P (zT , 1) + (1− P (zT , 1)) · exp(−U)
≥ P (zT , 1) (4)

where U is any non-negative number such that

U ≤ 2

1 + T
⟨x0 − z0, µ⟩+

8

3

(
1− 1

(1 + T )3

)
η∥µ∥22 min

{
F
(

max
0≤t≤T

P (zt, 1) ,U
)
, w2

}
,

with µ = (µ1 − µ2)/2, F(p, u) = (1−p)e−u

p+(1−p)e−u , and ∆1 =
∣∣∣∥µ1∥22 − ∥µ2∥22

∣∣∣.
3. By setting e−U = η−1(log η)2, the above inequality holds as η is large enough and the convergence
rate is at least 1−O

(
η−1(log η)2

)
.

Proof. Set µ0 = (µ1 + µ2) /2 and µ = µ1−µ0. Then, we have the following SDE for the VE-based
models (σ2

t = t2) with guidance and without guidance

2 d ⟨xt, µ⟩ =
[
g(T − t)2Σ−1T−t

(
−2 ⟨xt, µ⟩+ 2 ∥µ1∥22 − 2 ⟨µ1, µ2⟩+ 8η (1− qT−t (xt, 1)) ∥µ∥22

)]
dt

+ 2g(T − t) ⟨dBt, µ⟩ , (6)
and

2 d ⟨zt, µ⟩ =
[
g(T − t)2Σ−1T−t

(
−2 ⟨zt, µ⟩+ 2 ∥µ1∥22 − 2 ⟨µ1, µ2⟩

)]
dt+ 2g(T − t) ⟨dBt, µ⟩ .

Then, for the first part of Theorem 4.2, we can directly use the SDE comparison lemma to obtian
similar results.

For the second part, with Equation (5), we know that

1− qT−t (xt, 1) ≥ e−C min {1− P (xt, 1) , 1− w1} .
with C = 0. With this result, we know that
2 d ⟨xt − zt, µ⟩ ≥

[
−2g(T − t)2Σ−1T−t ⟨xt − zt, µ⟩+ 8g(T − t)2Σ−1T−tη∥µ∥

2
2 min {1− P (xt, 1) , w2}

]
dt .

To use the integrating factor method, we multiply exp
(∫

g(T − t)2Σ−1T−tdt
)

on the both set. For VE-
based models with σ2

t = t, we know that
∫
g(T −t)2Σ−1T−tdt =

∫
1

σ2+(T−t)dt = − lnσ2 + (T − t).
Then, we know that

d

〈
2

σ2 + (T − t)
xt − zt, µ

〉
≥

[
8

(
1

σ2 + (T − t)

)2

η∥µ∥22 min {1− P (xt, 1) , w2}

]
d .

Since by assumption ⟨x0 − z0, µ⟩ ≥ 0, we then conclude that almost surely we have ⟨xt − zt, µ⟩ ≥ 0
for all t ∈ [0, T ]. If we assume 2

σ2+(T−t) ⟨xt − zt, µ⟩ ∈ [0,U ] for all t ∈ [0, T ], then it holds that
2 ⟨xt − zt, µ⟩ ≤ σ2U for all t ∈ [0, T ] (Here σ2 = 1). Then, we know that

1− P (xt, 1) ≥ F
(

max
0≤t≤T

P (zt, 1) ,Uσ2

)
.

Then, we know that

U ≥ 2

σ2 + T
⟨x0 − z0, µ⟩+

8

3

(
1

σ6
− 1

(σ2 + T )3

)
η∥µ∥22 min

{
F
(

max
0≤t≤T

P (zt, 1) ,Uσ2

)
, w2

}
.

(7)

If the above inequality is not satisfied, then we know that for such U we have 2 ⟨xT − zT , µ⟩ ≥ σ2U
and

P (xT , 1) ≥
P (zT , 1)

P (zT , 1) + (1− P (zT , 1)) · exp (−σ2U)
.
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The Convergence Guarantee for η. In this part, we prove the convergence rate of η. We set
e−U = η−1(log η)2. Then, we know that the left hand of Equation (7) is the order of O(log η) and
the right hand of Equation (7) is order of O

(
η ∧ (log η)2

)
. Hence, for large enough η, the inequality

7 does not hold. Plugging such U into Equation (7), we deduce that P (xT , 1) ≥ 1−O
(
η−1(log η)2

)
as η → ∞. Then, we complete the proof. We note that in this part, we use VE (SMLD) with σ2

t = t
as an example to provide the convergence guarantee. For the VE (EDM), the proof process is exactly
the same. ■

Proof Process of Corollary 4.3. The proof under the PFODE setting is also the same with Theo-
rem 4.2. For the first part, we use the ODE comparison lemma instead of the SDE comparison lemma
(Hence, the results of PFODE is with probability 1 instead of almost surely). Then, since Equation (5)
holds for the reverse SDE and PFODE setting at the same time. Then, we also use the integrating
factor method and the following calculation to complete the proof.
Corollary D.1. Considering p∗ =

∑
y∈Y wy N(µy,Σ) and reverse SDE process. Assume Assump-

tion 4.4 holds. Let ξw = 1 − wy/ (wy +miny′ ̸=y wy′). Then, if ⟨x0, µy − µy′⟩ ≥ ⟨z0, µy − µy′⟩,
then for all t ∈ [0, T ]

P (xT , 1) ≥
P (zT , 1)

P (zT , 1) + (1− P (zT , 1)) · exp(−U)
≥ P (zT , 1)

where U is any non-negative number such that for any y′ ̸= y

U ≤ 1

1 + T
⟨x0 − z0, µy − µy′⟩

+
2

3

(
1− 1

(1 + T )3

)
ηmin

{
F
(

max
0≤t≤T

P (zt, 1) ,U
)
, ξw

}(
∥µy − µ0∥22 − 3ε

)
.

Furthermore, the convergence rate is at least 1−O
(
η−1(log η)2

)
.

Proof. Since our calculation for the posterior probability is based on the general GMM, we only
calculate the lower bound of ⟨xt, µy − µy′⟩ with Assumption 4.4. We note that the following
calculation mainly following the process of Eq. (A.1) of Wu et al. (2024) and we extend the
calculation to the VE setting.

d ⟨xt, µy − µy′⟩

=

g(T − t)2Σ−1T−t

(
− ⟨xt, µy − µy′⟩+ (1 + η − ηqT−t (xt, y)) ∥µy∥22 − η

∑
y′′ ̸=y

qT−t (xt, y
′′) ⟨µy, µy′′⟩

− (1 + η − ηqT−t (xt, y)) ⟨µy, µy′⟩+ η
∑
y′′ ̸=y

qT−t (xt, y
′′) ⟨µy′ , µy′′⟩

)dt

+
√
2g(T − t) ⟨ dBt, µy − µy′⟩

Let
αt := g(T − t)2Σ−1T−t, qy := qT−t(xt, y), qy′′ := qT−t(xt, y

′′).

Then, we have that

d⟨xt, µy − µy′⟩ =
[
αt

(
− ⟨xt, µy − µy′⟩+ (1 + η − ηqy)∥µy∥2 − η

∑
y′′ ̸=y

qy′′⟨µy, µy′′⟩

− (1 + η − ηqy)⟨µy, µy′⟩+ η
∑
y′′ ̸=y

qy′′⟨µy′ , µy′′⟩
)]

dt

+
√
2 g(T − t) ⟨dBt, µy − µy′⟩, (8)

We separate in Equation (8) the η–dependent part of the drift. Define

Gt :=(1− qy)∥µy∥2 −
∑
y′′ ̸=y

qy′′⟨µy, µy′′⟩ − (1− qy)⟨µy, µy′⟩+
∑
y′′ ̸=y

qy′′⟨µy′ , µy′′⟩. (9)
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For Gt, we have that

Gt = (1− qy)∥µy − µ0∥2 + qy′∥µy′ − µ0∥2 +Rt,

where the error term Rt is given explicitly by

Rt := −(1− qy)⟨µy − µ0, µy′ − µ0⟩ −
∑
y′′ ̸=y

qy′′⟨µy − µ0, µy′′ − µ0⟩+
∑
y′′ ̸=y

qy′′⟨µy′ − µ0, µy′′ − µ0⟩.

(10)

Inserting Equation (9) and Equation (10) into Equation (8), we can define the error term Ēt
Ēt := αt η Rt = g(T − t)2Σ−1T−tηRt.

By Assumption 4.4, for all u, v ∈ Y ,∣∣⟨µu − µ0, µv − µ0⟩
∣∣ ≤ ε.

Moreover, ∑
y′′ ̸=y

qy′′ = 1− qy.

Hence each term in Rt is bounded by

|(1− qy)⟨µy − µ0, µy′ − µ0⟩| ≤ (1− qy)ε,∣∣∣∣∣∣
∑
y′′ ̸=y

qy′′⟨µy − µ0, µy′′ − µ0⟩

∣∣∣∣∣∣ ≤ (1− qy)ε,

∣∣∣∣∣∣
∑
y′′ ̸=y

qy′′⟨µy′ − µ0, µy′′ − µ0⟩

∣∣∣∣∣∣ ≤ (1− qy)ε.

Therefore,
|Rt| ≤ 3(1− qy)ε.

Consequently, the error term satisfies

|Ēt| ≤ 3η g(T − t)2Σ−1T−t
(
1− qT−t(xt, y)

)
ε.

For VE (SMLD), we have that g(T − t)2Σ−1T−t =
1

1+(T−t) ≤ 1 (with Σ = 1). For VE (EDM), we

have that g(T − t)2Σ−1T−t =
2(T−t)

1+(T−t)2 ≤ 1. Then, we have the following bound for Ēt

|Ēt| ≤ 6η(1− qT−t(xt, y))ε.

As a result, we have the following inequality:

d⟨xt, µy − µy′⟩

=
[
αt

(
− ⟨xt, µy − µy′⟩+ ∥µy∥22 − ⟨µy, µy′⟩

+ η(1− qy)∥µy − µ0∥22 + ηqy′∥µy′ − µ0∥22
)
+ Ēt

]
dt+

√
2 g(T − t) ⟨dBt, µy − µy′⟩

≥
[
αt

(
− ⟨xt, µy − µy′⟩+ ∥µy∥22 − ⟨µy, µy′⟩

+ η(1− qy)
(
∥µy − µ0∥22 − 3ε

))]
dt+

√
2 g(T − t) ⟨dBt, µy − µy′⟩.

The above bounds have almost the same form compared with Equation (6), and we can bound
d⟨xt − zt, µy − µy′⟩ with the same process of Theorem 4.2. Then, we complete the proof. ■
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E RESULTS FOR CONDITIONAL DIFFUSION MODELS WITHOUT GUIDANCE

In this part, by showing the closed-form solution of conditional diffusion models (PFODE and SDE
setting), we explain the difference performance of different diffusion models without guidance.
Theorem 4.1. Considering GMM p∗ with Σ = Id and reverse PFODE process without guidance
(Equation (1), α = 0). Then, for VP-based models, the closed-form solution has the following form:

z(t) = z(0) + µye
−T (et − 1

)
, z(0) ∼ N (0, Id).

For VE-based models, the closed form solution has the following form:

z(t) =

√
1+σ2

T−t

1+σ2
T

z(0) + µy

[
1−

√
1+σ2

T−t

1+σ2
T

]
, z(0) ∼ N (0, σ2

T Id) .

Proof. We know that given a target label y, the PFODE for the VP-based models has the following
form

dzt
dt

= µye
−T+t .

Then, integrating for t = 0 to t = T , we have the following results:

z(t) = x(0) +

∫ t

0

µye
−T+sds

= z(0) + µy

∫ t

0

e−T+sds

= zx(0) + µye
−T (et − 1

)
, z(0) ∼ N (0, 1) ,

For the VE (EDM), we know the PFODE has the following form:

dzt
dt

=
T − t

1 + (T − t)2
(−zt + µy) .

Let

p(t) =
T − t

1 + (T − t)2
, q(t) =

T − t

1 + (T − t)2
µy .

Then, the PFODE for VE (EDM) is a standard linear ODE:

dz

dt
+ p(t)z(t) = q(t) .

Following the standard process of solving linear ODE, we calculate

µ(t) = exp

(∫
p(t)dt

)
= exp

(∫
T − t

1 + (T − t)2
dt

)
.

Set u = T − t, so du = −dt. Then∫
T − t

1 + (T − t)2
dt = −

∫
u

1 + u2
du = −1

2
ln
(
1 + u2

)
= −1

2
ln
(
1 + (T − t)2

)
Hence

µ(t) =
(
1 + (T − t)2

)−1/2
.

Multiplying through by µ(t) gives

(
1 + (T − t)2

)−1/2 dzt
dt

+
T − t

(1 + (T − t)2)
3/2

zt = µy
T − t

(1 + (T − t)2)
3/2

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

One checks by the product rule that the left-hand side is

d

dt

[(
1 + (T − t)2

)−1/2
zt

]
So the ODE becomes

d

dt

[(
1 + (T − t)2

)−1/2
zt

]
= µy

T − t

(1 + (T − t)2)
3/2

.

Then, we integrate from 0 to t for the both sides:(
1 + (T − t)2

)−1/2
x(t)−

(
1 + T 2

)−1/2
x(0) = µy

∫ t

0

T − s

(1 + (T − s)2)
3/2

ds .

For the integral of the right side, we know that∫ t

0

T − s

(1 + (T − s)2)
3/2

ds =
1√

1 + (T − t)2
− 1√

1 + T 2
.

As a result, we know that(
1 + (T − t)2

)−1/2
x(t)−

(
1 + T 2

)−1/2
x(0) = µy

[
1√

1 + (T − t)2
− 1√

1 + T 2

]
,

which indicates that

x(t) =

√
1 + (T − t)2

1 + T 2
x(0) + µy

[
1−

√
1 + (T − t)2

1 + T 2

]
.

■

Then, the proof for VE (EDM) with the reverse PFODE is finished. For the proof for VE (SMLD)
with PFODE is almost the same with

p(t) =
1

2(1 + T − t)
, q(t) =

µy

2(1 + T − t)

and standard solving process of linear ODE.

F USEFUL LEMMA

To prove the first part of Theorem 4.2 and Corollary 4.3, we directly use the ODE and SDE comparison
lemma provided by Wu et al. (2024). For completeness, we provide these two lemmas in the following
part (Lemma 3.4 and Lemma A.1 of Wu et al. (2024)).
Lemma F.1 (ODE comparison lemma). Suppose f(t, u) is continuous in (t, u) and Lipschitz contin-
uous in u. Suppose u(t), v(t) are C1 for t ∈ [0, T ], and satisfy

u′(t) ≤ f(t, u(t)), v′(t) = f(t, v(t))

In addition, we assume u(0) ≤ v(0). Then u(t) ≤ v(t) for all t ∈ [0, T ].
Lemma F.2 (SDE Comparison Lemma). Consider the following two m-dimensional SDEs defined
on [0, T ] :

X1
t = x1 +

∫ t

0

b1
(
s,X1

s

)
ds+

∫ t

0

σ1

(
s,X1

s

)
dWs

X2
t = x2 +

∫ t

0

b2
(
s,X2

s

)
ds+

∫ t

0

σ2

(
s,X2

s

)
dWs
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We assume the following conditions: 1. b(t, x), σ(t, x) are continuous in (t, x), 2. There exists a
sufficiently large constant µ > 0, such that for all x, x′ ∈ Rm and t ∈ [0, T ], it holds that

∥b(t, x)− b (t, x′)∥2 + ∥σ(t, x)− σ (t, x′)∥2 ≤ µ ∥x− x′∥2
∥b(t, x)∥2 + ∥σ(t, x)∥2 ≤ µ (1 + ∥x∥2)

Then the following are equivalent:

(i) For any t ∈ [0, T ] and x1, x2 ∈ Rm such that x1 ≥ x2, almost surely we have X1
t ≥ X2

t for all
t ∈ [0, T ].

(ii) σ1 ≡ σ2, and for any t ∈ [0, T ], k = 1, 2, · · · ,m,
(a) σ1

k depends only on xk

(b) for all x′, δkx ∈ Rm, such that δkx ≥ 0,
(
δkx
)
k
= 0,

b1k
(
t, δkx+ x′

)
≥ b2k (t, x

′)

G MINIST EXPERIMENTS

This appendix provides a comprehensive description of the experimental setup and additional results
that support the findings presented in the main text regarding the superior performance of the VE
framework over VP under low guidance strength on the MNIST dataset. We detail the model
architectures, training configurations, hyperparameters, and evaluation protocols to ensure full
reproducibility.

Dataset, Network Architecture, Training Configuration.

• MNIST. We used the standard MNIST dataset, which consists of 60, 000 training and 10, 000
test images.

• CIFAR10. We use standard CIFAR10 dataset.
• CelebA64. We collect 10k image for female faces and 10k image for

All models shared a common U-Net backbone featuring an encoder-decoder structure with skip
connections. The network was conditioned on the time step t via Gaussian Fourier feature embedding.
Complete architectural details are elaborated in Appendix G.1. All models were trained from scratch
for a fixed number of epochs. The optimizer is Adam, the learning rate is 1e− 4, the batch size is 32,
and the training epochs are 30.

SDE Configuration. We implemented both Variance Preserving (VP) and Variance Exploding
(VE) SDEs as defined by Song et al. (2020).

For VP-based models, the forward SDE is defined by (here x is our z→)

dx = −0.5β(t)xdt+
√

β(t)dBt ,

and β(t) = (β0 + t(β1 − β0))
2 where β(t) is a linearly increasing schedule from β0 = 0.1 to

β1 = 20.0 over the course of the diffusion process.

For VE (SMLD), the SDE forward process is defined by: dx = σtdBt where the noise schedule σ is
set to σ = 15.0.

Sampling/Inference Configuration. The number of sampling steps was set to 500 for all experi-
ments to ensure a high-quality generation. The guidance scale (η) was swept across a logarithmic
scale: [1.0, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5]. All metrics were computed using a CNN classifier. For each
experiment, metrics were calculated over a set of 10, 000 generated images to ensure statistical
significance.

Note that in our implementation, we adopted a simplified training process. Instead of training a single
neural network that learns ∇p(x|y) and ∇p(x) , we train a separate neural network for no classifier
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situation and each target class y. Given the small size of the MNIST dataset and the relatively low
computational cost of training these models, this simplification is feasible. It significantly simplifies
the training pipeline by avoiding the need for a jointly trained classifier and the associated gradient
calculations during training, allowing us to focus our analysis purely on the sampling dynamics.
We acknowledge that this strategy does not scale to complex datasets due to its linear growth in
computational cost during training. However, the focused comparative study presented here provides
a clean and interpretable experimental framework. The insights gained are expected to generalize to
the more scalable single-model conditional setting.

G.1 DIFFUSION MODEL ARCHITECTURES

Diffusion Model Architectures. A single U-Net architecture is used to parameterize the score
function for both VP and VE frameworks. The NN contains 4 down-sampling blocks and 4 up-
sampling blocks. The down-sampling Channel is [32, 64, 128, 256] and the up-sampling channel is
[256, 128, 64, 32].

Classifier Architecture. The pre-trained classifier used for all evaluation metrics was a convolu-
tional neural network. This classifier was trained on the official MNIST training set (60, 000 images)
for 10 epochs using the Adam optimizer (learning rate 1e− 4) and cross-entropy loss. It achieved a
final accuracy of 98% on the official MNIST test set (10, 000 images), confirming its competence as
an evaluator.
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