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Abstract

Text-to-SQL aims to automate the process of001
generating SQL queries on a database from002
natural language text. In this paper, we pro-003
pose SQLPrompt , a novel method to push the004
state-of-the-art of Text-to-SQL with in-context005
learning, leveraging the zero-shot and few-006
shot adaptation capability of large language007
models (LLMs). Our method comprises a008
novel prompt design approach to efficiently009
consider the database information; execution-010
based consistency decoding; and employing011
mixture of prompts and/or LLMs. We show012
that SQLPrompt outperforms previous state-013
of-the-art for in-context learning with zero la-014
beled data by a large margin, closing the gap015
with finetuning state-of-the-art with thousands016
of labeled data.017

1 Introduction018

Text-to-SQL enables natural language interfaces019

for SQL query generation. It is crucial for en-020

hancing database accessibility without requiring021

expertise in SQL, and enabling the development of022

conversational agents with advanced data analytics023

Notable recent works for Text-to-SQL, PICARD024

(Scholak et al., 2021), UnifiedSKG (Xie et al.,025

2022), and RESDSQL-3B + NatSQL(Li et al.,026

2023), achieve their state-of-the-art results by fine-027

tuning the LLMs with a large number of (text,028

SQL) pair data samples, followed by customized029

SQL-specific syntax improvements such as con-030

strained decoding. Recently, massive LLMs such031

as GPT-3 (Brown et al., 2020), PaLM (Chowdhery032

et al., 2022), and ChatGPT1(Stiennon et al., 2020)033

have demonstrated significant progress using few034

or zero-shot examples as prompts via in-context035

learning (Wei et al., 2022). In-context learning036

comes with numerous benefits, including alleviat-037

ing expensive training, lowering adaptation data re-038

quirements, reducing out-of-distribution issues (e.g.039

1https://chat.openai.com/chat.

unseen words), and lowering the risk of overfitting 040

(e.g. not generalize). These benefits are also highly 041

important for Text-to-SQL, especially given that 042

collecting data in the form of (text, SQL) pairs can 043

be costly, and there are many different SQL dialects 044

and domain-dependent database types. While 045

CodeX (Chen et al., 2021) and ChatGPT have 046

shown promising results with in-context learning 047

for Text-to-SQL, they have a gap between the fine- 048

tuned counterparts, which are trained on signifi- 049

cantly more data (thousands of samples). Our goal 050

in this paper is to push the state-of-the-art in Text- 051

to-SQL with minimal labeled data. We propose a 052

novel method, SQLPrompt, which includes prompt 053

design with database content, execution-based con- 054

sistency decoding, and a mixure of prompts and 055

LLMs. At zero-shot settings, SQLPrompt achieves 056

the state-of-the-art results for in-context learning, 057

closing the gap with fine-tuning state-of-the-art 058

models that require thousands of samples. 059

2 Methods 060

2.1 Problem setup for Text-to-SQL 061

Let q be natural language query and Dq be the 062

database information. Text-to-SQL task is to 063

convert query q into SQL. The database Dq = 064

{S,Kp,Kf} includes database schema S primary 065

keys Kp, and foreign keys Kf . S usually con- 066

tains multiple tables Tt: S = {T1, T2, ...Tt...}. 067

Each table Tt has table name Nt, column 068

names cj and column data types tj : Tk = 069

{Nk, (ck1, tk1), (ck2, tk2), (ckj , tkj)...}). Primary 070

keys Kp uniquely identifying rows of each table, 071

and foreign keys Kf join multiple tables. 072

2.2 Prompt design with database content and 073

primary/foreign keys 074

We argue that prompts should include all neces- 075

sary information for SQL generation as if expert 076

humans generate answers for the queries. While 077
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SELECT Count(*) FROM singer 
WHERE Country = "France"

Prompt 
Design 1
(Concise)

SELECT Count(*) FROM singer 
WHERE Country = "French"

Prompt 
Design 2
(Verbose)

SELECT Count(*) FROM singer AS 
T1 JOIN country AS T2 ON 
T1.Country = T2.Code WHERE 
T2.Name = 'France'

SELECT Count(*) FROM singer 
WHERE Country = "France"

Singer_ID
(Kp) Name  Country Age

1 Tribal King France 25

2 Timbaland
United 
States 32

3
Rose 
White France 43

How many French singers?

LLM

0

2

N/A

2

Schema (S) & query questions (q)                                                        

  Exec 
outcome

1

1

2

Consistency 
selection

No values “French”

No table 
“country”

M
ajority Vote

2

  Exec 
Filtering

0

2

2

Generated SQL                                                       

0

2

N/A

2

Table (T): Singer 

Figure 1: SQLPrompt Overview: (Left) Prompt Design: Concise prompt design (up) and Verbose prompt design
(down). (Right) MixPrompt in SQLPrompt generates multiple prompts using database and query question, to query
LLMs. For each query, LLMs are sampled twice, and two SQLs are generated and executed on the database with
errors filtered out. The execution outcomes of both prompt designs are combined to select the most consistent SQL.
Without MixPrompt, the true answer cannot be selected with only one prompt (blue) due to a tie situation.

most popular prompt design approaches only in-078

clude database schema 2, we hypothesize that inclu-079

sion of primary and foreign keys, and the database080

content are crucial, because they help with under-081

standing the schema, linking tables and selecting082

appropriate columns (Lin et al., 2020; Wang et al.,083

2020). Refer to Appendix A for more discussion.084

Concise database description prompts To085

prompt LLMs, we linerize information in a table as086

“Table1 name: column name 1, column name 2 (rel-087

evant database content) | Table2 name: column1 ...”088

(Figure 1, Concise. Full example in Appendix B.1).089

This way describes table structure clearly, but can090

be less straightforward for LLMs to understand.091

Verbose database description prompts We de-092

scribe databases with human understandable words093

and emphasize on the information LLMs need094

to know: e.g. “Table CarNames contains three095

columns. The column names and their types are096

: MakeID (number), Model (string) ..”; “Foreign097

keys are .. Use foreign keys to join Tables”. See098

Appendix B.2 for an example.099

2.3 Refinement based on execution-based100

consistency with MixPrompt101

We introduce MixPrompt, an in-context learning102

method based on querying LLMs multiple times103

and employing execution-based consistency with104

multiple prompt designs. Self-consistency (Wang105

et al., 2022), which samples LLMs multiple106

2https://platform.openai.com/examples/
default-sql-translate.

times to select the most consistent answer, has 107

shown remarkable performance improvements, 108

but its performance with the same prompt design 109

may show saturation beyond some number of 110

samples. Since diversity of outputs is critical for 111

performance, we apply multiple prompt designs, 112

with the assumption that varying prompt designs 113

changes the interface of query and LLMs, leading 114

to more diverse LLM’s outputs (Zhou et al., 2022). 115

Then, we select the most consistent answer across 116

different prompt designs. 117

118

Suppose F = {f1, f2, ...} is a collection of dif- 119

ferent design functions, e.g. f1 is verbose, f2 is 120

concise. When we fix LLMs, we have MixPrompt 121

prediction objectives: 122

p(sql|LLM, q) =
∑
f

p(sql|LLM, f, q)p(f), (1) 123

where p(f) is mixing coefficient. Since we evenly 124

mixing prompts,p(f) = 1/nF where nF is num- 125

ber of design functions. p(sql|LLM, f, q) is sam- 126

pling probability of generating sql. 127

MixPromt is over-viewed in Fig 1. Specifically, for 128

each design function f , we generate prompts using 129

database Dq and the query q. The trained LLMs 130

specify the distribution ` : q → sql, where we can 131

draw sample from: 132

Promptq = f(q,Dq) (2) 133

sqlqf ∼
i.i.d

LLM(Promptq, r) (3) 134

We sample B times from the LLM with the same 135
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Algorithm 1: Refinement based on execu-
tion and consistency with MixPrompt

Data: Require: Query questions Qtest; Database
Dtest; Prompt design function collections F

Result: SQL output of test set: SQLtest

while q in Qtest do
Dq ← Dtest[q];
while f in F do

Promptq ← f(qi, Dq) ; eq (2)
M = [];
O = [];
while b in B do

sqlq ∼
i.i.d

LLM(Promptq, r) ; eq (3)

Oq = Exec(sqlq, Dq) ;
if "error" NOT in Oq then

M ← sqlq;
O ← Oq;

end
end

end
sqlselect = {sqlq : Oq = Majority(O), q ∈
M} ; eq (9)

SQLtest ← sqlselect
end

prompt Promptq to get SQL collections by Eq 3:136

Mqf = {sql1qf , ...sqlbqf}B (4)137

We then execute the generated SQLs using an en-138

gine Exec (i.e. sqlite3), which yields the outputs139

O as the execution result of SQL on the provided140

database.141

Oqf = {Ob
qf : Ob

qf = Exec(sqlbqf , Dq), sql
b
q ∈Mqf}

(5)
142

We further exclude outputs Oqf that yield errors143

and only keep the valid output, therefore obtain144

final (SQL, outcome) pairs for prompt design f :145

Rqf = (Mqf , Oqf ) = {(M b
qf , O

b
qf ) : Ob

qf 6=146

errors}. We repeat the above process for each147

prompt design function f and generate Rq =148

{Rq1, ...Rqf , ..}nF , by concatenating all the results149

across multiple designs and obtain:150

Mq = [Mq1, ...,Mqf ...,MnF ] (6)151

Qq = [Oq1, ..., Oqf ..., OnF ] (7)152

Following self-consistency, we select the SQL that153

give the execution outcome consisted with the ma-154

jority of the execution outcomes Oq generated by155

all Mq.156

sqlselect = {sqlkq : Ok
q = Majority(Oq) (8)157

Ok
q ∈ Qq, sql

k
q ∈Mq}. (9)158

where k is the index across multiple prompt design 159

and consistency repeats. The overall process is de- 160

scribed in Algorithm 1. 161

With the goal of increasing diversity for better re- 162

finement, we further expand our method to not only 163

use one LLM, but rather a mixture of LLMs: 164

p(sql|q) =
∑
LLM

∑
f

p(sql|LLM, f, q)p(f)p(LLM)

(10)

165

Similar to the combination idea in MixPrompt, 166

"MixPrompt and Model" combines outputs across 167

multiple LLMs, in addition to across multiple 168

prompt designs. 169

3 Experiments 170

Tasks and datasets: We consider the cross- 171

domain large-scale Text-to-SQL benchmark, Spi- 172

der (Yu et al., 2018) that contains 7000 training 173

samples across 166 databases and 1034 evaluation 174

samples (‘Dev split’) across 20 databases. 175

Models: PaLM FLAN 540B is a PaLM model 176

variant (Chowdhery et al., 2022) with 540-billion 177

parameters fine-tuned on a collection of tasks 178

phrased as instructions. FLAN (Chung et al., 2022) 179

is a reference to the fine-tuning in a way that respect 180

instructions being given in the prompt. PaLM- 181

62B is a PaLM variant with 62 billion parameters 182

trained on 1.3T tokens following the (Hoffmann 183

et al., 2022) PaLM FLAN 62B is FLAN fintuned 184

variant. Quantization is applied to above models 185

when with q. It reduces precision of a model’s 186

parameters and enable efficient inference. 187

Fine-tuning baselines: PICARD (Scholak et al., 188

2021) employs incremental parsing to constrain 189

auto-regressive decoding. RASAT (Qi et al., 190

2022) is a transformer model that integrates 191

relation-aware self-attention and constrained auto- 192

regressive decoders. RESDSQL (Li et al., 2023) 193

decouples schema linking and skeleton parsing 194

using a ranking-enhanced encoding and skeleton- 195

aware decoding framework. 196

In-context learning baselines: (Rajkumar et al., 197

2022) comprehensively evaluate the Text-to-SQL 198

ability of CodeX and GPT3, while (Liu et al., 2023) 199

conduct a comprehensive evaluation on ChatGPT. 200

Evaluation: We consider two commonly-used 201

evaluation metrics: execution accuracy (EX) and 202

test-suite accuracy (TS) (Zhong et al., 2020), where 203

EX measures if SQL execution outcome matches 204
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Methods SPIDER
EX TS

Fine-tuning
T5-3B + PICARD 79.3 69.4
RASAT + PICARD 80.5 70.3
RESDSQL-3B + NatSQL (SOTA) 84.1 73.5

In-context learning

GPT-3 ada (0-shot) 2.3 0.3
GPT-3 babbage (0-shot) 5.7 3.9
GPT-3 curie (0-shot) 12.6 8.3
GPT-3 davinci (0-shot) 26.3 21.7
Codex cushman (0-shot) 63.7 53.0
Codex davinci (0-shot) 67.0 55.1
ChatGPT (0-shot) 70.1 60.1
SQLPrompt (0-shot) 76.6 68.0
SQLPrompt (4-shot) 77.1 68.6

Table 1: Performance on the Spider Dev set, measured in execution accuracy (EX) and test-suite accuracy (TS). GPT3 and
CodeX results are from (Rajkumar et al., 2022) and ChatGPT results are from (Liu et al., 2023).

Table 2: Ablation study on prompt design approaches in 0-
shot setting. MixPrompt improves concise or verbose prompt
design approaches with different LLMs. We only mark TS
Acc changes, not EX, because TS is more accurate evaluation.

Models
Concise Verbose MixPrompt

EX TS EX TS EX TS
PaLM FLAN 62B q 67.7 61.3 70.8 62.9 70.5 63.2 (↑ 0.3)
PaLM FLAN 540B q 72.3 64.1 71.6 61.3 74.0 65.5 (↑ 1.4)

Table 3: Ablation Study: Few-shots

Models
Concise Verbose MixPrompt

EX TS EX TS EX TS
PaLM FLAN 62B q 65.9 59.6 71.8 63.8 74.7 66.6 (↑ 2.8)
PaLM FLAN 540B q 71.2 63.2 70.7 61.1 74.7 65.2 (↑ 2.0)

ground truth. TS assesses each query by run-205

ning multiple tests against randomly generated206

database with same schema (EX only evaluates on207

one test). So TS reduces false positives from EX208

and TS is more accurate evaluation. Here we focus209

on TS. Exact match evaluation is not performed, as210

multiple correct SQLs exist for one query.211

4 Results212

Table-1 presents the comparison between SQL-213

Prompt and the state-of-the-art models for in-214

context learning and fine-tuning. For in-context215

learning, SQLPrompt outperforms context learn-216

ing state-of-the-art (SOTA) ChatGPT (with their217

recommended prompts) by a large margin: ↑ 7%218

for execution accuracy (EX) and ↑ 8.1% for test219

suite accuracy (TS). Examples of SQL generated220

by SQLPrompt is Table 7 in Appendix.221

Ablation study SQLPrompt consists of multiple222

components: prompt design, execution-based con-223

sistency decoding, Mix Prompt, and Mix LLMs. To224

shed light into the impact of these components, we225

present ablation studies. We first examine prompt226

designs and MixPrompt in zero-shot (Table 2) and227

few-shots setup (Table 3). We tested it via different228

LLMs. The results show that MixPrompt improves229

upon single prompt on both two LLMs tested. We230

Table 4: Ablation Study of SQLPrompt (without Mix LLMs)
:

EX TS
SQLPrompt (Prompt Design
+ Consistency
+ Execution Filtering
+MixPrompt)

70.5 63.2

No MixPrompt 67.7 61.3 (↓ 1.9)
Only Schema (No primary,
No foreignkeys, no DB content)

66.4 57.3 (↓ 5.9)

No Consistency 55.9 49.6 (↓ 13.6)
No Execution Filtering 55.2 48.7 (↓ 14.5)

Table 5: Ablation Study: SQLprompt with Mix LLMs

Num of Mixture
Zero-shots Few-shots
2 4 6 16

EX 74 76.6 77.3 77.1
TS 65.5 68.0 68.3 68.6

do not observe improvement from few-shots over 231

zero-shots for better model (i.e. 540B), we hypoth- 232

esize when model gets larger, LLM’s Text-to-SQL 233

ability becomes better, leading to less room to im- 234

prove. We also provide a different set of few-shots 235

results in Table 6 in Appendix, which yield similar 236

results with Table 3, indicating varying few-shots 237

example with same prompt design may not im- 238

prove much. Further, with single LLM, Table 4 239

shows ablation study on each component of SQL- 240

prompt. Row 2 is SQLPrompt with PALM FLAN 241

62B q; Row 3-6 remove only one component. We 242

can see each conpoment contribute positively, es- 243

pecially consistency and execution filtering. The 244

effect of Mix LLMs of SQLPrompt shows in Ta- 245

ble 5. When the number of mixture is less than 4, 246

we use zero-shot results in Table 2. For example, 247

with 4 mixtures, we combine all the four models in 248

Table 2: PaLM FLAN 62B q: Concise or Verbose 249

prompt design; PaLM FLAN 540B q: Concise or 250

Verbose. When number of mixture is greater than 251

4, we include few-shots results. Note most of the 252

components in SQLPrompt can be apply to other 253

context learning methods. 254
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Limitations255

The limitation of this work is that query multiple256

prompt designs and/or multiple LLMs can be ex-257

pensive and time consuming. Although combining258

multiple prompt designs and LLMs are promising259

for improving performance, future work can be260

work on effectively combine them to save cost.261
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A Text-to-SQL challenges and prompt360

design with primary/foreign keys and361

database content362

Fig 2 shows a Text-to-SQL example from Spider363

Dataset. We use Fig 2 to demonstrate the neces-364

sarity of including primary and foreign keys, and365

content of database. The data schema contains366

multiple tables. Each table has multiple columns.367

Primary keys are the columns that uniquely iden-368

tify a row in a table. Primary keys are important,369

because some columns might specifically be chal-370

lenging and it might be beneficial to include them371

specifically as prompts, such as in Query 1 of Fig. 2372

where "t2.makeid" may be mistakenly written as373

"t2.id" without proper emphasis. Foreign key is374

a column or combination of columns that is used375

to establish and enforce a link between the data376

in two tables. For example, in Fig 2 , Column377

Maker of Table Model list is equivalent to Col-378

umn ID of Car Maker. By including foreign keys379

into prompt, LLMs can know how to join different380

tables. Otherwise, it can be ambiguous to link mul-381

tiple tables, especially for complex data schema382

or schema with confusing column names. For ex-383

ample, Column Maker in Table Model list is not384

the same as Column Maker in Table Car Maker.385

Although they both called column "Maker", one386

is number and the other is string. Instead due to387

foreign keys, we known Column Maker of Table388

Model List is equivalent to Column ID in Table Car389

maker. Additionally, including relevant database390

content value, as seen in (Xie et al., 2022; Scholak391

et al., 2021), is necessary as they help identify392

which columns are relevant to key words in the393

query question, such as in Fig. 2, Query1’s key394

information is "amc honrnet sportabout (sw)", how-395

ever, without adding database content value, we396

do not know which columns contain the value of397

the key information. e.g. is it Column Maker of398

Table Model List? Is it Column Maker of Table Car399

Maker? or Is it Column Make of Table Car Names?400

Only by including database content values, LLM401

can know it should use The column of Make of402

Table Car Names. Note that the database content403

values are questions depended. Only content val-404

ues that are related with questions is included into405

prompt. See Fig 3. Note not all the content values406

are included. So there is not problem if the number407

of database contents is very large. As for how to408

extract relevant database content values regarding409

the query questions, we follow (Xie et al., 2022;410

Scholak et al., 2021), where all the content values 411

are compared against the query questions, and only 412

top few ones that match the query question the best 413

are included. 414

Figure 2: One database schema with two query ques-
tions and true SQL as demo. Dark red are primary keys.
Dark green arrows are foreign keys joining different ta-
bles. Light gray is the context (values) in database (or
table). Both primary key and foreign keys are given in
the database schema. The highlighted (yellow or cyan)
are the part of schema that are used to solve Query 1
and 2 respectively. Colors are simply for easy visual-
ization. Same color, same table.

B Prompt design examples 415

We show the prompt design for a example in Spider 416

dataset. 417

B.1 Concise prompt design 418

"This is a task converting text into SQL statement. 419

We will first given the dataset schema and then ask 420

a question in text. You are asked to generate SQL 421

statement. Here is the test question to be anwered: 422

Convert text to SQL: [Schema (values)]: | car_1 | 423

continents : contid , continent | countries : coun- 424

tryid , countryname , continent | car_makers : id 425

, maker ( amc ) , fullname , country | model_list 426

: modelid , maker , model ( amc ) | car_names 427

: makeid , model ( amc ) , make ( amc hornet , 428

amc hornet sportabout (sw) ) | cars_data : id , mpg , 429

cylinders , edispl , horsepower , weight , accelerate , 430

year; [Column names (type)]: continents : contid 431

(number) | continents : continent (text) | countries : 432
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Figure 3: Example of database with content: exam-
ples in Fig 2. Highlighted are database content for dif-
ferent queries. Following previous work (Xie et al.,
2022; Scholak et al., 2021), only the relevant database
content values are included. So different query ques-
tions have different database content value.

countryid (number) | countries : countryname (text)433

| countries : continent (number) | car_makers : id434

(number) | car_makers : maker (text) | car_makers435

: fullname (text) | car_makers : country (text) |436

model_list : modelid (number) | model_list : maker437

(number) | model_list : model (text) | car_names438

: makeid (number) | car_names : model (text) |439

car_names : make (text) | cars_data : id (num-440

ber) | cars_data : mpg (text) | cars_data : cylinders441

(number) | cars_data : edispl (number) | cars_data :442

horsepower (text) | cars_data : weight (number) |443

cars_data : accelerate (number) | cars_data : year444

(number); [Primary Keys]: continents : contid |445

countries : countryid | car_makers : id | model_list :446

modelid | car_names : makeid | cars_data : id; [For-447

eign Keys]: countries : continent equals continents448

: contid | car_makers : country equals countries :449

countryid | model_list : maker equals car_makers :450

id | car_names : model equals model_list : model451

| cars_data : id equals car_names : makeid [Q]:452

What is the accelerate of the car make amc hornet453

sportabout (sw)?; [SQL]: "454

B.2 Verbose prompt design455

"This is a task converting text into SQL statement.456

We will first given the dataset schema and then457

ask a question in text. You are asked to generate458

SQL statement. Here is the test question to be an-459

wered: Let us take a question and turn it into a460

SQL statement about database tables. There are461

6 tables. Their titles are: continents, countries,462

car_makers, model_list, car_names, cars_data. Ta-463

ble 1 is continents, and its column names and types464

are: ContId (Type is number), Continent (Type is465

text). Table 2 is countries, and its column names466

and types are: CountryId (Type is number), Coun- 467

tryName (Type is text), Continent (Type is number). 468

Table 3 is car_makers, and its column names and 469

types are: Id (Type is number), Maker (Type is 470

text), FullName (Type is text), Country (Type is 471

text). Table 4 is model_list, and its column names 472

and types are: ModelId (Type is number), Maker 473

(Type is number), Model (Type is text). Table 5 474

is car_names, and its column names and types are: 475

MakeId (Type is number), Model (Type is text), 476

Make (Type is text). Table 6 is cars_data, and its 477

column names and types are: Id (Type is num- 478

ber), MPG (Type is text), Cylinders (Type is num- 479

ber), Edispl (Type is number), Horsepower (Type 480

is text), Weight (Type is number), Accelerate (Type 481

is number), Year (Type is number). The primary 482

keys are: contid from Table continents, countryid 483

from Table countries, id from Table car_makers, 484

modelid from Table model_list, makeid from Table 485

car_names, id from Table cars_data. The foreign 486

keys are: continent from Table countries is equiv- 487

alent with contid from Table continents, country 488

from Table car_makers is equivalent with countryid 489

from Table countries, maker from Table model_list 490

is equivalent with id from Table car_makers, model 491

from Table car_names is equivalent with model 492

from Table model_list, id from Table cars_data is 493

equivalent with makeid from Table car_names. Use 494

foreign keys to join Tables. Columns with relevant 495

values: Table car_makers Column maker have val- 496

ues: amc; Table model_list Column model have 497

values: amc; Table car_names Column model have 498

values: amc; Table car_names Column make have 499

values: amc hornet, amc hornet sportabout (sw); 500

Only use columns with relevant values to generate 501

SQL. Let us take a text question and turn it into a 502

SQL statement about database tables. The question 503

is: What is the accelerate of the car make amc hor- 504

net sportabout (sw)? The corresponding SQL is: 505

" 506

C ChatGPT’s default prompt design 507

"Complete sqlite SQL query only and with 508

no explanation Sqlite SQL tables, with their 509

properties: continents(ContId, Continent); 510

countries(CountryId, CountryName, Con- 511

tinent); car_makers(Id,Maker, FullName, 512

Country); mode_list(ModelId, Maker, Model); 513

car_names(MakeId, Model, Make); car_data(Id, 514

MPG, Cylinders, Edispl, Horsepower, Weight, 515

Accelerate, Year). What is the accelerate of the car 516
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make amc hornet sportabout (sw)? SELECT"

Table 6: Another set of Few-shots

Methods/Datasets
Concise Verbose MixPrompt

EX TS EX TS EX TS
PaLM FLAN 62B q 68.1 61.7 71.9 64.3 74.5 66.7

517

SQLPrompt output518

We show a list of real output generated by519

SQLPrompt. See Table 7520

D Selection of few-shot examples521

We also provide results in few-shot learning set-522

ting with a different set of examples. Compared to523

Table 3 (eg. 66.6), the two results are very close,524

indicating changing the few shots examples doesn’t525

improve performance when using the same prompt526

design.527

E Experiment details528

Query large language model does not require TPU529

or GPU. CPU is enough. Consistency repeats are530

32. Sampling temperature is 0.5.531
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Question What are the names of the singers whose birth years are either 1948 or 1949?
Ground Truth SELECT Name FROM singer WHERE Birth_Year = 1948 OR Birth_Year = 1949
LLM Generation SELECT name FROM singer WHERE birth_year = 1948 OR birth_year = 1949
Execution Accuracy 1
Question What is the name of the singer with the largest net worth?
Ground Truth SELECT Name FROM singer ORDER BY Net_Worth_Millions DESC LIMIT 1
LLM Generation SELECT T1.name FROM singer AS T1 ORDER BY T1.net_worth_millions Desc LIMIT 1
Execution Accuracy 1
Question What is the name of the singer who is worth the most?
Ground Truth SELECT Name FROM singer ORDER BY Net_Worth_Millions DESC LIMIT 1
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id ORDER BY T1.net_worth_millions Desc LIMIT 1
Execution Accuracy 1
Question Show different citizenship of singers and the number of singers of each citizenship.
Ground Truth SELECT Citizenship , COUNT(*) FROM singer GROUP BY Citizenship
LLM Generation SELECT T1.citizenship , count(*) FROM singer AS T1 GROUP BY T1.citizenship
Execution Accuracy 1
Question For each citizenship, how many singers are from that country?
Ground Truth SELECT Citizenship , COUNT(*) FROM singer GROUP BY Citizenship
LLM Generation SELECT Citizenship , count(*) FROM singer GROUP BY Citizenship
Execution Accuracy 1
Question Please show the most common citizenship of singers.
Ground Truth SELECT Citizenship FROM singer GROUP BY Citizenship ORDER BY COUNT(*) DESC LIMIT 1
LLM Generation SELECT citizenship FROM singer GROUP BY citizenship ORDER BY count(*) DESC LIMIT 1
Execution Accuracy 1
Question What is the most common singer citizenship ?
Ground Truth select citizenship from singer group by citizenship order by count(*) desc limit 1
LLM Generation SELECT citizenship FROM singer GROUP BY citizenship ORDER BY count(*) DESC LIMIT 1
Execution Accuracy 1
Question Show different citizenships and the maximum net worth of singers of each citizenship.
Ground Truth SELECT Citizenship , max(Net_Worth_Millions) FROM singer GROUP BY Citizenship
LLM Generation SELECT T1.citizenship , max(T1.net_worth_millions) FROM singer AS T1 GROUP BY T1.citizenship
Execution Accuracy 1
Question For each citizenship, what is the maximum net worth?
Ground Truth SELECT Citizenship , max(Net_Worth_Millions) FROM singer GROUP BY Citizenship
LLM Generation SELECT T1.citizenship , max(T1.net_worth_millions) FROM singer AS T1 GROUP BY T1.citizenship
Execution Accuracy 1
Question Show titles of songs and names of singers.
Ground Truth SELECT T2.Title , T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID
LLM Generation SELECT T1.title , T2.name FROM song AS T1 JOIN singer AS T2 ON T1.singer_id = T2.singer_id
Execution Accuracy 1
Question What are the song titles and singer names?
Ground Truth SELECT T2.Title , T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID
LLM Generation SELECT T1.title , T2.name FROM song AS T1 JOIN singer AS T2 ON T1.singer_id = T2.singer_id
Execution Accuracy 1
Question Show distinct names of singers that have songs with sales more than 300000.
Ground Truth SELECT DISTINCT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID WHERE T2.Sales > 300000
LLM Generation SELECT DISTINCT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.sales > 300000
Execution Accuracy 1
Question what are the different names of the singers that have sales more than 300000?
Ground Truth SELECT DISTINCT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID WHERE T2.Sales > 300000
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.sales > 300000
Execution Accuracy 1
Question Show the names of singers that have more than one song.
Ground Truth SELECT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name HAVING COUNT(*) > 1
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.singer_id HAVING COUNT(*) > 1
Execution Accuracy 1
Question What are the names of the singers that have more than one songs?
Ground Truth SELECT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name HAVING COUNT(*) > 1
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.singer_id HAVING COUNT(*) > 1
Execution Accuracy 1
Question Show the names of singers and the total sales of their songs.
Ground Truth SELECT T1.Name , sum(T2.Sales) FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name
LLM Generation SELECT T1.name , sum(T2.sales) FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.name
Execution Accuracy 1
Question For each singer name, what is the total sales for their songs?
Ground Truth SELECT T1.Name , sum(T2.Sales) FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name
LLM Generation SELECT T1.name , sum(T2.sales) FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.name
Execution Accuracy 1
Question List the name of singers that do not have any song.
Ground Truth SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)
LLM Generation SELECT name FROM singer WHERE singer_id NOT IN ( SELECT singer_id FROM song )
Execution Accuracy 1
Question What is the sname of every sing that does not have any song?
Ground Truth SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.singer_id IS NULL
Execution Accuracy 0
Question Show the citizenship shared by singers with birth year before 1945 and after 1955.
Ground Truth SELECT Citizenship FROM singer WHERE Birth_Year < 1945 INTERSECT SELECT Citizenship FROM singer WHERE Birth_Year > 1955
LLM Generation SELECT T1.citizenship FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T1.birth_year < 1945 INTERSECT SELECT

T1.citizenship FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T1.birth_year > 1955
Execution Accuracy 0
Question What are the citizenships that are shared by singers with a birth year before 1945 and after 1955?
Ground Truth SELECT Citizenship FROM singer WHERE Birth_Year < 1945 INTERSECT SELECT Citizenship FROM singer WHERE Birth_Year > 1955
LLM Generation SELECT citizenship FROM singer WHERE birth_year < 1945 INTERSECT SELECT citizenship FROM singer WHERE birth_year > 1955
Execution Accuracy 1
Question How many available features are there in total?
Ground Truth SELECT count(*) FROM Other_Available_Features
LLM Generation SELECT count(*) FROM other_available_features
Execution Accuracy 1
Question What is the feature type name of feature AirCon?
Ground Truth SELECT T2.feature_type_name FROM Other_Available_Features AS T1 JOIN Ref_Feature_Types AS T2 ON T1.feature_type_code =

T2.feature_type_code WHERE T1.feature_name = "AirCon"
LLM Generation SELECT T1.feature_type_name FROM ref_feature_types AS T1 JOIN other_available_features AS T2 ON T1.feature_type_code =

T2.feature_type_code WHERE T2.feature_name = "AirCon"
Execution Accuracy 1
Question Show the property type descriptions of properties belonging to that code.
Ground Truth SELECT T2.property_type_description FROM Properties AS T1 JOIN Ref_Property_Types AS T2 ON T1.property_type_code = T2.property_type_code

GROUP BY T1.property_type_code
LLM Generation SELECT property_type_description FROM ref_property_types WHERE property_type_code IN (SELECT property_type_code FROM properties)
Execution Accuracy 1
Question What are the names of properties that are either houses or apartments with more than 1 room?
Ground Truth SELECT property_name FROM Properties WHERE property_type_code = "House" UNION SELECT property_name FROM Properties WHERE prop-

erty_type_code = "Apartment" AND room_count > 1
LLM Generation SELECT property_name FROM properties WHERE property_type_code = ’House’ OR property_type_code = ’Apartment’ AND room_count > 1
Execution Accuracy 1

Table 7: SQLPrompt: randomly sampled generated SQL from LLM
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