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Abstract

In recent years, notable progress has been001
made in Multi-modal Large Language Models002
(MLLMs), along with the development of vari-003
ous benchmarks assessing their comprehension004
abilities. However, most benchmarks focus on005
visual information understanding and QA tasks,006
lacking the ability to evaluate performance in007
complex scenarios that involve audio informa-008
tion and other additional context. To address009
this gap, we introduce the Multi-modal Video010
Story generation Benchmark, referred to as011
MVSBench, a benchmark designed to evaluate012
MLLMs’ ability to generate narrative-style cap-013
tions for long videos enriched with auxiliary014
information. We propose an automatic dataset015
construction pipeline that reduces manual an-016
notation while ensuring fairness and reliability017
through filtering techniques and state-of-the-art018
models. Experiments indicate that current state-019
of-art MLLMs perform poorly under our eval-020
uation metrics, highlighting significant limita-021
tions in generating narratives enriched with aux-022
iliary information. To address these challenges,023
we propose a novel framework, Movie-to-Story024
(M2S), which outperforms other MLLMs by025
over 13% on MVSBench.026

1 Introduction027

In recent years, many MLLMs (Alayrac et al.,028

2022; Zhu et al., 2023; Li et al., 2024a; Huang029

et al., 2023; Li et al., 2020; OpenAI, 2022) have030

effectively used video (Touvron et al., 2023; De-031

vlin et al., 2019; Dosovitskiy et al., 2021) and au-032

dio encoders (Radford et al., 2022; Chen et al.,033

2022b,a) to extract multimodal information and034

generate text. However, as MLLMs continue to035

advance, a critical challenge emerges: how can we036

effectively evaluate their comprehension and text037

generation capabilities? This challenge is particu-038

larly relevant in assistive media applications, such039

as improving accessibility for individuals who are040

deaf or blind. Existing subtitles primarily convey041

Figure 1: Overview of MVSBench and Dataset Structure:
MVSBench covers four subdomains and includes 11 tasks,
(Novel has 5 tasks shown in figure and relevance has 4
tasks, see detail definitions in section 3) providing a com-
prehensive evaluation framework for multi-modal video
understanding with enriched context.

basic visual information but lack comprehensive 042

auditory descriptions, limiting the viewing experi- 043

ence for this audience. Generating enriched video 044

descriptions that integrate both visual and audio 045

elements can address this gap. But assessing their 046

effectiveness is difficult without a reliable bench- 047

mark. Developing effective evaluation methods is 048

essential to advance MLLMs and verify their abil- 049

ity to produce meaningful multimodal narratives. 050

051

Existing benchmarks for MLLMs primarily 052

adopt a question-answering (QA) format (Yu et al., 053

2024; Xu et al., 2023; Xie et al., 2024; Fu et al., 054

2024a; Xu et al., 2016; Liu et al., 2024; Cheng 055
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Figure 2: Performance overview of LLMs and MLLMs on MVSBench: Each column represents an evaluation
domain. Each row shows the chosen model performance on defined task. For baseline MLLMs, VideoChat2
performs best. For open-source LLMs, GPT-4o achieves the highest overall performance. For closed-source LLMs,
Qwen performing best. VC means Videochat2. IV means Internvideo2. VL means VideoLLava2. _ means different
baseline MLLM.

et al., 2024), focusing on static image understand-056

ing. While benchmarks such as MVBench (Li et al.,057

2024b) extend evaluation to temporal tasks, they058

remain inadequate for assessing long-video com-059

prehension and fail to incorporate rich auxiliary060

information such as audio. Although some studies,061

such as AV-SUPERB (Tseng et al., 2024), attempt062

to integrate audio information with visual infor-063

mation, they primarily focus on the evaluation of064

audio. Moreover, current benchmarks typically065

produce objective, template-like outputs, lacking066

the stylistic complexity of narrative storytelling.067

Furthermore, many benchmarks rely heavily on068

manual annotations, which are resource-intensive069

and time-consuming.070

To overcome these limitations, we introduce a071

novel benchmark, Multi-modal Video Story gen-072

eration Benchmark (MVSBench), which empha-073

sizes the integration of diverse auxiliary informa-074

tion (e.g., audio features) to generate long-video de-075

scriptions in a narrative and information-rich style.076

Our approach introduces an innovative automatic077

data generation pipeline to enhance existing video-078

text datasets (Li et al., 2020) by incorporating de-079

tailed audio and visual information. For instance,080

original video captions such as "a car is driving" are081

expanded into richer narratives like "Tom, dressed 082

in a black suit, sings: ‘Oh, beautiful sun ...’ while 083

Jessica drives the car...". 084

For audio processing, we extract attributes de- 085

rived from the audio source, including Automatic 086

Speech Recognition (ASR) (Kheddar et al., 2024) 087

outputs, emotions, and sound events, using state- 088

of-the-art audio models such as Whisper (OpenAI, 089

2022). Similarly, for visual descriptions, we use ad- 090

vanced vision models (Bai et al., 2023; Chen et al., 091

2024) to generate detailed frame-level annotations 092

while ensuring temporal consistency. 093

Our benchmark shows two key advantages. First, 094

it significantly reduces reliance on manual annota- 095

tion by leveraging automated processes and open- 096

source tools. Second, it incorporates enriched in- 097

formation that is often implicit in videos. For in- 098

stance, generating a high-quality, story-like video 099

summary requires detailed descriptions of the envi- 100

ronment, character names, speech, and actions. Our 101

benchmark provides a comprehensive evaluation of 102

narrative text quality in open-world, long-duration 103

scenarios. 104

As shown in Fig. 2, we evaluate several state-of- 105

the-art MLLMs (Li et al., 2024a; Lin et al., 2024; 106

Wang et al., 2022, 2024b) on the MVSBench bench- 107
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mark, identifying significant performance gaps.108

For instance, models like VideoChat2 (Li et al.,109

2024b) struggle to integrate audio features effec-110

tively into high-quality narrative outputs and per-111

form poorly on long-video tasks.112

To address these limitations, we introduce113

Movie-to-Story (M2S), a novel framework com-114

posed of MLLM and LLM, specifically designed115

to align with our benchmark’s requirements and116

improve text generation quality. Experimental re-117

sults show that our baseline outperforms existing118

MLLMs across our evaluation metrics.119

All models, datasets, and evaluation frameworks120

are publicly available to facilitate future research121

and advancements in the field.122

2 Related Works123

2.1 MLLM Introduction124

The evolution of Large Language Models (LLMs)125

has accelerated research into MLLMs (Lyu et al.,126

2023; Lee et al., 2024; Fu et al., 2024b), aiming to127

integrate diverse modalities like text, vision, and au-128

dio. Early models, such as Flamingo (Alayrac et al.,129

2022) and PaLM-E (Driess et al., 2023), present130

strong performance in multi-modal tasks by com-131

bining visual and textual modalities. Subsequent132

open-sourced efforts, including LLaVA (Liu et al.,133

2023) and MiniGPT-4 (Zhu et al., 2023), have ex-134

panded the scope of multi-modal instruction tuning,135

while VideoChat (Li et al., 2024a) and VideoChat-136

GPT (Maaz et al., 2024) extended these ideas to dy-137

namic video tasks by utilizing ChatGPT-generated138

annotations.139

Building on these works, recent studies have in-140

troduced advanced approaches to address the tasks141

of video understanding. MMAD (Ye et al., 2024b)142

integrates video, audio events, and text informa-143

tion to generate concise and informative descrip-144

tions. Similarly, the Distilling Vision-Language145

Models on Millions of Videos framework (Zhao146

et al., 2024) adapts vision-language models for147

video-language tasks, enabling the generation of148

high-quality captions while enhancing semantic149

and contextual understanding.150

The Video-LLaMA2 (Cheng et al., 2024) model151

aligns audio, video, and textual data into a uni-152

fied space using the pre-trained ImageBind (Gird-153

har et al., 2023) module. Instead of training an154

audio-text dataset, it utilizes a video-text encoder155

to indirectly convert audio into text.156

Video storytelling (Li et al., 2020) emphasizes157

the creation of text summaries for events by se- 158

lecting important frames using a reinforcement 159

learning-based Narrator model. This approach in- 160

corporates contextual embeddings through a Resid- 161

ual Bidirectional RNN (ResBRNN) resulting in 162

more detailed and coherent descriptions. 163

Our work builds on these advancements by ad- 164

dressing key limitations of existing MLLMs, partic- 165

ularly in processing long-duration videos, integrat- 166

ing auxiliary information, and generating stylis- 167

tically rich captions. By incorporating innova- 168

tive dataset enhancement techniques and robust 169

evaluation metrics, our framework establishes a 170

new benchmark for multi-modal understanding and 171

narrative-driven text generation. 172

2.2 Benchmark Introduction 173

Traditional Vision-Language (VL) benchmarks 174

(Goyal et al., 2017; Kay et al., 2017; Xu et al., 2016, 175

2017; Xiao et al., 2021) have primarily focused on 176

QA-style evaluations, emphasizing tasks such as 177

multi-modal retrieval and vision-based question an- 178

swering. More recent benchmarks have expanded 179

this scope to assess broader multi-modal capabili- 180

ties. 181

For instance, OwlEval (Ye et al., 2024a) and 182

SEED-Bench (Li et al., 2023) introduce evaluation 183

metrics that emphasize comprehensive multi-modal 184

reasoning. In the video domain, benchmarks such 185

as Perception Test (Pătrăucean et al., 2023) evaluate 186

multi-modal video perception and reasoning, while 187

FunQA (Xie et al., 2024) evaluates models with 188

humorous and counterintuitive content to improve 189

performance in video-based reasoning. 190

MVBench (Li et al., 2024b) stands out by defin- 191

ing over 20 tasks to evaluate MLLMs’ performance 192

on diverse scenarios, especially temporal reasoning. 193

The research on Synchronized Video Storytelling 194

(Yang et al., 2024) presents a novel methodology 195

that incorporates supplementary advertising key- 196

words to enhance the generation and evaluation of 197

storytelling and advertising content, offering major 198

insights for the discipline. These advancements 199

inform our framework, which aims to address gaps 200

in evaluating narrative-driven, multi-modal tasks. 201

3 MVSBench 202

In this section, we explore the details of our MVS- 203

Bench in depth. Initially, we formulate the multi 204

- modal story generation tasks, as graphically pre- 205

sented in Figure 1. Subsequently, we automate the 206
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generation of video-caption pairs for evaluation, as207

detailed in the following sections. And overview208

of the pipeline is shown in Figure 3.209

3.1 Task Definition210

In the MVSBench framework, we use a text-to-211

text approach to create story tasks, transforming212

formatted texts into coherent narratives, such as213

novels. While most MLLM benchmarks focus on214

converting video or audio into brief captions, they215

evaluate vision and audio separately. In contrast,216

MVSBench integrates both modalities, enabling a217

unified evaluation of multi-modal storytelling with218

enriched context.219

We first outline core tasks related to video and au-220

dio understanding based on previous benchmarks,221

then expand them into detailed narratives. This222

leads to the development of story tasks requiring223

a full understanding of both video and audio. We224

outline 4 subdomains with 11 specific tasks below:225

Fluency. Evaluates the overall fluency of the226

description. Alignment. Verifies whether the nar-227

rative structure follows the reference event order.228

Novel. (1) Environment: Assesses the quality of229

environment descriptions. (2) Character: Focuses230

on character descriptions, including clothing and231

facial expressions. (3) Speech: Checks for the232

presence and quality of speech descriptions. (4)233

Storyline: Evaluate the development, consistency,234

and logical coherence of the narrative. (5) Emotion:235

Assesses the quality of emotional descriptions. Rel-236

evance. (1) Visual Similarity: Measures the degree237

to which key visual knowledge is retained in the238

generated text. (2) Audio Similarity: Measures the239

degree to which key audio knowledge is retained in240

the generated text. (3) Visual Diversity: Assesses241

the degree to which essential visual information242

from the knowledge base is used. (4) Audio Diver-243

sity: Assesses the degree to which essential audio244

information from the knowledge base is used.245

3.2 Automatic Dataset Generation246

Based on the definition of the Enriched Video-247

Captions Generation task, we collect popular exist-248

ing datasets and annotate the videos. Specifically,249

we introduce a novel automatic dataset generation250

process (Fig. 6), which efficiently converts open-251

source videos into a structured format for both eval-252

uation and fine-tuning.253

Datasets Collection. We select several high-254

quality existing datasets. (1) VideoInstruct100K255

(Muhammad Maaz and Khan, 2023) is a high-256

quality video conversation dataset that incorporates 257

semi-automatic techniques to assist with annota- 258

tion. (2) Video_Story (Gella et al., 2018) is a 259

new large-scale dataset designed to advance multi- 260

sentence video description, presenting a novel chal- 261

lenge in this domain. (3) MSR_VTT (Xu et al., 262

2016) is a large-scale benchmark for video under- 263

standing. It includes 10K web video clips (38.7 264

hours) with 200K clip-sentence pairs. 265

Data Pre-processing. we utilize the following 266

tools to convert original videos into a structured 267

format: (1) Video splitting: we segment all long 268

videos into 20-second clips, which is typically suf- 269

ficient to generate narrative text of around 1,000 270

words. (2) FFmpeg (FFmpeg Developers, 2023): 271

We use it to extract keyframes, capturing essential 272

visual information for later processing. 273

Data Generation. Some datasets provide only 274

brief descriptions, often lacking depth. Addition- 275

ally, original captions do not include enriched in- 276

formation such as audio content. Thus, expand- 277

ing reference captions is crucial for evaluating this 278

task. We use state-of-the-art MLLMs and LLMs 279

to extract detailed visual and audio information. 280

For example, Qwen_VL2 (Wang et al., 2024a) 281

captures frame-level visual details, providing a 282

structured reference for event timeline develop- 283

ment. For visual information, we employ MLLMs 284

like VideoChat2 (Li et al., 2024b) to extract envi- 285

ronment settings, character descriptions, and story 286

development summaries. For audio information, 287

models such as FunASR (et al., 2023a) and Whis- 288

per (OpenAI, 2022) capture audio events, emo- 289

tions, speaker features, and ASR transcriptions. Fi- 290

nally, after obtaining these key components, we use 291

ChatGPT-4o (et al., 2024b) to integrate the back- 292

ground information and generate coherent story- 293

like video summaries. And NLTK (Bird and Loper, 294

2004) and SpaCy (Honnibal and Montani, 2017) 295

are used in text processing. We construct our pro- 296

posed dataset in this way from Video_Story and 297

VideoInstruct100K, named A-VidStory. 298

3.3 Prompt Design 299

To ensure story coherence, we design a detailed 300

prompt for generating as shown in the Fig. 6. This 301

prompt guides LLMs to carefully analyze video 302

and audio content, emphasizing timestamps and 303

other key factors to maintain narrative flow. For 304

the downstream LLM, the prompt encourages full 305

utilization of original visual and audio information 306

to enhance accuracy. It also helps structure the 307
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storyline, ensuring that the final captions are fluent308

and align with the provided narrative development.309

By using this guidance framework, we aim to en-310

hance the quality of generated stories, making them311

more aligned with real-world scenarios and user312

expectations.313

And we also design an effective prompt for eval-314

uation as shown in Fig. 7.315

3.4 Automatic Evaluation Metrics316

Traditional NLP metrics, such as BLEU (Papineni317

et al., 2002) and ROUGE (Lin, 2004), fail to cap-318

ture deeper narrative elements, often overlooking319

audio cues, character details, and other contexts. To320

address this, we define a knowledge base method321

that integrates additional visual and audio informa-322

tion.323

Supervised Storyline Score(SS). This score324

measures the fidelity of the generated story against325

a predefined canonical events order. It assesses how326

closely the produced narrative aligns with key event327

orders, character behaviors, and thematic elements328

detailed in the original outline.329

Intra-story Repetition (ISR). ISR evaluates the330

coherence repetition rate of generated texts. In-331

spired by related work (Yang et al., 2024), we de-332

fine a keyword-triplet method to assess fluency at333

three levels: within a sentence, between different334

sentences, and overall caption. Excessive triplet335

repetition indicates unnatural phrasing and redun-336

dancy, negatively affecting fluency.337

Information Similarity (InfoSim). (Yang et al.,338

2024) It measures the alignment between the339

knowledge points in the story and the knowledge340

repository. A higher similarity score indicates that341

the generated story effectively incorporates rele-342

vant knowledge.343

Information Diversity (InfoDiv). (Yang et al.,344

2024) It evaluates the breadth of the knowledge345

used in the story. A higher diversity score indicates346

that the story incorporates a wide range of knowl-347

edge points, avoiding over-reliance on a small sub-348

set of information.349

Qualitative Metrics. This method uses GPT-350

4 (et al., 2024a) and carefully designed prompts351

to effectively assess caption quality. It ensures a352

consistent and scalable evaluation of generated cap-353

tions. The prompt for GPT-4 is shown in Fig. 7.354

The definded metrics are: (1) Unsupervised Story-355

line Score (USS) evaluates how reasonable, deep,356

and engaging the story’s progression is and whether357

the story feels well-developed and logical. (2) En-358

vironment Score (EvS) assesses how well the text 359

sets the scene, considering environmental richness, 360

sensory details, and atmospheric quality. (3) Emo- 361

tion Score (EmS) evaluates the depth and authen- 362

ticity of emotional expression, focusing on how 363

effectively the text conveys characters’ emotions 364

and overall tone. (4) Speech Score (SpS) measures 365

the realism and vividness of human speech, assess- 366

ing whether the dialogue is engaging and natural. 367

(5) Character Score (CaS) examines the depth 368

and consistency of character portrayals, focusing 369

on appearance, personality, and behavior. 370

4 M2S pipeline 371

After establishing MVSBench, we first evaluated 372

the MLLMs listed in Table. 1 on our benchmark. 373

However, results show that current MLLMs strug- 374

gle to generate detailed long-form text, often lack- 375

ing audio information. To address this gap, we 376

propose a robust MLLM-LLM pipeline, Movie-to- 377

Story (M2S). 378

4.1 Synthesized Instruction-Tuning Dataset 379

Current MLLMs struggle to generate story-like cap- 380

tions with enriched information. To bridge this 381

gap, a downstream LLM can be utilized to pro- 382

cess enriched inputs and generate the final cap- 383

tions. However, as shown in Table 1, some LLMs, 384

such as LLaMA3-3B, perform poorly without fine- 385

tuning, likely due to limited diversity in instruction- 386

tuning data. To address this, we synthesize a 387

fine-tuning dataset, comprising 10K samples from 388

MSR_V TT , incorporating both visual and audio 389

information to enhance fine-tuning effectiveness. 390

The process is similar to A-VidStory construc- 391

tion process. But we employ ChatGPT-4o to gener- 392

ate additional audio descriptions for some videos 393

without audio. And to ensure coherence between vi- 394

sion and audio information, we condition ChatGPT- 395

4o on the extracted vision features as contextual 396

background. 397

The instruction-tuning dataset and A-VidStory 398

are converted to a uniform format shown in Fig. 399

5. There are three key components: {video}, 400

{visual_input}, and {audio_input}. The first 401

key stores the video file path. The second key 402

contains structured visual information, including 403

environment, storyline, characters, and timestamps. 404

The third key represents audio features such as 405

emotion, transcription, speed, and speaker identity, 406

aligned with time segments. 407
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Figure 3: Overview of M2S pipeline: M2S consists of multiple modules designed to extract enriched multimodal
information for generating detailed captions.

4.2 Visual Feature Extraction Module408

This module extracts key visual information from409

videos. We use current state-of-the-art MLLMs like410

VideoChat2 (Li et al., 2024b) as the baseline model.411

With a structured prompt, MLLMs identifies es-412

sential elements, including environment settings,413

character descriptions, and story events summaries.414

To process long videos, we segment them into415

5-second clips. Visual features are extracted from416

each clip and aggregated into a structured format417

for subsequent LLM input. Additionally, YOLOv8418

(Yaseen, 2024) is employed for person segmenta-419

tion, while FaceNet (Schroff et al., 2015) extracts420

facial features to assist in character name alignment421

and description mapping.422

4.3 Audio Feature Extraction Module423

This module employs several open-source models424

to extract audio features. Pyannote (et al., 2019)425

segments the audio into speech clips and extract426

acoustic features for speaker alignment.427

For transcription, we use Whisper (OpenAI,428

2022). Emotion analysis is conducted using Emo-429

tion2Vec (et al., 2023b) from FunASR (et al.,430

2023a). Additionally, we compute word speed to431

assess speaking rate. The final output includes432

timestamps, transcriptions, emotion labels, speech 433

rate, and speaker references, forming a comprehen- 434

sive audio representation. 435

4.4 Character-Context Alignment Module 436

Identifying a person’s name from their visual ap- 437

pearance in a video is challenging. Existing meth- 438

ods, such as MMAD (Ye et al., 2024b), have shown 439

strong performance in person re-identification us- 440

ing image-based features. However, aligning a 441

speaker’s audio content with their visual represen- 442

tation requires a multimodal approach. 443

To address this, we integrate both visual and 444

audio features. Preprocessed anchor data contain- 445

ing a person’s name, facial features, and speech 446

attributes are used to establish a strong mapping 447

between the visual and audio domains. Addition- 448

ally, vision and audio features are linked with their 449

respective textual descriptions. 450

This ensures that names are correctly assigned 451

to the corresponding individuals in both visual and 452

spoken content, enhancing downstream text gener- 453

ation. 454
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Model avg Sim_V Sim_A Sim_avg Div_V Div_A Div_avg EmS SpS CaS EvS USS Overall ISR(↓) SS(↓) Storylength
InternVideo2 48.20 64.6 31.1 47.9 30.7 15.0 22.8 20.9 12.0 35.2 66.9 24.0 31.8 15.1 46.4 619

InternVideo2+GPT4o 55.72 61.0 32.7 46.8 32.1 13.9 23.0 58.3 23.4 55.5 83.6 44.9 53.2 4.0 40.4 794
M2S(InternVideo2, GPT4o) 64.04 58.2 39.6 48.9 29.0 74.5 51.8 65.1 65.0 56.8 82.6 48.4 63.6 4.6 39.5 762

VideoLLava2 40.96 67.5 31.1 49.3 27.1 8.7 17.9 19.7 6.1 28.4 56.4 20.2 26.2 42.7 45.9 763
VideoLLava2+GPT4o 56.08 59.5 33.4 46.5 29.0 18.6 23.8 61.2 29.8 57.0 81.3 46.2 55.2 5.6 39.5 855

M2S(VideoLLava2, GPT4o) 62.84 56.9 38.9 47.9 26.1 70.7 48.4 65.9 62.2 57.9 80.6 48.4 63.0 5.6 39.5 806
VideoChat2 51.22 70.3 30.9 50.6 42.2 9.9 26.1 23.9 5.9 38.0 80.4 20.0 33.6 8.1 46.1 646

VideoChat2+G 56.16 63.7 33.3 48.5 37.1 14.9 26.0 54.5 16.2 53.1 86.0 41.1 50.2 4.5 39.4 840
M2S(VideoChat2, GPT4o) 64.74 60.9 39.2 50.0 36.8 75.3 56.1 61.1 62.4 55.1 84.7 45.9 61.8 4.9 39.3 850

GPT3.5-API∗ 59.78 62.7 39.1 50.9 38.7 72.0 55.3 51.6 54.7 43.3 75.1 40.1 53.0 13.4 46.9 1110
Doubao-API∗ 59.88 61.0 36.1 48.6 36.6 67.2 51.9 38.5 51.5 40.2 76.7 29.9 47.4 5.8 42.7 664
Qwen-API∗ 65.12 62.0 39.1 50.5 38.0 77.2 57.6 59.1 64.9 52.2 83.1 43.3 60.5 3.5 39.5 753

LLaMA3-LoRA∗ 61.16 61.9 37.7 49.8 36.4 60.6 48.5 59.5 51.7 53.1 81.9 44.6 58.2 8.5 42.2 876
Mistral-LoRA∗ 61.56 61.7 37.7 49.7 36.9 60.3 48.6 59.9 53.3 53.3 82.4 45.2 58.8 7.3 42.0 855
Qwen-LoRA∗ 61.06 61.9 37.3 49.6 36.9 57.2 47.0 59.7 49.4 53.0 83.0 45.3 58.1 7.6 41.8 870

LLaMA3∗ 25.68 35.1 24.9 30.0 3.4 5.0 4.2 2.9 1.8 2.8 4.3 2.0 2.7 25.1 83.4 504
Mistral∗ 20.62 10.3 6.1 8.2 3.6 3.5 3.5 4.9 3.7 4.7 8.0 3.7 5.0 21.1 92.5 308
Qwen∗ 61.26 63.9 39.3 51.6 35.3 72.8 54.0 49.4 59.1 44.8 74.1 33.9 52.2 9.8 41.7 650

Table 1: Experiment Results: For example M2S(InvideoVideo2, GPT4o) represents one case of our M2S framework,
where InvideoVideo2 is used as the MLLM and GPT4o serves as the LLM. The results emphasize the limitations of
current MLLMs in generating enriched video captions in complex scenarios. LoRA enables us to fine-tune local
LLMs to achieve performance comparable to closed-source models. The symbol ∗ denotes the LLM chosen as the
downstream model of M2S. All models follow the strategy of segmented clips.

5 Experiment455

5.1 Experiment Settings456

Implementation Details. To measure the per-457

formace of leading LLM sand MLLMs on MVS-458

Bench, we design a detail experiment workflow and459

test extensively state-of-art models. (1) Baseline460

LLM: For the closed-source LLMs, we employ461

tht API of GPT-4o, GPT-3.5 (Brown et al., 2020),462

Doubao, Qwen. For the open-source LLM, we test463

LLaMA-3.2-3B, Qwen2.5-7B-Instruct, Mistral-7B-464

v0.1. Detailed information is shown in Appendix A.465

(2) Baseline MLLM: We test InternVideo2 (Wang466

et al., 2024b), Video-LLaVA2 (Lin et al., 2024) and467

Videochat2 (Li et al., 2024b) on our benchmark.468

We finetune the open-source LLM on 10K469

instruction-tuning dataset,to evaluate its perfor-470

mance. We use 90% of the data for fine-tuning and471

the remaining 10% as the test set. The proposed472

framework is trained for 5 epochs with a learning473

rate of 5e−5. The LoRA (et al., 2021) parameters474

are set to r = 32 and α = 16. Training the closed-475

source LLMs took approximately 15 hours on three476

3090 GPUs.477

5.2 Results Analysis478

Evaluation results on MVSBench, shown in Ta-479

ble 1, indicate that current MLLMs struggle with480

story-like caption generation. M2S outperforms481

the base MLLM combined with GPT-4o by over482

24% and surpasses the base MLLM alone by over483

29% in the diversity metric. In qualitative metrics,484

our pipeline achieves a 25% improvement com-485

pared to the base MLLM. M2S improves overall486

average scores by over 13% compared to the base487

MLLMs. These improvements presents M2S’s abil- 488

ity to generate richer narratives by integrating both 489

visual and audio information. In the similarity met- 490

rics, these models exhibit comparable performance, 491

demonstrating that our pipeline effectively retains 492

key information. 493

Baseline MLLMs often produce shorter outputs 494

with higher repetition rates and struggle with main- 495

taining logical coherence in long-video contexts. 496

In contrast, M2S generates longer, more structured, 497

and fluent captions while preserving key details. 498

For further details and qualitative comparisons, 499

please refer to Figure 4. 500

5.3 LoRA Result Analysis 501

LoRA significantly enhances the instruction- 502

following ability of local models, making them 503

comparable to API-based models like GPT-4o. Be- 504

fore LoRA, LLaMA and Mistral performed poorly, 505

often failing to generate meaningful outputs, while 506

Qwen already demonstrated strong instruction ad- 507

herence. After fine-tuning, all models showed im- 508

provement. LLaMA3-3B presents a 50% gain of 509

qualitative score after finetuning. More details are 510

provided in Table 1. 511

In qualitative evaluations, LoRA-tuned mod- 512

els surpassed GPT-3.5 and Doubao by over 5%, 513

demonstrating the effectiveness of our pipeline. 514

Compared to end-to-end MLLM training, our ap- 515

proach is both feasible and resource-efficient. By 516

using MLLMs for text extraction and LLMs for 517

novel generation, we enable the scalable produc- 518

tion of long multimodal narratives while avoiding 519

excessive computational overhead. 520
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5.4 Ablations Study521

Table 1 presents the ablation study of our pipeline.522

Compared to base MLLMs combined with GPT-4o,523

M2S achieves a 7.8% increase in five GPT scores,524

approximately a 1.4% boost in the audio similar-525

ity score, and a 24% improvement in the audio526

diversity score. In the speech score, our pipeline527

outperforms other models by over 32%. These528

results indicate that incorporating the audio mod-529

ule effectively enhances overall performance. This530

highlights the essential role of the audio module531

in enhancing overall performance. We also eval-532

uated different closed-source LLM APIs. GPT-533

4o achieved the best results, particularly in the534

five core metrics, while GPT-3.5 and Doubao per-535

formed poorly in overall scores.536

6 Conclusion537

Our paper introduces MVSBench, a comprehen-538

sive benchmark designed to evaluate MLLM’s mul-539

timodal story generation capabilities. We also pro-540

pose a pipeline, M2S, that performs better than the541

leading models on the MVSBench benchmark. Our542

extensive analysis provides valuable insights into543

the design of MLLMs for multimodal story genera-544

tion, especially in scenarios rich in additional infor-545

mation. Despite these advances, there are still some546

limitations to our current approach. We aim to ad-547

dress these issues in future work to enhance the as-548

sessment framework and further improve MLLM’s549

performance in complex, information-rich environ-550

ments.551

Limitations552

One limitation of our approach is the lack of an553

end-to-end framework that directly processes video554

input and produces enriched textual descriptions.555

Instead, we rely on separate components for mul-556

timodal extraction and text generation. For story-557

line matching, our metric struggles with complex558

scenarios, such as evaluating the relevance of story-559

lines spanning multiple time segments and model-560

ing intricate narrative structures. Additionally, our561

evaluation primarily compares generated texts with-562

out fully incorporating visual frame feature, which563

could further refine accuracy assessment. Since564

our benchmark emphasizes the role of audio in-565

formation, it inherently requires videos to contain566

relevant auditory elements. Addressing these limi-567

tations is an important direction for future work.568

Figure 4: Comparison of Generation Results: Our pipeline
achieves better performance by incorporating enriched
contextual information.

Figure 5: Example of dataset structure.
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Michalski, Joanna Materzyńska, Susanne Westphal,687
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter688
Yianilos, Moritz Mueller-Freitag, Florian Hoppe,689
Christian Thurau, Ingo Bax, and Roland Memisevic.690
2017. The "something something" video database691
for learning and evaluating visual common sense.692
Preprint, arXiv:1706.04261.693

Matthew Honnibal and Ines Montani. 2017. spaCy 2:694
Natural language understanding with Bloom embed-695
dings, convolutional neural networks and incremental696
parsing. To appear.697

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,698
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei699
Cui, Owais Khan Mohammed, Barun Patra, Qiang700
Liu, Kriti Aggarwal, Zewen Chi, Johan Bjorck,701
Vishrav Chaudhary, Subhojit Som, Xia Song, and702
Furu Wei. 2023. Language is not all you need:703
Aligning perception with language models. Preprint,704
arXiv:2302.14045.705

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,706
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio707
Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa708
Suleyman, and Andrew Zisserman. 2017. The709
kinetics human action video dataset. Preprint,710
arXiv:1705.06950.711

Hamza Kheddar, Mustapha Hemis, and Yassine Himeur.712
2024. Automatic speech recognition using advanced713
deep learning approaches: A survey. Information714
Fusion, 109:102422.715

Seon-Ho Lee, Jue Wang, David Fan, Zhikang Zhang,716
Linda Liu, Xiang Hao, Vimal Bhat, and Xinyu Li.717
2024. Nowyousee me: Context-aware automatic718
audio description. Preprint, arXiv:2412.10002.719

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-720
iao Ge, and Ying Shan. 2023. Seed-bench: Bench-721
marking multimodal llms with generative compre-722
hension. Preprint, arXiv:2307.16125.723

Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S.724
Kankanhalli. 2020. Video storytelling: Textual sum-725
maries for events. IEEE Transactions on Multimedia,726
22(2):554–565.727

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wen-728
hai Wang, Ping Luo, Yali Wang, Limin Wang, and729
Yu Qiao. 2024a. Videochat: Chat-centric video un-730
derstanding. Preprint, arXiv:2305.06355.731

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li,732
Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo733
Chen, Ping Luo, Limin Wang, and Yu Qiao.734

2024b. Mvbench: A comprehensive multi- 735
modal video understanding benchmark. Preprint, 736
arXiv:2311.17005. 737

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, 738
Peng Jin, and Li Yuan. 2024. Video-llava: Learn- 739
ing united visual representation by alignment before 740
projection. Preprint, arXiv:2311.10122. 741

Chin-Yew Lin. 2004. Rouge: A package for automatic 742
evaluation of summaries. In Text Summarization 743
Branches Out, pages 74–81, Barcelona, Spain. Asso- 744
ciation for Computational Linguistics. 745

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 746
Lee. 2023. Visual instruction tuning. Preprint, 747
arXiv:2304.08485. 748

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, 749
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi 750
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua 751
Lin. 2024. Mmbench: Is your multi-modal model an 752
all-around player? Preprint, arXiv:2307.06281. 753

Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting 754
Huang, Bingshuai Liu, Zefeng Du, Shuming Shi, 755
and Zhaopeng Tu. 2023. Macaw-llm: Multi-modal 756
language modeling with image, audio, video, and 757
text integration. Preprint, arXiv:2306.09093. 758

Muhammad Maaz, Hanoona Rasheed, Salman Khan, 759
and Fahad Shahbaz Khan. 2024. Video-chatgpt: To- 760
wards detailed video understanding via large vision 761
and language models. Preprint, arXiv:2306.05424. 762

Salman Khan Muhammad Maaz, Hanoona Rasheed and 763
Fahad Khan. 2023. Video-chatgpt: Towards detailed 764
video understanding via large vision and language 765
models. ArXiv 2306.05424. 766

OpenAI. 2022. Whisper: A general-purpose speech 767
recognition model. https://cdn.openai.com/ 768
papers/whisper.pdf. Accessed: 2023-10-06. 769

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 770
Jing Zhu. 2002. Bleu: a method for automatic evalu- 771
ation of machine translation. In Proceedings of the 772
40th Annual Meeting of the Association for Compu- 773
tational Linguistics, pages 311–318. Association for 774
Computational Linguistics. 775
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A Formula895

A.1 Information Scores896

InfoSim =
1

2|si|
∑
si

(
max
k∈K

fT
k fsi897

+
1

|W (si)|
∑

w∈W (si)

max
k∈K

fT
k fw

 (1)898

InfoDiverse =
1

|K|

∣∣∣∣∣⋃
si

{kt ∈ K | max
w∈W (si)∪Si

899

fT
ktfw > 0.9}

∣∣ (2)900

where W (si) represents all words in sentence si.901

fsi , fk, and fw refer to the normalized embeddings902

of sentence si, knowledge point k, and segmented903

word w, respectively.904

Rλ =

∑
si,sj∈Sλ

∑
t∈Tλ(si,sj)

wλ · fλ(t, si, sj)∑
si,sj∈Sλ

|Tλ(si, sj)|
(3)

905

where:906

• λ denotes the level of granularity for repetition907

rate calculation:908

– λ = overall (global repetition rate)909

– λ = inter (sentence-to-sentence repeti-910

tion rate)911

– λ = intra (intra-sentence repetition rate)912

• Sλ represents the scope of the calculation:913

– λ = overall: all trigrams in the text.914

– λ = inter: all sentence pairs (si, sj).915

– λ = intra: a single sentence si.916

• Tλ(si, sj) represents the set of trigrams:917

– λ = overall: all trigrams T .918

– λ = inter: shared trigrams between two919

sentences, Tsi ∩ Tsj .920

– λ = intra: trigrams within a single sen-921

tence Tsi .922

• wλ is a weighting factor:923

– λ = overall: wλ = 1.924

– λ = inter: wλ = 2 (to normalize the925

pairwise count).926

– λ = intra: wλ = 1.927

• fλ(t, si, sj) counts the occurrence of trigram 928

t: 929

– λ = overall: f(t)− 1 (total occurrences 930

minus unique count). 931

– λ = inter: min(f(t, si), f(t, sj)) (mini- 932

mum count between two sentences). 933

– λ = intra: f(t, si)−1 (internal repetition 934

in a single sentence). 935

A.2 Alignment Scores 936

SS is the score for the storyline, which quantifies 937

the mismatch rate between events in the video and 938

the story. 939

SS =
InversionCount(f(g, r))
MaxInversionCount(g)

Variable Description: 940

(1) InversionCount : The reverse number of 941

matching index lists (the number of reverse pairs) 942

(2) g,r: generated text and reference texts. 943

(3) f : Tg × Tr → Rn : Cosine Similarity Best 944

Match Index List Rn of texts generated text with 945

respect to reference texts. 946

- Tg and Tr are text spaces for generated text and 947

reference texts. 948

- n is number of the sentence/chapter segments
in generated text g.

f(gj , r) = argmax
i

(cos (E(ri), E(gj)))

- E(·): Sentence Transformer Encoder. 949

- cos(·, ·): Cosine similarity calculation. 950

(4) MaxInversionCount(g) = n(n−1)
2 951

B Experiments and Analysis 952

B.1 Novel Analysis 953

Our evaluation of the novel includes five elements: 954

Emotion, Speech, Character, Environment, Story- 955

line. For a detailed introduction, please refer to the 956

section 3. 957

According to Tab.5 GPT4o API is the best in 958

Emotion (EmS), Character (CaS), Environment 959

(EvS), and Storyline (USS) while while the best 960

performance on Speech(SpS) is on Qwen-API , 961

indicating that GPT4o and Qwen-API have out- 962

standing abilities in integrating rich information 963

and generating process text. 964

In Tab.6, our M2S pipeline is better than MLLM- 965

LLM without audio information in all four aspects 966

except for the Environment. This may be because 967

the addition of audio information has squeezed 968
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out some visual information, which is currently969

included in our environment. If audio descriptions970

of the environment are added in the future, this part971

could also be better.972

B.2 Fluency and Storyline Analysis973

ISR and SS are quantitative metrics used to evaluate974

the fluency of novel language and the consistency975

of the overall storyline order. Both metrics indicate976

that the smaller the better.977

According to Tab.3 and Tab.2. (1)ISR: The978

model without LLM processing will perform worse979

in terms of language fluency in novels, and the980

LLaMA score before LoRA will perform worse.981

This is because the ISR metric evaluates the lan-982

guage repetition within the text and overall. The983

more repetition, the more inclined the model is984

to generate the same text, and the unprocessed or985

untrained model is indeed prone to generating the986

same text repeatedly, which is in line with our ex-987

pectations. The special feature is that Videollava’s988

unprocessed text has a high repetition rate. After989

our observation, we found that the same sentence990

was repeated many times, which disappeared af-991

ter LLM processing, and the score was almost the992

same as the other two MLLMs, reflecting the ro-993

bustness of our pipeline. (2)SS: The relative dif-994

ference in SS among all models is not significant,995

except for LLaMA and Mistral before processing996

LoRA. This is because these two models had poor997

instruction obedience before LoRA, making them998

more prone to descriptions with disordered order999

or empty strings. The data processed by LLM with1000

good command obedience is very good, indicating1001

that the storyline matches the order of events in1002

the video. Compared to not using LLM processing,1003

directly attaching VLM results in chronological1004

order is not a good method. This may be because1005

VLM results are often shorter, and the probability1006

of similar text appearing in different positions is1007

higher, which affects the evaluation of the order of1008

the storyline.1009

B.3 Information Metric Analysis1010

In this section, we can analyze the degree to which1011

LLM preserves information and the importance1012

of audio information intervention. In order to1013

avoid randomness in the experiment, the model1014

was strictly programmed to write novels based on1015

the input information, with all LLM temperatures1016

set to 0.1017

According to Tab.4, (1) Similarity score: After1018

adding Audio, the sim score for Video information 1019

decreases, while the div score for Audio informa- 1020

tion increases. Qwen perform the best in preserving 1021

information similarity. It may tend to generate sim- 1022

ilar texts with input. While GPT4o and others may 1023

tend to use richer expressions such as synonym 1024

replacement or sentence re modification. (2) Diver- 1025

sity score: After adding Audio, the div score for 1026

Video information decreases slightly, while the div 1027

score for Audio information increases significantly. 1028

This indicates that after adding audio information 1029

to our input, LLM ensures that sufficient audio in- 1030

formation is retained during processing. However, 1031

due to the fact that the length of the generated text 1032

does not change too much see Tab.1, the informa- 1033

tion in the video section is compressed to a small 1034

extent, which affects the diversity of information. 1035

In summary, based on the information metrics 1036

infosim and infodiv, we can understand that LLM 1037

does retain key information from the video in the 1038

generated novels, which is crucial for producing 1039

novels that meet the requirements. 1040

B.4 NLP Analysis 1041

As shown in Tab.3 and, we use the generation 1042

captions from M2S pipeline with VideoChat2 and 1043

GPT4o as the components. Because the original 1044

caption is too short to be a good reference. The 1045

improvement in NLP metrics demonstrates that 1046

LoRA enables local LLMs to achieve performance 1047

comparable to closed-source LLMs. 1048

C Figures and Tables 1049
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Model ISR(↓) SS(↓)
InternVideo2 15.1 46.4
VideoLLava2 42.7 45.9
VideoChat2 8.1 46.1

InternVideo2+GPT4o 4.0 40.4
VideoLLava2+GPT4o 5.6 39.5
VideoChat2+GPT4o 4.5 39.4

InternVideo2+GPT4o+Audio module 4.6 39.5
VideoLLava2+GPT4o+Audio module 5.6 39.5
VideoChat2+GPT4o+Audio module 4.9 39.3

Table 2: Quantitative performance of various base MLLMs with GPT4o as LLM on M2S

Model ISR(↓) SS(↓) Rouge-1(↑) Rouge-2(↑) Rouge_L(↑) BLEU-4(↑)
GPT4o-API 4.9 39.3
GPT3.5-API 13.4 46.9
Doubao-API 5.8 42.7
QWen-API 3.5 39.5

QWen 9.8 41.7 57.5 29.4 31.6 14.5
Mistral 21.1 92.5 7.1 2.4 3.8 1.0
LLaMA 25.1 83.4 9.7 2.2 6.5 0.6

QWen-LoRA 7.6 41.8 67.5 34.9 34.9 20.4
Mistral-LoRA 7.3 42.0 68.3 35.7 35.5 21.3
LLaMA-LoRA 8.5 42.2 66.6 33.9 34.2 19.6

Table 3: Quantitative performance of various downstream LLMs on M2S

Model Sim_V Sim_A Sim_avg Div_V Div_A Div_avg
VideoChat2+GPT4o+Audio Module 60.9 39.2 50.0 36.8 75.3 56.1

VideoChat2+GPT4o 63.7 33.3 48.5 37.1 14.9 26.0
VideoLLava2+GPT4o+Audio Module 56.9 38.9 47.9 26.1 70.7 48.4

VideoLLava2+GPT4o 59.5 33.4 46.5 29.0 18.6 23.8
InternVideo2+GPT4o+Audio Module 58.2 39.6 48.9 29.0 74.5 51.8

InternVideo2+GPT4o 61.0 32.7 46.8 32.1 13.9 23.0
LLaMA-LoRA 61.9 37.7 49.8 36.4 60.6 48.5
Mistral-LoRA 61.7 37.7 49.7 36.9 60.3 48.6
Qwen-LoRA 61.9 37.3 49.6 36.9 57.2 47.0

LLaMA 35.1 24.9 30.0 3.4 5.0 4.2
Mistral 10.3 6.1 8.2 3.6 3.5 3.5
Qwen 63.9 39.3 51.6 35.3 72.8 54.0

GPT3.5-API 62.7 39.1 50.9 38.7 72.0 55.3
Doubao-API 61.0 36.1 48.6 36.6 67.2 51.9
Qwen-API 62.0 39.1 50.5 38.0 77.2 57.6

InternVideo2 64.6 31.1 47.9 30.7 15.0 22.8
VideoLLava2 67.5 31.1 49.3 27.1 8.7 17.9
VideoChat2 70.3 30.9 50.6 42.2 9.9 26.1

Table 4: Performance of Open Source LLMs and Baseline (VideoChat) with Audio on Information Metrics

Model EmS SpS CaS EvS USS Overall
GPT4o-API 3.057 3.122 2.753 4.236 2.294 3.092
GPT3.5API 2.582 2.734 2.164 3.755 2.007 2.648
Doubao-API 1.926 2.575 2.009 3.835 1.494 2.368
QWen-API 2.953 3.243 2.610 4.155 2.165 3.025

QWen 2.468 2.955 2.240 3.703 1.694 2.612
Mistral 0.247 0.185 0.234 0.400 0.185 0.250
LLaMA 0.144 0.092 0.140 0.213 0.099 0.137

QWen-LoRA 2.986 2.471 2.648 4.151 2.263 2.904
Mistral-LoRA 2.993 2.663 2.666 4.120 2.259 2.940
LLaMA-LoRA 2.974 2.587 2.657 4.097 2.231 2.909

Table 5: Performance of various LLMs on Qualitative metrics
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Model EmS SpS CaS EvS USS Overall
InternVideo2 1.046 0.601 1.760 3.346 1.199 1.590
VideoLLava2 0.987 0.307 1.418 2.818 1.010 1.308
VideoChat2 1.195 0.296 1.898 4.021 1.001 1.682

InternVideo2+GPT4o 2.916 1.172 2.777 4.181 2.243 2.658
VideoLLava2+GPT4o 3.060 1.490 2.848 4.067 2.310 2.755
VideoChat2+GPT4o 2.725 0.812 2.653 4.299 2.055 2.509

InternVideo2+GPT4o+Audio Module 3.257 3.248 2.842 4.128 2.420 3.179
VideoLLava2+GPT4o+Audio Module 3.294 3.110 2.897 4.032 2.421 3.151
VideoChat2+GPT4o+Audio Module 3.057 3.122 2.753 4.236 2.294 3.092

Table 6: Performance of various models with GPT4o as LLM on Qualitative metrics

Input: 

videos

Stage1: 

text feature extraction 

by MLLMs

Stage2: 

story generation by LLMs

Output: 

Novel style long texts

Visual 
LLM

Audio 
LLM

Video Captions

Audio Captions

LLM

System Prompts:
You are a talented novelist. When given 
story outlines, you can skillfully combine 

them and write a full novel. A story outline 
consists of a video description and an audio 

description.

Query Prompts:
This is input video captions: …
This is input audio captions: …
You must use all of the audio text in the final 

output. You must follow the event order strictly 

based on the timestamps provided in the video 

segments. The events must appear in the exact 

order of the given video segments. Audio and 

video content must be matched carefully based 

on their time ranges. If there is a speaker in the 

audio but no corresponding person in the video 

segment, still include their dialogue in the final 

novel. Try to avoid repeating descriptions. Since 

there might be overlapping information between 

video and audio descriptions, use diverse language 

to extend the novel and reduce repetition of 

phrases as much as possible.

Other processing 
procedures

"**Title: The Enchanted 
Birthday Adventure**\n\n--
-\n\n**Chapter 1: The 
Gathering of Joy**\n\nThe
sun shone brightly over 
the quaint residential 
neighborhood, casting a 
warm glow on the gathering 
below. \n\n---
\n\n...**Chapter 2: The 
Birthday Bash**\n\nInside, 
the scene was equally 
vibrant...**Chapter 3: 
Games and 
Surprises**\n\nThe party 
was in full swing, the air 
filled with laughter and 
the occasional exclamation 
of surprise.\n\n---
\n\n...**Chapter 4: The 
Grand Finale**\n\nAs the 
sun began to set, casting 
a golden hue over the 
festivities, the children 
gathered for one last 
game...**The End**"

[{'Background Objects': 

'The video appears to 

be set indoors.. ', 

'Introduction': \"The 

costumes are well-

detailed with 

realistic animal 

features, vivid 

colors…", 'timestamp': 

'0 second’} … ,{…} …]

[{'speaker': 

'SPEAKER_01', 

'Transcription': ' 

inches from Paw 

Patrol! Hi guys! Hi! 

Come in, come in!', 

'speed': 'slow', 

'segments': [40, 47], 

'emotion': [['happy', 

'0.55'], ['surprised', 

'0.42’]]} … ,{…} … ]

Figure 6: pipeline example with prompts
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Figure 7: GPT prompts for qualitative evaluation
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