
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SALVE: Sparse Autoencoder-Latent Vector
Editing for Mechanistic Control of Neural
Networks

Anonymous authors
Paper under double-blind review

Abstract

Deep neural networks achieve impressive performance but remain diffi-
cult to interpret and control. We present SALVE (Sparse Autoencoder-
Latent Vector Editing), a unified "discover, validate, and control" framework
that bridges mechanistic interpretability and model editing. Using an ℓ1-
regularized autoencoder, we learn a sparse, model-native feature basis with-
out supervision. We validate these features with Grad-FAM, a feature-level
saliency mapping method that visually grounds latent features in input data.
Leveraging the autoencoder’s structure, we perform precise and permanent
weight-space interventions, enabling continuous modulation of both class-
defining and cross-class features. We further derive a critical suppression
threshold, αcrit, quantifying each class’s reliance on its dominant feature,
supporting fine-grained robustness diagnostics. Our approach is validated on
both convolutional (ResNet-18) and transformer-based (ViT-B/16) models,
demonstrating consistent, interpretable control over their behavior. This
work contributes a principled methodology for turning feature discovery
into actionable model edits, advancing the development of transparent and
controllable AI systems.

1 Introduction

Understanding the internal mechanisms of deep neural networks remains a central challenge
in machine learning. While these models achieve remarkable performance, their opacity
hinders our ability to trust, debug, and control their decision-making processes, especially
in high-stakes applications where reliability is non-negotiable. The field of Mechanistic
interpretability aims to resolve these issues by reverse-engineering how networks compute,
identifying internal structures that correspond to meaningful concepts and establishing
their influence on outputs (4; 17; 32; 1; 26) However, the bridge between interpretation and
intervention remains a critical frontier. While recent advances in model steering successfully
use discovered features to guide temporary, inference-time adjustments, a path toward using
these insights to perform durable, permanent edits to a model’s weights is less established.
This paper closes that gap by introducing SALVE (Sparse Autoencoder-Latent Vector
Editing), a unified framework that transforms interpretability insights into direct, permanent
model control. We build a bridge from unsupervised feature discovery to fine-grained, post-
hoc weight-space editing. Our core contribution is a "discover, validate, and control" pipeline
that uses a sparse autoencoder (SAE) to first learn a model’s native feature representations
and then leverages that same structure to perform precise, continuous interventions on the
model’s weights.

Our framework achieves this by first training an ℓ1-regularized autoencoder on a model’s
internal activations to discover a sparse, interpretable feature basis native to the model. We
validate these features using visualization techniques, including activation maximization and
our proposed Grad-FAM (Gradient-weighted Feature Activation Mapping), to confirm their
semantic meaning. This interpretable basis is then used to guide a permanent, continuous
weight-space intervention that can suppress or enhance a feature’s influence. Finally, to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

make this control quantifiable, we derive and validate a critical suppression threshold, αcrit,
providing a measure of a class’s reliance on its dominant feature.

2 Related Work

Our work is positioned at the intersection of two primary domains: the discovery of in-
terpretable features and the direct editing and control of model behavior. We situate our
contributions at the intersection of these fields, focusing on creating a direct pathway from
understanding to control.

2.1 Discovering Interpretable Features

A key goal of post-hoc interpretability is to make a trained model’s decisions intelligible.
Attribution methods, such as Grad-CAM (31), generate saliency maps that highlight influen-
tial input regions. While useful for visualization, these methods are correlational and do
not expose the internal concepts the model has learned. Other approaches aim to link a
model’s internal components with human-understandable concepts. For example, Network
Dissection (3) quantifies the semantics of individual filters by testing their alignment with a
broad set of visual concepts. Similarly, TCAV (14) uses directional derivatives to measure
a model’s sensitivity to user-defined concepts. These methods are powerful but often rely
on a pre-defined library of concepts. Recent work in mechanistic interpretability has used
SAEs to discover features in an unsupervised manner, primarily within Transformer-based
models. Our work builds on this SAE-based approach to feature discovery by using a SAE to
automatically discover semantically meaningful features directly from the model’s activations.

2.2 Editing and Controlling Model Behavior

Model editing techniques aim to modify a model’s behavior without retraining. Simple
interventions like ablation typically zero out neurons, or entire filters, to observe their effect
on the output (18; 19; 25). However, while this provides evidence of their importance, these
approaches are limited in their ability to perform fine-grained, continuous interventions,
and often lack a structured representation in which such interventions can be reasoned
about and controlled directly. Most recent work using SAEs has focused on inference-time
steering, where interventions involve adding a "steering vector" to a model’s activations
during a forward pass to influence the output (33; 36; 5; 12). Our approach is fundamentally
different in its mechanism: instead of a temporary inference time adjustment to activations,
we perform a permanent edit directly on the model’s weights, allowing both suppression and
enhancement of specific features. This is advantageous for scenarios requiring fixed, verifiable
model states, eliminating the computational overhead of steering vectors at inference and
ensuring consistent behavior across all uses of the edited model. Our work is also related to
specialized, training-free model editing techniques like ROME (22) and MEMIT (23). These
methods perform corrective, example-driven edits by calculating a surgical weight update to
alter a model’s output for a user-provided input. In contrast, our method is feature-driven
and diagnostic. Interventions are guided by general, model-native concepts discovered by
the SAE. This approach enables the continuous modulation and quantitative analysis of
concepts, providing a more transferable mechanism for influencing a model’s overall behavior
than single-instance correction. Finally, our method differs from other concept-editing
paradigms that are more invasive. For instance, Iterative Nullspace Projection (INLP) (30)
removes information by projecting representations, but often requires fine-tuning to preserve
model performance. Similarly, Concept Bottleneck Models (CBMs) (16) involve substantial
architectural changes to incorporate a labeled concept layer. In contrast, our approach
performs a localized weight edit guided by discovered features, remaining fully post-hoc and
avoiding both retraining and architectural modification

3 Methods

Our framework follows a three-stage "discover, validate, and control" pipeline designed
to identify, understand, and intervene on a model’s internal features. The stages are: (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Comparison of related interpretability and model editing methods.
Method Category Examples Primary Objective Key Trait or Limitation

Attribution Grad-CAM Interpret Correlational, not causal
Concept-based Dissection, TCAV Interpret Requires predefined, labeled concepts
Ablation Filter Pruning Control Coarse, not fine-grained
Activation Steering SAE Steering Interpret + Control Temporary (inference-time only)
Factual Editing ROME, MEMIT Control Corrective, not diagnostic; example-dependent
Projection-based INLP Control Often requires fine-tuning
Architectural CBMs Control Invasive; requires retraining

Our Approach - Interpret + Control Permanent edit of model-native concepts

Discover, where we learn a sparse latent representation of a model’s activations using an
ℓ1-regularized autoencoder; (2) Validate, where we use visualization techniques to confirm
the semantic meaning of the discovered features; and (3) Control, where we perform targeted,
continuous interventions on the model’s weights guided by the autoencoder’s structure. We
demonstrate this framework on two distinct model architectures. Our primary analysis is
conducted on a ResNet-18 model fine-tuned on the Imagenette dataset (11). To demonstrate
the generality and robustness across other architectures, the core stages of our methodology
are successfully validated on a Vision Transformer (ViT-B/16 (7)). Further details on both
models are available in Appendix A.3. The remainder of this section details the procedures
for each stage.

3.1 Discovering Interpretable Features

To obtain a sparse and interpretable representation of the model’s internal activations,
we train a linear autoencoder on the outputs of a semantically rich layer. For ResNet-18,
we use the final average pooling layer, while for the Vision Transformer, we extract the
representation corresponding to the [CLS] token after the final transformer encoder block.
We use a standard reconstruction loss combined with an ℓ1 penalty on the latent activations
to encourage sparsity. The full loss function and further architectural details are provided
in Appendix A.4. To identify dominant features associated with specific output classes
from this representation, we compute the class-conditional mean of the latent activations,
µk = 1

|Ck|
∑

i∈Ck
Zi, where Ck is the set of samples for class k and Zi is the latent activation

vector for a single sample i. Analyzing µk reveals which features are strongly associated
with a particular class, providing a basis for targeted interventions.

3.2 Validating and Controlling Features

To validate the semantic content of the discovered features, we use two complementary visu-
alization techniques. We employ activation maximization (27), extending it from traditional
applications on individual neurons or filters to our discovered latent features to synthesize the
abstract concept a feature represents. To ground feature activations in specific input images,
we introduce Grad-FAM (Gradient-weighted Feature Activation Mapping), an adaptation
of Grad-CAM (Gradient-weighted Class Activation Mapping). While standard Grad-CAM
generates saliency maps for a class logit, our method repurposes this logic for a specific
latent feature, providing a direct visual link between the feature and the input regions that
activate it. See Appendix A.5 for the full derivation and implementation details.

Having validated that the features represent meaningful semantic concepts, we investigate
their causal role by using the autoencoder’s decoder matrix, D ∈ RM×d, to guide a permanent,
continuous edit to the weights of the model. Each column of this matrix, D[:, l], represents
the "direction" of a latent feature l in the original activation space. We edit the final-layer
weights wij as follows:

w′
ij = wij ·max(0, 1± α · |cj |), (1)

where cj = D[j, l] is the contribution of the latent feature to the original feature j, and α
controls the intervention strength. The ± symbol indicates that we can either enhance (+)
or suppress (-) the feature’s influence, depending on the desired intervention. This feature-
guided modulation differs from traditional ablation as it allows for fine-grained control over

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

the model’s learned concepts while preserving the network’s structure. To quantify a class’s
reliance on a feature, we first define the feature-perturbed logit, z′i(α), as a function of the
intervention strength α:

z′i(α) =
∑
j

wij ·max(0, 1− α|cj |) · xj , (2)

where xj is the j-th component of the activation vector from the penultimate layer. This
gives the class logit under feature perturbation, excluding the global class bias term bi so that
we measure the feature’s influence independently of baseline class predisposition. We define
the critical suppression threshold, αcrit, as the value of α for which z′i(α) = 0. Intuitively,
αcrit is the intervention strength required to completely suppress the logit contribution
attributable to this feature direction. In the regime of weak perturbations (α < 1/|cj |), a
linear approximation yields the analytical estimate:

α
(n)
crit,i ≈

z
(n)
i

Ri(x(n))
, (3)

where z
(n)
i =

∑
j wijx

(n)
j is the original (bias-free) class logit for sample n, and Ri(x

(n)) =∑
j |cj |wijx

(n)
j quantifies the logit’s sensitivity to suppression along the latent feature direction.

While the analytical estimate provides a lower bound, we also compute the exact threshold
numerically. The full derivation and further details are provided in Appendix A.6.

4 Results

We validate our framework through two main analyses. First, we identify and visualize the
discovered latent features to confirm they represent meaningful semantic concepts. Second, we
perform targeted weight-space interventions to demonstrate precise control over the model’s
output. Together, these analyses demonstrate our framework’s ability to link interpretation
directly to intervention.

4.1 Latent Features Encode Semantic Concepts

Our first objective is to validate that the features discovered by the SAE correspond to
meaningful visual concepts. We find that the SAE successfully learns a class-specific feature
basis. As shown in the average feature activations in Figure 1a, the ResNet-18 representations
have a sparse, dominant structure where a single feature is strongly associated with a single
class. While these dominant features define a class, the less active features often represent
finer-grained concepts shared across classes, which we explore further in Section 4.3.

To understand what these features represent abstractly, we first use activation maximization
(see Appendix A.5.1 for further details). Figure 1b shows this for the "golf ball" feature,
where the optimization reveals objects with the characteristic texture of a golf ball. To
further visualize how these features are grounded in specific inputs, we use our proposed
Grad-FAM method (see Appendix A.5 for the full derivation and implementation details).
Figure 1c shows an example for a golf ball image. The dominant "Feature 1" provides a
high-level concept map for the "golf ball" class, whereas less dominant features correspond
to granular sub-concepts. For example, "Feature 2" activates on the ball’s surface texture,
while "Features 3 and 4" highlight different parts of the golf club.

To confirm these findings were not an artifact of the convolutional architecture, we replicated
our core validation analyses on the Vision Transformer (ViT). We found that the ViT also
learned a sparse, class-specific feature basis and that Grad-FAM successfully localized these
features to semantically relevant image regions (see Appendix A.8.1). Together, these results
confirm that the discovered features are semantically aligned, providing a valid basis for
targeted interventions.

4.2 Controlling Class Predictions via Feature Editing

Having validated the semantic meaning of the features, we now evaluate their causal role by
performing permanent model edits. We first focus on the dominant, class-specific features. A

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 1: Validation of discovered features for the ResNet-18 model. (a) Average latent
feature activations across classes, showing a sparse, class-specific basis. (b) Activation
maximization of the "golf ball" feature. The image evolves from random noise (t1), through
emergence of circular shapes (t2), to the final image clearly exhibiting golf ball characteristics
(t3). (c) Grad-FAM visualizations grounding the top-4 dominant features for a sample "golf
ball" image.

qualitative case study on an ambiguous, out-of-distribution image (not part of Imagenette)
containing both a "golf ball" and a "church" demonstrates the precision of our method. This
experiment is illustrated under "Single prediction" in Figure. 2. The original model predicts
"Church", and as a comparative illustration we calculate both the standard Grad-CAM as
well as Grad-FAM saliency maps. The Grad-CAM indicates that the model primarily focuses
on the tower of the church to make its prediction. Using Grad-FAM, we confirm that the
dominantly activated feature corresponds to the church structure (similar to the Grad-CAM),
but it also reveals other features activated by the golf ball (Feature 2) and by the church
tower (Feature 3).

We then perform two interventions. First, suppressing the dominant "Church" feature
predictably flips the classification to "Golf ball". Conversely, enhancing the "Golf ball"
feature achieves the same outcome. Post-edit Grad-CAMs confirm the model’s attention
shifts accordingly in both cases, from focusing primarily on the church tower to the golf ball
instead. To validate this effect quantitatively, we evaluate the model on the entire Imagenette
test set. The confusion matrices in Figure. 2 for the edited model show two key results. First,
suppressing the "Church" feature disables the model’s ability to recognize that class, reducing
its accuracy to near zero. Second, enhancing the "Golf ball" feature maintains its near-perfect
accuracy, indicating the edit is stable and does not degrade performance on well-learned and
robust class representations. Critically, for both interventions, performance on the other
classes remains relatively unaffected. This confirms that the learned class-dominant features
enable precise, modular control, allowing for targeted interventions with minimal off-target
effects. While this example targeted a specific class, the same methodology was successfully
applied to the other classes in the dataset. To validate the architectural robustness of this
control method, we replicate these class-suppression experiments on the Vision Transformer
and achieve a similar degree of precise, modular control over its predictions (see Appendix
A.8.2).

To contextualize our results, we include a baseline inspired by ROME (22), a well-known
method for example-driven factual editing in large language models. We adapt ROME’s
rank-one update idea to the final classification layer of our model for a comparable “class
suppression” task, achieving a similar outcome of reducing the target accuracy to near zero
with minimal off-target effects (see Appendix A.7.2). However, this similarity in outcome
masks a fundamental difference in approach. ROME is a corrective tool that performs a
surgical update to fix a model’s output for a specific input. In contrast, our method is
a diagnostic tool that intervenes on general, model-native concepts. This feature-driven

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 2: (Left) A qualitative case study where suppressing the "Church" feature or enhancing
the "Golf ball" feature successfully flips the model’s prediction for an ambiguous image.
(Right) Quantitative validation on the test set, showing minimal off-target effects

approach is what enables the capabilities unique to our framework: continuous modulation,
quantitative analysis (αcrit), and the nuanced, cross-class edits explored in the next sections.

4.3 Intervening on Cross-Class Features

To demonstrate our framework’s ability to edit fine grained concepts shared across classes,
we identify a "Tower Feature", which is frequently activated by images of both churches
(Class 4) as well as petrol pumps (Class 7) containing tower-like structures. A selection
of the top-activating images from the test set, shown in Figure 3a, confirm this cross-
class association. We then perform symmetrical interventions on this feature (Figure 3b).
Suppressing the feature reduces accuracy for "Petrol Pump" while leaving the "Church"
class largely unaffected. Conversely, enhancing the feature increases the accuracy for "Petrol
Pump". This differential impact suggests that the model’s classification of certain older,
column-shaped petrol pumps is highly reliant on the "Tower Feature". In contrast, the
"Church" class appears more robust due to a richer set of redundant features (e.g., stained
glass, steeples, etc.). Notably, these interventions also revealed a subtle feature entanglement.

Figure 3: a) Validation of the "Tower Feature", showing example top-activating images from
the test set. b) Effect of suppressing and enhancing this feature on model predictions, where
"red" and "green" corresponds to decreasing or increasing class accuracy, respectively

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Suppressing the "Tower Feature" slightly increased accuracy for "Chain Saw" (Class 3),
while enhancing it caused a corresponding decrease. This consistent, inverse effect, suggests
that the model has learned a spurious negative correlation, causing the "Tower Feature" to
act as an inhibitor for the "Chain Saw" classification. This illustrates a nuanced relationship
that would be difficult to uncover without such targeted interventions.

4.4 Quantifying Intervention Sensitivity

Having established that interventions are effective, we now quantify their sensitivity to the
scaling factor α. Systematically varying α allows us to probe the causal importance of each
feature and measure a class’s reliance on it. Figure 4a shows a characteristic suppression
curve for the "Church" class. As α increases, its accuracy remains stable before dropping
sharply past a critical threshold, while performance on other classes remains high, confirming
the targeted nature of the edit. This drop in accuracy corresponds to a reallocation of
the model’s predictions. As the dominant feature is suppressed, the model’s confidence is
redistributed among the other classes (Figure 4b)

To evaluate the sensitivity of the learned latent basis on the class intervention, we performed
experiments across multiple initializations and training runs (see Appendix A.9.1). Crucially,
the results are consistent across multiple SAE training runs, as indicated by the narrow
shaded regions in the curves of Figure 4, representing the standard deviation across n = 10
different realizations. This demonstrates that while the specific basis vectors learned by the
SAE may vary, the effect of our intervention on the model’s underlying concepts is stable.

We then extend this analysis by computing suppression curves for the dominant feature
of all classes. As these results proved robust to different autoencoder initializations, we
simplify the subsequent analysis by presenting results from a single realization. We observe
a similar suppression behavior across all classes for the ResNet-18 model (Fig. 5a), with
variations in the threshold suggesting that each class relies on its dominant feature to a
different degree. To confirm that this behavior was not an artifact of the convolutional
architecture, we replicate the same analysis on the Vision Transformer. The ViT exhibited
the same characteristic suppression curves, indicating that this is a general property of the
intervention method (see Appendix A.8.3). As the results are robust to the stochasticity of
the SAE training process, this indicates that the observed differences in class sensitivity stem
mainly from the base model’s intrinsic feature representations. In addition, the properties of
the discovered feature basis are also dependent on the SAE’s training objective (e.g., the
sparsity coefficient λ1). Therefore, the observed heterogeneity between classes is a product
of both the backbone’s intrinsic structure and the specific feature decomposition learned
by the SAE. Further details assessing the robustness of our experiments are provided in
Appendix A.9.

Figure 4: Suppression sensitivity for "Church" (Class 4). (a) Per-class accuracy vs. interven-
tion strength α. (b) Distribution of predictions for images of the target class, showing how
confidence is reallocated as the feature is suppressed. Shaded regions indicate the standard
deviation across 10 SAE initializations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.4.1 Critical Suppression Strength: αcrit

To quantify this class-level feature dependency, we calculate the critical suppression threshold,
αcrit (derivation and implementation details are found in Appendix A.6). This metric
estimates, on a per-sample basis, the precise intervention strength required to reduce the
feature contribution to the logit for the correct class to zero, providing a granular measure
of how strongly the model relies on a specific feature for a given input. We compute αcrit in
two ways: an analytical estimate based on the linear approximation (given by Eq.3), and a
numerical calculation (given by Eq.2). To validate both, we compare their distributions to
an empirical threshold, α50%. It is important to note the conceptual distinction between
these metrics. The analytical and numerical αcrit are per-sample measures that identify the
intervention strength required to drive the correct class’s feature contribution to the logit to
zero, representing a point where the feature’s evidence for that class is entirely suppressed.
In contrast, the empirical α50% is a population-level metric that marks the point where
accuracy on the class falls to 50%. This happens when, for a typical sample, the logit for
the correct class has dropped just enough to be surpassed by a competing logit. Figure 5b
presents this comparison for the ResNet-18 model. As expected, the analytical estimate
provides a lower bound on the critical intervention strength. The numerically calculated
αcrit, in turn, aligns well with both this lower bound and the empirical estimate, and its
distribution also captures a wider range of values for samples where the linear approximation
is less valid.

To confirm the architectural generality of the αcrit metric, we replicate this analysis also
on the Vision Transformer. Here, we find two key differences compared to the ResNet-
18 model. First, the analytical estimate of αcrit represents a much more conservative
lower bound. Second, we observe a larger discrepancy between the numerically calculated
αcrit (representing total evidence loss) and the empirical α50% (representing a typical flip
of predictions). We hypothesize that these observations can be attributed to the ViT’s
architectural properties. Recent research has shown that ViTs learn a "curved" and non-
linear representation space (15). This effect, combined with the ViT’s tendency to produce
less confident, more distributed logits (24), means a smaller intervention is required to be
surpassed by a competitor. This widens the gap between the point of prediction failure (α50%)
and total evidence loss (αcrit), an effect less pronounced in the more linear representations
of the ResNet model. (See Appendix A.8.3 for results and further discussions).

Analyzing the distribution of αcrit enables both class-level and sample-level diagnostics, allow-
ing us to pinpoint fragile representations that may be susceptible to adversarial perturbations
and to guide targeted strategies for improving robustness.

Figure 5: (a) Per-class accuracy vs. the intervention strength α. (b) Comparison of the
critical suppression threshold estimates. The distributions of the per-sample analytical (filled
box) and numerical (hatched box) αcrit are shown as boxplots. The central line indicates the
median, the box spans the interquartile range (25th to 75th percentile), and the whiskers
extend to the 5th and 95th percentiles. The empirical threshold (α50%) is overlaid as a
square marker.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5 Limitations and Future Work

While our framework provides a complete pipeline for discovering, validating, and controlling
a model’s internal features, this work is presented as a mechanistic case study on a basic
dataset and well-understood architectures. This approach establishes the bounds of our
current study and motivates the future directions discussed below.

A primary direction for future work is to scale our validation across a broader range of
models and datasets. The results of our study, supported by recent findings that sparse
autoencoders effectively uncover semantic concepts in Vision Transformers (21), provide a
strong foundation for this expansion. Investigating how properties like feature modularity
and intervention efficacy vary between different architectures, and extending this comparative
analysis to larger models, more complex datasets, and other data modalities like natural
language processing, represents crucial next steps.

Furthermore, we found that intervention effectiveness depends on both the backbone model’s
training dynamics (e.g., batch size) and the parameters used to train the SAE (e.g., ℓ1
regularization strength) (see Appendix A.9.2 for a detailed discussion). This indicates a
crucial link between training procedures and post-hoc controllability. Future work should
investigate how to co-design training and intervention methods to produce models that are not
only performant but also inherently more editable. Our work also opens several avenues for a
deeper feature-level analysis. While we identified concrete instances of feature entanglement
(e.g., the "Tower Feature"), future work could incorporate formal disentanglement metrics
for a more rigorous evaluation. Additionally, a powerful extension would be to adapt our
weight modulation technique to deeper layers of the model. Such a method could enable
more fundamental edits to a model’s core feature representations, moving from modifying
how concepts are combined to changing how they are formed.

Finally, our αcrit metric suggests a link between feature reliance and model robustness.
Systematically investigating if low-αcrit features and samples correlate with known adversarial
vulnerabilities represents another promising direction for future work.

6 Conclusions

This work introduced a complete framework for interpreting and controlling neural networks
through a unified "discover, validate, and control" pipeline. By training an SAE on a model’s
internal activations, we extracted a basis of "model native" features that represent not only
dominant, class-defining concepts but also fine-grained representations shared across multiple
classes. We validated these discovered concepts using activation maximization to visualize
their abstract form and our proposed Grad-FAM method to ground their presence in specific
input images.

Our primary contribution is demonstrating that this interpretable feature basis can guide
precise, permanent, and post-hoc edits to the model’s weights. Our experiments showed we
can not only switch class-level predictions but also perform nuanced interventions on subtle,
cross-class features. To make this control quantifiable, we introduced the critical suppression
threshold, αcrit, a per-sample metric that measures a class’s reliance on its dominant feature.
This provides a powerful tool for diagnosing and probing robustness of class and feature
representations in models. Our methodology is validated on both convolutional (ResNet-18)
and transformer-based (ViT-B/16) models, demonstrating consistent, interpretable control
over their behavior. By providing a principled method to discover, validate, quantify, and
ultimately control a model’s internal concepts, our framework contributes to the development
of more transparent, robust, and reliable AI systems.

7 Reproducibility statement

The methodology, derivations, parameters, and implementation details are described in
the Appendix A). A comprehensive and fully documented GitHub repository will be made
publicly available upon publication.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References
[1] Anthropic. Mapping the mind of a large language model. 2024.

[2] Yu Bai, Yao Tang, Tianle Zhai, Haoran Wang, Xiyu Zhao, Mingyu Zhou, Boqing Gong,
Dahua Lin, and Zhouyuan Lin. Beyond pruning criteria: Fine-tuning is the key to
robustness. arXiv preprint arXiv:2410.15176, 2024.

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network
dissection: Quantifying interpretability of deep visual representations. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 6541–6549, 2017.

[4] L. Bereska and E. Gavves. Mechanistic interpretability for ai safety – a review. arXiv,
2024.

[5] Sviatoslav Chalnev, Matthew Siu, and Arthur Conmy. Improving steering vectors by
targeting sparse autoencoder features, 2024. URL https://arxiv. org/abs/2411.02193.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

[8] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing
higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016.

[10] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. arXiv preprint
arXiv:1705.08741, 2017.

[11] Jeremy Howard. imagenette.

[12] Sonia Joseph, Praneet Suresh, Ethan Goldfarb, Lorenz Hufe, Yossi Gandelsman, Robert
Graham, Danilo Bzdok, Wojciech Samek, and Blake Aaron Richards. Steering clip’s
vision transformer with sparse autoencoders. arXiv preprint arXiv:2504.08729, 2025.

[13] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. In Proceedings of the 5th International Conference on Learning
Representations (ICLR), 2017.

[14] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav). In International conference on machine learning,
pages 2668–2677. PMLR, 2018.

[15] Juyeop Kim, Junha Park, Songkuk Kim, and Jong-Seok Lee. Curved representation
space of vision transformers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 13142–13150, 2024.

[16] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson,
Been Kim, and Percy Liang. Concept bottleneck models. In International conference
on machine learning, pages 5338–5348. PMLR, 2020.

[17] L. Kästner and B. Crook. Explaining ai through mechanistic interpretability. European
Journal for Philosophy of Science, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

[18] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[19] M. Li and L. Janson. Optimal ablation for interpretability. NeurIPS Spotlight, 2024.

[20] Sihui Li, Haotian Wang, and Zhouyuan Lin. Characterizing the robustness–accuracy
trade-off in fine-tuning. arXiv preprint arXiv:2503.14836, 2025.

[21] Hyesu Lim, Jinho Choi, Jaegul Choo, and Steffen Schneider. Sparse autoencoders
reveal selective remapping of visual concepts during adaptation. arXiv preprint
arXiv:2412.05276, 2024.

[22] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing
factual associations in gpt. Advances in neural information processing systems, 35:17359–
17372, 2022.

[23] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau.
Mass-editing memory in a transformer. arXiv preprint arXiv:2210.07229, 2022.

[24] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil
Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural
networks. Advances in neural information processing systems, 34:15682–15694, 2021.

[25] Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On
the importance of single directions for generalization. In International Conference on
Learning Representations, 2018.

[26] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and
Shan Carter. Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

[27] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,
2(11):e7, 2017.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Advances in neural information
processing systems (NeurIPS), 32, 2019.

[29] Gonçalo Paulo and Nora Belrose. Sparse autoencoders trained on the same data learn
different features. arXiv preprint arXiv:2501.16615, 2025.

[30] Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null
it out: Guarding protected attributes by iterative nullspace projection. ACL, 2020.

[31] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618–626, 2017.

[32] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq,
Nicholas Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al.
Open problems in mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

[33] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian
Chen, Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunning-
ham, Nicholas L Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman,
Theodore R. Sumers, Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris
Olah, and Tom Henighan. Scaling monosemanticity: Extracting interpretable features
from claude 3 sonnet. Transformer Circuits Thread, 2024.

[34] Kaidi Xu, Sijia Liu, Gaoyuan Zhang, Mengshu Sun, Pu Zhao, Quanfu Fan, Chuang
Gan, and Xue Lin. Interpreting adversarial examples by activation promotion and
suppression. arXiv preprint arXiv:1904.02057, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

[35] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[36] Yu Zhao, Alessio Devoto, Giwon Hong, Xiaotang Du, Aryo Pradipta Gema, Hongru
Wang, Xuanli He, Kam-Fai Wong, and Pasquale Minervini. Steering knowledge se-
lection behaviours in llms via sae-based representation engineering. arXiv preprint
arXiv:2410.15999, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A Appendix

A.1 LLM Usage

LLM-based tools were utilized for enhancing the writing quality and clarity of the paper,
and for providing support in writing parts of the analysis code. Specifically, Gemini 2.5 Pro
was used for grammar and style text polishing and coding support.

The authors maintain full responsibility for the content, accuracy, and conclusions presented
in this paper.

A.2 Compute Resources

All experiments in this paper were performed on a single local workstation, and can be
reproduced on a standard modern laptop with GPU acceleration.

A.3 Fine-tuning of Pre-trained Backbone Models

We initialized our feature extraction backbone using standard, pre-trained architectures. We
used a ResNet-18 model (9) and a Vision Transformer (ViT-B/16 (7)) with a patch size of
16x16. Both models were pre-trained on the ImageNet dataset (6) and loaded via established
PyTorch libraries (28).

As the Imagenette dataset (11) contains only 10 target classes, the final classification layer
of each model was replaced to match this number of outputs. For ResNet-18, this involved
replacing the fc layer, and for the ViT, the head layer.

Both models were then fine-tuned on Imagenette using the Adam optimizer, categorical
cross-entropy loss and a batch size of 16. ViT with a learning rate of 10−5 for 5 epochs,
and ResNet-18 10−4 for 10 epochs. We performed additional sensitivity experiments with
different batch sizes, as further described in Section A.9.2

A.4 Autoencoder Definition and Training

To learn a sparse, interpretable representation of the backbone models’ features, we trained
an autoencoder to reconstruct high-dimensional activation vectors extracted from a specific
layer in the backbone. The activations were extracted using forward hooks in PyTorch.
The target layer was chosen to be a late-stage, semantically rich layer just before the final
classification head.

• For ResNet-18, we extracted the 512-dimensional feature vector from the output of
the final average pooling layer (avgpool).

• For the ViT, we extracted the 768-dimensional representation corresponding to the
[CLS] token after the final transformer encoder block.

This process yielded a matrix of activations A ∈ RN×M , where N is the number of samples and
M is the feature dimensionality of the chosen layer. The autoencoder’s encoder maps these
activations to a latent space Z ∈ RN×d, and the decoder reconstructs them as Â ∈ RN×M .

The architecture of the autoencoder is defined as follows:

class SparseAutoencoder(nn.Module):
def __init__(self, input_dim, hidden_dim):

super(SparseAutoencoder, self).__init__()
self.encoder = nn.Linear(input_dim, hidden_dim)
self.decoder = nn.Linear(hidden_dim, input_dim)
nn.init.xavier_uniform_(self.encoder.weight)
nn.init.xavier_uniform_(self.decoder.weight)

def forward(self, x):
encoded = self.encoder(x)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

decoded = self.decoder(encoded)
return encoded, decoded

The model was trained to minimize the reconstruction loss combined with an ℓ1-regularization
term to promote sparsity:

L = ∥A− Â∥2F + λ1∥Z∥1. (4)

This sparsity encourages modularity, such that any given input activates only a few latent
dimensions.

The autoencoders for both models were trained for 1000 epochs using an Adam optimizer
and a step decay learning rate scheduler (reducing LR by a factor of 0.8 every 200 epochs).
The ResNet-18 SAE used a learning rate of 10−3, batch size of 32, and λ1 = 10−3, while the
ViT-B/16 SAE used a learning rate of 10−4, batch size of 16, and λ1 = 10−2.

The training loss curves and examples of the reconstructed activations are illustrated in
Figure 6.

Figure 6: Autoencoder training and reconstruction performance for the ResNet-18 and
ViT-B/16 backbones. Left: Training curves for the Sparse Autoencoders, showing total loss,
reconstruction loss, and L1 sparsity loss (log-scaled) per epoch. Right: A comparison of the
autoencoder’s reconstructed feature activations with the original ones, where the red dashed
line indicates perfect reconstruction (Â = A).

A.5 Visualization of Latent Features

A.5.1 Activation maximization

To visualize the abstract concept encoded by a feature, we employ activation maximization
(27), extending it from traditional applications on individual neurons or filters to the
discovered latent features. The method synthesizes an image from random noise by optimizing
its pixels to maximally activate a chosen feature, revealing the visual pattern it has learned
to detect.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

In this procedure, we optimize an input image x ∈ RC×H×W , where C denotes the number
of channels and H, W represent the image dimensions. The objective is to maximize the
activation ϕl(x) of a target latent feature l, previously identified as dominant for a particular
class. The optimization objective is defined as:

maximize
x

ϕl(x)− λL2 · ∥x∥22 − λTV · TV(x), (5)

where ϕl(x) is the activation of the l-th latent feature given input x, ∥x∥22 penalizes large
pixel values, and TV(x) is the total variation loss. This encourages smoother and more
natural visual structures by discouraging high-frequency noise and sharp changes between
neighboring pixels, and is formally defined as:

TV(x) =

C∑
c=1

H−1∑
i=1

W−1∑
j=1

√
(xc,i+1,j − xc,i,j)2 + (xc,i,j+1 − xc,i,j)2, (6)

The regularization parameters λL2 and λTV control the strength of the respective penalties,
helping ensure that the optimized image is visually coherent, rather than adversarial or noisy
(27).

To further increase the robustness of the visualization, we apply a sequence of stochastic
image transformations at each optimization step. Specifically, we apply constant padding
(16 pixels, value 0.5), random jittering (8 pixels), random scaling [−δ%,+δ%], and random
rotation [−θ,+θ]. After augmentation, a center crop restores the input to a fixed resolution of
224×224 pixels. These transformations, inspired by prior work on robust feature visualization
(8; 35), act as implicit regularizers that prevent overfitting to high-frequency artifacts and
encourage the emergence of semantically meaningful patterns.

The complete procedure is given by the following steps:

1. Initialize the input image x with random noise.
2. For a fixed number of iterations:

(a) Apply the sequence of image transformations (padding, jittering, scaling, rota-
tion, center cropping).

(b) Forward the transformed image through the network and encoder to obtain the
latent activations.

(c) Evaluate the objective function combining target activation, total variation loss,
and L2 regularization.

(d) Update x using gradient ascent to maximize the objective function.

A.5.2 Grad-FAM Implementation

While standard Grad-CAM is designed to produce saliency maps that highlight image regions
influencing the final prediction for a specific class, Grad-FAM (Gradient-weighted Feature
Activation Map), repurposes this logic to visualize which parts of an image are responsible
for activating a specific latent feature learned by the SAE.

The core modification lies in the target of the gradient calculation. In standard Grad-CAM,
the heatmap is generated by weighting the feature maps F k from a target layer by importance
weights βc

k. These weights are calculated by global average pooling the gradients of the score
for a class c, yc, with respect to the feature maps. Denoting the number of pixels in the
feature map as P , the importance weight for a feature map k is given by:

βc
k =

1

P

∑
i

∑
j

∂yc

∂F k
ij

(7)

In Grad-FAM, we replace the class score yc with the activation value of a latent feature, ϕl,
from our learned sparse representation. The importance weight βl

k is therefore calculated
based on the gradient of this specific latent feature’s activation:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

βl
k =

1

P

∑
i

∑
j

∂ϕl

∂F k
ij

(8)

Here, F k represents the k-th channel of the activation tensor from the target layer. While
the formulation is model-agnostic, its application requires handling architectural differences.
For a CNN like ResNet, F k is an inherently spatial 2D feature map. A Vision Transformer,
however, outputs a 1D sequence of tokens. To apply the same spatially-based pooling, these
tokens must be reshaped back into a 2D grid. This transformation is achieved by first
discarding the non-spatial [CLS] token from the sequence, then reshaping the remaining N
patch tokens into their original

√
N ×

√
N grid. This process correctly restores the visual

layout because the token sequence preserves the original raster-scan order of the image
patches.

The final heatmap, Ll, is produced by taking the absolute value of the weighted combination
of feature maps. This differs from the conventional Grad-CAM method, which applies a
ReLU. This choice is motivated by the design of our latent feature representation (ϕl),
which can take on both positive and negative values to represent concepts. Since a strong
influence in either direction is a meaningful signal of importance, we take the absolute value
to ensure our heatmap highlights all regions that significantly contribute to the feature’s
final activation.

Ll =

∣∣∣∣∣∑
k

βl
kF

k

∣∣∣∣∣ (9)

To implement this, the forward pass must be explicitly chained from the base model through
the autoencoder’s encoder to establish a continuous computational graph for backpropagation.
We make use of PyTorch hooks to capture the necessary intermediate data during this single
forward and backward pass. The full procedure is summarized in the following pseudocode.

function Generate-Grad-FAM(model, autoencoder, image, target_layer, feature_index):
1. Register hooks on target_layer to capture feature maps and gradients
register_hooks(target_layer, forward_hook, backward_hook)

2. Forward pass to get the latent score
internal_activations = model.get_internal_activations(image)
latent_vector = autoencoder.encoder(internal_activations)
target_score = latent_vector[feature_index]

3. Backward pass from the latent score
target_score.backward()

4. Generate the heatmap
feature_maps = captured_feature_maps
gradients = captured_gradients

For ViT, reshape token-based maps/gradients to a spatial grid
if is_transformer(model):

feature_maps = reshape_transform(feature_maps)
gradients = reshape_transform(gradients)

pooled_gradients = global_average_pool(gradients)
weighted_maps = weight_feature_maps(feature_maps, pooled_gradients)
Take absolute value to get magnitude of influence
heatmap = abs(sum(weighted_maps))
normalized_heatmap = normalize(heatmap)

return normalized_heatmap

By backpropagating from an intermediate latent feature instead of a final class logit, Grad-
FAM shifts the focus from standard input attribution to the spatial localization of internal

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

concepts. The resulting saliency maps thus provide a direct, visual link between the abstract
features learned by the autoencoder and their manifestation in the input data.

A.6 Critical Suppression Threshold

A.6.1 Derivation and Procedure: Analytical Method

Here, we provide the full derivation for the critical suppression threshold, αcrit, introduced in
Section 3.2. The goal is to analyze how our weight modulation affects the feature contribution
to the logit for a class i.

Let x be the activation vector from the penultimate layer. The feature-perturbed logit, z′i(α),
after applying weight suppression with scaling factor α, is then given by:

z′i(α) =
∑
j

w′
ijxj

=
∑
j

wij ·max(0, 1− α |cj |) · xj ,
(10)

where wij is the original weight and cj is the contribution of the target latent feature to the
original feature j. This definition isolates the direct contribution to the logit from the model
features, excluding the global class bias term.

For small values of α, we can use the linear approximation: max(0, 1 − y) ≈ 1 − y. This
approximation is valid under the condition that α < 1/|cj | for all relevant components j (see
A.6.3 for validation of this approximation).

Applying this, we get:
z′i(α) ≈

∑
j

wij(1− α|cj |)xj

=
∑
j

wijxj − α
∑
j

|cj |wijxj

= zi − αRi(x),

(11)

where zi =
∑

j wijxj is the original feature contribution to the logit, and we define the
sensitivity term as:

Ri(x) =
∑
j

|cj |wijxj (12)

This term, Ri(x), quantifies how sensitive the logit zi is to suppression along the direction of
the chosen latent feature. We define the critical threshold as the value of α where the feature
contribution of the logit is driven to zero, which gives the per-sample threshold for sample n:

z
(n)
i − α

(n)
critRi(x

(n)) = 0 =⇒ α
(n)
crit =

z
(n)
i

Ri(x(n))
(13)

Our model is trained for multi-class classification using a standard cross-entropy loss function.
Because this loss function in PyTorch internally applies a log-softmax operation, the model’s
final layer is correctly designed to output raw, unbounded logits. For the purpose of our
αcrit derivation, we thus approximate the effect of suppression by treating these logits
independently, providing a practical and interpretable proxy for class-sensitivity.

To ensure this computed factor is well-defined, we restrict the analysis to test samples {x(n)}
from class i for which the following conditions hold:

z
(n)
i > 0 and R

(n)
i > 0. (14)

Positive logit requirement (z(n)i > 0) This ensures the sample is initially classified
in favor of class i. Since we aim to compute the scaling required to suppress a confident
prediction, it only makes sense to include samples where the logit is already positive.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Positive relevance requirement (R(n)
i > 0) This avoids division by zero and ensures

that the latent features are, on balance, contributing positively to the logit. Including
samples with non-positive relevance would contradict the assumption that scaling down their
contributions leads to suppression.

To compute αcrit using this method, we follow this procedure:

1. Compute per-image thresholds.
For each qualifying sample x(n), compute z

(n)
i and R

(n)
i and then calculate:

α
(n)
crit =

z
(n)
i

R
(n)
i

.

2. Aggregate across images.
Collect the set {α(n)

crit} for all qualifying images n for class i.

3. Calculate summary statistics.
Calculate summary statistics, e.g., the median α̃ = mediann

(
α
(n)
crit

)
.

A.6.2 Procedure: Numerical Method

To obtain a more precise estimate of the critical suppression threshold free from the inac-
curacies of the linear approximation, we compute αcrit numerically. This approach directly
finds the root of the exact modified logit equation:

z′i(α) =
∑
j

wij ·max(0, 1− α |cj |) · xj = 0. (15)

We restrict the analysis to a subset of samples that meet specific criteria to ensure the results
are well-defined and interpretable.

Positive logit requirement (z(n)i > 0) This requirement is identical to that of the
analytical method and is maintained for the same reason: the concept of suppressing a logit
to zero is only meaningful for samples that are already classified in favor of the target class.

Existence of a Zero-Crossing While this method does not involve division, we must
ensure that increasing α leads to suppression. A sufficient condition is that the function
z′i(α) is positive at α = 0 (covered by the first requirement) and becomes negative for some
sufficiently large α. This guarantees that a root exists. Samples where the logit does not
cross zero are excluded.

To compute αcrit numerically, we follow this procedure:

1. Find the per-image root.
For each qualifying sample x(n), we solve the equation z′i(α

(n)) = 0 for α(n) using a
simple and robust bracketing method. Specifically, we evaluate z′i(α) over a discrete
range of α values to find the interval where the function’s sign changes from positive
to negative. The precise root within this interval is then estimated using linear
interpolation for higher precision.

2. Aggregate across images.
Collect the set {α(n)

crit} for all images n of class i for which a root was found.

3. Calculate summary statistics.
Calculate relevant summary statistics from the collected set, e.g., the median
α̃crit = mediann

(
α
(n)
crit

)
.

This numerical procedure yields the true critical suppression threshold for each sample by
avoiding the limitations of the linear approximation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.6.3 Validation of the Analytical Approximation

The derivation of the analytical αcrit relies on a linear approximation that is valid when
1−α · |cj | > 0 for all components j. To rigorously assess how frequently this condition holds,
we calculated the full distribution of the term 1−αcrit · |cj |. Specifically, for each per-sample
numerical αcrit, we calculated its interaction with every component of the corresponding |cj |
vector, yielding a the distribution of all pairwise suppression terms.

Figure 7 shows a clear architectural divergence. For the ResNet-18, the distribution is
concentrated above zero, indicating that the linear approximation condition holds for the
majority of samples. For the Vision Transformer, however, a significant mass of the distribu-
tion is in the negative region. This confirms that the linear approximation is a reasonable

Figure 7: Validation of the linear approximation used to derive the analytical αcrit. The
plots show the distribution of the suppression term 1 − αcrit · |cj |, where negative values
indicate the approximation is invalid. (a) For the ResNet-18 model, the distribution is
concentrated above zero, confirming the approximation holds for the majority of samples.
(b) For the Vision Transformer, a significant mass of the distribution is in the negative
region, demonstrating that the linear approximation is invalid for the majority of samples.

approximation for the ResNet-18 but a poor one for the ViT. Consequently, we expect
the analytical estimate of αcrit to represent a reliable lower bound for ResNet-18 but a
significantly more conservative lower bound for the ViT. This is consistent with the results
presented in the main text for ResNet-18 (Figure 5) and in the Appendix for the ViT (Figure
12)

A.7 ROME Method for Class Suppression

To provide a point of comparison for permanent weight editing, we implemented a ROME-
inspired rank-one update adapted for vision models. The original ROME method (22)
was designed for factual editing in large language models by modifying mid-layer feed-
forward networks. Our adaptation applies the same rank-one update principle to the final
classification layer of a ResNet-18 model for a class suppression task. This section introduces
the mathematical formulation and implementation workflow.

ROME treats a feed-forward network layer as a key-value memory. For our use case, we
target the final fully connected layer (model.fc). The goal is to modify its weight matrix,
W , such that a specific input activation (“key”) produces a new desired output logit vector
(“value”).

1. Key (k): The key is the activation vector from the penultimate layer for a single,
representative sample of the class to be suppressed. Let k ∈ RM be this activation
vector.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

2. Value (v∗): The desired new value is a target logit vector, v∗ ∈ RC . To suppress
class i, we define v∗ by taking the original output logits, z0, and setting the logit for
the target class to a large negative value (e.g., -10.0).

3. Update Calculation: The ROME update is a rank-one modification, ∆, to the
weight matrix W . The error vector is defined as δ = v∗ −Wk. Note that the term
Wk recalculates the logits without the layer’s bias term, b. Consequently, for the
target class i, the error δi is large (e.g., −10.0− (z0i − bi)). For any other class j ̸= i,
the error is simply the bias term, δj = bj . The weight update is then given by:

∆ =
δkT

∥k∥22
(16)

The new weight matrix is then W ′ = W + ∆. Since the bias terms are typically
small, the error vector δ is dominated by its target component. This means that
while the update matrix ∆ is dense, its values are overwhelmingly concentrated in
the row corresponding to the target class. The edit therefore primarily affects the
weights connected to the target logit, with only minor adjustments to the weights
for the other classes.

A.7.1 Pseudocode for Implementation

The general workflow for applying ROME to suppress a single class is outlined below:

function Apply-ROME-Edit(model, sample_image, target_class):
1. Get the activation "key" from the penultimate layer
key = get_penultimate_activation(model, sample_image)

2. Define the new target output "value"
original_logits = model(sample_image)
target_logits = original_logits
target_logits[target_class_idx] = -10.0 # Suppress class by setting negative value

3. Calculate the rank-one weight update
weights = model.fc.weight
error_vector = target_logits - (weights @ key)
key_norm_squared = dot(key, key)
delta = outer_product(error_vector, key) / key_norm_squared

4. Apply the update to the model’s weights
model.fc.weight = weights + delta

return model

A.7.2 Benchmarking ROME for Class Suppression

To contextualize the performance of our feature-based editing method, we benchmarked it
against our ROME implementation on the same class suppression task detailed in Section 4.2.

As shown in Figure 8, the results are highly comparable. The confusion matrices illustrate
that for the class suppression task, ROME achieves a similar outcome to our method.
Both techniques effectively reduce the accuracy for the target class to near zero while
leaving accuracy on other classes largely unaffected. This benchmark indicates that our
latent feature-guided approach is competitive with established, state-of-the-art model editing
methods for this type of intervention, while also offering the additional benefits of mechanistic
interpretability and fine-grained feature control. We observed similar performance parity
across the other classes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 8: Comparison of class suppression performance. Confusion matrices showing the
model’s predictions on the Test set before editing (Top), and after editing (Bottom) with
ROME and our proposed weight modulation method. Both methods successfully ablate the
target class prediction (here shown for class 4)

A.8 Vision Transformer Results

This section provides the results for the complementary validation analysis performed on the
Vision Transformer (ViT-B/16) model.

A.8.1 Latent Features Encode Semantic Concepts

To confirm the generality of our feature discovery method, we first replicate the analysis
of the learned feature basis on the ViT. As illustrated in Figure 9a, the SAE successfully
learns a sparse and class-specific latent basis, analogous to the one found for ResNet-18. We
then validate the semantic meaning of these discovered features using Grad-FAM to visualize
their grounding in specific input images. Figure 9b shows examples for two class-dominant
features, where the saliency maps correctly highlight the class-relevant objects in the images
(the church building and the English springer spaniel). This provides strong evidence that
the SAE uncovers semantically meaningful and spatially localized concepts for the Vision
Transformer, just as it does for the CNN.

A.8.2 Controlling Class Predictions via Feature Editing

To validate the architectural robustness of our control method, we replicate the class
suppression experiments on the Vision Transformer. The results, shown in Figure 10, confirm
that our feature-guided intervention is effective also on the transformer-based model.

Specifically, suppressing the dominant feature for "Church" (Class 4) reduces its accuracy
on the test set to near zero. Critically, the performance on other classes remains largely

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 9: Validation of discovered features for the ViT-B/16 model. (a) Average latent
feature activations across classes, highlighting a strong class-specific structure. (b) Grad-FAM
visualizations grounding the dominant features for Class 4 ("Church") and Class 1 ("English
springer") in representative images.

unaffected, as shown in the confusion matrix. This provides strong evidence that the features
learned by the ViT also act as modular switches, allowing for precise, targeted interventions
with minimal off-target effects. We observe similar successful suppression across the other
classes in the dataset.

Figure 10: Quantitative validation of feature-guided control in the ViT-B/16 model. The
confusion matrices show performance on the test set before (left) and after (right) suppressing
the dominant feature for the "Church" class. The intervention effectively ablates the target
class while preserving accuracy on the other classes.

A.8.3 Quantifying Intervention Sensitivity

To investigate the sensitivity of the interventions also for the Vision Transformer, we replicate
the suppression analysis from the main text.

First, we analyze the characteristic suppression curve for a single class. As shown in Figure 11,
systematically increasing the intervention strength α results in a stable accuracy that drops
sharply past a critical threshold, while the model’s predictions are reallocated to other classes.
This shows that the intervention exhibits the same targeted behavior for the ViT as it did
for the ResNet-18.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 11: Suppression sensitivity for a single class (Class 4, "Church") in the ViT model.
(a) Per-class accuracy as a function of the scaling factor α. (b) Distribution of predictions for
images of the target class, showing how confidence is reallocated as the feature is suppressed.

Next, we extend this analysis to all classes and compute the analytical, numerical, and
empirical estimates for αcrit. Figure 12a shows the full set of per-class suppression curves,
which exhibit a wider spread in thresholds compared to the ResNet-18, though all classes
could be suppressed to near-zero accuracy. Figure 12b presents the comparison of the αcrit
estimates. This plot confirms two key findings also discussed in the main text.

First, the analytical estimate of αcrit represents a much more conservative lower bound.
Second, we observe a larger discrepancy between the numerically calculated αcrit (representing
total evidence loss) and the empirical α50% (representing a prediction flip) for the ViT. We
hypothesize that this discrepancy can be attributed to the ViT’s architectural properties.
Recent research has shown that ViTs learn a "curved" and non-linear representation space (15).
This effect, combined with the ViT’s tendency to produce less confident, more distributed
logits (24), means a smaller intervention is required to be surpassed by a competitor. This
widens the gap between the point of prediction failure (α50%) and total evidence loss (αcrit),
an effect less pronounced in the more linear representations of the ResNet model.

Figure 12: Full class-level sensitivity analysis for the ViT model. (a) Per-class accuracy
vs. intervention strength α for all classes. (b) Comparison of analytical (filled), numerical
(hatched), and empirical (square marker) αcrit estimates, illustrating the inaccuracy of the
linear approximation for the ViT.

Another factor that can contribute to the observed wider spread in αcrit thresholds and
the increased difficulty in driving some classes to near-zero accuracy, is that of feature

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

entanglement. When we suppress a single dominant latent feature associated with a class,
other entangled features might still contribute to the same class’s logit. This makes it
intrinsically harder to drive the total feature contribution for that class’s logit completely
to zero. This effect would result in larger required αcrit values and can explain instances
where suppression curves, as seen in Figure 12a, level off above zero accuracy even at high α.
The combined characteristics of the model backbone’s feature representation and the SAE’s
ability to extract a sparse decomposition can thus critically influence intervention efficacy.
Further discussion on these intertwined effects is provided in Section A.9.2.

A.9 Additional Experiments on Class-Robustness

This section presents supplementary experiments assessing the sensitivity of the class-
robustness results.

A.9.1 Robustness Across Autoencoder Initializations

We trained multiple autoencoders (n = 10) with identical architectures and loss parameters,
but different random seeds, weight initializations, and data shuffling during training. This
led each autoencoder to learn a distinct latent basis, as illustrated in Figure 13a.

For each learned representation, we repeated the experiments from Section 4.4, computing
accuracy–vs–α curves (Figure 13b) and analyzed how model confidence redistributed across
the classes (Figure 13c). Shaded regions in these plots indicate the standard deviations
across the different realizations.

Despite learning distinct latent bases, the resulting suppression curves were nearly identical,
and the same subset of classes remained most resistant to suppression. This observation
aligns with findings on the stability of features learned by sparse autoencoders trained on
the same data (29), suggesting that the heterogeneity in class robustness is not an artifact of
a particular latent decomposition due to random initialization.

This indicates that for a fixed SAE training objective, the observed differences in class
sensitivity stem mainly from the base model’s intrinsic feature representations. However,
the training objective itself, particularly the sparsity coefficient λ1, fundamentally shapes
the feature decomposition. Therefore, the observed heterogeneity is a product of both the
backbone’s intrinsic structure and the specific features learned by the SAE. While a detailed
analysis of the impact of the SAE training objective is a key topic for future work, the role
of the backbone model is addressed further in the next section.

A.9.2 Robustness Across Backbone Models

To examine whether the backbone’s learned feature space contributes to the observed class
heterogeneity, we fine-tune several ResNet-18 variants on Imagenette with different random
initializations and training parameters.

Prior work has reported that minor changes in training can alter class robustness profiles
(2; 20). Consistent with these findings, we observe that the “hard-to-suppress” classes
varies across backbones (Figure 14), suggesting that the base network’s feature space is the
dominant factor determining class heterogeneity.

In our experiments, we find that the optimizer’s batch size during fine-tuning of the backbone
is a key parameter that strongly affects class suppression sensitivity. When using small
batches (e.g. 8–16), all classes can be driven to near-zero accuracy with moderate α, and
the suppression curves remain tightly aligned in both low- and high-α regimes. In contrast,
large batches (e.g. 64–128) substantially increases the heterogeneity of suppression, where
αcrit grows larger for many classes and only a subset of classes could be fully suppressed.

Some experiments also exhibit more complex suppression curves, where certain classes are
only partially suppressed even under high attenuation, and a few show non-monotonic
behavior, where accuracy initially drop, then partially recover at higher α. These suppression
behaviors resemble the promotion-suppression effects observed in previous work on adversarial

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 13: a) Learned latent bases across the n = 10 realizations. b) Per-class prediction
accuracy as a function of the scaling factor α, when suppressing the dominant feature
associated with class 4. c) Distribution of predictions among the different classes, where the
"true" class is 4, showing how the models confidence becomes re-distributed among the other
classes. The shaded region in these plots represent the standard deviation across n = 10
different realizations.

perturbations, where certain features are either suppressed or promoted, leading to changes
in model predictions (34).

We hypothesize that these effects may rise from the well-known impact of batch size on
the geometry of the loss landscape (13). Large-batch training tends to converge to sharper
minima, which are known to produce more entangled internal representations. These
entangled features are naturally harder to isolate and suppress with our targeted method. In
contrast, the stochasticity of small-batch training acts as an implicit regularizer, guiding the
model to flatter minima associated with more disentangled and modular features (10). In
these solutions, concepts are more cleanly separated, allowing our interventions to suppress
class predictions more effectively.

Beyond backbone training, our experiments also indicate that the parameters used for
training the Sparse Autoencoder (SAE) significantly influence the learned latent feature
representations and, consequently, their downstream controllability. Specifically, the ℓ1
regularization loss plays a critical role: too low ℓ1 values can lead to a less sparse, entangled
latent space where multiple features activate for a single class, making targeted suppression
difficult. Conversely, overly high ℓ1 values may result in some class-specific features failing
to activate at all. Achieving an effective balance between reconstruction accuracy and ℓ1
sparsity is crucial, and the optimal parameter values depends on the specific backbone

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 14: Accuracy vs. scaling factor α for ResNet-18 backbones trained with different
initialization and fine-tuning parameters.

architecture and its training dynamics, necessitating tailored values for models like both
ResNet and ViT.

Together, these findings highlight a critical link between training dynamics, architectural
choices, and downstream controllability. They suggest that co-designing training regimes and
architectures to favor flatter, more modular solutions may be a key strategy for developing
models that are not only performant but also inherently more interpretable and editable.
While our initial analysis provides evidence for this connection, a more comprehensive
exploration of batch size, SAE parameters (especially ℓ1 regularization), and other training
parameters on feature modularity and intervention efficacy represents a crucial direction for
future work.

26

	Introduction
	Related Work
	Discovering Interpretable Features
	Editing and Controlling Model Behavior

	Methods
	Discovering Interpretable Features
	Validating and Controlling Features

	Results
	Latent Features Encode Semantic Concepts
	Controlling Class Predictions via Feature Editing
	Intervening on Cross-Class Features
	Quantifying Intervention Sensitivity
	Critical Suppression Strength: crit

	Limitations and Future Work
	Conclusions
	Reproducibility statement
	Appendix
	LLM Usage
	Compute Resources
	Fine-tuning of Pre-trained Backbone Models
	Autoencoder Definition and Training
	Visualization of Latent Features
	Activation maximization
	Grad-FAM Implementation

	Critical Suppression Threshold
	Derivation and Procedure: Analytical Method
	Procedure: Numerical Method
	Validation of the Analytical Approximation

	ROME Method for Class Suppression
	Pseudocode for Implementation
	Benchmarking ROME for Class Suppression

	Vision Transformer Results
	Latent Features Encode Semantic Concepts
	Controlling Class Predictions via Feature Editing
	Quantifying Intervention Sensitivity

	Additional Experiments on Class‐Robustness
	Robustness Across Autoencoder Initializations
	Robustness Across Backbone Models

