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ABSTRACT

Clustering is widely used in biomedical research for meaningful subgroup identi-
fication. However, most existing clustering algorithms do not account for the sta-
tistical uncertainty of the resulting clusters and consequently may generate spu-
rious clusters due to natural sampling variation. To address this problem, the
Statistical Significance of Clustering (SigClust) method was developed to eval-
uate significance of clusters in high-dimensional data. While SigClust has been
successful in testing mixtures of continuous distributions, it is not specifically de-
signed for discrete distributions, such as count data in genomics. Moreover, Sig-
Clust and its variations often suffer from reduced statistical power when applied to
non-Gaussian high-dimensional data. To overcome these limitations, we propose
SigClust-DEV, a method designed to evaluate the significance of clusters in count
data. Through extensive simulations, we compare SigClust-DEV against other ex-
isting SigClust approaches across various count distributions and demonstrate its
superior performance. Furthermore, we apply our method SigClust-DEV to Hydra
single-cell RNA sequencing (scRNA) data and electronic health records (EHRs)
of cancer patients to identify meaningful latent cell types and patient subgroups,
respectively.

1 INTRODUCTION

Clustering is a powerful unsupervised statistical tool, widely applied in biomedical research to better
understand complex data. For instance, it has been used to annotate and discover cell types from
scRNA data (Butler et al., 2018) and to identify cancer subtypes (TCGA et al., 2012). Specifically,
when a clustering algorithm assigns a single known population to multiple clusters, it may indicate
that the population is heterogeneous and contains underlying subgroups. However, an important
question remains: Are the clustering results meaningful or pure artifacts of random sampling? Most
current clustering workflows do not address this important issue.

In the literature, popular pipelines for clustering high-dimensional biomedical data typically fol-
low these steps (Waltman & Van Eck, 2013): (1) Applying dimension reduction methods such as
Principal Component Analysis (PCA) to the data, (2) Implementing clustering algorithms such as
k-nearest neighbors, hierarchical clustering, or k-means (Macqueen, 1967) on the resulting princi-
pal components (PCs), and (3) Deciding the number of clusters by thresholding distances across
clusters. The final number of clusters can also be determined through manual inspection of cluster
stability or variance reduction (Peyvandipour et al., 2020; Tang et al., 2021). However, these ap-
proaches are prone to create spurious clusters even in simple settings. Taking k-means clustering
as an example, the algorithm can separate data drawn from a one-dimensional Gaussian distribution
to distinct clusters with large between-cluster distance. A two-sample t-test also gives significant
p-value between clusters, suggesting that they are different from each other. However, in many ap-
plications, it is not desirable to divide data of a single normal distribution into several clusters, which
may cause false discoveries of biomedical subtypes.

To address this challenge, Liu et al. (2008) proposed a Monte Carlo-based statistical significance
method, SigClust, to evaluate clustering results in high-dimensional data. A key contribution of
their work was the careful consideration of the definition of clusters. Specifically, SigClust adopts
a probabilistic approach, assuming that multiple clusters represent a mixture of Gaussian distribu-
tions, while a single cluster that cannot be further divided approximates a Gaussian distribution. A
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critical step in SigClust involves assessing the separation of clusters by treating the collected data
as if it were drawn from a simple Gaussian distribution (i.e., the null distribution), using a Monte
Carlo approach. To evaluate the separation of clusters, the SigClust uses cluster index (CI), the ratio
of within-cluster variation over the total variation, as the test statistics. Then, SigClust compares
the CI under the null distribution against that of the observed data to obtain a p-value. This allows
for a formal statistical test to determine whether the underlying distribution of the data can be rea-
sonably approximated by a single Gaussian distribution, i.e., one cluster. If the observed CI is not
significantly different from the CI distribution under the null distribution, the SigClust concludes
over-clustering and that the data should not be divided into subgroups. There are several exten-
sions of the original SigClust. Huang et al. (2015) improved the estimation of the null distribution
by introducing soft-thresholding of the covariance matrix estimation. Kimes et al. (2017) extended
SigClust to hierarchical clustering, and Grabski et al. (2023) further adapted it for scRNA data. Most
recently, Shen et al. (2024) generalized SigClust to clustering in the reduced multi-dimensional scal-
ing (MDS) space.

Since the SigClust was introduced by Liu et al. (2008), it has been widely applied in various biomed-
ical research problems, including cancer subtype identification (TCGA et al., 2012; Agrawal et al.,
2014), cell type discovery (Boldog et al., 2018), and gene expression network analysis (Lee et al.,
2021; Garcia-Recio et al., 2023) However, the significance of clustering for count data has not been
thoroughly established. Recently, Grabski et al. (2023) adapted SigClust for scRNA counts by
replacing the Gaussian null distribution in the original SigClust with the Poisson log-multivariate
normal (log-MVN) distribution (Aitchison & Ho, 1989). Although this approach has successfully
refined cell-type annotations, the presumed null distribution is difficult to estimate due to the high-
dimensional nature of such data, leading to potential low power issues. Furthermore, this method
is specifically designed for scRNA data and is not easily generalizable to other types of count data,
such as binary data. Unlike the multivariate Gaussian distribution, the estimation of count data
in high-dimensional spaces is often challenging, further complicating the original SigClust frame-
work. Other methods for assessing clustering significance, including previous works of McShane
et al. (2002), Maitra et al. (2012), Chakravarti et al. (2019), Chen & Witten (2023), and Gao et al.
(2024) are not specifically designed for count data.

In this article, we propose a novel SigClust workflow for high-dimensional count data using the
deviance-based PCA (DEV-PCA) space (Townes et al., 2019), namely SigClust-DEV. Deviance-
based PCA is a powerful tool within generalized PCA approaches (Collins et al., 2002; Lee et al.,
2010; Landgraf & Lee, 2020a;b), which are nonlinear dimension reduction methods that project data
from the exponential family into the natural parameter space. The core idea of generalized PCA is
to preserve the structure of heterogeneous natural parameters, which aligns well with the mixture
definition of clusters used in SigClust. As mentioned earlier, current workflows for clustering count
data rarely apply clustering algorithms directly on the discrete distribution space. Instead, they first
project the count data into a latent space before performing clustering. Inspired by the work of
Shen et al. (2024), which performed SigClust in the latent space from MDS, we extend SigClust to
the latent space for count distributions. To improve the robustness of SigClust in latent spaces, we
utilize the relative goodness of fit as the test statistics for SigClust-DEV (Chakravarti et al., 2019).

The rest of the paper is organized as follows. In Section 2, we introduce the related methods and de-
scribe the details of the proposed SigClust-DEV. Next, we investigate the performance of SigClust-
DEV through comprehensive numerical experiments in Section 3. Then we apply SigClust-DEV
to investigate two high-dimensional biomedical data: the scRNA data for Hydra stem cells (Siebert
et al., 2019) and the medical records for cancer patients in Section 4. We conclude the article with
some discussions in Section 5.

2 METHODOLOGY

In this section, we start with the description of SigClust and its variants in Section 2.1. Then we
introduce the generalized PCA for exponential family in Section 2.2. Finally, SigClust-DEV is
introduced in Section 2.3.
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2.1 CLUSTER SIGNIFICANCE FOR MIXTURE OF GAUSSIAN DISTRIBUTIONS

The original SigClust (Liu et al., 2008) tests the null hypothesis that the data come from a unimodal
distribution against a mixture of unimodal distributions i.e., H0 : P ∼ P0 vs. H1 : P ∼ αP1 +
(1− α)P2. The test statistic of this problem is the k-means cluster index, defined as the ratio of the
within-cluster variation to the overall variation,

CI =

∑k
a=1

∑
i∈Ca

∥xi − x̄(a)∥22∑n
i=1∥xi − x̄∥22

,

where Ca is the index set of the a-th cluster, xi denotes the i-th observation, and x̄(a) denotes the
corresponding within-cluster mean. Under the alternative hypothesis, the observations are concen-
trated in each cluster and the the corresponding within-cluster variation tends to be small, leading
to a small cluster index. Conversely, clustering on an unimodal distribution may result in small
between-cluster variation and produce a relatively large cluster index.

Note that if P0 is not specified, the null distribution of CI is intractable. Therefore, SigClust assumes
that P0 is simply Gaussian, and then adopts a Monte Carlo procedure to iteratively generate P̂0

and estimate the empirical distribution of CI . Specifically, it first estimates the null distribution
as N (0, Σ̂n) , where the mean component is set to 0 since CI is invariant across locations, and
Σ̂n is the estimated covariance matrix of the original data. Then it draws n samples from the null
distribution for Nsim times. Finally, the empirical distribution of CI can be estimated by applying
k-means clustering on those generated null samples. The significance of clusters is assessed by the
empirical p-value:

p =
#{CIm : CIm ≤ CI}

Nsim
,

where CIm is the cluster index evaluated on the m-th batch of generated null samples. Interest-
ingly, although the original SigClust exclusively considers the Gaussian mixtures, CI measures the
separation of clusters instead of the normality of the data. The Gaussian assumption is only used
to approximate the null distribution of CI , and the CI of a single Gaussian distribution is usu-
ally a robust yet conservative reference for many other continuous unimodal distributions, such as
t-distribution and χ2-distribution (Shen et al., 2024).

A critical challenge of the original SigClust is that the null covariance Σ̂n may not be accurately
estimated under the high-dimensional settings. Although hard-thresholding and soft-thresholding
has been used to improve the estimate of covariance matrix (Liu et al., 2008; Huang et al., 2015),
SigClust can still suffer from low power due to the high dimensionality (Chakravarti et al., 2019).
This may lead to conservative Type-I error and low power for SigClust. In contrast, MDS-based
SigClust was proposed to avoid estimating the high-dimensional covariance matrix by projecting
the original data into a low-dimensional space using MDS (Shen et al., 2024). Since the resulting
MDS-space preserves the pairwise distance of the original data, the clustering structure can also be
reserved (Abbe et al., 2022; Little et al., 2023). Therefore, after performing dimension reduction,
results from both SigClust and distance-based clustering algorithms still align with those in the orig-
inal data space. In practice, MDS finds a low-dimensional representation Y of a high-dimensional
matrix X by minimizing the following reconstruction error:

σr(Y) =
∑
i,j

(dij − δij)
2, (1)

where dij = d(xi,xj) and δij = d(yi,yj). When the distance metric d is the Euclidean distance,
i.e., d(·) = ∥·∥2, MDS is equivalent to the standard PCA (Mead, 1992; Borg & Groenen, 2007).
Although PCA does not explicitly require the original data to be Gaussian, its reconstruction error
implicitly maximizes the multivariate Gaussian likelihood of xi ∼ N (µ+Vui, σ

2Ip×p), where µ
denotes the mean vector, V = [v1, ...,vp]

T consists of an orthogonal basis in Rq called loadings,
ui’s are the linear combinations of the loadings (i.e., principal components), defined as ui = VTxi,
and σ2 is the known variance. When the data are drawn from the Gaussian mixtures, the cluster
structure can be recovered by learning the low-dimensional embedding U = [u1, ...,un]

T . How-
ever, when the data are drawn from some discrete distribution, the Euclidean MDS-space may fail
to describe the cluster structure, resulting in undesirable clustering results.
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2.2 GENERALIZED PCA FOR EXPONENTIAL FAMILY

To obtain the representation of PCA for more general distributions, especially for count data, it
is desirable to extend the standard PCA from the Gaussian distribution to the exponential family,
analogous to the generalization of linear models to generalized linear models (GLM). Exponential
family includes a large variaty of discrete distributions, including Binomial distribution, Poisson dis-
tribution, and Multinomial distribution, sufficient for modeling common count data for biomedical
research.

Using the probabilistic interpretation of PCA, Collins et al. (2002) developed generalized PCA.
Similar to the development of GLM, generalized PCA maximizes the likelihood of exponential
family,

min
{θij},ϕ

∏
i,j

exp

{
ϕ[xijθij − b(θij)− c(xij)]−

1

2
s(xij , ϕ)

}
, (2)

with constraint that requires the natural parameter to be embeded in a low-dimensional space, i.e.,
θij = µj + uT

i vj . In other words, instead of preserving the pairwise Euclidean distance of the
original data X, generalized PCA approximates the canonical parameter matrix Θ = [θij ]n×p by
the matrix 1nµ

T + UVT from the linear subspace of Rq , where U and V are n × q and p × q
matrices. Returning to the problem of clustering, if the data follow a single count distribution in the
exponential family, the natural parameter lies in a one-dimensional latent space, i.e., Θ = 1nµ

T .
Hence, the principal components U simply represent the noisy residuals of the natural parameters,
which do not exhibit any cluster pattern by definition. In contrast, if the data follow a mixture of
count distributions, the principal components U will learn the latent structure of the data and be well
separated across clusters.

The optimization problem of generalized PCA (2) is usually challenging and may lead to unstable
results (Lee et al., 2010; Townes et al., 2019; Landgraf & Lee, 2020b). Due to its computational
issue, Townes et al. (2019) developed a two-step approximate algorithm, deviance PCA. Deviance
PCA first partially optimizes µ by fitting a GLM to each column of X. Specifically, assuming that
each column of data follows a distribution from the exponential family with unknown parameters
{θj , ϕ}, this step computes the maximum likelihood estimators (MLEs) of those parameters and sets
µ̂ = (θ̂1, ..., θ̂p)

T . Next, deviance PCA computes a deviance matrix D with elements defined by:

Dij = sign(xij − θ̂j)

√
2
[
l(xij , ϕ̂)− l(θ̂j , ϕ̂)

]
, (3)

where l(θ, ϕ) denotes the log-likelihood for an entry of X. This matrix approximates the canonical
parameter matrix Θ adjusted by the column-wise mean µ̂. Finally, the principal components Û and
the loadings V̂ are obtained by performing PCA on the deviance matrix. Notably, deviance-PCA
can also be viewed as a version of MDS that preserves the pairwise distance of the deviance matrix
D.

2.3 CLUSTER SIGNIFICANCE FOR COUNT DATA

To assess the clustering signifiance for count data, an intuitive approach is to replace the assump-
tion on P0 from a single Gaussian distribution with a specific count distribution, such as Poisson
distribution, and then replace the clustering algorithm from k-means to the generalized PCA-based
clustering. For example, scSHC proposed by Grabski et al. (2023) assumes that the null distribu-
tion is a Poisson log-MVN distribution for scRNA data and uses generalized PCA for clustering.
However, as mentioned above, estimation of the null distribution, especially for the covariance ma-
trix, may be inaccurate due to the high-dimensionality. Moreover, the Poisson log-MVN model is
too restrictive for scRNA data and not applicable for more general count distributions. In addition,
parametrization of general high-dimensional count data is also challenging.

To address these challenges, we propose a novel approach to compute the significance of clusters for
distributions from the exponential family, including Gaussian, Poisson, and Binomial distributions.
Instead of directly estimating the multivariate count distribution as proposed by Grabski et al. (2023),
we propose to first map the original data into a moderate dimensional latent space by generalized
PCA (denoted as Z), and then calculate the significance of clusters on the latent space using MDS-
based SigClust (detailed in Appendix A, also denoting the data in the MDS-space as Y).
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Chakravarti et al. (2019) pointed out that the usage of CI in the original SigClust only focuses on
the null distribution. As a result, the test may not be very powerful in certain situations. Therefore,
we utilize the relative goodness of fit as the test statistic. The basic idea is to test whether a mixture
of Gaussian distributions better fits the data than a single Gaussian distribution. If the data are not
Gaussian but with no clusters, the null distribution of CI will be affected. In contrast, in terms of
relative goodness of fit, a single Gaussian distribution can be a better fit than a mixture of Gaus-
sian distributions when there are no clusters. Specifically, we compare the Kullback-Leibler (KL)
divergence of the latent data distribution P and a single Gaussian distribution P̂0 fitted on the data
against a Gaussian mixture model α̂P̂1 + (1 − α̂)P̂2 fitted on the data. The test is to see whether
H0 : T := DKL(P ||P̂0) −DKL(P ||α̂P̂1 + (1 − α̂)P̂2) ≤ 0. Under the null hypothesis, the latent
data distribution can be better approximated by a single Gaussian distribution than a Gaussian mix-
ture model, therefore T < 0. Conversely, under the alternative assumption, the latent distribution
may be better approximated by a mixture of Gaussian distributions, hence T > 0. To estimate T ,
the following test statistics can be used:

T̄ =
1

n

n∑
i=1

Ti :=
1

n

n∑
i=1

log

(
α̂P̂1(Yi) + (1− α̂)P̂2(Yi)

P̂0(Yi)

)
, (4)

where Yi is the i-th observation in the low-dimensional latent space. The null distribution P̂0 is
estimated using an overall Gaussian fit, and the alternative distributions P̂1 and P̂2 are fitted by the
observations assigned to each cluster using separate Gaussian fits. Note that T̄ is asymptotically
normal conditioned on α̂, P̂0, P̂1, and P̂2. Therefore, in practice, we adopt a cross-fitting strategy
by fitting the Gaussian mixtures on part of the observations and computing T̄ on the rest of the data.
In this way, a formal statistical test can be derived. Another approach is to use nonparametric tests,
such as sign test, to evaluate if the median of Ti’s is larger than 0. Hence, the asymptotic normality
of T̄ is not required. Our proposed SigClust-DEV is summarized in Algorithm 1. In this paper,
we use the nonparametric test to derive p-values. As a remark, we would like to point out that
the relative goodness of fit is not suitable for high-dimensional data due to the need of estimating
Gaussian mixture components. However, since SigClust-DEV works in the low-dimensional MDS
space, relative goodness of fit can be performed effectively.

Algorithm 1 SigClust-DEV
1. Set the dimension of generalized/deviance PCA space s and the dimension of MDS space t.
2. Obtain the latent variables Zn×s by solving (2) or (3).
3. Obtain the MDS matrix Yn×t from the dissimilarity matrix Dn×n of Zn×s by solving (1).
4. Randomly split the data into a training set T and a validation set V.
5. Fit P̂0, P̂1 and P̂2 on the training set. Compute Ti, i ∈ V by equation (4).
6. Perform sign test or two-sample t-test to test if T < 0.

3 NUMERICAL EXPERIMENTS

Data Generation To evaluate the performance of SigClust-DEV, we conduct comprehensive
simulation studies with observations generated from Bernoulli, Poisson, Poisson log-MVN, and
Multinomial distributions. The parameter settings can be found in Appendix B. Notably, Poisson
log-MVN and Multinomial distributions are commonly used to model the zero-inflated and over-
dispersed scRNA data (Townes et al., 2019; Grabski et al., 2023). The null distribution is generated
by one of the above distributions with fixed parameters, while the alternative distribution includes
the mixture of distributions with different parameters. To investigate the impact of sample size, we
vary the number of observations in n ∈ {100, 1000, 5000}, with the number of variables fixed at
p = 1000.

Evaluation Metrics We compare the empirical distribution of p-values with the uniform distribu-
tion. Under the null distribution where the data are unimodal, the empirical distribution of p-values
is expected to be close to the uniform distribution on [0, 1]. Conversely, if the data are multimodal,
the empirical distribution of p-values should be close to 0. To show the advantage of SigClust-DEV,
we include the existing SigClust using hard-thresholding and soft-thresholding (SigClust-Hard and
SigClust-Soft), MDS-based SigClust (SigClust-MDS), and scSHC for comparison.
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Simulation results for Bernoulli distribution

Figure 1: Empirical distributions of p-values from SigClust methods under simulation across 100
repetitions. In each panel, a mixture of two Bernoulli distributions is generated, where a represents
the variation between the two distributions (e.g., a = 0 indicates no cluster structure). SigClust-DEV
performs best under both null and alternative hypotheses. The scSHC fails to produce p-values under
the binary settings due to issues related to covariance estimation.

Results for Simulation As shown in the empirical distributions of p-values in Figure 1, SigClust-
MDS exhibits inflated Type-I error rates under the null hypothesis across all sample settings, while
scSHC is not applicable to binary data. In contrast, SigClust-Soft, SigClust-Hard, and SigClust-
DEV effectively control the Type-I error rate under the null. Notably, the empirical p-value distri-
bution of SigClust-DEV aligns closely with the diagonal, while the other methods tend to produce
conservative p-values. Under the alternative hypothesis, the p-value distributions of SigClust-MDS
and SigClust-DEV shift rapidly toward the upper-left corner, demonstrating greater statistical power
compared to other methods, particularly when the sample size is small (n = 100). Additionally,
SigClust-Soft and SigClust-Hard consistently fail to reject the null hypothesis, even when the data
exhibit a clear cluster structure. The results for Poisson distribution are similar and are left in Ap-
pendix B.

Apart from its strong performance in the aforementioned distributions, SigClust-DEV is more pow-
erful when the data distribution deviates from the exponential family, as seen in genomic datasets.
Following Grabski et al. (2023), we assess the performance of SigClust-DEV for cell-type anno-
tation using scRNA data modeled by Poisson log-MVN models. As shown in Figure 2, classical
SigClust methods, which assume the data follow a Gaussian mixture, fail to provide reliable results.
Specifically, SigClust-MDS does not maintain the correct statistical size under the null hypothesis,
while SigClust-Soft and SigClust-Hard fail to reject the null under the alternative hypothesis. In con-
trast, SigClust-DEV and scSHC effectively detect false clusters, reducing the risk of over-clustering.
However, scSHC exhibits limited power under the alternative hypothesis, becoming overly conser-
vative when the sample size is small (n = 100) or the differences between clusters are modest
(a = 0.4). Compared to SigClust-DEV, scSHC may miss novel cell types in biomedical research.

The multinomial distribution has also been used to model scRNA data from multiple libraries
(Townes et al., 2019). Accordingly, we simulate unique molecular identifiers (UMIs) for one or
two cell types across two libraries using a multinomial distribution. Figure 3 illustrates the per-
formance of different SigClust methods in this scenario. Classical SigClust methods are misled
by library effects, leading to false identification of new cell types when only one true cell type is
present. Although scSHC is designed for multi-batch scRNA counts, it struggles to differentiate
two cell types, sometimes missing novel cell types. This limited power highlights the constraints
of scSHC’s strong parametric assumptions. In contrast, SigClust-DEV effectively mitigates over-
clustering while retaining its ability to discover new populations.
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Simulation results for Poisson Log−Normal distribution

Figure 2: Empirical distributions of p-values from SigClust methods under simulation across 100
repetitions. In each panel, a mixture of two Poisson log-MVN distributions is generated, where a
represents the variation between the two distributions (e.g., a = 0 indicates no cluster structure).
SigClust-DEV performs best under both null and alternative hypotheses.
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Simulation results for Multinomial distribution

Figure 3: Empirical distributions of p-values from SigClust methods under simulation across 100
repetitions. In each panel, a mixture of two Multinomial distributions from two libraries is generated,
where a represents the variation between the two distributions (e.g., a = 0 indicates no cluster
structure). SigClust-DEV performs best under both null and alternative hypotheses.
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4 REAL DATA APPLICATIONS

In this section, we apply our proposed SigClust-DEV to two real datasets: Hydra scRNA data in
Section 4.1 and EHR data in Section 4.2.

4.1 ANALYZING STEM CELL DIFFERENTIATION IN HYDRA

Hydra Data Description The cnidarian polyp Hydra continuously self-renews and can regenerate
its entire body from a small fragment of tissue. To investigate the molecular diversity of Hydra cells
and the underlying transcriptional programs, Siebert et al. (2019) generated 24,985 Hydra single-cell
transcriptomes from six libraries. Four libraries were generated using the original Drop-seq beads,
while the other two libraries were generated using R&D beads. Specifically, Hydra consists of
three cell lineages – endodermal epithelial, ectodermal epithelial, and interstitial – and each lineage
is supported by its own stem cell population (Bosch et al., 2010). Epithelial stem cells further
differentiate to build the foot (basal disk and peduncle) at the aboral end, body column, and the
hypostome and tentacles at the oral end. Gene expression in these cells is constantly changing based
on their positional context.

In this study, we investigate the differential gene expression of epithelial stem cells in Hydra with re-
spect to their positions. Siebert et al. (2019) classified epithelial cells into six sub-populations: basal
disk, peduncle, body column, hypostome, tentacles, and battery cells. However, their clustering
results using Seurat (Butler et al., 2018) may not fully capture the biological distinctions between
these populations. To address this, we need to answer the following questions:

1. Is the distribution of gene expression within a pre-identified cluster homogeneous?

2. Are the gene expression profiles of stem cells from the identified clusters significantly
different from one another, and can any of these clusters be merged?

Specifically, we focus on the ectodermal cell lineage, which have two major libraries coded as 02
and 11 and five cell clusters of body column, peduncle, head/hypostome, battery cell, and basal disk.
To evaluate the performance of SigClust-DEV and other comparison methods, we apply them for
cells (i) from one single cluster, (ii) from two clusters. It is expected that SigClust produces large p-
values for (i) and produces small p-values for (ii). Furthermore, since SigClust-Hard, SigClust-Soft,
and SigClust-MDS do not account for the batch effect, for fair comparison, we also implemented
these methods for cells in each library. Remarkably, body columns and battery cells are manually
merged from multiple clusters, while the other clusters are from the output of clustering algorithm
in Seurat (Butler et al., 2018).

Results for Hydra Data Overall, SigClust-DEV and scSHC produce the most reasonable p-
values. For the first question, we examine the p-values for cells from a single cell type (see Figure
4). SigClust-DEV and scSHC identify most of the annotated clusters coming from a unimodal count
distribution except for battery cells, well-aligned with results in Siebert et al. (2019). On the other
hand, although the original results merge two subclusters of battery cells, their gene expressions
are evidently heterogeneous across the subclusters in Siebert et al. (2019)’s visualization using t-
distributed stochastic neighbor embedding (t-SNE, Van der Maaten & Hinton (2008)). In contrast,
SigClust-Soft, SigClust-MDS, and SigClust-Hard fail to preserve the size of testing and keeps re-
jecting the null hypothesis due to the batch effect. On the other hand, the significance of clustering
seems to be inconsistent across libraries. For cells in library 11, SigClust-Soft and SigClust-Hard
identify body column, peduncle, and basal disk as a single cluster, while suggesting battery cells
and hypostome exist meaningful subgroups. However. for cells in library 2, they keep rejecting the
null hypotheses for all cell types.

For the second question, we examine the clustering significance p-values for cells from multiple
cell types (see Figure 4). The results of SigClust-DEV show that all mixtures of cell types are
significantly separated, which well aligns with the manual annotations. In contrast, scSHC merges
three cell types into one: body column, peduncle, and hypostome. Although we highlight that the
biological groundtruth may be slightly different from the annotations, it is important to note that
the molecular difference between Hydra’s body column and head has been widely observed for a
long time (Holstein et al., 1991). Therefore, the results from scSHC may be an artifact of its power
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Figure 4: Clustering significance p-values for ectodermal epithelial cells in Hydra. The diagonal
panels present the significance of one cell type, and the upper-right panels present the significance
of multiple cell types. Since SigClust-Hard, SigClust-Soft, and SigClust-MDS do not account for
the batch effect, for fair comparison, we also implemented these methods for cells in each library.
SigClust-DEV and scSHC preserve the size under null distributions in most cases, and SigClust-
DEV is more powerful than scSHC under the alternative in two cases on the first row.
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Figure 5: Treatment assignments for head-and-neck cancer patients using EHR. Each point rep-
resents the two-dimensional embedding of a patient’s medical profile from t-SNE. (a) Clustering
results using hierarchical clustering and SigClust-DEV on EHR data. (b) Patient subgroups strati-
fied by chemotherapy drug usage. For patients who received multiple chemotherapy drugs, one was
randomly assigned. (c) Patient subgroups stratified by antibiotic usage. For patients administered
multiple antibiotics, one was randomly assigned.

issue. For other SigClust methods, we mainly focus on their results in library 11 due to their failure
in statistical size in the other library. Interestingly, all these methods try to merge other cell types
into the body column, including the battery cells, which contradicts with their previous findings that
deny the homogeneity of their gene expression.
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4.2 LEARNING LATENT MEDICAL GROUP STRUCTURE USING EHR

EHR Data Description The dataset consists of medical histories from 7,284 head-and-neck can-
cer patients from a university hospital. After excluding patients with no records of using chemother-
apy drugs or antibiotics, we are left with 2,203 patients and 973 different types of medications. This
dataset, as a 2,203 by 973 matrix, allows for the comparison of the effectiveness of various treat-
ments for head-and-neck cancer. However, the large number of medications presents a significant
challenge. To address this, we propose applying hierarchical clustering and SigClust-DEV to this
data matrix of medicine counts, to identify latent treatment patterns, i.e., subgroups of patients using
similar medications.

Results for EHR Data The combination of hierarchical clustering and SigClust-DEV reveals dis-
tinct patterns in drug usage among head-and-neck cancer patients (Figure 5a). Notably, it preserves
patient subgroups stratified by the use of chemotherapy drugs and antibiotics (Figures 5b, c). Pa-
tients with less severe tumors, who do not undergo chemotherapy, are grouped into clusters 1, 8,
and 9 in Figure 5a, highlighting the heterogeneity in drug usage among patients with benign tu-
mors. Interestingly, the primary distinction between cluster 1 and clusters 8/9 appears to be the
use of antibiotics, such as Clindamycin. In contrast, most patients undergoing chemotherapy are
administered cisplatin, which corresponds to clusters 2, 4, 6, and 7. For patients that cisplatin is un-
suitable, alternative treatments—such as cetuximab, carboplatin, and paclitaxel—are typically used
in combination, and these correspond to cluster 3.

5 DISCUSSION

In this article, we propose a novel deviance-based SigClust method for testing the statistical sig-
nificance of clustering for high-dimensional count data. Through learning the representation of the
natural parameters of the count, our method avoids the estimation of the high-dimensional covari-
ance matrix as in the original SigClust. Furthermore, to relax the requirement for Gaussian latent
space, we test the relative goodness of fit between a single Gaussian distribution and Gaussian mix-
tures. This extension of SigClust makes it more broadly applicable in biomedical research.

There are several open questions for future research. Although we demonstrate the effectiveness
of SigClust-DEV empirically, an interesting direction is to derive the theoretical conditions for the
latent space properties. For instance, we observe that dimension reduction approaches like t-SNE
can create spurious clusters by separating data from one single distribution, therefore their latent
space is not suitable for SigClust. Another direction is to combine SigClust-DEV with hierarchical
clustering to obtain more structured subgroup identification.
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Baka, Sándor Bordé, Jennie L Close, Francisco Diez-Fuertes, Song-Lin Ding, et al. Transcrip-
tomic and morphophysiological evidence for a specialized human cortical gabaergic cell type.
Nature neuroscience, 21(9):1185–1195, 2018.

Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media, 2007.

Thomas C. G. Bosch, Friederike Anton-Erxleben, Georg Hemmrich, and Konstantin Khalturin. The
hydra polyp: Nothing but an active stem cell community. Development, Growth & Differentiation,
52(1):15–25, 2010.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating
single-cell transcriptomic data across different conditions, technologies, and species. Nature
biotechnology, 36(5):411–420, 2018.

Purvasha Chakravarti, Sivaraman Balakrishnan, and Larry Wasserman. Gaussian mixture clustering
using relative tests of fit. arXiv preprint arXiv:1910.02566, 2019.

Yiqun T Chen and Daniela M Witten. Selective inference for k-means clustering. Journal of Machine
Learning Research, 24(152):1–41, 2023.

Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. A generalization of principal component
analysis to the exponential family. In T. G. Dietterich, S. Becker, and Z. Ghahramani (eds.),
Advances in Neural Information Processing Systems 14, pp. 617–624. The MIT Press, 2002.

Lucy L Gao, Jacob Bien, and Daniela Witten. Selective inference for hierarchical clustering. Journal
of the American Statistical Association, 119(545):332–342, 2024.

Susana Garcia-Recio, Toshinori Hinoue, Gregory L. Wheeler, Benjamin J. Kelly, Ana C. Garrido-
Castro, et al. Multiomics in primary and metastatic breast tumors from the aurora us network
finds microenvironment and epigenetic drivers of metastasis. Nature Cancer, 4:128–147, 2023.

Isabella N Grabski, Kelly Street, and Rafael A Irizarry. Significance analysis for clustering with
single-cell RNA-sequencing data. Nature Methods, 20(8):1196–1202, 2023.

Thomas W. Holstein, Engelbert Hobmayer, and Charles N. David. Pattern of epithelial cell cycling
in hydra. Developmental Biology, 148(2):602–611, 1991. ISSN 0012-1606.

Hanwen Huang, Yufeng Liu, Ming Yuan, and JS Marron. Statistical significance of clustering using
soft thresholding. Journal of Computational and Graphical Statistics, 24(4):975–993, 2015.

Patrick K Kimes, Yufeng Liu, David Neil Hayes, and JS Marron. Statistical significance for hierar-
chical clustering. Biometrics, 73(3):811–821, 2017.

Andrew J Landgraf and Yoonkyung Lee. Generalized principal component analysis: Projection of
saturated model parameters. Technometrics, 62(4):459–472, 2020a.

Andrew J Landgraf and Yoonkyung Lee. Dimensionality reduction for binary data through the
projection of natural parameters. Journal of Multivariate Analysis, 180, 2020b. Article 104668.

Robin D. Lee, Sarah A. Munro, Todd P. Knutson, Rebecca S. LaRue, Lynn M. Heltemes-Harris, and
Michael A. Farrar. Single-cell analysis identifies dynamic gene expression networks that govern
b cell development and transformation. Nature Communications, 12(1):6843, 2021.

Seokho Lee, Jianhua Z Huang, and Jianhua Hu. Sparse logistic principal components analysis for
binary data. The Annals of Applied Statistics, 4(3), 2010.

Anna Little, Yuying Xie, and Qiang Sun. An analysis of classical multidimensional scaling with
applications to clustering. Information and Inference: A Journal of the IMA, 12(1):72–112, 2023.

Yufeng Liu, David N Hayes, Andrew Nobel, and JS Marron. Statistical significance of clustering
for high-dimension, low–sample size data. Journal of the American Statistical Association, 103
(483):1281–1293, 2008.

J Macqueen. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of
California Press, 1967.

Ranjan Maitra, Volodymyr Melnykov, and Soumendra N Lahiri. Bootstrapping for significance of
compact clusters in multidimensional datasets. Journal of the American Statistical Association,
107(497):378–392, 2012.

Lisa M McShane, Michael D Radmacher, Boris Freidlin, Ren Yu, Ming-Chung Li, and Richard
Simon. Methods for assessing reproducibility of clustering patterns observed in analyses of mi-
croarray data. Bioinformatics, 18(11):1462–1469, 2002.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Al Mead. Review of the development of multidimensional scaling methods. Journal of the Royal
Statistical Society: Series D (The Statistician), 41(1):27–39, 1992.

Azam Peyvandipour, Adib Shafi, Nafiseh Saberian, and Sorin Draghici. Identification of cell types
from single cell data using stable clustering. Scientific reports, 10(1):12349, 2020.

Hui Shen, Shankar Bhamidi, and Yufeng Liu. Statistical significance of clustering with multidimen-
sional scaling. Journal of Computational and Graphical Statistics, 33(1):219–230, 2024.

Stefan Siebert, Jeffrey A Farrell, Jack F Cazet, Yashodara Abeykoon, Abby S Primack, Christine E
Schnitzler, and Celina E Juliano. Stem cell differentiation trajectories in hydra resolved at single-
cell resolution. Science, 365(6451):eaav9314, 2019.

Ming Tang, Yasin Kaymaz, Brandon L Logeman, Stephen Eichhorn, Zhengzheng S Liang, Catherine
Dulac, and Timothy B Sackton. Evaluating single-cell cluster stability using the jaccard similarity
index. Bioinformatics, 37(15):2212–2214, 2021.

TCGA et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489
(7417):519, 2012.

F William Townes, Stephanie C Hicks, Martin J Aryee, and Rafael A Irizarry. Feature selection and
dimension reduction for single-cell RNA-seq based on a multinomial model. Genome Biology,
20(1):295, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ludo Waltman and Nees Jan Van Eck. A smart local moving algorithm for large-scale modularity-
based community detection. The European physical journal B, 86:1–14, 2013.

A METHOD DETAILS

CI-Based SigClust on Generalized PCA Space To demonstrate the sensitivity of CI-based Sig-
Clust to its Gaussian assumption, we also implemented Algorithm 2. The dimension reduction step
is the same as SigClust-DEV, while the test statistic is replaced by CI .

Algorithm 2 CI-based SigClust on the Generalized/Deviance PCA Space (SigClustCI-DEV)
1. Set the dimension of generalized/deviance PCA space s and the dimension of MDS space t.
2. Obtain the latent variables Z = [z1, ..., zs] by solving (2) or (3).
3. Obtain the MDS matrix Y = [y1, ...,yt] from the dissimilarity matrix D of Z by solving (1).
4. Implement the k-means clustering on Y and compute the CI .
5. Estimate the sample covariance Σ̂Y of Y. Generate samples from N (0, Σ̂Y ).
6. Perform step 2-5 on the generated samples.
7. Repeat step 5 and 6 for Nsim times. Obtain the empirical distribution of CIs.
8. Compute the p-value using the empirical distribution.

Connection between CI and Relative Goodness of Fit In this section, we show that CI is ap-
proximately equivalent to a special test of relative goodness of fit with H0 : P ∼ P0, H1 : P ∼
1
k

∑k
a=1 Pa, where Pa ∼ N (µ0, σ

2Ip×p) with σ2 known and small enough. Notice that CI is
equivalent to the ward linkage, defined as:

CIW =
1

n

n∑
i=1

(
∥xi − x̄∥22 − min

a=1,...,k
∥xi − x̄(a)∥22

)
=

1

n

n∑
i=1

A(xi)−B(xi).

We first show the relationship between A(xi) and log P̂0(xi), i.e., the fit under the null hypothesis.

A(xi) = −2σ2 log

(
1

(2πσ2)
p
2

exp

{
− 1

2σ2
∥xi − x̄∥22

})
− pσ2 log(2πσ2)

= −2σ2 log P̂0(xi)− pσ2 log(2πσ2).
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Next we show the relationship between B(xi) and the log-likelihood under the alternative hypoth-
esis, log

(
1
k

∑k
a=1 P̂a(xi)

)
. Since the minimization function can be approximated by the log-sum-

exponential function, we have

B(xi) = −2σ2 log

(
k∑

a=1

exp

{
− 1

2σ2
∥xi − x̄(a)∥22

})
+O(2σ2 log k)

= −2σ2 log

(
1

(2πσ2)
p
2 k

k∑
a=1

exp

{
− 1

2σ2
∥xi − x̄(a)∥22

})
− pσ2 log(2πσ2) +O(2σ2 log k)

= −2σ2 log

(
k∑

a=1

1

k
P̂a(xi)

)
− pσ2 log(2πσ2) +O(2σ2 log k).

By combining the results, the ward linkage can be expressed as

CIW =
1

n

n∑
i=1

2σ2

[
log

(
k∑

a=1

1

k
P̂a(xi)

)
− log P̂0(xi)

]
− pσ2 log(2πσ2) +O(2σ2 log k)

= 2σ2T̄ − pσ2 log(2πσ2) +O(2σ2 log k).

For any ϵ > 0, by taking σ2 to small enough, we have CIW ≤ 2σ2T̄ +ϵ. Therefore, CIW is close to
T̄ given the above mentioned model assumption. However, when σ2 is assumed to be too small as in
CIW , the Gaussian mixture in H1 always provides a better fit to the data. Therefore, the expectation
of CIW under the null is larger than 0, and the corresponding null distribution should be estimated
by the Monte Carlo approach in the original SigClust.

Setting of the Latent Space in SigClust-DEV Following Grabski et al. (2023), we utilize the top
30 principal components from generalized PCA for clustering throughout the paper. In line with
Shen et al. (2024), we set the dimensionality of the MDS space to 2 for simulation purposes, while
for real data analysis, we use a dimensionality of 10. In practice, the dimension of the generalized
PCA space s may affect clustering performance and can be adjusted to a larger value as needed.
Similarly, the dimension of the MDS space t may influence the covariance matrix estimation in
SigClust-DEV, and it is recommended to keep t relatively small for optimal results.

B ADDITIONAL DETAILS FOR NUMERICAL EXPERIMENTS

B.1 DATA GENERATION MODEL

Bernoulli Distribution Under the null hypothesis, the data were generated from a Bernoulli dis-
tribution Binomial(1,pd), where pd was sampled from Ud(0, 1). Under the alternative hypothesis,
half of the observations are generated the same way as under the null hypothesis. For the remain-
ing half of the observations, 10% of the elements in pd were resampled from a different uniform
distribution U100(0, 1), introducing the cluster structure.

Poisson Distribution Single multivariate Poisson distributions Poisson(λd) and mixtures of two
Poisson distributions were generated for the null hypothesis and alternative hypothesis, respectively.
Specifically, under the null distribution, λd was sampled from the exponential of N (0, Id×d) and
fixed across samples. Under the null hypothesis, half of the observations are generated the same
way as under the null hypothesis. For the remaining half of the observations, 10% of elements from
λd was further multiplied by exponential of N (0, aI100×100), where a was set to {0.4, 0.8}.

Poisson Log-MVN Distribution Poisson Log-MVN distribution has been widely used to model
counts of scRNA sequences. Similar to the scenario of Poisson distribution, we generated the single-
cell counts (i) under the null hypothesis, i.e., the data followed a Poisson log-MVN(µd, σ

2Id×d);
(ii) under the alternative hypothesis, i.e., the data followed a mixture of Poisson log-MVN. For
simplicity, we set µd = 0d, and σ2 = 1 under the null distribution, while the cluster structure
under the alternative hypothesis was introduced by multiplying the 10% of the elements of µd by
the exponential of a normal distribution N (0, aI100×100), where a was set to {0.4, 0.8}.
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Multinomial Distribution Under the null hypothesis, to simulate the batch effect in scRNA data,
we generated two multinomial distributions with equal sample sizes, denoted as Mult(zb,πd) for
b = 1, 2, where b represents the batch index. The size parameters were set to z1 = 1000 and
z2 = 2000 for each batch, accounting for the batch effect. The probability vectors πd were generated
using the sigmoid(N (0d, 2Id×d)) distribution. Under the alternative hypothesis, we generated four
multinomial distributions with equal sample sizes, forming two batches and two clusters. The batch
effect remained the same as in the null hypothesis. To introduce the cluster effect, we altered 10%
of the elements in πd, which were generated from sigmoid(N (0, aI100×100)) and varied between
clusters.

B.2 ADDITIONAL RESULTS

Simulation Results for Poisson Distribution Figure 6 presents the empirical distributions of p-
values under the null and alternative setting. Under the null setting, an effective test is supposed to
exhibit the empirical distributions of p-values close to the diagonal line. SigClust-DEV, SigClust-
MDS, and scSHC performs best under all scenarios, while SigClust-Soft and SigClust-Hard present
inferior power in three cases.

Comparison between CI and Relative Goodness of Fit Figure 7 presents the empirical dis-
tributions of p-values for CI-based SigClust-DEV in simulation. While CI-based SigClust-DEV
successfully preserves the Type-I error in most settings, it is anti-conservative for Binary data when
n = 100, 500, 1000. The results align with our expectation that CI can be more sensitive to the
possibly non-Gaussian latent space.

Comparison between Generalized PCA space and Deviance PCA space Figure 8 presents the
empirical distributions of p-values for SigClust on the generalized PCA space (SigClust-GLM) in
simulation. The performance of SigClust-GLM is comparable with SigClust-DEV in most cases
with respect to statistical size and power, except for Bernoulli and Multinomial distribution when
n = 100. The inflated Type-I error in such cases may be a result of the algorithm instability of
generalized PCA, as we notice that generalized PCA fails to converge under such cases.
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Figure 6: Empirical distribution of p-values from SigClust methods under simulation across 100
repetitions. In each panel, a mixture of two Poisson distributions was generated, where a represents
the variation between the two distributions (e.g., a = 0 indicates no cluster structure).
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Results for CI−based SigClust−DEV

Figure 7: Empirical distribution of p-values from SigClust-DEV using CI as the test statistic across
100 repetitions. In each panel, a mixture of two distributions of its row was generated, where a
represents the variation between the two distributions (e.g., a = 0 indicates no cluster structure).
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Simulation results for generalized PCA space

Figure 8: Empirical distribution of p-values from SigClust on generalized PCA space (SigClust-
GLM) across 100 repetitions. In each panel, a mixture of two distributions of its row was generated,
where a represents the variation between the two distributions (e.g., a = 0 indicates no cluster
structure). Note that generalized PCA can be unstable and fail to converge for small sample size
such as n = 100.
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