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Abstract

Detecting structural change in dynamic network data has wide-ranging applica-
tions. Existing approaches typically divide the data into time bins, extract net-
work features within each bin, and then compare these features over time. This
introduces an inherent tradeoff between temporal resolution and statistical stabil-
ity of the extracted features. Despite this tradeoff, reminiscent of time–frequency
tradeoffs in signal processing, most methods rely on a fixed temporal resolution.
Choosing an appropriate resolution parameter is typically difficult, and can be
especially problematic in domains like cybersecurity, where anomalous behav-
ior may emerge at multiple time scales. We address this challenge by propos-
ing ANIE (Adaptive Network Intensity Estimation), a multi-resolution frame-
work designed to automatically identify the time scales at which network structure
evolves, enabling the joint detection of both rapid and gradual changes. Modeling
interactions as Poisson processes, our method proceeds in two steps: (1) esti-
mating a low-dimensional subspace of node behavior, and (2) deriving a set of
novel empirical affinity coefficients that quantify change in interaction intensity
between latent factors and support statistical testing for structural change across
time scales. We provide theoretical guarantees for subspace estimation and the
asymptotic behavior of the affinity coefficients, enabling model-based change de-
tection. Experiments on synthetic networks show that ANIE adapts to the ap-
propriate time resolution, and is able to capture sharp structural changes while
remaining robust to noise. Furthermore, applications to real-world data showcase
the practical benefits of ANIE ’s multiresolution approach to detecting structural
change over fixed resolution methods. An open-source implementation of the
method is available at https://github.com/aida-ugent/anie.

1 Introduction

Understanding dynamic networks, namely datasets taking the form of sequences of interaction
events (u, v, t) between nodes u and v at timestamp t has wide-ranging applications in domains such
as contact tracing[16], cybersecurity[34] and urban mobility studies [3, 21]. Despite this domain di-
versity, temporal networks commonly exhibit two fundamental types of structure: cross-sectional
structure, where the network is seen as a graph evolving over time, and longitudinal structure,
where the data at its finest resolution is best modeled as a collection of point processes [33, 30, 29].

At its core, change detection in such networks involves understanding how these two types of struc-
ture interact. However, doing so involves an inherent tradeoff. On one hand, identifying cross-
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sectional structure-such as communities-requires aggregating events over a sufficiently wide time
window to achieve statistical stability. On the other hand, imposing a certain resolution of anal-
ysis may obscure transient events which occur at higher temporal resolutions. This mirrors the
time–frequency tradeoff in signal processing, where narrow time windows reveal high-frequency
details but miss low-frequency trends, and wide windows improve frequency resolution at the cost
of temporal localization.

In practice, the choice of an appropriate time resolution is a challenge which manifests in a variety
of ways, such as selecting the number of timesteps at which to evaluate dynamic node embeddings
[41, 42], or selecting a bandwidth in order to derive smooth temporal signals from the dynamic
network [29]. Often this challenge is resolved by selecting a resolution which seems to correspond
to some characteristic period or frequency derived a priori from domain knowledge [17, 20, 29].
However in applications such as cybersecurity [33, 35, 13], where time-localization of anomalous
event is essential, or more broadly community detection [43], where node behaviors may align at
different resolution levels, such an arbitrary choice of resolution is not satisfactory.

To resolve this paradox, we highlight that cross-sectional structure in real-world networks typically
manifests at several resolution levels simultaneously. For instance in social networks, community
events of a few hours coexist with gradually evolving friendship structures (weeks to months). Sim-
ilarly, in cybersecurity, malicious activity might include both rapid bursts of suspicious connections
and slowly evolving patterns designed to evade detection [35]. On the other hand, in bike-sharing
networks [11], interaction patterns exhibit daily rhythms (commuting), weekly cycles (workday vs.
weekend usage), and seasonal trends (weather effects).

In this paper, we introduce ANIE (Adaptive Network Intensity Estimation), a novel approach for
detecting changes in dynamic networks across multiple temporal resolutions. Our approach takes
inspiration in recent work in multiresolution analysis of point process [7, 45, 14, 12], and more
generally wavelet analysis [28], and adapts them to the network domain.

Contributions In Section 3, we formulate change detection as a statistical signal processing prob-
lem, where the goal is to recover edge-level temporal signals from noisy dynamic network obser-
vations. In Section 4, we present a new statistical method for multi-resolution change detection,
supported by theoretical guarantees. In Section 5, we evaluate our method on both synthetic and
real-world datasets, demonstrating that ANIE outperforms fixed-resolution approaches by effec-
tively capturing changes at multiple time scales in dynamic networks.

2 Related Work

The proposed work lies at the intersection of several fields, which we briefly overview below.

Change Detection in Dynamic Networks The task of understanding the temporal evolution of
dynamic network structure has been approached from various angles. One common approach is
to view it as a dimensionality reduction task where the goal is to construct time-varying statistical
summaries using for instance node embeddings [41, 29], dynamic extensions of spectral clustering
[48, 31, 44, 29], latent space models [41, 42], and tensor factorization methods [25, 39, 49, 2, 17, 46],
which represent temporal structure through time-evolving latent factors. A related line of work
focuses specifically on detecting change points, often in an online setting, by comparing network
summaries across time windows [20, 13]. These methods typically rely on fixed time intervals,
which assumes short-term stationarity. We note that [50] operates in an online setting using an
adapted CUSUM statistic, making direct comparison with our proposed offline method difficult.

Wavelets and Point Process Intensity Estimation Wavelet analysis has been proposed as a prin-
cipled approach to addressing the time–frequency tradeoff in signal processing [28, 47], and has
proven effective in estimating the intensity of single point processes [9, 15, 14, 12, 45, 51, 23],
where key features of the intensity function often appear at multiple resolution levels. To our knowl-
edge, our work is the first to integrate these wavelet-based point process analysis with a low-rank
decomposition of cross-sectional network structure.

Functional Data Analysis Functional Data Analysis (FDA) has been widely used to analyze data
with a continuous time dimension [40], and has been extended to multivariate settings [18]. Recent
work has also adapted FDA to point process observations [37]. This work is the first to explicitly
apply similar techniques to analyzing the temporal structure of dynamic networks.
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3 Multiresolution Change Detection in Dynamic Networks

This section gives some context to our proposed method, by casting the problem of detecting signif-
icant change in dynamic networks as a network intensity estimation problem.

3.1 A Low-Rank Poisson Process Model

The work considers dynamic network data, represented by an ordered sequence of interaction
events E = {(um, vm, tm)}Mm=1, where the m-th event represents an interaction between nodes
um, vm belonging to a set of nodes U ∆

= {1, . . . , N} at time tm, and the timestamps are provided
in increasing order 0 < t1 < . . . < tM < T . We represent this data more concisely using a
matrix of counting measures Y = (Yuv)u,v∈U2 , named the adjacency measure, and defined on
the Borel σ-algebra B(T ) of the time interval T = [0, T ]. For any Borel set I ⊂ T , the element
Yuv(I) =

∫
I dYuv(t) =

∑
t∈Euv

1I(t) ∈ N of the matrix Y(I) counts the number of interactions
between nodes u and v that occurred within time interval I. We model the edge-level interactions as
arising from independent Inhomogeneous Poisson Processes. Mathematically, this means that there
exists a matrix of absolutely continuous intensity measures Λ =

(
I 7→ Λuv(I)

)
u,v

such that for
any Borel set I ⊂ T , the count of interactions between any node pair u, v on I is distributed as
Yuv(I) ∼ Poisson(Λuv(I)). We denote this using the shorthand notation Y ∼ PoissonProcess(Λ).
This work relies critically on a low-rank assumption, where we assume that the interactions between
nodes may be explained by means of a measure of affinity between unobserved latent factors over
time. We formalize this intuition in the following definition.
Definition 3.1 (Common Subspace Independent Processes (COSIP)). A dynamic network Y is said
to follow the COSIP model, i.e. Y ∼ COSIP (U,S) if Y ∼ PoissonProcess(Λ), and for all bore-
lian I ⊂ T , Λ(I) = US(I)U⊤ where U ∈ RN×D is a subspace matrix whose D columns are
orthonormal, S(I) ∈ RD×D is a low-dimensional matrix measure, named the affinity measure, and
D is a latent dimension, or rank of the model.

This model extends the COSIE model from [4] to the continuous time setting. A special case of
COSIP is the Dynamic Stochastic Block Model (DSBM), where U ∈ {0, 1}N×D is a community
assignment matrix, and S(I) specifies interaction rates between blocks. The COSIP model doesn’t
restrict the subspace matrix U to be binary, but assumes that the dynamic network distribution
globally has low-rank. While the model is defined in terms of the measures Λ and S, both of them
are assumed to admit respective densities Λ(t) and S(t) with respect to Lebesgue measure on T ,
such that for any Borel set I ⊂ T , Λ(I) =

∫
I Λ(t)dt and S(I) =

∫
I S(t)dt. We refer to them as

the intensity function and the affinity function respectively.

3.2 Change Detection as an Intensity Estimation Problem

A naive approach to estimating the intensity function Λuv(t) is to use a histogram-based estima-
tor such as Λ̂uv(t) = B

∑B
b=1 1Ib

(t)Yuv(Ib) where {Ib}Bb=1 is a partition of the time interval
[0, T ]. However, such a naive edge-level estimator will tend to reflect not only meaningful structural
changes, but also spurious fluctuations due to sparsity and edge-level randomness. In contrast, under
the COSIP model, the observed data Y is viewed as a noisy observation of a latent intensity mea-
sure Λ, whose density Λ(t) is decomposed into a node-level subspace matrix U and a time-varying
affinity function S(t), and the intensity function is expressed as a sum over pairs of latent factors,
thus borrowing strength across all node pairs:

Λuv(t) =
∑

p,q∈[D]2

Uup Uvq Spq(t).

Crucially, this formulation unifies the two central goals of our work. First, estimating U reveals
the network’s cross-sectional structure—a set of latent factors that capture how nodes align in their
behavior over time. Second, estimating the time-varying affinity S(t) entails the identification of
structural change points corresponding to features—for instance abrupt shifts or singularities—in
the temporal signal S(t). In this way, detecting changes in network structure is naturally framed
as the problem of identifying meaningful temporal features of the affinity function. As discussed
in the introduction, such features often manifest at multiple resolution levels, motivating the use of
wavelets for their detection.
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Figure 1: Visualization of the ANIE approach with the Haar wavelet on a dynamic stochastic block
model: (a) shows the raw interaction data over time; (b) illustrates the intensity gap between intra-
community and inter-community node-pairs; (c) shows the wavelet decomposition of the dynamic
network, with each row representing a time scale and each leaf corresponding to a specific time
location; (d) shows the low-rank approximation of the wavelet coefficients; finally (e) illustrates
the denoising step where statistical thresholding is applied to the coefficients, separating the noise
(bottom coefficients in (d)) from the signal (the top right coefficients in (d)).

4 ANIE : Adaptive Network Intensity Estimation

We now introduce ANIE (Adaptive Network Intensity Estimation), a novel method estimating the
intensity measure of dynamic networks under the COSIP model by detecting significant changes in
the affinity function. The method takes as input a dynamic network represented by its corresponding
adjacency measure Y, and outputs a subspace matrix U and an adaptive intensity estimate Λ̂(t). A
full algorithmic description of the procedure is provided in the appendix.

4.1 Function Spaces and Basis Decomposition

ANIE leverages an orthonormal functional basis {ϕb}Bb=1 of the set of square-integrable functions
L2(T ). For any measure µ on T and function f , we denote by µ(f) =

∫
T f(t)dµ(t) the projection

of µ onto f . When µ admits a density λ(t) that can be decomposed as λ(t) =
∑B

b=1 β
bϕb(t) in this

basis, orthonormality implies that the coefficients can be obtained using projection βb = µ(ϕb). In
particular for a Poisson Process Y with intensity measure µ, the coefficients Y(ϕb) provide unbiased
estimates of βb, specifically E[Y(ϕb)] = βb. This is also valid for the matrix Poisson Process Y
considered in this paper. As such, we denote Λ(ϕb) for the coefficients of the intensity on the basis
and Y(ϕb) for their empirical estimates.

Choice of Basis While any basis of L2(T ) can be used, we illustrate our method using wavelet
basis functions, which are known for their effectiveness in adaptive denoising [45, 28, 15]. For a
non-orthonormal basis {ϕb}Bb=1 spanning L2(T ), we can orthonormalize it using the Gram matrix

G =
(∫

T ϕ
k(t)ϕl(t)dt

)B
k,l=1

. Indeed, defining Φ(t)
∆
= [ϕ1(t), . . . , ϕB(t)]⊤, the rows of the vector
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Φ̃(t)
∆
= G−1/2Φ(t) form an orthonormal basis that can be used directly in our framework. As a

result our proposed method is highly flexible and variants of it can be derived using any functional
bases in L2(T ) used in functional data analysis [40]. For example, orthonormal bases include
the Fourier basis, wavelet bases (Haar, Daubechies) and Legendre polynomials. On the other hand,
non-orthonormal bases include B-splines, natural and cubic splines, classical polynomial bases
(which can be orthonormalized as needed using the previous remark).

Haar Wavelet Basis We use the Haar wavelet basis to illustrate the multi-resolution capabilities
of ANIE . This basis consists of the family {f} ∪ {ψj,k | j ≥ 0, k = 0, . . . , 2j − 1}, where the
scaling function is f(t) = 1[0,1](t) and each ψj,k is a scaled and translated version of the mother
wavelet ψ(t) = 1[0,1/2)(t) − 1[1/2,1](t), given by ψj,k(t) = 2j/2ψ(2jt − k). Here, j controls the
scale (resolution) and k ∈ {0, . . . , 2j − 1} the location for a given scale j. As shown in [45], for a
dyadic interval Ij,k = [2−jk, 2−j(k+1)] of width 2−j , the coefficients Y(ψj,k) measure the scaled
difference in the number of events between its left and right halves:

Y(ψj,k) = 2−j/2
[
Y(Ij+1,2k)− Y(Ij+1,2k+1)

]
.

These coefficients capture changes in the empirical event intensity across scales and locations, re-
sulting in a hierarchy of coefficient matrices as shown on Figure 1. Positive values in these matrices
indicate fewer events in the right subinterval, while negative values indicate more. As commonly
done in wavelet analysis, we use a finite subset of this basis up to a maximum scale J .

Note: Throughout the paper, we use ϕ(b) (indexed by b) to denote a generic basis function. For the
Haar basis, this set includes the scaling function f and all wavelet functions ψj,k with j ≥ 0 and
k ∈ {0, . . . , 2j − 1}, with b serving as a single unified index over them.

4.2 First stage: Low-Rank Decomposition

Basis Decomposition The first step of ANIE decomposes the adjacency measure on the basis
{ϕb}Bb=1, resulting in empirical coefficients: Y(ϕb)

∆
=
∫
T ϕ

b(t)dY(t) =
(∑

τ∈Eu,v
ϕb(τ)

)
u,v

∈

RN×N , where Eu,v is the set of interaction times between nodes u and v. This computation is effi-
cient: for each node pair, we evaluate the basis function at each interaction time and sum the results.
Notably, the resulting coefficient matrices inherit the sparsity of the adjacency measure. Moreover,
by Campbell’s theorem [5], these coefficients are unbiased estimates of the coefficients of the true
intensity: E[Y(ϕb)] = Λ(ϕb).

Global Subspace Estimation The estimation of the subspace U follows closely the UASE [21]
strategy. The empirical coefficients are first arranged into a unfolded matrix

X = [Y(ϕ1)T ∥Y(ϕ2)T ∥ · · · ∥Y(ϕB)T ] ∈ RN×NB

whose rows represent each node’s relational behaviors over time. Despite their high dimensionality,
these behaviors typically exhibit low-dimensional structure due to two alignment factors: cross-
sectional alignment (often reflecting community structure) and longitudinal alignment (reflecting
structure in nodes’ activity patterns). For example, in a social network, nodes may interact with the
same communities but at different times, placing them in related but distinct behavioral subspaces.
To capture these dominant modes of variation, we apply Truncated Singular Value Decomposition
(TSVD) to matrix X, extracting the D singular vectors corresponding to the largest singular values
into a matrix Û ∈ RN×D. As a note, this step may be viewed as a partial Tucker decomposition of
the 3-mode tensor {Yuv(ϕ

b)}, where the first two modes are the node indices and the third mode is
the basis index, namely a SVD of the mode-2 unfolding of the tensor [39]. Under suitable assump-
tions, this subspace estimation procedure is consistent, as formalized in the following theorem.
Theorem 4.1 (Subspace Estimation Consistency ). Suppose that Y ∼ COSIP (U,S) and that
there exists a fixed matrix-function R(t) =

∑B
b=1 C

bϕb(t) ∈ RD×D, and a sparsity factor ρN ≤ 1

satisfying NρN = ω(log3(N)), such that S(t) := ρNR(t). In addition, suppose that

1. The matrix ∆ =
∑B

b=1(C
b)⊤Cb has full rank.

2. The subspace matrix U satisfies the incoherence condition

∥U∥2,∞ = O
(√

log(N)
NρN

)
.
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Then, there exists an orthogonal matrix Q such that

∥ÛQ−U∥2 = OP

(
1√
NρN

)
(1)

A proof of Theorem 4.1 is provided in the appendix.

4.3 Second stage: Denoising through statistical thresholding

The first stage of ANIE outputs an estimated subspace matrix Û ∈ RN×D, which encodes the cross-
sectional structure by representing each node in terms of its projection onto the dominant latent
factors of node behavior. Based on this, it is natural to consider that each pair p, q of these latent
factors will be subject to change over time. This change can be quantified directly by combining
the coefficients of all the node pairs and weighing them by their respective nodes’ affinity with the
latent factors, which we do here:
Definition 4.1 (Empirical affinity coefficients). The empirical affinity coefficients are defined as
the collection of D ×D matrices

Ŝ(ϕb) = ÛT Y(ϕb)Û ∈ RD×D, ∀b ∈ [B]. (2)

The empirical affinity coefficients play a central role in our approach and offer several advan-
tages. First, they have well-defined statistical properties: their expectation is E[Ŝpq(ϕ

b)] =∑
u,v ÛupÛvqΛuv(ϕ

b), and their variance is Var[Ŝpq(ϕ
b)] =

∑
u,v Û

2
upÛ

2
vqΛuv((ϕ

b)2). These
results follow directly from the distributional properties of point process projections [23]. More-
over, when using Haar wavelet functions ϕb = ψjk, they have a straightforward interpretation: each
Ŝpq(ψjk) captures changes in interaction intensity between latent factors p and q at specific scales
and locations. Large values indicate potential structural changes over the support of ψjk. For in-
stance, with the Haar wavelet, positive (respectively negative) coefficients correspond to decreasing
(respectively increasing) interaction affinity between factors p and q over the interval Ij,k. Extreme
values reflect strong structural changes between latent factors. Finally, due to the fact that they bor-
row strength across node pairs, the next theorem shows that they are asymptotically normal under
suitable conditions, enabling statistical testing.
Theorem 4.2 (Asymptotic normality of the empirical affinity coefficients). Suppose that there exists
sequences αN , βN , µN such that for all u, v ∈ [N ], p ∈ [D] and t ∈ T ,

0 < αN ≤ Λuv(t) ≤ βN and Û2
up ≤ µN

N
which satisfy

µ3
N

N

(
βN
αN

)3/2

→ 0 as N → ∞.

Then, the standardized version of the empirical affinity coefficients Ŝpq(ϕ
b) defined in 4.1 converge

to a standard normal distribution as N → ∞. More specifically:

Ŝpq(ϕ
b)− E[Ŝpq(ϕ

b)]√
Var[Ŝpq(ϕb)]

d−→ N (0, 1), as N → ∞. (3)

The proof of Theorem uses the Lyapunov Central Limit Theorem applied to the family of indepen-
dent variables {ÛupÛvqY(ϕb)}u,v for a given b, and is included in the appendix.

Multiple statistical testing for change in the network structure

As a result of Theorem 4.3, the task of identifying changes in the network structure can be formulated
as a multiple statistical testing problem, where the null hypotheses are that the latent factors p and
q are not significantly associated with the wavelet functions ϕb: Hb

p,q = E[Ŝpq(ϕ
b)] = 0. To carry

out these tests, we may define the following Z-scores, by replacing the expectation by 0, and the
variance by its empirical estimate:

Zpq(ϕ
b) =

Ŝpq(ϕ
b)√

Ṽar[Ŝpq(ϕb)]
, where Ṽar[Ŝpq(ϕ

b)] =
∑
u,v

Û2
up Û

2
vq Ŷuv

(
(ϕb)2

)
. (4)
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Under the null hypothesis that E[Ŝpq(ϕ
b)] = 0 (indicating no correlation with ϕb), these Z-scores

follow approximately a standard normal distribution N (0, 1) for large N . This is particularly rele-
vant when using wavelets ϕb = ψjk, as the null hypothesis corresponds to a locally constant intensity
between a pair of factors, p and q, on the support of the wavelet. To determine which coefficients
are statistically significant, we compare |Zpq(ϕ

b)| with a threshold. Since we conduct B ×D ×D
simultaneous tests (one for each coefficient), we must account for multiple comparisons. We control
the False Discovery Rate (FDR) using the Benjamini-Hochberg procedure [8] at a significance level
α (typically 0.05), resulting in a binary significance mask M b

pq ∈ {0, 1}. The final denoised inten-
sity estimate is then constructed using only the coefficients determined to be statistically significant.
We note that there exist more approaches for thresholding wavelet coefficients [24, 15, 45] which
we didn’t explore in this work but could improve the accuracy of the thresholding stage.

4.4 Parameter Selection and Computational Efficiency

The rank D can be determined by examining the scree plot of singular values of the matrix X. In
turn, the choice of significance level α reflects how concervative/agressive the thresholding should
be. A threshold α = 0.0 will lead to a constant signal, since all the detail coefficients will be
classified as noise. Conversely, a threshold α = 1.0 will classify all the coefficients as signal,
leading to a noisy estimate. Typically, α is set to 0.05, as is common in multiple testing scenarios.
However, the choice of α can be adjusted based on the specific application and desired level of
significance. Our method can be made time and memory efficient by leveraging sparsity in three
key ways: (1) coefficients Y(ϕb) naturally inherit the sparsity of the original adjacency measure
Y, (2) SciPy’s sparse SVD implementation can be employed compute dominant singular vectors
without constructing dense matrices, and (3) thresholding operates only on the compact D × D

affinity matrices Ŝ(ϕb) rather than the full N × N matrices Y(ϕb). A timed experiment reporting
computation times for varying numbers of nodes is provided in the appendix. All our experiments
were run on a MacBook Air with a M1 chip and 8GB of RAM.

5 Experiments

The proposed ANIE method is evaluated on two tasks. First, we generate synthetic Erdős-Renyi
(ER) and Stochastic Block Model (SBM) datasets, and measure the performance of our method
in estimating a known network intensity from an observed dynamic network. Second, in order to
demonstrate the practical utility of our method, we apply it to the task of detecting change points in
a real-world dataset of message interactions, and compare our method with two existing methods:
Laplacian Anomaly Detection (LAD) [20] and Tensorsplat [26].

5.1 Intensity Estimation on Synthetic Datasets

Dataset We test our wavelet-based approach on synthetic datasets designed specifically to test tem-
poral adaptivity. We simulate networks with both Erdős-Rényi (ER) and Stochastic Block Model
(SBM) structures, where intensity functions show complex temporal patterns. For ER-blocks, every
node pair shares the same intensity, Λuv(t) = λblocks(t), based on the "blocks" test function from
[15], which features blocks of varying widths. For SBM, we generate a two-community network
with piecewise constant intensities: intra-community intensities are significantly higher than inter-
community ones, except over an interval where they are equal. This setting tests our method’s ability
to detect sharp intensity changes. For the Erdős-Renyi model, we generate various networks with a
number of nodes ranging from 50 to 1000. In contrast for the SBM model, we generate networks
with 50 to 2500 nodes.

Experimental Setting We compare our ANIE-Haar approach against non-adaptive IPP estimators
from [29]. IPP first constructs a naive intensity estimate Λ̃, then applies low-rank denoising Λ̂(t) =

ÛÛT Λ̃(t)ÛÛT . We consider two variants: IPP-KDE, which constructs Λ̃ using kernel density
estimation, and IPP-Hist, which uses histogram-based estimation. Note that IPP-Hist is equivalent
to ANIE with the Haar wavelet without thresholding. We use the Mean Integrated Squared Error

(MISE) as our primary metric: MISE = 1
N2

∑
(u,v)∈[N ]2

∫
T

∣∣∣Λuv(t) − Λ̂uv(t)
∣∣∣2dt. This metric

averages the intensity estimation error over node pairs. In our setting we average the error over
patches of N = 100 nodes (i.e. 1002 node pairs). We report mean and standard error over 10 runs.
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Figure 2: Comparison of intensity estimation methods on ER-blocks and SBM datasets. The first
two rows show the estimated intensity functions for different methods, while the last row shows the
MISE vs. number of nodes for both datasets.

Results The experimental results, summarized in Figure 2 demonstrate two essential advantages of
ANIE . A first notable advantage is multi-scale abilities. As can be seen in Figure 2c that the pro-
posed approach allows capturing perturbations of the underlying intensity which occur at different
temporal resolutions, while staying robust to noise. In contrast, in order to accurately capture the
same perturbations, non-adaptive methods such as IPP-Hist and IPP-RBF pay the price of overfitting
to noise, leading to spurious oscillations in the flat regions of the intensity function, as can be seen in
2b, 2a. A second, related key advantage is sharp change localization: the ANIE approach precisely
identifies structural change points in the empirical affinity coefficients (Figure 2f), while staying
robust to noise. In this setting, the intensity function between node pairs is piecewise constant, with
abrupt changes in the intensity function. Our method effectively captures these changes, while other
methods like IPP-Hist and IPP-RBF require a small bandwidth, and thus overfit to noise, in order to
capture the same changes.

5.2 Case Study: Multi-scale Anomaly Detection on the UCI Messages Dataset

Dataset This experiment evaluates the practical utility of our ANIE method for detecting change-
points in real-world interaction datasets. To this end, we apply ANIE to the UCI Messages dataset,
as done in previous work [20]. This dataset contains 59,835 messages sent among 1,899 users over
a period of 196 days between April and October 2004. Each message interaction is represented as a
directed edge with a weight corresponding to the number of characters in the message.
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Figure 3: Comparison of anomaly detection methods on the UCI dataset. Left column show respec-
tively (a) message count over time, (b) LAD anomaly score [20], and (c) Tensorsplat [26]. Right
column (d) shows the multi-scale anomaly scores from our ANIE method. The two main events
identified in [32] are highlighted with vertical dashed lines.

Experimental Setting We compare our ANIE method against two existing approaches for anomaly
detection in temporal networks. Laplacian Anomaly Detection (LAD) [20] bins the data into tem-
poral snapshots, embeds each graph using its Laplacian eigenvalues, and detects anomalies by mon-
itoring changes in these successive spectral representations. The Tensorsplat [26] anomaly score is
calculated as Tensorsplat(t) = ∥T(t)−T(t− 1)∥2 where T(t) is the the row t of the third matrix
in the PARAFAC decomposition of the fixed-resolution adjacency tensor. In contrast, for a given
scale j the ANIE multi-multiscale anomaly score at scale j is defined as the Frobenius norm of the
2j empirical affinity : for all k = 0, . . . , 2j − 1, Ej(k)

∆
=
∥∥∥Ŝ(ψj,k)

∥∥∥
F

. Using piecewise constant

interpolation, we then convert this discrete time series into a continuous function Ej(t) defined on
the interval [0, 1] which we plot on Figure 3d. We use the Haar Wavelet basis in this example.

Results Figure 3 shows anomaly detection results on the UCI Messages dataset. As can be seen,
ANIE successfully identifies major structural changes in the network, notably at the end of the spring
term (day 60) and the start of the fall term (day 150). We first validate that this second event is not
detectable by simply counting message volume over time. Tensorsplat seems to follow to a great
extent the message count over time. This is likely due to the fact that in the PARAFAC decompo-
sition, the third factor indirectly encodes the interaction rate into the latent activity vectors. Unlike
LAD, which produces a single aggregated anomaly score, ANIE provides multi-resolution scores
that distinguish large-scale structural changes from finer scale temporal oscillations. As shown in
Figure 3d, the two main events described in [32] lead to change observed over different time scales.
A possible explanation for the discrepancy between resolutions is that coarse-scale changes (green
and blue curves) capture the formation and dissolution of social groups at the end and beginning of
the academic year, whereas finer-scale changes (yellow) reflect short-term fluctuations driven by the
academic calendar, such as classes, group projects, or other time-limited activities.
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6 Discussion and Conclusion

Due to the continuous nature of dynamic networks, tools from functional data analysis such as basis
expansions combined with low-rank approximations appear to be a natural fit for analyzing dynamic
networks. In this work, we have presented ANIE , a method that uses low-rank approximation to
estimate the global structure of the data. It then employs a multi-resolution, wavelet-based approach
to test for significant changes in network structure at different resolution levels. In doing so, it
addresses the time–frequency trade-offs inherent to fixed-bandwidth and discretized approaches.

The proposed methodology comes with several limitations. First, the testing strategy relies on an
estimate of the variance of the empirical affinity coefficients for computing the Z-scores (Equa-
tion 4). The robustness of the thresholding procedure is therefore highly sensitive to this variance
estimation error, particularly at high resolutions. Exploring alternative thresholding strategies thus
appears to be a promising direction for future work. Moreover, in this study, we have focused on the
Haar wavelet basis due to its convenient interpretation as an adaptive histogram. However, in appli-
cations requiring smoother intensity estimates, alternative bases such as Daubechies wavelets [28]
or B-spline-based approaches like Splinets [38, 27] could be employed. Additionally, our method
could be extended by incorporating tensor factorization techniques such as PARAFAC [17], applied
to the sparse tensor of empirical coefficients. Lastly, an interesting avenue would be to explore a hy-
brid Tucker–Karhunen–Loève decomposition, building on recent work in PCA for point processes
[37], potentially leading to a deeper theoretical understanding of the opportunities and limitations of
functional analysis on dynamic networks.

Acknowledgments and Disclosure of Funding

The research leading to these results has received funding from the Special Research Fund (BOF)
of Ghent University (BOF20/IBF/117), from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, from the FWO (project no.
G0F9816N, 3G042220, G073924N). Funded by the European Union (ERC, VIGILIA, 101142229).
Views and opinions expressed are however those of the author(s) only and do not necessarily re-
flect those of the European Union or the European Research Council Executive Agency. Neither
the European Union nor the granting authority can be held responsible for them. Modell and Heard
acknowledge support from EPSRC NeST Programme grant EP/X002195/1.

References
[1] Transport for london - cycle hire - data. https://cycling.data.tfl.gov.uk/.

[2] Izabel Aguiar, Dane Taylor, and Johan Ugander. A tensor factorization model of multilayer
network interdependence, April 2024.

[3] Laura Alessandretti, Luis Guillermo Natera Orozco, Meead Saberi, Michael Szell, and Fed-
erico Battiston. Multimodal urban mobility and multilayer transport networks. Environment
and Planning B: Urban Analytics and City Science, 50(8):2038–2070, October 2023.

[4] Jesús Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E. Priebe, and Joshua T.
Vogelstein. Inference for Multiple Heterogeneous Networks with a Common Invariant Sub-
space. Journal of Machine Learning Research, 22(142):1–49, 2021.

[5] Adrian Baddeley, Imre Bárány, Rolf Schneider, and Wolfgang Weil, editors. Spatial Point
Processes and Their Applications. Springer, Berlin, Heidelberg, 2007. ISBN 978-3-540-
38175-4.

[6] Afonso S Bandeira and Ramon Van Handel. Sharp nonasymptotic bounds on the norm of
random matrices with independent entries. The Annals of Probability, 2016.

[7] M. S. Bartlett. The Spectral Analysis of Point Processes. Journal of the Royal Statistical
Society: Series B (Methodological), 25(2):264–281, July 1963.

[8] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B
(Methodological), 57(1):289–300, 1995.

10



[9] David R. Brillinger. Uses of cumulants in wavelet analysis. In Franklin T. Luk, editor, SPIE’s
1994 International Symposium on Optics, Imaging, and Instrumentation, pages 2–18, San
Diego, CA, October 1994.

[10] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Spectral methods for data science:
A statistical perspective. Foundations and Trends® in Machine Learning, 14(5):566–806,
2021. ISSN 1935-8237. doi:10.1561/2200000079. URL http://dx.doi.org/10.1561/
2200000079.

[11] Yunjin Choi, Haeran Cho, and Hyelim Son. Capturing usage patterns in bike sharing system
via multilayer network fused Lasso, September 2023.

[12] Edward A. K. Cohen and Alexander J. Gibberd. Wavelet Spectra for Multivariate Point Pro-
cesses, November 2020.

[13] Joshua Corneck, Edward A. K. Cohen, James S. Martin, and Francesco Sanna Passino. Online
Bayesian changepoint detection for network Poisson processes with community structure, July
2024.

[14] José Carlos Simon de Miranda and Pedro A. Morettin. Estimation of the intensity of non-
homogeneous point processes via wavelets. Annals of the Institute of Statistical Mathematics,
63(6):1221–1246, December 2011.

[15] David L Donoho and Iain M Johnstone. Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455, September 1994.

[16] Julie Fournet and Alain Barrat. Contact Patterns among High School Students. PLOS ONE, 9
(9):e107878, September 2014.

[17] Laetitia Gauvin, André Panisson, and Ciro Cattuto. Detecting the community structure and
activity patterns of temporal networks: A non-negative tensor factorization approach. PLoS
ONE, 9(1):e86028, January 2014.

[18] Clara Happ and Sonja Greven. Multivariate Functional Principal Component Analysis for Data
Observed on Different (Dimensional) Domains. Journal of the American Statistical Associa-
tion, 113(522):649–659, April 2018.

[19] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[20] Shenyang Huang, Samy Coulombe, Yasmeen Hitti, Reihaneh Rabbany, and Guillaume
Rabusseau. Laplacian Change Point Detection for Single and Multi-view Dynamic Graphs.
ACM Transactions on Knowledge Discovery from Data, 18(3):1–32, April 2024.

[21] Andrew Jones and Patrick Rubin-Delanchy. The multilayer random dot product graph, January
2021.

[22] J. F. C. Kingman. Poisson Processes. Oxford Studies in Probability. Clarendon Press, Oxford
University Press, Oxford, UK, 1992. ISBN 9780198536932. URL https://global.oup.
com/academic/product/poisson-processes-9780198536932.

[23] E. Kolaczyk. Estimation of Intensities of Burst-Like Poisson Processes Using Haar Wavelets.
1996.

[24] Eric D. Kolaczyk. Wavelet Shrinkage Estimation of Certain Poisson Intensity Signals Using
Corrected Thresholds. Statistica Sinica, 9(1):119–135, 1999.

[25] Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and Applications. SIAM Review,
51(3):455–500, August 2009.

[26] Danai Koutra, Evangelos E. Papalexakis, and Christos Faloutsos. TensorSplat: Spotting Latent
Anomalies in Time. In 2012 16th Panhellenic Conference on Informatics, pages 144–149,
October 2012. doi:10.1109/PCi.2012.60.

11

https://doi.org/10.1561/2200000079
http://dx.doi.org/10.1561/2200000079
http://dx.doi.org/10.1561/2200000079
https://global.oup.com/academic/product/poisson-processes-9780198536932
https://global.oup.com/academic/product/poisson-processes-9780198536932
https://doi.org/10.1109/PCi.2012.60


[27] Xijia Liu, Hiba Nassar, and Krzysztof Podgórski. Dyadic diagonalization of positive definite
band matrices and efficient b-spline orthogonalization. Journal of Computational and Applied
Mathematics, 414:114444, November 2022.

[28] S. G. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Elsevier/Academic Press,
Amsterdam ; Boston, 3rd ed edition, 2009.

[29] Alexander Modell, Ian Gallagher, Emma Ceccherini, Nick Whiteley, and Patrick Rubin-
Delanchy. Intensity Profile Projection: A Framework for Continuous-Time Representation
Learning for Dynamic Networks. Advances in Neural Information Processing Systems, 36,
December 2023.

[30] Naoki Masuda and Renaud Lambiotte. A Guide To Temporal Networks-World Scientific (2016).
2021. ISBN 978-1-78634-915-6.

[31] M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical Review E, 74(3):036104, September 2006.

[32] Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. Patterns and dynamics of users’ be-
havior and interaction: Network analysis of an online community. Journal of the American
Society for Information Science and Technology, 60(5):911–932, 2009.

[33] Francesco Sanna Passino and Nicholas A. Heard. Mutually Exciting Point Process Graphs
for Modeling Dynamic Networks. Journal of Computational and Graphical Statistics, pages
1–15, September 2022.

[34] Francesco Sanna Passino, Anna S. Bertiger, Joshua C. Neil, and Nicholas A. Heard. Link
prediction in dynamic networks using random dot product graphs, July 2021.

[35] Francesco Sanna Passino, Niall M. Adams, Edward A. K. Cohen, Marina Evangelou, and
Nicholas A. Heard. Statistical Cybersecurity: A Brief Discussion of Challenges, Data Struc-
tures, and Future Directions. Harvard Data Science Review, 5(1), January 2023.

[36] Francesco Sanna Passino, Yining Che, and Carlos Cardoso Correia Perello. Graph-based mu-
tually exciting point processes for modelling event times in docked bike-sharing systems. Stat,
13(1):e660, January 2024. ISSN 2049-1573, 2049-1573. doi:10.1002/sta4.660.

[37] Franck Picard, Vincent Rivoirard, Angelina Roche, and Victor Panaretos. PCA for Point Pro-
cesses, April 2024.

[38] Krzysztof Podgórski. Splinets – splines through the Taylor expansion, their support sets and
orthogonal bases. https://arxiv.org/abs/2102.00733v2, February 2021.

[39] Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann. Introduction to Tensor De-
compositions and their Applications in Machine Learning, November 2017.

[40] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer Series in Statistics.
Springer, New York, 2nd ed edition, 2005.

[41] Riccardo Rastelli and Marco Corneli. Continuous latent position models for instantaneous
interactions. Network Science, pages 1–29, July 2023.

[42] Raphaël Romero, Jefrey Lijffijt, Riccardo Rastelli, Marco Corneli, and Tijl De Bie. Gaussian
embedding of temporal networks. IEEE ACCESS, 11:117971–117983, 2023.

[43] Giulio Rossetti and Rémy Cazabet. Community Discovery in Dynamic Networks: A Survey.
ACM Computing Surveys, 51(2):1–37, March 2019.

[44] Patrick Rubin-Delanchy, Joshua Cape, Minh Tang, and Carey E. Priebe. A Statistical Inter-
pretation of Spectral Embedding: The Generalised Random Dot Product Graph. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 84(4):1446–1473, September
2022.

12

https://doi.org/10.1002/sta4.660


[45] Youssef Taleb and Edward A. K. Cohen. Multiresolution analysis of point processes and sta-
tistical thresholding for Haar wavelet-based intensity estimation. Annals of the Institute of
Statistical Mathematics, 73(2):395–423, April 2021.

[46] Marc Tarres-Deulofeu, Antonia Godoy-Lorite, Roger Guimera, and Marta Sales-Pardo. Tenso-
rial and bipartite block models for link prediction in layered networks and temporal networks.
Physical Review E, 99(3):032307, March 2019.

[47] Christopher Torrence and Gilbert P. Compo. A Practical Guide to Wavelet Analysis. Bulletin
of the American Meteorological Society, 79(1):61–78, January 1998.

[48] Ulrike von Luxburg. A Tutorial on Spectral Clustering, November 2007.

[49] Mincheng Wu, Shibo He, Yongtao Zhang, Jiming Chen, Youxian Sun, Yang-Yu Liu, Junshan
Zhang, and H. Vincent Poor. A Tensor-Based Framework for Studying Eigenvector Multicen-
trality in Multilayer Networks, February 2019.

[50] Yi Yu, Oscar Hernan Madrid Padilla, Daren Wang, and Alessandro Rinaldo. Optimal network
online change point localisation, January 2021.

[51] Bo Zhang, Jalal M Fadili, and Jean-Luc Starck. Poisson Intensity Estimation Based on Wavelet
Domain Hypothesis Testing.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

13



1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the introduction and abstract both list the main contributions of the paper. The
introduction provides refers specifically to the main contributions, namely the conceptual
contribution of section 3, the theoretical results of section 4, and the experimental results
of section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Section 6, we discuss the limitations of the proposed method, and
propose several directions for improvements and extensions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The two main theoretical results of the paper are presented in Section 4 with
a dedicated numbered theorem for each of them. The proof for each of these theorems is
provided in the supplementary material. However, the assumptions needed to prove the
results are included in the main paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides the main results of the experiments in the main paper.
The code repository accompanying the paper contains examples on how to reproduce the
results. The paper also provides a detailed description of the experimental setup, including
the datasets used, the hyperparameters, and the evaluation metrics. Additional experimental
details are provided in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code repository accompanying the paper contains examples in the form
of Jupyter notebooks which reproduce the main figures of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details are provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The numerical experiments in the paper include error bars, which are defined
as the standard error of the resulting MISE metrics over 10 independent runs.

Guidelines:

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As discussed in the main paper, the proposed method doesn’t require a lot of
compute resources. More details on the machine used for the experiments are provided in
the supplemental material. The supplementary material also provides the time of execution
for each of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The main ethical point of attention for this paper is its indirect potential use
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Appendix to the paper "Multiresolution Analysis and Statistical
Thresholding on Dynamic Networks"

A Full algorithm

Algorithm 1 describes the full pipeline of our proposed Adaptive Network Intensity Estimation
(ANIE) method.

Algorithm 1 Adaptive Network Intensity Estimation

Input: Dynamic network Y, orthonormal basis {ϕb}Bb=1 of L2(T ), rank D, significance level α

1: Basis decomposition: Decompose the dynamic network on the functional basis

Y(ϕb) =
∫
T
ϕb(t)dY(t) ∈ RN×N , b = 1, . . . , B

2: Low rank estimation: Form the concatenated matrix and compute truncated SVD

X = [Y(ϕ1)T ∥Y(ϕ2)T ∥ · · · ∥Y(ϕB)T ] ∈ RN×NB

X ≈ ÛΣV̂T (keeping D largest singular values)

Calculate the empirical affinity coefficients

Ŝ(ϕb) = ÛT Y(ϕb)Û ∈ RD×D

And their associated sample variance estimates

Ṽar[Ŝpq(ϕ
b)] =

∑
u,v

Û2
upÛ

2
vqYuv

(
(ϕb)2

)
∈ RD×D

3: Statistical thresholding: For each p, q ∈ [D]2 and b ∈ [B], compute

Z-score Zb
pq =

Ŝpq(ϕ
b)√

Ṽar[Ŝpq(ϕb)]
, and associated p-value pbpq = 2

(
1− Φ(|Zb

pq|)
)
,

where Φ is the standard normal cumulative density function. Then apply multiple-testing cor-
rection to obtain the corrected p-values p̃bpq , and finally the thresholded coefficients using

Tα
(
Ŝpq(ϕ

b)
)
=

{
Ŝpq(ϕ

b), if the coefficient is significant, i.e. p̃bpq < α,

0, otherwise.

4: Reconstruction: Compute thresholded intensity estimate

Λ̂(t) = Û

(
B∑

b=1

Tα(Ŝ(ϕb))ϕb(t)

)
ÛT

Output: Low-rank subspace Û, significance mask Mb
pq = 1{p̃b

pq<α}, intensity estimate Λ̂(t).

B Proof of theorem 4.1

Recall that
X = [Y(ϕ1)T ∥Y(ϕ2)T ∥ · · · ∥Y(ϕB)T ] ∈ RN×nN

and then by the properties of Poisson processes, we have that

EX = [Λ(ϕ1)T ∥Λ(ϕ2)T ∥ · · · ∥Λ(ϕB)T ] ∈ RN×nN
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Observe that

Λ(ϕb) =
∫
T
Λ(t)ϕb(t)dt = NρN

∫
T
UR(t)U⊤ϕb = NρNU

(∫
T
R(t)ϕb(t)dt

)
U⊤.

In addition, since the basis functions ϕ1, . . . , ϕB are orthonormal, we have that∫
T
R(t)ϕbdt =

∫
T

(
B∑

b′=1

Cb′ϕb
′

)
dt =

B∑
b′=1

Cb′
(∫

T
ϕb

′
(t)ϕb(t)dt

)
= Cb.

It follows that Λ(ϕb) = NρNUCbU⊤ and

EX = NρNUCU⊤, C = [C1∥C2∥ · · · ∥CB ].

Therefore, there exists an orthogonal matrix O1 ∈ RD×D such that the left (orthonormal) singular
values corresponding to the non-zero singular values of EX, which we denote σ1 ≥ · · · ≥ σD, are
given by the columns of UO1.

Let Û = (û1, . . . , ûD) be the matrix whose columns contains the left (orthonormal) singular vectors
of X corresponding to the D largest eigenvalues of X, which we denote σ̂1 ≥ · · · ≥ σ̂D.

Then, by Wedin’s sinΘ theorem [10, Theorem 2.9] we have, providing ∥X− EX∥2 ≤ (1 −
1/
√
2)(σD − σD+1) that there exists an orthogonal matrix O2 ∈ RD×D such that∥∥∥Û−UO1O2

∥∥∥
2
≤

∥X− EX∥2
σD − σD+1

. (5)

By assumption, the matrix ∆ =
B∑

b=1

(Cb)⊤Cb has full rank, and therefore σ1, . . . , σD = Θ(NρN ).

The matrix EX has rank D and so σD+1 = 0. Therefore σD − σD+1 = Ω(NρN ).

To complete the proof, it will suffice to show that ∥X− EX∥2 = OP(
√
NρN ), after which we can

subsequently right-multiply equation 5 by Q := (O1O2)
⊤ to conclude the proof.

To do so, we will prove the following concentration inequality, which we prove in Section B.1.
Lemma 1. Let Y denote the counting measure of an inhomogeneous Poisson process with finite
intensity measure Λ on [0, 1). Let ϕ ∈ L2([0, 1)) and let L be a value such that ϕ(t) ≤ L. Then

P (|Y(ϕ)− Λ(ϕ)| > t) ≤ 2 exp

{
− t2

2(Λ(ϕ) + tL/3)

}
.

In particular, for t ≥ Λ(ϕ),

P (|Y(ϕ)− Λ(ϕ)| > t) ≤ 2 exp

(
− 3t

8L

)
In particular, since ∥U∥2,∞ = O(

√
log(N)/NρN ) by assumption, we have that Λuv(ϕ

b) =

O(log(N)) and therefore by Lemma 1 we have that |Yuv(ϕ
b) − Λuv(ϕ

b)| = OP(log(N)). By a
union bound, this holds simultaneously for all u, v ∈ {1, . . . , N}, b ∈ {1, . . . , B}.

To obtain a bound on ∥X− EX∥2, we observe that this is equal to ∥E∥2 where E is the symmetric
dilation of X− EX [19, Theorem 7.3.3]. I.e.

E =

(
0 X− EX

(X− EX)⊤ 0

)
.

We then apply the following concentration inequality for random symmetric matrices to E which is
Corollary 3.12 of Bandeira and Van Handel [6].
Lemma 2 (Corollary 3.12 of Bandeira and Van Handel [6]). Let M be an N ×N symmetric matrix
whose entries mij are independent random variables which obey

E(mij) = 0, |mij | ≤ L,

N∑
j=1

E(m2
ij) ≤ ν
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for all i, j. There exists a universal constant C̃ > 0 such that for any t ≥ 0,

P
{
∥M∥2 ≥ 3

√
ν + t

}
≤ N exp

(
− t2

C̃L2

)
.

We then apply Lemma 2 to E, conditional on Euv = O(log(N)) (which holds with overwhelming
probability due to the above derivation) with L = O(log(N)) and ν = O(BNρN ) = O(NρN )
(since B is assumed to be fixed). We obtain

∥X− EX∥2 = ∥E∥2 = OP(
√
NρN + log3/2(n)) = OP(

√
NρN )

where the final inequality follows from the assumption that NρN = Ω(log3(n)). This completes
the proof.

B.1 Proof of Lemma 1

For a given N ∈ N, let X(N)
1 , . . . , X

(N)
N denote N independent Poisson random variables with rates

λ(N)
n := Λ

([
n− 1

N
,
n

N

])
n = 1, . . . , N.

Then, by the definition of an inhomogeneous Poisson process we have that

Y(ϕ) = lim
N→∞

N∑
n=1

X(N)
n ϕ

( n
N

)
.

In addition, by a property of Poisson random variables, we have that

X(N)
n = lim

M→∞

M∑
m=1

Y (M,N)
m

where Y (M,N)
1 , . . . , Y

(M,N)
M are independent and identically-distributed Bernoulli random variables

with success probabilities λ(N)
n /M . Therefore

Y(ϕ) = lim
M→∞

lim
N→∞

M∑
m=1

N∑
n=1

Z(M,N)
m,n , Z(M,N)

m,n = Y (M,N)
m ϕ

( n
N

)
.

Observe that

EZ(M,N)
m,n =

λ
(N)
n

M
ϕ
( n
N

)
.

and define E(M,N)
m,n = Z

(M,N)
m,n − EZ(M,N)

m,n which are independent zero-mean random variables.
Then, we have that

∣∣∣E(M,N)
m,n

∣∣∣ ≤ L and for sufficiently large M

σ(M,N) :=

M∑
m=1

N∑
n=1

E

{(
E(M,N)

m,n

)2}
≤

M∑
m=1

N∑
n=1

Z(M,N)
m,n .

Note that taking limits on both sides we have that limM→∞ limN→∞ σ(M,N) = Λ(ϕ).

Now, by Bernstein’s inequality, we have that

M∑
m=1

N∑
n=1

P
(∣∣∣E(M,N)

m,n

∣∣∣ > t
)
≤ 2 exp

{
− t2

2(σ(M,N) + tϕmax/3)

}
.

Taking M → ∞ and N → ∞ on both sides, we obtain the desired bound.
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C Proof of Theorem 4.2

Lemma 3 (Lyapunov’s Central Limit Theorem (CLT) ). Let X1, . . . , Xn be independent random
variables with finite mean and variance. If for some δ > 0:

1

s2+δ
n

n∑
i=1

E
[
|Xi − E[Xi]|2+δ

]
→

n→∞
0

where s2n =
n∑

i=1

Var[Xi] is the cumulated variance, then the sum Sn =
n∑

i=1

Xi converges in distri-

bution to a normal distribution.
Sn − E[Sn]

sn

d−→ N (0, 1)

Proof. The proof of Theorem 4.2 applies Lemma 3 to the family of centered random variables

ρuv
∆
= Ûu,p Ûv,q

(
Yuv(ϕ

b)− Λuv(ϕ
b)
)
,

which are the N2 terms in the sum forming the numerator of Equation 3 in Section 4.3:

Ŝpq(ϕ
b)− E[Ŝpq(ϕ

b)] =
∑

u,v∈[N ]2

ρuv.

The variables ρuv satisfy E[ρuv] = 0, and their variance is given by

Var[ρuv] = Û2
u,pÛ

2
v,q Var[Yuv(ϕ

b)] = Û2
u,pÛ

2
v,qΛuv((ϕ

b)2).

This last equality follows from the fact that a Poisson process projection
∫
T ϕ

b(t)dYuv(t) can
be viewed as a weighted sum of independent infinitesimal Poisson increments dYuv(t) ∼
Poisson(Λuv(t)dt), each having Poisson variance Λuv(t)dt and weighted by ϕb(t). These weights
get squared in the variance, leading to:

Var

(∫
T
ϕb(t)dYuv(t)

)
=

∫
T
ϕb(t)2Λuv(t)dt = Λuv((ϕ

b)2).

We will verify the Lyapunov condition with δ = 1. Namely, our goal is to show that

1

s3N

∑
u,v∈[N ]2

E[|ρuv|3] → 0 as N → ∞,

where the cumulated variance in the denominator is defined as

s2N
∆
=

∑
u,v∈[N ]2

Û2
u,pÛ

2
v,q,Λuv((ϕ

b)2).

To do so, we upper-bound the third absolute moments and lower-bound the cumulated variance.

Lower bounding the cumulated variance. We have that

Λuv

(
(ϕb)2

)
=

∫
ϕb(t)2Λuv(t) dt

≥ αN

∫
ϕb(t)2 dt

= αN · ∥ϕb∥22
= αN ,

where the inequality follows by assumption.

24



Substituting this inequality into the previous equation yields

s2N ≥ αN ·
∑

u,v∈[N ]2

Û2
u,pÛ

2
v,q

= αN ·

 ∑
u∈[N ]

Û2
u,p

∑
v∈[N ]

Û2
v,q


= αN · ∥Û:,p∥22 ∥Û:,q∥22
= αN ,

where the final equality holds since the columns of Û have unit norm. This shows that the cumulative
variance is lower bounded by the factor αN , namely the lower bound on the intensity function.

Upper bounding the third moment of ρuv . Now that we have lower bounded the cumulated
variance, we need to upper bound the third moment of ρuv . We have

E
[
|ρuv|3

]
= |Ûup|3|Ûvq|3E

[
|Yuv(ϕ

b)− Λuv(ϕ
b)|3
]

By assumption, |Ûup|3|Ûvq|3 ≤ (µN/n)
3, and by the Cauchy-Schwartz inequality, we have

E
[
|Yuv(ϕ

b)− Λuv(ϕ
b)|3
]
= E

[
|Yuv(ϕ

b)− Λuv(ϕ
b)|1|Yuv(ϕ

b)− Λuv(ϕ
b)|2
]

≤
√√√√E

[(
Yuv(ϕ

b)− Λuv(ϕ
b)
)2]︸ ︷︷ ︸

m2

E
[(

Yuv(ϕ
b)− Λuv(ϕ

b)
)4]︸ ︷︷ ︸

m4

The two factors in the right-hand side are the second and fourth central moments of Yuv(ϕ
b), which

we denote as m2 and m4 respectively. These moments relate to the so-called cumulants κ2 and κ4
of Yuv(ϕ

b), as we have:
m2 = κ2

m4 = κ4 + 3κ22,

where κ2 is the second cumulant and κ4 is the fourth cumulant of the random variable Yuv(ϕ
b).

We will use Campbell’s theorem from [22] to express κ2 and κ4. For the Poisson Processes Yuv

with intensity Λuv and any measurable function ϕ, the cumulant generating function is given by
Campbell’s theorem (Equation 3.6 from [22]) by:

K(λ) = log(E [exp (λYuv(ϕ))]) =

∫ (
eλϕ(t) − 1

)
Λuv(t)dt

By expanding eλϕ
b(t) − 1 =

∞∑
k=1

λk

k! (ϕ
b(t))k and applying the linearity of the integral and the fact

that (ϕb)kΛuv are all compactly supported and continuous (hence integrable), we get:

K(λ) =

∞∑
k=1

λk

k!

∫
ϕb(t)kΛuv(t)dt

By evaluating the second and fourth derivatives of K(λ) at λ = 0, we obtain the second and fourth
cumulants

κ2 = Λuv

(
(ϕb)2

)
=

∫
ϕb(t)2 Λuv(t) dt, κ4 = Λuv

(
(ϕb)4

)
=

∫
ϕb(t)4 Λuv(t) dt.

By assumption, Λuv(t) ≤ βN , and since ϕb are fixed, we have

κ2 =

∫
ϕb(t)2 Λuv(t) dt ≤ βN

∫
ϕb(t)2 dt = βN ∥ϕb∥22 = βN ,

κ4 =

∫
ϕb(t)4 Λuv(t) dt ≤ βN

∫
ϕb(t)4 dt

∆
= ηN = O(βN ).
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Therefore

E
[
|Yuv(ϕ

b)− Λuv(ϕ
b)|3
]
=

√
m2m4 =

√
κ2
(
κ4 + 3κ22

)
≤
√
βN
(
ηN + 3β2

N

)
= O(β

3/2
N ).

As a result, we have

E
[
|ρuv|3

]
= O

{(µN

N

)3
β
3/2
N

}
.

Summing over the N2 terms, we obtain

∑
u,v∈[N ]2

E[|ρuv|3] = O

(
µ3
Nβ

3/2
N

N

)
.

Dividing this expression by s3N gives

1

s3N

∑
u,v∈[N ]2

E[|ρuv|3] = O

{
µ3
N

N

(
βN
αN

)3/2
}

→ 0 as N → ∞

which vanishes by assumption.

This shows that the Lyapunov condition is satisfied, and we can apply the Lyapunov CLT (Lemma
3) to conclude that as N → ∞,∑

u,v∈[N ]2
ρuv

sN
=

∑
u,v∈[N ]2

Ûu,pÛv,q

[
Yuv(ϕ

b)− Λuv(ϕ
b)
]

√ ∑
u,v∈[N ]2

Û2
u,pÛ

2
v,qΛuv ((ϕb)2)

d−→ N (0, 1).

D Experimental Setup

D.1 Synthetic Data Generation

We generate two types of synthetic networks to evaluate our methods: the Erdös–Rényi (ER) blocks
model and a Dynamic Stochastic Block Model (DSBM). Their time-varying intensity functions are
shown in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.15
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0.30
Erdos-Renyi

(a) ER-Blocks model

0.0 0.2 0.4 0.6 0.8 1.0
0.00
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0.05

Intra rate
Inter rate

(b) Dynamic SBM model

Figure 4: Intensity functions for the synthetic network models. (a) ER-blocks uses a piecewise-
constant intensity with abrupt jumps. (b) DSBM distinguishes intra-community (blue) and inter-
community (orange) intensities, with a mid-experiment perturbation.
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D.1.1 Erdös–Rényi (ER) Blocks Model

In this model, the intensity between every node pair is the same, and defined as the following
piecewise-constant function:

Λuv(t) =

K∑
k=1

hkK
(
t− tk

)
, K(x) =

1 + sign(x)

2
,

with
{tk}Kk=1 = {0.10, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81},

{hk}Kk=1 = {4, −5, 3, −4, 5, −4.2, 2.1, 4.3, −3.1, 5.1, −4.2}.

This model, adapted from the synthetic example from [15], simulates a network with a single com-
munity, where the interaction intensity only depends on time, and not on other latent factors such as
community assignments.

D.1.2 Dynamic Stochastic Block Model (DSBM)

In this model, the nodes are partitioned into two communities C1 and C2. This time the intensity
function varies depending on whether the node pair belongs to the same community (genering intra-
community interactions) or to different communities (inter-community interactions):

Λuv(t) =

{
λintra(t), u, v ∈ C1 or u, v ∈ C2,
λinter(t), otherwise.

As shown in Figure 4b, both the intra and inter community intensities are piecewise-constant func-
tions. The intra-community intensity is set much higher than the inter-community intensity except
on an interval [0.5, 0.75] where both intensities are equal. This model simulates the temporary fusion
of two communities into a single one.

D.2 Hyperparameter selection

We now give more details on the methods used in the intensity estimation experiment and the as-
sociated hyperparameters. We experimented with various parameters for the different method, and
selected the ones which yielded the lowest MISE.

Table 1: Hyperparameter selection for different methods
Method Parameter ER-blocks dataset SBM dataset

IPP-KDE Bandwidth 0.005 0.05
IPP-Hist Number of bins (M ) 128 64
ANIE (ours) Resolution level (J) 8 6

Significance level (α) 0.05 0.05

D.3 Resources

Hardware used for the experiments All the experiments we run on a MacBook Air with an Apple
M1 chip with 8 CPU cores and 8GB of RAM.

Fitting time of ANIE We report the fitting time of ANIE vs the number of nodes in Figure 5
for different levels for the maximum resolution J of the Haar basis (which modulates the size of the
orthonormal basis). We observe that the fitting time of ANIE is quadratic in the number of nodes, and
scales exponentially with the number of levels. This underlines a limitation: in order to capture fine
grained change, the number of levels J must be large, which leads to an exponentially large number
of coefficients to process. However, some optimizations could be made such as parallelizing the
computation of the coefficients, or using a more efficient algorithm to compute the truncated SVD.
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Figure 5: Fitting time of ANIE vs number of nodes for different values of J .

E Effect of the Hyperparameters of ANIE

In order to better illustrate the effect of the resolution J on the estimation error, we ran the ANIE
method on a simplified SBM dataset with different values. In this simplified setting, we parameter-
ized the model such that a resolution J = 2 is sufficient to capture the intensity function. We then
ran the ANIE method with different values of J and compared the estimation error of the linear and
thresholded estimators.

Effect of the number of levels J Figure 6 shows the effect of the number of levels J on the
estimation error. We observe that the linear estimator performs well for small values of J , but
its performance degrades as J increases. In contrast, the thresholded estimator maintains a low
estimation error across all values of J , demonstrating its robustness to overfitting.
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Figure 6: Estimation error vs number of levels for the linear and the thresholded estimator

F LAD Implementation

We use the publicly available implementation https://github.com/shenyangHuang/LAD to
compare our method with LAD. We use the default parameters of the implementation.
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G Case Studies: London Bike Dataset and Enron email network

Both dataset described below may be viewed as temporal networks, where continuous interactions
represent trips between bike stations in London, or email exchanges between Enron employees. For
both the datasets, we plot two discrete wavelet scaleograms which we here refer to as the naive and
reconstructed scaleograms, by computing for each level j, the Frobenius norm of either the naive co-
efficient estimates ∥Y(ψjk)∥F or the empirical affinity coefficients ∥Ŝ(ψjk)∥F . It can be shown that
the latter corresponds to the Frobenius norm of a low-rank reconstruction of the naive coefficients.
Specifically, using the orthonormality of Û, we have ∥Ŝ(ψjk)∥F = ∥ÛÛT Y(ψjk)ÛÛT ∥F . In both
cases, we typically observe that the wavelet power of the reconstructed affinities between latent fac-
tors is more concentrated in low-frequency bands, while the naive per-edge estimates ∥Y(ψjk)∥F
exhibit more energy in the high-frequency bands.

G.1 London Bike Dataset

The London Bike dataset, published by Transport for London [1], has an inherent dynamic network
structure which has been previously studied for instance in [36, 41]. We consider a week of data,
from 1st to 8th of May 2017, and mark each starting trip from docking station u to docking station
v at time t an instantaneous event. This results in 219515 interactions between 780 nodes (bike
stations). As shown on Figure 7, plotting the naive and reconstructed wavelet scaleograms for this
dataset allows us to identify periods and time scales during which significant structural changes
occur, and to contrast these with changes that are merely due to fluctuations in exchange intensity
between individual pairs of bike stations. Moreover, the estimate obtained using ANIE enables us
to visualize the bike stations in a low-dimensional space using a t-SNE plot, where stations that
connect to similar neighborhoods at similar times appear close together. Coloring the bike stations
by London borough reveals that stations from some boroughs, such as Tower Hamlets or Newham,
tend to cluster tightly. In contrast, stations from boroughs like Westminster, Kensington and Chelsea,
or Hammersmith and Fulham are more dispersed, indicating greater diversity in their patterns of use.

G.2 Enron Email Dataset

For the Enron dataset, as shown on Figure 8, we find that both the naive and reconstructed scale-
ograms capture changes in 2001, which marked the buildup to the company’s bankruptcy.

These changes are concentrated in a specific frequency band, illustrating the ability of our method
to identify the time scale at which structural shifts occur. Additionally, we observe that, in the
raw scaleogram (Figure 8b), measuring change purely at the edge-level, events following 2001 are
associated with changes across a wider range of frequency bands. In contrast, the reconstructed,
denoised scaleogram (Figure 8c) shows less variation during this later period, suggesting that many
of the post-2001 edge-level fluctuations do not correspond to substantial structural changes in the
network, or at least not to the same extent as during the major 2001 events.
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(a) Raw wavelet scaleogram ∥Y(ψjk)∥F
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(b) Denoised wavelet scaleogram
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(c) t-SNE embedding of the rows estimated subspace matrix Û colored by the boroughs of London

Figure 7: Visualization of the ANIE results on the the London Bike dataset: raw and denoised
wavelet scaleograms, and t-SNE embedding of the estimated latent factors.
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Event Date Description
1 Nov 1999 Enron launched
2 Feb 2001 Jeffrey Skilling takes over as CEO
3 14 Aug 2001 Kenneth Lay takes over as CEO after Skilling resigns
4 9 Nov 2001 Enron restates 3rd quarter earnings revealing massive losses
5 29 Nov 2001 Dynegy deal collapses, ending Enron’s last hope for rescue
6 10 Jan 2002 Department of Justice confirms criminal investigation begun
7 23 Jan 2002 Kenneth Lay resigns as CEO amid investigations
8 4 Feb 2002 Lay implicated in plot to inflate profits and hide losses
9 24 Apr 2002 U.S. House passes accounting reform package in response to Enron scandal

(a) Timeline of key events in the Enron scandal.
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(b) Raw wavelet scaleogram ∥Y(ψjk)∥F .
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(c) Denoised wavelet scaleogram
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Figure 8: Discrete wavelet scaleogram analysis of the Enron email dataset. The top table lists the
key events annotated in the scalograms below.

31


	Introduction
	Related Work
	Multiresolution Change Detection in Dynamic Networks 
	A Low-Rank Poisson Process Model
	Change Detection as an Intensity Estimation Problem

	ANIE : Adaptive Network Intensity Estimation
	Function Spaces and Basis Decomposition
	First stage: Low-Rank Decomposition
	Second stage: Denoising through statistical thresholding
	Parameter Selection and Computational Efficiency

	Experiments 
	Intensity Estimation on Synthetic Datasets
	Case Study: Multi-scale Anomaly Detection on the UCI Messages Dataset

	Discussion and Conclusion
	Full algorithm 
	Proof of theorem 4.1
	Proof of Lemma 1

	Proof of Theorem 4.2
	Experimental Setup
	Synthetic Data Generation
	Erdös–Rényi (ER) Blocks Model
	Dynamic Stochastic Block Model (DSBM)

	Hyperparameter selection
	Resources

	Effect of the Hyperparameters of ANIE
	LAD Implementation
	Case Studies: London Bike Dataset and Enron email network
	London Bike Dataset
	Enron Email Dataset


