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Abstract

Text-to-SQL aims to automate the process of
generating SQL queries on a database from
natural language text. In this paper, we pro-
pose SOQLPrompt , a novel method to push the
state-of-the-art of Text-to-SQL with in-context
learning, leveraging the zero-shot and few-
shot adaptation capability of large language
models (LLMs). Our method comprises a
novel prompt design approach to efficiently
consider the database information; execution-
based consistency decoding; and employing
mixture of prompts and/or LLMs. We show
that SQLPrompt outperforms previous state-
of-the-art for in-context learning with zero la-
beled data by a large margin, closing the gap
with finetuning state-of-the-art with thousands
of labeled data.

1 Introduction

Text-to-SQL enables natural language interfaces
for SQL query generation. It is crucial for en-
hancing database accessibility without requiring
expertise in SQL, and enabling the development of
conversational agents with advanced data analytics
Notable recent works for Text-to-SQL, PICARD
(Scholak et al., 2021), UnifiedSKG (Xie et al.,
2022), and RESDSQL-3B + NatSQL(Li et al.,
2023), achieve their state-of-the-art results by fine-
tuning the LLMs with a large number of (text,
SQL) pair data samples, followed by customized
SQL-specific syntax improvements such as con-
strained decoding. Recently, massive LLMs such
as GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022), and ChatGPT!(Stiennon et al., 2020)
have demonstrated significant progress using few
or zero-shot examples as prompts via in-context
learning (Wei et al., 2022). In-context learning
comes with numerous benefits, including alleviat-
ing expensive training, lowering adaptation data re-
quirements, reducing out-of-distribution issues (e.g.

1h'ctps ://chat.openai.com/chat.

unseen words), and lowering the risk of overfitting
(e.g. not generalize). These benefits are also highly
important for Text-to-SQL, especially given that
collecting data in the form of (text, SQL) pairs can
be costly, and there are many different SQL dialects
and domain-dependent database types. While
CodeX (Chen et al., 2021) and ChatGPT have
shown promising results with in-context learning
for Text-to-SQL, they have a gap between the fine-
tuned counterparts, which are trained on signifi-
cantly more data (thousands of samples). Our goal
in this paper is to push the state-of-the-art in Text-
to-SQL with minimal labeled data. We propose a
novel method, SQLPrompt, which includes prompt
design with database content, execution-based con-
sistency decoding, and a mixure of prompts and
LLMs. At zero-shot settings, SQLPrompt achieves
the state-of-the-art results for in-context learning,
closing the gap with fine-tuning state-of-the-art
models that require thousands of samples.

2 Methods

2.1 Problem setup for Text-to-SQL

Let g be natural language query and D, be the
database information. Text-to-SQL task is to
convert query g into SQL. The database D, =
{S, K}, K¢} includes database schema S primary
keys K, and foreign keys K. S usually con-
tains multiple tables 7;: S = {T1,75,...T;...}.
Each table 7; has table name N;, column
names c¢; and column data types t;: T =
{ Nk, (ck1, k1), (cras tra), (Chjs trg)---}). Primary
keys K, uniquely identifying rows of each table,
and foreign keys K join multiple tables.

2.2 Prompt design with database content and
primary/foreign keys

We argue that prompts should include all neces-
sary information for SQL generation as if expert
humans generate answers for the queries. While
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Figure 1: SQLPrompt Overview: (Left) Prompt Design: Concise prompt design (up) and Verbose prompt design
(down). (Right) MixPrompt in SQLPrompt generates multiple prompts using database and query question, to query
LLMs. For each query, LLMs are sampled twice, and two SQLs are generated and executed on the database with
errors filtered out. The execution outcomes of both prompt designs are combined to select the most consistent SQL.
Without MixPrompt, the true answer cannot be selected with only one prompt (blue) due to a tie situation.

most popular prompt design approaches only in-
clude database schema 2, we hypothesize that inclu-
sion of primary and foreign keys, and the database
content are crucial, because they help with under-
standing the schema, linking tables and selecting
appropriate columns (Lin et al., 2020; Wang et al.,
2020). Refer to Appendix A for more discussion.

Concise database description prompts To
prompt LLMs, we linerize information in a table as
“Tablel name: column name 1, column name 2 (rel-
evant database content) | Table2 name: columnl ...”
(Figure 1, Concise. Full example in Appendix B.1).
This way describes table structure clearly, but can
be less straightforward for LLMs to understand.

Verbose database description prompts We de-
scribe databases with human understandable words
and emphasize on the information LLMs need
to know: e.g. “Table CarNames contains three
columns. The column names and their types are
: MakelID (number), Model (string) ..”; “Foreign
keys are .. Use foreign keys to join Tables”. See
Appendix B.2 for an example.

2.3 Refinement based on execution-based
consistency with MixPrompt

We introduce MixPrompt, an in-context learning
method based on querying LLMs multiple times
and employing execution-based consistency with
multiple prompt designs. Self-consistency (Wang
et al.,, 2022), which samples LLMs multiple
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times to select the most consistent answer, has
shown remarkable performance improvements,
but its performance with the same prompt design
may show saturation beyond some number of
samples. Since diversity of outputs is critical for
performance, we apply multiple prompt designs,
with the assumption that varying prompt designs
changes the interface of query and LLMs, leading
to more diverse LLLM’s outputs (Zhou et al., 2022).
Then, we select the most consistent answer across
different prompt designs.

Suppose F' = {fi, fa,...} is a collection of dif-
ferent design functions, e.g. f; is verbose, fs is
concise. When we fix LLMs, we have MixPrompt
prediction objectives:

p(sql|LLM, q) = >~ p(sql|LLM, f,q)p(f), (1)
7

where p(f) is mixing coefficient. Since we evenly
mixing prompts,p(f) = 1/nF where nF' is num-
ber of design functions. p(sql|LLM, f, q) is sam-
pling probability of generating sql.

MixPromt is over-viewed in Fig 1. Specifically, for
each design function f, we generate prompts using
database D, and the query ¢. The trained LLMs
specify the distribution ¢ : ¢ — sql, where we can
draw sample from:

Prompt, = f(q, D) 2
sqlyr ) LLM(Prompt,, ) 3)

We sample B times from the LLM with the same
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Algorithm 1: Refinement based on execu-
tion and consistency with MixPrompt

Data: Require: Query questions Q+¢st; Database
Dyest; Prompt design function collections F'

Result: SQL output of test set: SQL¢cs+

while ¢ in Qtcst do

Dq — Dtest[q];

while f in F' do

Prompt, < f(qi, Dq) ; eq (2)
M=[];
Oo=I[L
while b in B do
sqly ~ LLM(Prompt r); eq (3)

(B —Exec(sqlq,D )
if ”errar” NOT in Og4 then
M <+ sqlg;
O + Og;
end
end

end

$qlsetect = {sqlq : Oqg = Majority(O),q €
M}, eq (9)

SQL(est — Sqlselect

end

prompt Prompt, to get SQL collections by Eq 3:

My = {sql;f,...sqlgf}B “4)

We then execute the generated SQLs using an en-
gine Fzec (i.e. sqlite3), which yields the outputs
O as the execution result of SQL on the provided

database.
= {ng : ng = Exec(sqlgf,Dq), sqlg €
)

We further exclude outputs O, that yield errors
and only keep the valid output, therefore obtain
final (SQL, outcome) pairs for prompt design f:
qu = (qu, ) = {( qf7 b) : ng #
errors}. We repeat the above process for each
prompt design function f and generate R, =

{Rq1,...Ry¢, .- }nF, by concatenating all the results
across multiple designs and obtain:
Mq: [Mqla'--anf--'aMnF] (6)
Qq = [0q1; ., Ogf...; OnF] 7

Following self-consistency, we select the SQL that
give the execution outcome consisted with the ma-
jority of the execution outcomes O, generated by
all M.

5qlselect = {Sql]; : 05 = Majom'ty(Oq) 3)
OF € Qq,sqll € M,}. )

qu}

where k is the index across multiple prompt design
and consistency repeats. The overall process is de-
scribed in Algorithm 1.

With the goal of increasing diversity for better re-
finement, we further expand our method to not only
use one LLM, but rather a mixture of LLMs:

> p(sql|LLM, f,q)p(f)p(LLM)

LLM f

p(sqllq) =
(10)

Similar to the combination idea in MixPrompt,
"MixPrompt and Model" combines outputs across
multiple LLMs, in addition to across multiple
prompt designs.

3 Experiments

Tasks and datasets: We consider the cross-
domain large-scale Text-to-SQL benchmark, Spi-
der (Yu et al., 2018) that contains 7000 training
samples across 166 databases and 1034 evaluation
samples (‘Dev split’) across 20 databases.

Models: PaLLM FLAN 540B is a PaLM model
variant (Chowdhery et al., 2022) with 540-billion
parameters fine-tuned on a collection of tasks
phrased as instructions. FLAN (Chung et al., 2022)
is areference to the fine-tuning in a way that respect
instructions being given in the prompt. PaLM-
62B is a PalLM variant with 62 billion parameters
trained on 1.3T tokens following the (Hoffmann
et al., 2022) PaLM FLAN 62B is FLAN fintuned
variant. Quantization is applied to above models
when with g. It reduces precision of a model’s
parameters and enable efficient inference.
Fine-tuning baselines: PICARD (Scholak et al.,
2021) employs incremental parsing to constrain
auto-regressive decoding. RASAT (Qi et al.,
2022) is a transformer model that integrates
relation-aware self-attention and constrained auto-
regressive decoders. RESDSQL (Li et al., 2023)
decouples schema linking and skeleton parsing
using a ranking-enhanced encoding and skeleton-
aware decoding framework.

In-context learning baselines: (Rajkumar et al.,
2022) comprehensively evaluate the Text-to-SQL
ability of CodeX and GPT3, while (Liu et al., 2023)
conduct a comprehensive evaluation on ChatGPT.

Evaluation: We consider two commonly-used
evaluation metrics: execution accuracy (EX) and
test-suite accuracy (TS) (Zhong et al., 2020), where
EX measures if SQL execution outcome matches



SPIDER

Methods EX TS
T5-3B + PICARD 793 694
Fine-tuning RASAT + PICARD 80.5 70.3

RESDSQL-3B + NatSQL (SOTA) 84.1 73.5

GPT-3 ada (0-shot) 23 03
GPT-3 babbage (0-shot) 57 39
GPT-3 curie (0-shot) 126 83
In-context learning GPT-3 davinci (0-shot) 263 21.7
Codex cushman (0-shot) 63.7 53.0
Codex davinci (0-shot) 67.0 55.1
ChatGPT (0-shot) 70.1 60.1
SQLPrompt (0-shot) 76.6 68.0
SQLPrompt (4-shot) 77.1 68.6

Table 1: Performance on the Spider Dev set, measured in execution accuracy (EX) and test-suite accuracy (TS). GPT3 and
CodeX results are from (Rajkumar et al., 2022) and ChatGPT results are from (Liu et al., 2023).

Table 2: Ablation study on prompt design approaches in 0-
shot setting. MixPrompt improves concise or verbose prompt

Table 4: Ablation Study of SQLPrompt (without Mix LLMs)

design approaches with different LLMs. We only mark TS EX TS
Acc changes, not EX, because TS is more accurate evaluation. SQLPrompt (Prompt Design
Models Concise Verbose MixPrompt : g)(::cs;stgzzcgilterin 70.5 632
EX TS EX TS EX TS ) &
PaALMFLAN62Bq 677 613 708 629 705 632 (] 03) +MixPrompt) :
PALMFLAN540Bq 723 641 716 613 740 655 (1 1.4) No MixPrompt 677 6131 19)
Only Schema (No primary, -
Table 3: Ablation Study: Few-shots No foreignkeys, no DB content) 664 573 (1 5.9)
Models Concise Verbose MixPrompt No Consistency 55.9 49.6 (] 13.6)
EX TS EX TS EX TS No Execution Filtering 55.2 48.7(] 14.5)

PALMFLANG62Bq 659 59.6 718 638 747 666 (] 2.8)
PALMFLANS540Bq 712 632 707 61.1 747 652 (1 2.0)

ground truth. TS assesses each query by run-
ning multiple tests against randomly generated
database with same schema (EX only evaluates on
one test). So TS reduces false positives from EX
and TS is more accurate evaluation. Here we focus
on TS. Exact match evaluation is not performed, as
multiple correct SQLs exist for one query.

4 Results

Table-1 presents the comparison between SQL-
Prompt and the state-of-the-art models for in-
context learning and fine-tuning. For in-context
learning, SQLPrompt outperforms context learn-
ing state-of-the-art (SOTA) ChatGPT (with their
recommended prompts) by a large margin: 1 7%
for execution accuracy (EX) and 1 8.1% for test
suite accuracy (TS). Examples of SQL generated
by SQLPrompt is Table 7 in Appendix.

Ablation study SQLPrompt consists of multiple
components: prompt design, execution-based con-
sistency decoding, Mix Prompt, and Mix LLMs. To
shed light into the impact of these components, we
present ablation studies. We first examine prompt
designs and MixPrompt in zero-shot (Table 2) and
few-shots setup (Table 3). We tested it via different
LLMs. The results show that MixPrompt improves
upon single prompt on both two LLMs tested. We

Table 5: Ablation Study: SQLprompt with Mix LLMs

. Zero-shots ~ Few-shots
Num of Mixture 5 a1 3 6
EX 74 76,6 773 77.1
TS 65.5 68.0 683 68.6

do not observe improvement from few-shots over
zero-shots for better model (i.e. 540B), we hypoth-
esize when model gets larger, LLM’s Text-to-SQL
ability becomes better, leading to less room to im-
prove. We also provide a different set of few-shots
results in Table 6 in Appendix, which yield similar
results with Table 3, indicating varying few-shots
example with same prompt design may not im-
prove much. Further, with single LLM, Table 4
shows ablation study on each component of SQL-
prompt. Row 2 is SQLPrompt with PALM FLAN
62B q; Row 3-6 remove only one component. We
can see each conpoment contribute positively, es-
pecially consistency and execution filtering. The
effect of Mix LLMs of SQLPrompt shows in Ta-
ble 5. When the number of mixture is less than 4,
we use zero-shot results in Table 2. For example,
with 4 mixtures, we combine all the four models in
Table 2: PalLM FLAN 62B q: Concise or Verbose
prompt design; PaLM FLAN 540B q: Concise or
Verbose. When number of mixture is greater than
4, we include few-shots results. Note most of the
components in SQLPrompt can be apply to other
context learning methods.



Limitations

The limitation of this work is that query multiple
prompt designs and/or multiple LLMs can be ex-
pensive and time consuming. Although combining
multiple prompt designs and LLMs are promising
for improving performance, future work can be
work on effectively combine them to save cost.
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A Text-to-SQL challenges and prompt
design with primary/foreign keys and
database content

Fig 2 shows a Text-to-SQL example from Spider
Dataset. We use Fig 2 to demonstrate the neces-
sarity of including primary and foreign keys, and
content of database. The data schema contains
multiple tables. Each table has multiple columns.
Primary keys are the columns that uniquely iden-
tify a row in a table. Primary keys are important,
because some columns might specifically be chal-
lenging and it might be beneficial to include them
specifically as prompts, such as in Query 1 of Fig. 2
where "t2.makeid" may be mistakenly written as
"t2.id" without proper emphasis. Foreign key is
a column or combination of columns that is used
to establish and enforce a link between the data
in two tables. For example, in Fig 2 , Column
Maker of Table Model list is equivalent to Col-
umn ID of Car Maker. By including foreign keys
into prompt, LLMs can know how to join different
tables. Otherwise, it can be ambiguous to link mul-
tiple tables, especially for complex data schema
or schema with confusing column names. For ex-
ample, Column Maker in Table Model list is not
the same as Column Maker in Table Car Maker.
Although they both called column "Maker", one
is number and the other is string. Instead due to
foreign keys, we known Column Maker of Table
Model List is equivalent to Column ID in Table Car
maker. Additionally, including relevant database
content value, as seen in (Xie et al., 2022; Scholak
et al., 2021), is necessary as they help identify
which columns are relevant to key words in the
query question, such as in Fig. 2, Queryl’s key
information is "amc honrnet sportabout (sw)", how-
ever, without adding database content value, we
do not know which columns contain the value of
the key information. e.g. is it Column Maker of
Table Model List? Is it Column Maker of Table Car
Maker? or Is it Column Make of Table Car Names?
Only by including database content values, LLM
can know it should use The column of Make of
Table Car Names. Note that the database content
values are questions depended. Only content val-
ues that are related with questions is included into
prompt. See Fig 3. Note not all the content values
are included. So there is not problem if the number
of database contents is very large. As for how to
extract relevant database content values regarding
the query questions, we follow (Xie et al., 2022;

Scholak et al., 2021), where all the content values
are compared against the query questions, and only
top few ones that match the query question the best
are included.

[Table] [Columns]

Continents

Countries [ countryip | CountryName | Continent |

Model List [ Model_ID | Maker

/

Car Maker | D | Maker

~F~Model |

Y

FullName | Country |

CarNames | MakelD [ Model | Make |

| D | | Cylinders |Horsepower| Accelerale| |

[Query 1]: What is the acceleration of the car make amc hornet sportabout (sw)?
[saL 1]:

select t1. from as 1 join car_names as {2 on
t2.make = "amc hornet sportabout (sw)"

= t2.makeid where

[Query 2]: How many car models are produced in the usa?

[sQL2j:

select count(*) from model_list as t1 join car_makers as 2 on t1.maker = t2.id join
countries as t3 on t2.country = t3.countryid where t3.countryname = 'usa’;

Figure 2: One database schema with two query ques-
tions and true SQL as demo. Dark red are primary keys.
Dark green arrows are foreign keys joining different ta-
bles. Light gray is the context (values) in database (or
table). Both primary key and foreign keys are given in
the database schema. The highlighted (yellow or cyan)
are the part of schema that are used to solve Query 1
and 2 respectively. Colors are simply for easy visual-
ization. Same color, same table.

B Prompt design examples

We show the prompt design for a example in Spider
dataset.

B.1 Concise prompt design

"This is a task converting text into SQL statement.
We will first given the dataset schema and then ask
a question in text. You are asked to generate SQL
statement. Here is the test question to be anwered:
Convert text to SQL: [Schema (values)]: | car_1 |
continents : contid , continent | countries : coun-
tryid , countryname , continent | car_makers : id
, maker ( amc ) , fullname , country | model_list
: modelid , maker , model ( amc ) | car_names
: makeid , model ( amc ) , make ( amc hornet ,
amc hornet sportabout (sw) ) | cars_data : id , mpg ,
cylinders , edispl , horsepower , weight , accelerate ,
year; [Column names (type)]: continents : contid
(number) | continents : continent (text) | countries :



Query 1

continents : contid , continent | countries : countryid ,
countryname , continent | car_makers : id , maker (amc ),
fullname , country | model_list : modelid , maker , model (amc) |
car_names : makeid , model (amc ) , make ( amc hornet , amc
hornet sportabout (sw) ) | cars_data : id , mpg , cylinders , edispl
, horsepower , weight , accelerate , year;

Query 2

continents : contid , continent | countries : countryid ,
countryname (usa ), continent | car_makers : id , maker ,
fullname , country | model_list : modelid , maker , model |
car_names : makeid , model , make | cars_data : id , mpg ,
cylinders , edispl , horsepower , weight , accelerate , year;

Figure 3: Example of database with content: exam-
ples in Fig 2. Highlighted are database content for dif-
ferent queries. Following previous work (Xie et al.,
2022; Scholak et al., 2021), only the relevant database
content values are included. So different query ques-
tions have different database content value.

countryid (number) | countries : countryname (text)
| countries : continent (number) | car_makers : id
(number) | car_makers : maker (text) | car_makers
: fullname (text) | car_makers : country (text) |
model_list : modelid (number) | model_list : maker
(number) | model_list : model (text) | car_names
: makeid (number) | car_names : model (text) |
car_names : make (text) | cars_data : id (num-
ber) | cars_data : mpg (text) | cars_data : cylinders
(number) | cars_data : edispl (number) | cars_data :
horsepower (text) | cars_data : weight (number) |
cars_data : accelerate (number) | cars_data : year
(number); [Primary Keys]: continents : contid |
countries : countryid | car_makers : id | model_list :
modelid | car_names : makeid | cars_data : id; [For-
eign Keys]: countries : continent equals continents
: contid | car_makers : country equals countries :
countryid | model_list : maker equals car_makers :
id | car_names : model equals model_list : model
| cars_data : id equals car_names : makeid [Q]:
What is the accelerate of the car make amc hornet
sportabout (sw)?; [SQL]: "

B.2 Verbose prompt design

"This is a task converting text into SQL statement.
We will first given the dataset schema and then
ask a question in text. You are asked to generate
SQL statement. Here is the test question to be an-
wered: Let us take a question and turn it into a
SQL statement about database tables. There are
6 tables. Their titles are: continents, countries,
car_makers, model_list, car_names, cars_data. Ta-
ble 1 is continents, and its column names and types
are: Contld (Type is number), Continent (Type is
text). Table 2 is countries, and its column names

and types are: Countryld (Type is number), Coun-
tryName (Type is text), Continent (Type is number).
Table 3 is car_makers, and its column names and
types are: Id (Type is number), Maker (Type is
text), FullName (Type is text), Country (Type is
text). Table 4 is model_list, and its column names
and types are: Modelld (Type is number), Maker
(Type is number), Model (Type is text). Table 5
is car_names, and its column names and types are:
Makeld (Type is number), Model (Type is text),
Make (Type is text). Table 6 is cars_data, and its
column names and types are: Id (Type is num-
ber), MPG (Type is text), Cylinders (Type is num-
ber), Edispl (Type is number), Horsepower (Type
is text), Weight (Type is number), Accelerate (Type
is number), Year (Type is number). The primary
keys are: contid from Table continents, countryid
from Table countries, id from Table car_makers,
modelid from Table model_list, makeid from Table
car_names, id from Table cars_data. The foreign
keys are: continent from Table countries is equiv-
alent with contid from Table continents, country
from Table car_makers is equivalent with countryid
from Table countries, maker from Table model_list
is equivalent with id from Table car_makers, model
from Table car_names is equivalent with model
from Table model_list, id from Table cars_data is
equivalent with makeid from Table car_names. Use
foreign keys to join Tables. Columns with relevant
values: Table car_makers Column maker have val-
ues: amc; Table model_list Column model have
values: amc; Table car_names Column model have
values: amc; Table car_names Column make have
values: amc hornet, amc hornet sportabout (sw);
Only use columns with relevant values to generate
SQL. Let us take a text question and turn it into a
SQL statement about database tables. The question
is: What is the accelerate of the car make amc hor-
net sportabout (sw)? The corresponding SQL is:

C ChatGPT’s default prompt design

"Complete sqlite SQL query only and with
no explanation Sqlite SQL tables, with their

properties: continents(Contld,  Continent);
countries(Countryld, CountryName, Con-
tinent); car_makers(Id,Maker, FullName,

Country); mode_list(Modelld, Maker, Model);
car_names(Makeld, Model, Make); car_data(ld,
MPG, Cylinders, Edispl, Horsepower, Weight,
Accelerate, Year). What is the accelerate of the car



make amc hornet sportabout (sw)? SELECT"

Table 6: Another set of Few-shots

Concise Verbose = MixPrompt

Methods/Datasets EX TS EX TS EX TS

PaLMFLAN62Bq 68.1 61.7 719 643 745 66.7

SQLPrompt output

We show a list of real output generated by
SQLPrompt. See Table 7

D Selection of few-shot examples

We also provide results in few-shot learning set-
ting with a different set of examples. Compared to
Table 3 (eg. 66.6), the two results are very close,
indicating changing the few shots examples doesn’t
improve performance when using the same prompt
design.

E Experiment details

Query large language model does not require TPU
or GPU. CPU is enough. Consistency repeats are
32. Sampling temperature is 0.5.



Question What are the names of the singers whose birth years are either 1948 or 1949?

Ground Truth SELECT Name FROM singer WHERE Birth_Year = 1948 OR Birth_Year = 1949

LLM Generation SELECT name FROM singer WHERE birth_year = 1948 OR birth_year = 1949

Execution Accuracy 1

Question What is the name of the singer with the largest net worth?

Ground Truth SELECT Name FROM singer ORDER BY Net_Worth_Millions DESC LIMIT 1

LLM Generation SELECT T1.name FROM singer AS T1 ORDER BY T1.net_worth_millions Desc LIMIT 1

Execution Accuracy 1

Question ‘What is the name of the singer who is worth the most?

Ground Truth SELECT Name FROM singer ORDER BY Net_Worth_Millions DESC LIMIT 1

LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON Tl.singer_id = T2.singer_id ORDER BY T1.net_worth_millions Desc LIMIT 1

Execution Accuracy 1

Question Show different citizenship of singers and the number of singers of each citizenship.

Ground Truth SELECT Citizenship , COUNT(*) FROM singer GROUP BY Citizenship

LLM Generation SELECT Tl citizenship , count(*) FROM singer AS T1 GROUP BY T citizenship

Execution Accuracy 1

Question For each citizenship, how many singers are from that country?

Ground Truth SELECT Citizenship , COUNT(*) FROM singer GROUP BY Citizenship

LLM Generation SELECT Citizenship , count(*) FROM singer GROUP BY Citizenship

Execution Accuracy 1

Question Please show the most common citizenship of singers.

Ground Truth SELECT Citizenship FROM singer GROUP BY Citizenship ORDER BY COUNT(*) DESC LIMIT 1

LLM Generation SELECT citizenship FROM singer GROUP BY citizenship ORDER BY count(*) DESC LIMIT 1

Execution Accuracy 1

Question ‘What is the most common singer citizenship ?

Ground Truth select citizenship from singer group by citizenship order by count(*) desc limit 1

LLM Generation SELECT citizenship FROM singer GROUP BY citizenship ORDER BY count(*) DESC LIMIT 1

Execution Accuracy 1

Question Show different citizenships and the maximum net worth of singers of each citizenship.

Ground Truth SELECT Citizenship , max(Net_Worth_Millions) FROM singer GROUP BY Citizenship

LLM Generation SELECT T1.citizenship , max(T1.net_worth_millions) FROM singer AS T1 GROUP BY T1.citizenship

Execution Accuracy 1

Question For each citizenship, what is the maximum net worth?

Ground Truth SELECT Citizenship , max(Net_Worth_Millions) FROM singer GROUP BY Citizenship

LLM Generation SELECT Tl .citizenship , max(T1.net_worth_millions) FROM singer AS T1 GROUP BY T1 citizenship

Execution Accuracy 1

Question Show titles of songs and names of singers.

Ground Truth SELECT T2.Title , T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID

LLM Generation SELECT Tl title , T2.name FROM song AS T1 JOIN singer AS T2 ON T1.singer_id = T2.singer_id

Execution Accuracy 1

Question What are the song titles and singer names?

Ground Truth SELECT T2.Title , T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID

LLM Generation SELECT Tl.title , T2.name FROM song AS T1 JOIN singer AS T2 ON Tl.singer_id = T2.singer_id

Execution Accuracy 1

Question Show distinct names of singers that have songs with sales more than 300000.

Ground Truth SELECT DISTINCT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID WHERE T2.Sales > 300000

LLM Generation SELECT DISTINCT T1.name FROM singer AS T1 JOIN song AS T2 ON Tl.singer_id = T2.singer_id WHERE T2.sales > 300000

Execution Accuracy 1

Question what are the different names of the singers that have sales more than 300000?

Ground Truth SELECT DISTINCT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID WHERE T2.Sales > 300000

LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.sales > 300000

Execution Accuracy 1

Question Show the names of singers that have more than one song.

Ground Truth SELECT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name HAVING COUNT(*) > 1

LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON Tl.singer_id = T2.singer_id GROUP BY T1.singer_id HAVING COUNT(*) > 1

Execution Accuracy 1

Question What are the names of the singers that have more than one songs?

Ground Truth SELECT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name HAVING COUNT(*) > 1

LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.singer_id HAVING COUNT(*) > 1

Execution Accuracy 1

Question Show the names of singers and the total sales of their songs.

Ground Truth SELECT T1.Name , sum(T2.Sales) FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name

LLM Generation SELECT T1.name , sum(T2.sales) FROM singer AS T1 JOIN song AS T2 ON Tl.singer_id = T2.singer_id GROUP BY T1.name

Execution Accuracy 1

Question For each singer name, what is the total sales for their songs?

Ground Truth SELECT T1.Name , sum(T2.Sales) FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name

LLM Generation SELECT Tl.name , sum(T2.sales) FROM singer AS T1 JOIN song AS T2 ON Tl.singer_id = T2.singer_id GROUP BY Tl.name

Execution Accuracy 1

Question List the name of singers that do not have any song.

Ground Truth SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)

LLM Generation SELECT name FROM singer WHERE singer_id NOT IN ( SELECT singer_id FROM song )

Execution Accuracy 1

Question ‘What is the sname of every sing that does not have any song?

Ground Truth SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)

LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON Tl.singer_id = T2.singer_id WHERE T2.singer_id IS NULL

Execution Accuracy 0

Question Show the citizenship shared by singers with birth year before 1945 and after 1955.

Ground Truth SELECT Citizenship FROM singer WHERE Birth_Year < 1945 INTERSECT SELECT Citizenship FROM singer WHERE Birth_Year > 1955

LLM Generation SELECT T1 citizenship FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T1.birth_year < 1945 INTERSECT SELECT
Tl .citizenship FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T1.birth_year > 1955

Execution Accuracy 0

Question What are the citizenships that are shared by singers with a birth year before 1945 and after 1955?

Ground Truth SELECT Citizenship FROM singer WHERE Birth_Year < 1945 INTERSECT SELECT Citizenship FROM singer WHERE Birth_Year > 1955

LLM Generation SELECT citizenship FROM singer WHERE birth_year < 1945 INTERSECT SELECT citizenship FROM singer WHERE birth_year > 1955

Execution Accuracy 1

Question How many available features are there in total?

Ground Truth SELECT count(*) FROM Other_Available_Features

LLM Generation SELECT count(*) FROM other_available_features

Execution Accuracy 1

Question What is the feature type name of feature AirCon?

Ground Truth SELECT T2.feature_type_name FROM Other_Available_Features AS Tl JOIN Ref Feature_Types AS T2 ON Tl feature_type_code =
T2.feature_type_code WHERE T1.feature_name = "AirCon"

LLM Generation SELECT Tl .feature_type_name FROM ref_feature_types AS TI JOIN other_available_features AS T2 ON Tl .feature_type_code =
T2.feature_type_code WHERE T2.feature_name = "AirCon"

Execution Accuracy 1

Question Show the property type descriptions of properties belonging to that code.

Ground Truth SELECT T2.property_type_description FROM Properties AS T1 JOIN Ref_Property_Types AS T2 ON T1.property_type_code = T2.property_type_code
GROUP BY Tl.property_type_code

LLM Generation SELECT property_type_description FROM ref_property_types WHERE property_type_code IN (SELECT property_type_code FROM properties)

Execution Accuracy 1

Question What are the names of properties that are either houses or apartments with more than 1 room?

Ground Truth SELECT property_name FROM Properties WHERE property_type_code = "House" UNION SELECT property_name FROM Properties WHERE prop-
erty_type_code = "Apartment” AND room_count > 1

LLM Generation SELECT property_name FROM properties WHERE property_type_code = "House” OR property_type_code = *Apartment” AND room_count > 1

Execution Accuracy 1

Table 7: SQLPrompt: randomly sampled generated SQL from LLM
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