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Abstract

In recent years, notable progress has been
made in Multi-modal Large Language Models
(MLLMs), along with the development of vari-
ous benchmarks assessing their comprehension
abilities. However, most benchmarks focus on
visual information understanding and QA tasks,
lacking the ability to evaluate performance in
complex scenarios that involve audio informa-
tion and other additional context. To address
this gap, we introduce the Multi-modal Video
Story generation Benchmark, referred to as
MVSBench, a benchmark designed to evaluate
MLLMSs’ ability to generate narrative-style cap-
tions for long videos enriched with auxiliary
information. We propose an automatic dataset
construction pipeline that reduces manual an-
notation while ensuring fairness and reliability
through filtering techniques and state-of-the-art
models. Experiments indicate that current state-
of-art MLLMs perform poorly under our eval-
uation metrics, highlighting significant limita-
tions in generating narratives enriched with aux-
iliary information. To address these challenges,
we propose a novel framework, Movie-to-Story
(M2S), which outperforms other MLLMs by
over 13% on MVSBench.

1 Introduction

In recent years, many MLLMs (Alayrac et al.,
2022; Zhu et al., 2023; Li et al., 2024a; Huang
et al., 2023; Li et al., 2020; OpenAl, 2022) have
effectively used video (Touvron et al., 2023; De-
vlin et al., 2019; Dosovitskiy et al., 2021) and au-
dio encoders (Radford et al., 2022; Chen et al.,
2022b,a) to extract multimodal information and
generate text. However, as MLLMs continue to
advance, a critical challenge emerges: how can we
effectively evaluate their comprehension and text
generation capabilities? This challenge is particu-
larly relevant in assistive media applications, such
as improving accessibility for individuals who are
deaf or blind. Existing subtitles primarily convey
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Figure 1: Overview of MVSBench and Dataset Structure:
MVSBench covers four subdomains and includes 11 tasks,
(Novel has 5 tasks shown in figure and relevance has 4
tasks, see detail definitions in section 3) providing a com-
prehensive evaluation framework for multi-modal video
understanding with enriched context.

basic visual information but lack comprehensive
auditory descriptions, limiting the viewing experi-
ence for this audience. Generating enriched video
descriptions that integrate both visual and audio
elements can address this gap. But assessing their
effectiveness is difficult without a reliable bench-
mark. Developing effective evaluation methods is
essential to advance MLLMs and verify their abil-
ity to produce meaningful multimodal narratives.

Existing benchmarks for MLLMs primarily
adopt a question-answering (QA) format (Yu et al.,
2024; Xu et al., 2023; Xie et al., 2024; Fu et al.,
2024a; Xu et al., 2016; Liu et al., 2024; Cheng
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Figure 2: Performance overview of LLMs and MLLMs on MVSBench: Each column represents an evaluation
domain. Each row shows the chosen model performance on defined task. For baseline MLLMs, VideoChat2
performs best. For open-source LLMs, GPT-40 achieves the highest overall performance. For closed-source LLMs,
Qwen performing best. VC means Videochat2. IV means Internvideo2. VL means VideoLLava2. _ means different

baseline MLLM.

et al., 2024), focusing on static image understand-
ing. While benchmarks such as MVBench (Li et al.,
2024b) extend evaluation to temporal tasks, they
remain inadequate for assessing long-video com-
prehension and fail to incorporate rich auxiliary
information such as audio. Although some studies,
such as AV-SUPERB (Tseng et al., 2024), attempt
to integrate audio information with visual infor-
mation, they primarily focus on the evaluation of
audio. Moreover, current benchmarks typically
produce objective, template-like outputs, lacking
the stylistic complexity of narrative storytelling.
Furthermore, many benchmarks rely heavily on
manual annotations, which are resource-intensive
and time-consuming.

To overcome these limitations, we introduce a
novel benchmark, Multi-modal Video Story gen-
eration Benchmark (MVSBench), which empha-
sizes the integration of diverse auxiliary informa-
tion (e.g., audio features) to generate long-video de-
scriptions in a narrative and information-rich style.

Our approach introduces an innovative automatic
data generation pipeline to enhance existing video-
text datasets (Li et al., 2020) by incorporating de-
tailed audio and visual information. For instance,
original video captions such as "a car is driving" are

expanded into richer narratives like "Tom, dressed
in a black suit, sings: ‘Oh, beautiful sun ...” while
Jessica drives the car...".

For audio processing, we extract attributes de-
rived from the audio source, including Automatic
Speech Recognition (ASR) (Kheddar et al., 2024)
outputs, emotions, and sound events, using state-
of-the-art audio models such as Whisper (OpenAl,
2022). Similarly, for visual descriptions, we use ad-
vanced vision models (Bai et al., 2023; Chen et al.,
2024) to generate detailed frame-level annotations
while ensuring temporal consistency.

Our benchmark shows two key advantages. First,
it significantly reduces reliance on manual annota-
tion by leveraging automated processes and open-
source tools. Second, it incorporates enriched in-
formation that is often implicit in videos. For in-
stance, generating a high-quality, story-like video
summary requires detailed descriptions of the envi-
ronment, character names, speech, and actions. Our
benchmark provides a comprehensive evaluation of
narrative text quality in open-world, long-duration
scenarios.

As shown in Fig. 2, we evaluate several state-of-
the-art MLLMs (Li et al., 2024a; Lin et al., 2024;
Wang et al., 2022, 2024b) on the MVSBench bench-



mark, identifying significant performance gaps.
For instance, models like VideoChat2 (Li et al.,
2024b) struggle to integrate audio features effec-
tively into high-quality narrative outputs and per-
form poorly on long-video tasks.

To address these limitations, we introduce
Movie-to-Story (M2S), a novel framework com-
posed of MLLM and LLM, specifically designed
to align with our benchmark’s requirements and
improve text generation quality. Experimental re-
sults show that our baseline outperforms existing
MLLMs across our evaluation metrics.

All models, datasets, and evaluation frameworks
are publicly available to facilitate future research
and advancements in the field.

2 Related Works

2.1 MLLM Introduction

The evolution of Large Language Models (LLMs)
has accelerated research into MLLMs (Lyu et al.,
2023; Lee et al., 2024; Fu et al., 2024b), aiming to
integrate diverse modalities like text, vision, and au-
dio. Early models, such as Flamingo (Alayrac et al.,
2022) and PaLM-E (Driess et al., 2023), present
strong performance in multi-modal tasks by com-
bining visual and textual modalities. Subsequent
open-sourced efforts, including LLaVA (Liu et al.,
2023) and MiniGPT-4 (Zhu et al., 2023), have ex-
panded the scope of multi-modal instruction tuning,
while VideoChat (Li et al., 2024a) and VideoChat-
GPT (Maaz et al., 2024) extended these ideas to dy-
namic video tasks by utilizing ChatGPT-generated
annotations.

Building on these works, recent studies have in-
troduced advanced approaches to address the tasks
of video understanding. MMAD (Ye et al., 2024b)
integrates video, audio events, and text informa-
tion to generate concise and informative descrip-
tions. Similarly, the Distilling Vision-Language
Models on Millions of Videos framework (Zhao
et al., 2024) adapts vision-language models for
video-language tasks, enabling the generation of
high-quality captions while enhancing semantic
and contextual understanding.

The Video-LLaMA?2 (Cheng et al., 2024) model
aligns audio, video, and textual data into a uni-
fied space using the pre-trained ImageBind (Gird-
har et al., 2023) module. Instead of training an
audio-text dataset, it utilizes a video-text encoder
to indirectly convert audio into text.

Video storytelling (Li et al., 2020) emphasizes

the creation of text summaries for events by se-
lecting important frames using a reinforcement
learning-based Narrator model. This approach in-
corporates contextual embeddings through a Resid-
ual Bidirectional RNN (ResBRNN) resulting in
more detailed and coherent descriptions.

Our work builds on these advancements by ad-
dressing key limitations of existing MLLMs, partic-
ularly in processing long-duration videos, integrat-
ing auxiliary information, and generating stylis-
tically rich captions. By incorporating innova-
tive dataset enhancement techniques and robust
evaluation metrics, our framework establishes a
new benchmark for multi-modal understanding and
narrative-driven text generation.

2.2 Benchmark Introduction

Traditional Vision-Language (VL) benchmarks
(Goyal et al., 2017; Kay et al., 2017; Xu et al., 2016,
2017; Xiao et al., 2021) have primarily focused on
QA-style evaluations, emphasizing tasks such as
multi-modal retrieval and vision-based question an-
swering. More recent benchmarks have expanded
this scope to assess broader multi-modal capabili-
ties.

For instance, OwlEval (Ye et al., 2024a) and
SEED-Bench (Li et al., 2023) introduce evaluation
metrics that emphasize comprehensive multi-modal
reasoning. In the video domain, benchmarks such
as Perception Test (Patrducean et al., 2023) evaluate
multi-modal video perception and reasoning, while
FunQA (Xie et al., 2024) evaluates models with
humorous and counterintuitive content to improve
performance in video-based reasoning.

MVBench (Li et al., 2024b) stands out by defin-
ing over 20 tasks to evaluate MLLMs’ performance
on diverse scenarios, especially temporal reasoning.
The research on Synchronized Video Storytelling
(Yang et al., 2024) presents a novel methodology
that incorporates supplementary advertising key-
words to enhance the generation and evaluation of
storytelling and advertising content, offering major
insights for the discipline. These advancements
inform our framework, which aims to address gaps
in evaluating narrative-driven, multi-modal tasks.

3 MVSBench

In this section, we explore the details of our MV S-
Bench in depth. Initially, we formulate the multi
- modal story generation tasks, as graphically pre-
sented in Figure 1. Subsequently, we automate the



generation of video-caption pairs for evaluation, as
detailed in the following sections. And overview
of the pipeline is shown in Figure 3.

3.1 Task Definition

In the MVSBench framework, we use a text-to-
text approach to create story tasks, transforming
formatted texts into coherent narratives, such as
novels. While most MLLM benchmarks focus on
converting video or audio into brief captions, they
evaluate vision and audio separately. In contrast,
MV SBench integrates both modalities, enabling a
unified evaluation of multi-modal storytelling with
enriched context.

We first outline core tasks related to video and au-
dio understanding based on previous benchmarks,
then expand them into detailed narratives. This
leads to the development of story tasks requiring
a full understanding of both video and audio. We
outline 4 subdomains with 11 specific tasks below:

Fluency. Evaluates the overall fluency of the
description. Alignment. Verifies whether the nar-
rative structure follows the reference event order.
Novel. (1) Environment: Assesses the quality of
environment descriptions. (2) Character: Focuses
on character descriptions, including clothing and
facial expressions. (3) Speech: Checks for the
presence and quality of speech descriptions. (4)
Storyline: Evaluate the development, consistency,
and logical coherence of the narrative. (5) Emotion:
Assesses the quality of emotional descriptions. Rel-
evance. (1) Visual Similarity: Measures the degree
to which key visual knowledge is retained in the
generated text. (2) Audio Similarity: Measures the
degree to which key audio knowledge is retained in
the generated text. (3) Visual Diversity: Assesses
the degree to which essential visual information
from the knowledge base is used. (4) Audio Diver-
sity: Assesses the degree to which essential audio
information from the knowledge base is used.

3.2 Automatic Dataset Generation

Based on the definition of the Enriched Video-
Captions Generation task, we collect popular exist-
ing datasets and annotate the videos. Specifically,
we introduce a novel automatic dataset generation
process (Fig. 6), which efficiently converts open-
source videos into a structured format for both eval-
uation and fine-tuning.

Datasets Collection. We select several high-
quality existing datasets. (1) VideoInstruct100K
(Muhammad Maaz and Khan, 2023) is a high-

quality video conversation dataset that incorporates
semi-automatic techniques to assist with annota-
tion. (2) Video_Story (Gella et al., 2018) is a
new large-scale dataset designed to advance multi-
sentence video description, presenting a novel chal-
lenge in this domain. (3) MSR_VTT (Xu et al.,
2016) is a large-scale benchmark for video under-
standing. It includes 10K web video clips (38.7
hours) with 200K clip-sentence pairs.

Data Pre-processing. we utilize the following
tools to convert original videos into a structured
format: (1) Video splitting: we segment all long
videos into 20-second clips, which is typically suf-
ficient to generate narrative text of around 1,000
words. (2) FFmpeg (FFmpeg Developers, 2023):
We use it to extract keyframes, capturing essential
visual information for later processing.

Data Generation. Some datasets provide only
brief descriptions, often lacking depth. Addition-
ally, original captions do not include enriched in-
formation such as audio content. Thus, expand-
ing reference captions is crucial for evaluating this
task. We use state-of-the-art MLLMs and LLMs
to extract detailed visual and audio information.
For example, Qwen_VL2 (Wang et al., 2024a)
captures frame-level visual details, providing a
structured reference for event timeline develop-
ment. For visual information, we employ MLLMs
like VideoChat2 (Li et al., 2024b) to extract envi-
ronment settings, character descriptions, and story
development summaries. For audio information,
models such as FunASR (et al., 2023a) and Whis-
per (OpenAl, 2022) capture audio events, emo-
tions, speaker features, and ASR transcriptions. Fi-
nally, after obtaining these key components, we use
ChatGPT-4o0 (et al., 2024b) to integrate the back-
ground information and generate coherent story-
like video summaries. And NLTK (Bird and Loper,
2004) and SpaCy (Honnibal and Montani, 2017)
are used in text processing. We construct our pro-
posed dataset in this way from Video_Story and
Videolnstruct100K, named A-VidStory.

3.3 Prompt Design

To ensure story coherence, we design a detailed
prompt for generating as shown in the Fig. 6. This
prompt guides LLMs to carefully analyze video
and audio content, emphasizing timestamps and
other key factors to maintain narrative flow. For
the downstream LLM, the prompt encourages full
utilization of original visual and audio information
to enhance accuracy. It also helps structure the



storyline, ensuring that the final captions are fluent
and align with the provided narrative development.
By using this guidance framework, we aim to en-
hance the quality of generated stories, making them
more aligned with real-world scenarios and user
expectations.

And we also design an effective prompt for eval-
uation as shown in Fig. 7.

3.4 Automatic Evaluation Metrics

Traditional NLP metrics, such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), fail to cap-
ture deeper narrative elements, often overlooking
audio cues, character details, and other contexts. To
address this, we define a knowledge base method
that integrates additional visual and audio informa-
tion.

Supervised Storyline Score(SS). This score
measures the fidelity of the generated story against
a predefined canonical events order. It assesses how
closely the produced narrative aligns with key event
orders, character behaviors, and thematic elements
detailed in the original outline.

Intra-story Repetition (ISR). ISR evaluates the
coherence repetition rate of generated texts. In-
spired by related work (Yang et al., 2024), we de-
fine a keyword-triplet method to assess fluency at
three levels: within a sentence, between different
sentences, and overall caption. Excessive triplet
repetition indicates unnatural phrasing and redun-
dancy, negatively affecting fluency.

Information Similarity (InfoSim). (Yang et al.,
2024) It measures the alignment between the
knowledge points in the story and the knowledge
repository. A higher similarity score indicates that
the generated story effectively incorporates rele-
vant knowledge.

Information Diversity (InfoDiv). (Yang et al.,
2024) It evaluates the breadth of the knowledge
used in the story. A higher diversity score indicates
that the story incorporates a wide range of knowl-
edge points, avoiding over-reliance on a small sub-
set of information.

Qualitative Metrics. This method uses GPT-
4 (et al., 2024a) and carefully designed prompts
to effectively assess caption quality. It ensures a
consistent and scalable evaluation of generated cap-
tions. The prompt for GPT-4 is shown in Fig. 7.
The definded metrics are: (1) Unsupervised Story-
line Score (USS) evaluates how reasonable, deep,
and engaging the story’s progression is and whether
the story feels well-developed and logical. (2) En-

vironment Score (EvS) assesses how well the text
sets the scene, considering environmental richness,
sensory details, and atmospheric quality. (3) Emo-
tion Score (EmS) evaluates the depth and authen-
ticity of emotional expression, focusing on how
effectively the text conveys characters’ emotions
and overall tone. (4) Speech Score (SpS) measures
the realism and vividness of human speech, assess-
ing whether the dialogue is engaging and natural.
(5) Character Score (CaS) examines the depth
and consistency of character portrayals, focusing
on appearance, personality, and behavior.

4 M2S pipeline

After establishing MVSBench, we first evaluated
the MLLMs listed in Table. 1 on our benchmark.
However, results show that current MLLMs strug-
gle to generate detailed long-form text, often lack-
ing audio information. To address this gap, we
propose a robust MLLM-LLM pipeline, Movie-to-
Story (M2S).

4.1 Synthesized Instruction-Tuning Dataset

Current MLLMs struggle to generate story-like cap-
tions with enriched information. To bridge this
gap, a downstream LLM can be utilized to pro-
cess enriched inputs and generate the final cap-
tions. However, as shown in Table 1, some LLM:s,
such as LLaMA3-3B, perform poorly without fine-
tuning, likely due to limited diversity in instruction-
tuning data. To address this, we synthesize a
fine-tuning dataset, comprising 10K samples from
MSR_VTT, incorporating both visual and audio
information to enhance fine-tuning effectiveness.

The process is similar to A-VidStory construc-
tion process. But we employ ChatGPT-4o0 to gener-
ate additional audio descriptions for some videos
without audio. And to ensure coherence between vi-
sion and audio information, we condition ChatGPT-
40 on the extracted vision features as contextual
background.

The instruction-tuning dataset and A-VidStory
are converted to a uniform format shown in Fig.
5. There are three key components: {video},
{visual_input}, and {audio_input}. The first
key stores the video file path. The second key
contains structured visual information, including
environment, storyline, characters, and timestamps.
The third key represents audio features such as
emotion, transcription, speed, and speaker identity,
aligned with time segments.
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Figure 3: Overview of M2S pipeline: M2S consists of multiple modules designed to extract enriched multimodal

information for generating detailed captions.

4.2 Visual Feature Extraction Module

This module extracts key visual information from
videos. We use current state-of-the-art MLLMs like
VideoChat2 (Li et al., 2024b) as the baseline model.
With a structured prompt, MLLMs identifies es-
sential elements, including environment settings,
character descriptions, and story events summaries.

To process long videos, we segment them into
5-second clips. Visual features are extracted from
each clip and aggregated into a structured format
for subsequent LLM input. Additionally, YOLOv8
(Yaseen, 2024) is employed for person segmenta-
tion, while FaceNet (Schroff et al., 2015) extracts
facial features to assist in character name alignment
and description mapping.

4.3 Audio Feature Extraction Module

This module employs several open-source models
to extract audio features. Pyannote (et al., 2019)
segments the audio into speech clips and extract
acoustic features for speaker alignment.

For transcription, we use Whisper (OpenAl,
2022). Emotion analysis is conducted using Emo-
tion2Vec (et al., 2023b) from FunASR (et al.,
2023a). Additionally, we compute word speed to
assess speaking rate. The final output includes

timestamps, transcriptions, emotion labels, speech
rate, and speaker references, forming a comprehen-
sive audio representation.

4.4 Character-Context Alignment Module

Identifying a person’s name from their visual ap-
pearance in a video is challenging. Existing meth-
ods, such as MMAD (Ye et al., 2024b), have shown
strong performance in person re-identification us-
ing image-based features. However, aligning a
speaker’s audio content with their visual represen-
tation requires a multimodal approach.

To address this, we integrate both visual and
audio features. Preprocessed anchor data contain-
ing a person’s name, facial features, and speech
attributes are used to establish a strong mapping
between the visual and audio domains. Addition-
ally, vision and audio features are linked with their
respective textual descriptions.

This ensures that names are correctly assigned
to the corresponding individuals in both visual and
spoken content, enhancing downstream text gener-
ation.



Model avg | Sim_V  Sim_A Sim_avg Div_V Div_A Div_avg | EmS SpS CaS EvS USS Overall | ISR(/) SS(}) Storylength
InternVideo2 4820 | 64.6 31.1 479 30.7 15.0 228 209 120 352 669 240 31.8 15.1 46.4 619
InternVideo2+GPT40 55.72 61.0 327 46.8 321 13.9 23.0 583 234 555 83.6 449 53.2 4.0 404 794
M2S(InternVideo2, GPT40) | 64.04 | 582 39.6 48.9 29.0 74.5 51.8 65.1 65.0 568 82.6 484  63.6 4.6 39.5 762
VideoLLava2 40.96 67.5 31.1 49.3 27.1 8.7 17.9 19.7 6.1 284 564 202 26.2 42.7 45.9 763
VideoLLava2+GPT4o 56.08 59.5 334 46.5 29.0 18.6 23.8 612 298 57.0 813 462 55.2 5.6 39.5 855
M2S(VideoLLava2, GPT4o) | 62.84 | 56.9 38.9 479 26.1 70.7 48.4 659 622 579 80.6 484 63.0 5.6 39.5 806
VideoChat2 51.22 70.3 30.9 50.6 42.2 9.9 26.1 239 59 380 804 20.0 33.6 8.1 46.1 646
VideoChat2+G 56.16 | 63.7 33.3 485 37.1 14.9 26.0 545 162 53.1 86.0 41.1 50.2 4.5 394 840
M2S(VideoChat2, GPT40) | 64.74 60.9 39.2 50.0 36.8 75.3 56.1 61.1 624 551 847 459 61.8 4.9 39.3 850
GPT3.5-API* 59.78 62.7 39.1 50.9 38.7 72.0 553 51.6 547 433 751 40.1 53.0 134 46.9 1110
Doubao-API* 59.88 | 61.0 36.1 48.6 36.6 672 519 385 515 402 767 299 474 5.8 427 664
Qwen-API* 65.12 62.0 39.1 50.5 38.0 772 57.6 59.1 649 522 831 433 60.5 3.5 39.5 753
LLaMA3-LoRA* 61.16 | 61.9 377 49.8 36.4 60.6 48.5 595 517 531 819 446 582 85 422 876
Mistral-LoRA* 61.56 61.7 37.7 49.7 36.9 60.3 48.6 599 533 533 824 452 58.8 73 42.0 855
Qwen-LoRA* 61.06 61.9 37.3 49.6 36.9 572 47.0 59.7 494 53.0 83.0 453 58.1 7.6 41.8 870
LLaMA3* 25.68 | 35.1 249 30.0 34 5.0 42 29 1.8 28 43 20 2.7 25.1 83.4 504
Mistral* 20.62 10.3 6.1 8.2 3.6 3.5 35 4.9 37 47 80 37 5.0 21.1 92.5 308
Qwen* 6126 | 63.9 39.3 51.6 353 72.8 54.0 494 591 448 741 339 522 9.8 41.7 650

Table 1: Experiment Results: For example M2S(InvideoVideo2, GPT40) represents one case of our M2S framework,
where InvideoVideo2 is used as the MLLM and GPT4o serves as the LLM. The results emphasize the limitations of
current MLLMs in generating enriched video captions in complex scenarios. LoRA enables us to fine-tune local
LLMs to achieve performance comparable to closed-source models. The symbol * denotes the LLM chosen as the
downstream model of M2S. All models follow the strategy of segmented clips.

5 Experiment

5.1 Experiment Settings

Implementation Details. To measure the per-
formace of leading LLM sand MLLMs on MVS-
Bench, we design a detail experiment workflow and
test extensively state-of-art models. (1) Baseline
LLM: For the closed-source LLMs, we employ
tht API of GPT-40, GPT-3.5 (Brown et al., 2020),
Doubao, Qwen. For the open-source LLM, we test
LLaMA-3.2-3B, Qwen2.5-7B-Instruct, Mistral-7B-
v0.1. Detailed information is shown in Appendix A.
(2) Baseline MLLLM: We test InternVideo2 (Wang
et al., 2024b), Video-LLaVA2 (Lin et al., 2024) and
Videochat2 (Li et al., 2024b) on our benchmark.

We finetune the open-source LLM on 10K
instruction-tuning dataset,to evaluate its perfor-
mance. We use 90% of the data for fine-tuning and
the remaining 10% as the test set. The proposed
framework is trained for 5 epochs with a learning
rate of 5¢~°. The LoRA (et al., 2021) parameters
are set to r = 32 and o = 16. Training the closed-
source LLMs took approximately 15 hours on three
3090 GPUs.

5.2 Results Analysis

Evaluation results on MVSBench, shown in Ta-
ble 1, indicate that current MLLMs struggle with
story-like caption generation. M2S outperforms
the base MLLM combined with GPT-40 by over
24% and surpasses the base MLLM alone by over
29% in the diversity metric. In qualitative metrics,
our pipeline achieves a 25% improvement com-
pared to the base MLLM. M2S improves overall
average scores by over 13% compared to the base

MLLMs. These improvements presents M2S’s abil-
ity to generate richer narratives by integrating both
visual and audio information. In the similarity met-
rics, these models exhibit comparable performance,
demonstrating that our pipeline effectively retains
key information.

Baseline MLLMs often produce shorter outputs
with higher repetition rates and struggle with main-
taining logical coherence in long-video contexts.
In contrast, M2S generates longer, more structured,
and fluent captions while preserving key details.

For further details and qualitative comparisons,
please refer to Figure 4.

5.3 LoRA Result Analysis

LoRA significantly enhances the instruction-
following ability of local models, making them
comparable to API-based models like GPT-40. Be-
fore LoRA, LLaMA and Mistral performed poorly,
often failing to generate meaningful outputs, while
Qwen already demonstrated strong instruction ad-
herence. After fine-tuning, all models showed im-
provement. LL.aMA3-3B presents a 50% gain of
qualitative score after finetuning. More details are
provided in Table 1.

In qualitative evaluations, LoRA-tuned mod-
els surpassed GPT-3.5 and Doubao by over 5%,
demonstrating the effectiveness of our pipeline.
Compared to end-to-end MLLM training, our ap-
proach is both feasible and resource-efficient. By
using MLLMs for text extraction and LLMs for
novel generation, we enable the scalable produc-
tion of long multimodal narratives while avoiding
excessive computational overhead.



5.4 Ablations Study

Table 1 presents the ablation study of our pipeline.
Compared to base MLLMs combined with GPT-4o,
M2S achieves a 7.8% increase in five GPT scores,
approximately a 1.4% boost in the audio similar-
ity score, and a 24% improvement in the audio
diversity score. In the speech score, our pipeline
outperforms other models by over 32%. These
results indicate that incorporating the audio mod-
ule effectively enhances overall performance. This
highlights the essential role of the audio module
in enhancing overall performance. We also eval-
uated different closed-source LLM APIs. GPT-
40 achieved the best results, particularly in the
five core metrics, while GPT-3.5 and Doubao per-
formed poorly in overall scores.

6 Conclusion

Our paper introduces MVSBench, a comprehen-
sive benchmark designed to evaluate MLLM’s mul-
timodal story generation capabilities. We also pro-
pose a pipeline, M2S, that performs better than the
leading models on the MVSBench benchmark. Our
extensive analysis provides valuable insights into
the design of MLLMs for multimodal story genera-
tion, especially in scenarios rich in additional infor-
mation. Despite these advances, there are still some
limitations to our current approach. We aim to ad-
dress these issues in future work to enhance the as-
sessment framework and further improve MLLM’s
performance in complex, information-rich environ-
ments.

Limitations

One limitation of our approach is the lack of an
end-to-end framework that directly processes video
input and produces enriched textual descriptions.
Instead, we rely on separate components for mul-
timodal extraction and text generation. For story-
line matching, our metric struggles with complex
scenarios, such as evaluating the relevance of story-
lines spanning multiple time segments and model-
ing intricate narrative structures. Additionally, our
evaluation primarily compares generated texts with-
out fully incorporating visual frame feature, which
could further refine accuracy assessment. Since
our benchmark emphasizes the role of audio in-
formation, it inherently requires videos to contain
relevant auditory elements. Addressing these limi-
tations is an important direction for future work.

Internvideo:

The video shows a man in a black suit and a man in a beige suit talking to each other
through a glass window. The man in the black suit is holding a cell phone and the man
in the beige suit is holding a bag. They are both standing in front of a sign that says
\"Desert Inn.\" A car is passing by in the background.

VideoLLaVA:

The video shows a man walking down a street and talking to another man. The man in
the suit is seen walking away from the camera and then back again. The man in the
suit is also seen walking down the street and talking to another man.

VideoChat:

“The video starts with a blurry image of a man in a suit standing in front of a glass
door. The scene then shifts to a clearer view of the same man, who is now inside the
building, looking out through the glass door. He is wearing a light-colored suit and a
blue shirt. The man appears to be in a conversation with another person who is not
visible in the frame. The background shows a parking lot with cars and a building with
a sign that reads \"NO PARKING ALLOWED.\" The man's facial expressions change
from neutral to smiling as he continues to look out the door. The scene changes again
to show the man from a different angle, this time with a blurred background,
indicating motion or a change in focus.",

M2s:

Chapter 1: A Fateful Encounter

stood by the glass door of the building, his
giving him an air of quiet professionalism. The sign on the door, “"NO PERSONS
ALLOWED," caught the eye of anyone passing by. Through the glass, the blurry outline
of a parking lot shimmered in the midday sun, cars idling in the distance. Inside, the
atmosphere was tense, despite the mundane surroundings of the office
posture was rigid, his eyes focused as if waiting for something—or someone.

Suddenly, the door opened, revealing his glasses
catching the light. His face lit up with a wide smile, a flash of happiness overtaking him
as he called out in a slow, deliberate voice, “Lenny!"

joy was clear, but beneath the surface, there was a subtle undertone of
something more complex—perhaps a tinge of frustration or even anger, though
barely noticeable.

sharp blue eyes narrowed slightly. He turned towards Teddy, his voice calm,
measured. "It's Leonard. Like | told you before." His tone was slow and neutral, though
there was an unmistakable firmness in his words.

Figure 4: Comparison of Generation Results: Our pipeline
achieves better performance by incorporating enriched
contextual information.

Figure 5: Example of dataset structure.



References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning. Preprint, arXiv:2204.14198.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214-217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor
Berg-Kirkpatrick, and Shlomo Dubnov. 2022a. Hts-
at: A hierarchical token-semantic audio transformer
for sound classification and detection. Preprint,
arXiv:2202.00874.

Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu,
Daniel Tompkins, Zhuo Chen, and Furu Wei. 2022b.
Beats: Audio pre-training with acoustic tokenizers.
Preprint, arXiv:2212.09058.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2024. Internvl: Scaling up
vision foundation models and aligning for generic
visual-linguistic tasks. Preprint, arXiv:2312.14238.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin
Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang,
Ziyang Luo, Deli Zhao, and Lidong Bing. 2024.
Videollama 2: Advancing spatial-temporal model-
ing and audio understanding in video-llms. Preprint,
arXiv:2406.07476.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep

bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. Preprint, arXiv:2010.11929.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. Palm-e: An embodied multimodal language
model. Preprint, arXiv:2303.03378.

Edward J. Hu et al. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Hervé Bredin et al. 2019. pyannote.audio: neural
building blocks for speaker diarization. Preprint,
arXiv:1911.01255.

OpenAl et al. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAl et al. 2024b. Gpt-4o system card. Preprint,
arXiv:2410.21276.
Zhifu Gao et al. 2023a.

Funasr: A fundamental

end-to-end speech recognition toolkit. Preprint,
arXiv:2305.11013.
Ziyang Ma et al. 2023b. emotion2vec:  Self-

supervised pre-training for speech emotion represen-
tation. Preprint, arXiv:2312.15185.

FFmpeg Developers. 2023. FFmpeg tool (Version 4.4.1).
Software available from http://ffmpeg.org/. Ac-
cessed: 2023-10-05.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li,
Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen,
Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li, Tong Xu,
Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing
Sun. 2024a. Video-mme: The first-ever comprehen-
sive evaluation benchmark of multi-modal llms in
video analysis. Preprint, arXiv:2405.21075.

Chaoyou Fu, Haojia Lin, Zuwei Long, Yunhang Shen,
Meng Zhao, Yifan Zhang, Shaoqi Dong, Xiong Wang,
Di Yin, Long Ma, Xiawu Zheng, Ran He, Ron-
grong Ji, Yunsheng Wu, Caifeng Shan, and Xing
Sun. 2024b. Vita: Towards open-source interactive
omni multimodal llm. Preprint, arXiv:2408.05211.

Spandana Gella, Mike Lewis, and Marcus Rohrbach.
2018. A dataset for telling the stories of social media
videos. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,


https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://aclanthology.org/P04-3031/
https://aclanthology.org/P04-3031/
https://aclanthology.org/P04-3031/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2202.00874
https://arxiv.org/abs/2202.00874
https://arxiv.org/abs/2202.00874
https://arxiv.org/abs/2202.00874
https://arxiv.org/abs/2202.00874
https://arxiv.org/abs/2212.09058
https://arxiv.org/abs/2312.14238
https://arxiv.org/abs/2312.14238
https://arxiv.org/abs/2312.14238
https://arxiv.org/abs/2312.14238
https://arxiv.org/abs/2312.14238
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/2406.07476
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1911.01255
https://arxiv.org/abs/1911.01255
https://arxiv.org/abs/1911.01255
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2305.11013
https://arxiv.org/abs/2305.11013
https://arxiv.org/abs/2305.11013
https://arxiv.org/abs/2312.15185
https://arxiv.org/abs/2312.15185
https://arxiv.org/abs/2312.15185
https://arxiv.org/abs/2312.15185
https://arxiv.org/abs/2312.15185
http://ffmpeg.org/
https://arxiv.org/abs/2405.21075
https://arxiv.org/abs/2405.21075
https://arxiv.org/abs/2405.21075
https://arxiv.org/abs/2405.21075
https://arxiv.org/abs/2405.21075
https://arxiv.org/abs/2408.05211
https://arxiv.org/abs/2408.05211
https://arxiv.org/abs/2408.05211
https://doi.org/10.18653/v1/D18-1117
https://doi.org/10.18653/v1/D18-1117
https://doi.org/10.18653/v1/D18-1117

pages 968-974, Brussels, Belgium. Association for
Computational Linguistics.

Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Man-
nat Singh, Kalyan Vasudev Alwala, Armand Joulin,
and Ishan Misra. 2023. Imagebind: One embedding
space to bind them all. Preprint, arXiv:2305.05665.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent
Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter
Yianilos, Moritz Mueller-Freitag, Florian Hoppe,
Christian Thurau, Ingo Bax, and Roland Memisevic.
2017. The "something something" video database
for learning and evaluating visual common sense.
Preprint, arXiv:1706.04261.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei
Cui, Owais Khan Mohammed, Barun Patra, Qiang
Liu, Kriti Aggarwal, Zewen Chi, Johan Bjorck,
Vishrav Chaudhary, Subhojit Som, Xia Song, and
Furu Wei. 2023. Language is not all you need:
Aligning perception with language models. Preprint,
arXiv:2302.14045.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa
Suleyman, and Andrew Zisserman. 2017. The
kinetics human action video dataset. Preprint,
arXiv:1705.06950.

Hamza Kheddar, Mustapha Hemis, and Yassine Himeur.
2024. Automatic speech recognition using advanced
deep learning approaches: A survey. Information
Fusion, 109:102422.

Seon-Ho Lee, Jue Wang, David Fan, Zhikang Zhang,
Linda Liu, Xiang Hao, Vimal Bhat, and Xinyu Li.
2024. Nowyousee me: Context-aware automatic
audio description. Preprint, arXiv:2412.10002.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023. Seed-bench: Bench-
marking multimodal 1lms with generative compre-
hension. Preprint, arXiv:2307.16125.

Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S.
Kankanhalli. 2020. Video storytelling: Textual sum-
maries for events. IEEE Transactions on Multimedia,
22(2):554-565.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wen-
hai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. 2024a. Videochat: Chat-centric video un-
derstanding. Preprint, arXiv:2305.06355.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li,
Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo
Chen, Ping Luo, Limin Wang, and Yu Qiao.

2024b. Mvbench: A comprehensive multi-
modal video understanding benchmark. Preprint,
arXiv:2311.17005.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning,
Peng Jin, and Li Yuan. 2024. Video-llava: Learn-
ing united visual representation by alignment before
projection. Preprint, arXiv:2311.10122.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out, pages 74-81, Barcelona, Spain. Asso-
ciation for Computational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua
Lin. 2024. Mmbench: Is your multi-modal model an
all-around player? Preprint, arXiv:2307.06281.

Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting
Huang, Bingshuai Liu, Zefeng Du, Shuming Shi,
and Zhaopeng Tu. 2023. Macaw-llm: Multi-modal
language modeling with image, audio, video, and
text integration. Preprint, arXiv:2306.09093.

Muhammad Maaz, Hanoona Rasheed, Salman Khan,
and Fahad Shahbaz Khan. 2024. Video-chatgpt: To-
wards detailed video understanding via large vision
and language models. Preprint, arXiv:2306.05424.

Salman Khan Muhammad Maaz, Hanoona Rasheed and
Fahad Khan. 2023. Video-chatgpt: Towards detailed
video understanding via large vision and language
models. ArXiv 2306.05424.

OpenAl. 2022. Whisper: A general-purpose speech
recognition model. https://cdn.openai.com/
papers/whisper.pdf. Accessed: 2023-10-06.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318. Association for
Computational Linguistics.

Viorica Patrducean, Lucas Smaira, Ankush Gupta,
Adria Recasens Continente, Larisa Markeeva, Dy-
lan Banarse, Skanda Koppula, Joseph Heyward, Ma-
teusz Malinowski, Yi Yang, Carl Doersch, Tatiana
Matejovicova, Yury Sulsky, Antoine Miech, Alex
Frechette, Hanna Klimczak, Raphael Koster, Jun-
lin Zhang, Stephanie Winkler, Yusuf Aytar, Simon
Osindero, Dima Damen, Andrew Zisserman, and
Jodo Carreira. 2023. Perception test: A diagnostic
benchmark for multimodal video models. Preprint,
arXiv:2305.13786.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. Preprint, arXiv:2212.04356.


https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/2305.05665
https://arxiv.org/abs/1706.04261
https://arxiv.org/abs/1706.04261
https://arxiv.org/abs/1706.04261
https://arxiv.org/abs/2302.14045
https://arxiv.org/abs/2302.14045
https://arxiv.org/abs/2302.14045
https://arxiv.org/abs/1705.06950
https://arxiv.org/abs/1705.06950
https://arxiv.org/abs/1705.06950
https://doi.org/10.1016/j.inffus.2024.102422
https://doi.org/10.1016/j.inffus.2024.102422
https://doi.org/10.1016/j.inffus.2024.102422
https://arxiv.org/abs/2412.10002
https://arxiv.org/abs/2412.10002
https://arxiv.org/abs/2412.10002
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://doi.org/10.1109/tmm.2019.2930041
https://doi.org/10.1109/tmm.2019.2930041
https://doi.org/10.1109/tmm.2019.2930041
https://arxiv.org/abs/2305.06355
https://arxiv.org/abs/2305.06355
https://arxiv.org/abs/2305.06355
https://arxiv.org/abs/2311.17005
https://arxiv.org/abs/2311.17005
https://arxiv.org/abs/2311.17005
https://arxiv.org/abs/2311.10122
https://arxiv.org/abs/2311.10122
https://arxiv.org/abs/2311.10122
https://arxiv.org/abs/2311.10122
https://arxiv.org/abs/2311.10122
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://arxiv.org/abs/2306.05424
https://cdn.openai.com/papers/whisper.pdf
https://cdn.openai.com/papers/whisper.pdf
https://cdn.openai.com/papers/whisper.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2305.13786
https://arxiv.org/abs/2305.13786
https://arxiv.org/abs/2305.13786
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2212.04356

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition

(CVPR), page 815-823. IEEE.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Yuan Tseng, Layne Berry, Yi-Ting Chen, I-Hsiang Chiu,
Hsuan-Hao Lin, Max Liu, Puyuan Peng, Yi-Jen Shih,
Hung-Yu Wang, Haibin Wu, Po-Yao Huang, Chun-
Mao Lai, Shang-Wen Li, David Harwath, Yu Tsao,
Shinji Watanabe, Abdelrahman Mohamed, Chi-Luen
Feng, and Hung yi Lee. 2024. Av-superb: A multi-
task evaluation benchmark for audio-visual represen-
tation models. Preprint, arXiv:2309.10787.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024a.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. Preprint,
arXiv:2409.12191.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yi-
nan He, Chenting Wang, Guo Chen, Baoqi Pei,
Ziang Yan, Rongkun Zheng, Jilan Xu, Zun Wang,
Yansong Shi, Tianxiang Jiang, Songze Li, Hongjie
Zhang, Yifei Huang, Yu Qiao, Yali Wang, and Limin
Wang. 2024b. Internvideo2: Scaling foundation mod-
els for multimodal video understanding. Preprint,
arXiv:2403.15377.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun
Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu,
Zun Wang, Sen Xing, Guo Chen, Junting Pan, Ji-
ashuo Yu, Yali Wang, Limin Wang, and Yu Qiao.
2022. Internvideo: General video foundation models
via generative and discriminative learning. Preprint,
arXiv:2212.03191.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-
Seng Chua. 2021. Next-qa:next phase of question-
answering to explaining temporal actions. Preprint,
arXiv:2105.08276.

Binzhu Xie, Sicheng Zhang, Zitang Zhou, Bo Li, Yuan-
han Zhang, Jack Hessel, Jingkang Yang, and Ziwei
Liu. 2024. Funqga: Towards surprising video compre-
hension. Preprint, arXiv:2306.14899.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang
Zhang, Xiangnan He, and Yueting Zhuang. 2017.
Video question answering via gradually refined atten-
tion over appearance and motion. In ACM Multime-
dia.

11

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-
vtt: A large video description dataset for bridging
video and language. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),
pages 5288-5296.

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao,
Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang,
Yu Qiao, and Ping Luo. 2023. Lvlm-ehub: A com-
prehensive evaluation benchmark for large vision-
language models. Preprint, arXiv:2306.09265.

Dingyi Yang, Chunru Zhan, Ziheng Wang, Biao Wang,
Tiezheng Ge, Bo Zheng, and Qin Jin. 2024. Syn-
chronized video storytelling: Generating video
narrations with structured storyline. Preprint,
arXiv:2405.14040.

Muhammad Yaseen. 2024. What is yolov8: An
in-depth exploration of the internal features of
the next-generation object detector.  Preprint,
arXiv:2408.15857.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming
Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong
Xu, Hehong Chen, Junfeng Tian, Qi Qian, Ji Zhang,
Fei Huang, and Jingren Zhou. 2024a. mplug-owl:
Modularization empowers large language models
with multimodality. Preprint, arXiv:2304.14178.

Xiaojun Ye, Junhao Chen, Xiang Li, Haidong Xin,
Chao Li, Sheng Zhou, and Jiajun Bu. 2024b.
MMAD:multi-modal movie audio description. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 11415-11428, Torino, Italia. ELRA and ICCL.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Li-
juan Wang. 2024. Mm-vet: Evaluating large mul-
timodal models for integrated capabilities. Preprint,
arXiv:2308.02490.

Yue Zhao, Long Zhao, Xingyi Zhou, Jialin Wu,
Chun-Te Chu, Hui Miao, Florian Schroff, Hartwig
Adam, Ting Liu, Boqing Gong, Philipp Krihen-
biihl, and Liangzhe Yuan. 2024. Distilling vision-
language models on millions of videos. Preprint,
arXiv:2401.06129.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. Preprint, arXiv:2304.10592.


https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/cvpr.2015.7298682
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2309.10787
https://arxiv.org/abs/2309.10787
https://arxiv.org/abs/2309.10787
https://arxiv.org/abs/2309.10787
https://arxiv.org/abs/2309.10787
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2403.15377
https://arxiv.org/abs/2403.15377
https://arxiv.org/abs/2403.15377
https://arxiv.org/abs/2212.03191
https://arxiv.org/abs/2212.03191
https://arxiv.org/abs/2212.03191
https://arxiv.org/abs/2105.08276
https://arxiv.org/abs/2105.08276
https://arxiv.org/abs/2105.08276
https://arxiv.org/abs/2306.14899
https://arxiv.org/abs/2306.14899
https://arxiv.org/abs/2306.14899
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://doi.org/10.1109/CVPR.2016.571
https://arxiv.org/abs/2306.09265
https://arxiv.org/abs/2306.09265
https://arxiv.org/abs/2306.09265
https://arxiv.org/abs/2306.09265
https://arxiv.org/abs/2306.09265
https://arxiv.org/abs/2405.14040
https://arxiv.org/abs/2405.14040
https://arxiv.org/abs/2405.14040
https://arxiv.org/abs/2405.14040
https://arxiv.org/abs/2405.14040
https://arxiv.org/abs/2408.15857
https://arxiv.org/abs/2408.15857
https://arxiv.org/abs/2408.15857
https://arxiv.org/abs/2408.15857
https://arxiv.org/abs/2408.15857
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2304.14178
https://aclanthology.org/2024.lrec-main.998/
https://arxiv.org/abs/2308.02490
https://arxiv.org/abs/2308.02490
https://arxiv.org/abs/2308.02490
https://arxiv.org/abs/2401.06129
https://arxiv.org/abs/2401.06129
https://arxiv.org/abs/2401.06129
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592

A  Formula

A.1 Information Scores

) 1
InfoSim = 2|Si‘ Zg: <I&%fgf51
S wmax sl |
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where W (s;) represents all words in sentence s;.
fs;» fx. and f, refer to the normalized embeddings
of sentence s;, knowledge point k, and segmented
word w, respectively.

Zsi,S]'ES)\ ZtETA(Si,SJ‘) wx - f)\(t’ Sis S])
ZS-;,S]‘ES,\ |T)\(Si’ 8.7)‘

Ry

€))
where:

* )\ denotes the level of granularity for repetition
rate calculation:

— X\ = overall (global repetition rate)

— )\ = inter (sentence-to-sentence repeti-
tion rate)

— )\ = intra (intra-sentence repetition rate)

S represents the scope of the calculation:

— A = overall: all trigrams in the text.
- A = inter: all sentence pairs (s;, s;).
— )\ = intra: a single sentence s;.

* T\(s4, s;) represents the set of trigrams:

— A = overall: all trigrams 7T'.

— )\ = inter: shared trigrams between two
sentences, Ts; N Tsj.

— )\ = intra: trigrams within a single sen-
tence T, .

* w) is a weighting factor:

— A = overall: wy = 1.

— A = inter: wy 2 (to normalize the
pairwise count).

— A =intra: wy = 1.
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° t Siy S5 counts the occurrence of trigram
Ay 94, 95 g
t:

— A =overall: f(t) — 1 (total occurrences
minus unique count).

- A = inter: min(f(t,s;), f(¢,s;)) (mini-
mum count between two sentences).

— A =intra: f(t,s;)—1 (internal repetition
in a single sentence).

A.2 Alignment Scores

SS is the score for the storyline, which quantifies
the mismatch rate between events in the video and
the story.

S5 — InversionCount(f(g,))

MaxInversionCount(g)

Variable Description:

(1) InversionCount : The reverse number of
matching index lists (the number of reverse pairs)

(2) g,r: generated text and reference texts.

Q) f : Ty x T, — R"™ : Cosine Similarity Best
Match Index List R" of texts generated text with
respect to reference texts.

- T,y and T;. are text spaces for generated text and
reference texts.

- n is number of the sentence/chapter segments
in generated text g.

f(gj,r) = argmax (cos (E(r:), £(g;)))

- E(-): Sentence Transformer Encoder.
- cos(+, -): Cosine similarity calculation.
n(n—1)

2

(4) MaxInversionCount(g) =

B Experiments and Analysis

B.1 Novel Analysis

Our evaluation of the novel includes five elements:
Emotion, Speech, Character, Environment, Story-
line. For a detailed introduction, please refer to the
section 3.

According to Tab.5 GPT40 API is the best in
Emotion (EmS), Character (CaS), Environment
(EvS), and Storyline (USS) while while the best
performance on Speech(SpS) is on Qwen-API ,
indicating that GPT40 and Qwen-API have out-
standing abilities in integrating rich information
and generating process text.

In Tab.6, our M2S pipeline is better than MLLM-
LLM without audio information in all four aspects
except for the Environment. This may be because
the addition of audio information has squeezed



out some visual information, which is currently
included in our environment. If audio descriptions
of the environment are added in the future, this part
could also be better.

B.2 Fluency and Storyline Analysis

ISR and SS are quantitative metrics used to evaluate
the fluency of novel language and the consistency
of the overall storyline order. Both metrics indicate
that the smaller the better.

According to Tab.3 and Tab.2. (1)ISR: The
model without LLM processing will perform worse
in terms of language fluency in novels, and the
LLaMA score before LoRA will perform worse.
This is because the ISR metric evaluates the lan-
guage repetition within the text and overall. The
more repetition, the more inclined the model is
to generate the same text, and the unprocessed or
untrained model is indeed prone to generating the
same text repeatedly, which is in line with our ex-
pectations. The special feature is that Videollava’s
unprocessed text has a high repetition rate. After
our observation, we found that the same sentence
was repeated many times, which disappeared af-
ter LLM processing, and the score was almost the
same as the other two MLLMs, reflecting the ro-
bustness of our pipeline. (2)SS: The relative dif-
ference in SS among all models is not significant,
except for LLaMA and Mistral before processing
LoRA. This is because these two models had poor
instruction obedience before LoRA, making them
more prone to descriptions with disordered order
or empty strings. The data processed by LLM with
good command obedience is very good, indicating
that the storyline matches the order of events in
the video. Compared to not using LLM processing,
directly attaching VLM results in chronological
order is not a good method. This may be because
VLM results are often shorter, and the probability
of similar text appearing in different positions is
higher, which affects the evaluation of the order of
the storyline.

B.3 Information Metric Analysis

In this section, we can analyze the degree to which
LLM preserves information and the importance
of audio information intervention. In order to
avoid randomness in the experiment, the model
was strictly programmed to write novels based on
the input information, with all LLM temperatures
set to 0.

According to Tab.4, (1) Similarity score: After
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adding Audio, the sim score for Video information
decreases, while the div score for Audio informa-
tion increases. Qwen perform the best in preserving
information similarity. It may tend to generate sim-
ilar texts with input. While GPT40 and others may
tend to use richer expressions such as synonym
replacement or sentence re modification. (2) Diver-
sity score: After adding Audio, the div score for
Video information decreases slightly, while the div
score for Audio information increases significantly.
This indicates that after adding audio information
to our input, LLM ensures that sufficient audio in-
formation is retained during processing. However,
due to the fact that the length of the generated text
does not change too much see Tab.1, the informa-
tion in the video section is compressed to a small
extent, which affects the diversity of information.

In summary, based on the information metrics
infosim and infodiv, we can understand that LLM
does retain key information from the video in the
generated novels, which is crucial for producing
novels that meet the requirements.

B.4 NLP Analysis

As shown in Tab.3 and, we use the generation
captions from M2S pipeline with VideoChat2 and
GPT4o0 as the components. Because the original
caption is too short to be a good reference. The
improvement in NLP metrics demonstrates that
LoRA enables local LLMs to achieve performance
comparable to closed-source LLMs.

C Figures and Tables



Model ISR() SS())

InternVideo2 15.1 46.4
VideoLLava2 42.7 45.9
VideoChat2 8.1 46.1
InternVideo2+GPT40 4.0 40.4
VideoLLava2+GPT4o0 5.6 39.5
VideoChat2+GPT4o0 4.5 394

InternVideo2+GPT40+Audio module 4.6 39.5
VideoLLava2+GPT40+Audio module 5.6 39.5
VideoChat2+GPT4o0+Audio module 49 39.3

Table 2: Quantitative performance of various base MLLMs with GPT40 as LLM on M2S

Model ISR(}) SS({) Rouge-1(1) Rouge-2(1) Rouge L(1) BLEU-4(1)
GPT40-API 49 39.3
GPT3.5-API 13.4 46.9
Doubao-API 5.8 42.7
QWen-API 3.5 39.5

QWen 9.8 41.7 57.5 294 31.6 14.5
Mistral 21.1 92.5 7.1 24 3.8 1.0
LLaMA 25.1 83.4 9.7 22 6.5 0.6

QWen-LoRA 7.6 41.8 67.5 349 349 204
Mistral-LoRA 7.3 42.0 68.3 35.7 35.5 21.3
LLaMA-LoRA 8.5 42.2 66.6 339 342 19.6

Table 3: Quantitative performance of various downstream LLMs on M2S

Model Sim_V  Sim_A Sim_avg Div_V Div_A Div_avg
VideoChat2+GPT40+Audio Module 60.9 39.2 50.0 36.8 75.3 56.1
VideoChat2+GPT40 63.7 333 48.5 37.1 14.9 26.0
VideoLLava2+GPT4o+Audio Module 56.9 38.9 479 26.1 70.7 48.4
VideoLLava2+GPT40 59.5 334 46.5 29.0 18.6 23.8
InternVideo2+GPT40+Audio Module 582 39.6 489 29.0 74.5 51.8
InternVideo2+GPT4o0 61.0 327 46.8 32.1 13.9 23.0
LLaMA-LoRA 61.9 37.7 49.8 36.4 60.6 48.5
Mistral-LoRA 61.7 37.7 49.7 36.9 60.3 48.6
Qwen-LoRA 61.9 373 49.6 36.9 57.2 47.0
LLaMA 35.1 24.9 30.0 34 5.0 42
Mistral 10.3 6.1 8.2 3.6 35 35
Qwen 63.9 39.3 51.6 353 72.8 54.0
GPT3.5-API 62.7 39.1 50.9 38.7 72.0 55.3
Doubao-API 61.0 36.1 48.6 36.6 67.2 51.9
Qwen-API 62.0 39.1 50.5 38.0 77.2 57.6
InternVideo2 64.6 31.1 479 30.7 15.0 22.8
VideoLLava2 67.5 31.1 49.3 27.1 8.7 17.9
VideoChat2 70.3 30.9 50.6 422 9.9 26.1

Table 4: Performance of Open Source LLMs and Baseline (VideoChat) with Audio on Information Metrics

Model EmS SpS CaS EvS USS Overall
GPT40-API  3.057 3.122 2.753 4.236 2.294 3.092
GPT3.5API 2582 2734 2164 3.755 2007 2.648
Doubao-API  1.926 2575 2009 3.835 1.494 2.368

QWen-API 2953 3243 2610 4.155 2165 3.025
QWen 2468 2955 2240 3.703 1.694 2.612
Mistral 0.247 0.185 0.234 0.400 0.185 0.250
LLaMA 0.144 0.092 0.140 0.213 0.099 0.137
QWen-LoRA 2986 2471 2.648 4.151 2263 2904
Mistral-LoRA 2,993 2.663 2.666 4.120 2259 2.940
LLaMA-LoRA 2974 2587 2.657 4.097 2231 2909

Table 5: Performance of various LLMs on Qualitative metrics
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Model EmS SpS CaS EvS USS Overall

InternVideo2 1.046 0.601 1.760 3.346 1.199 1.590
VideoLLava2 0.987 0.307 1.418 2.818 1.010 1.308
VideoChat2 1.195 0296 1.898 4.021 1.001 1.682
InternVideo2+GPT40 2916 1.172 2.777 4.181 2243 2.658
VideoLLava2+GPT4o0 3.060 1.490 2.848 4.067 2310 2.755
VideoChat2+GPT40 27725 0.812 2.653 4.299 2.055 2.509
InternVideo2+GPT4o0+Audio Module 3.257 3.248 2.842 4.128 2420 3.179
VideoLLava2+GPT40+Audio Module 3.294 3.110 2.897 4.032 2421 3.151
VideoChat2+GPT4o0+Audio Module ~ 3.057 3.122 2.753 4.236 2.294 3.092

Table 6: Performance of various models with GPT40 as LLM on Qualitative metrics

Input: Stagel:
videos text feature extraction
by MLLMs
c> a

Other processing
procedures

Stage2:

story generation by LLMs

Video Captions

[{'Background Objects":
‘The video appears to
be set indoors.. ',
'"Introduction': \"The
costumes are well-
detailed with
realistic animal
features, vivid
colors..", 'timestamp':
‘0 second’} .. ,{..} ..]

Audio Captions

[{'speaker"':
'SPEAKER_@1',
‘Transcription’: '
inches from Paw
Patrol! Hi guys! Hi!
Come in, come in!',
‘speed’: 'slow’,
‘segments': [40, 47],
‘emotion’: [["happy"',
'0.55'], ['surprised’,
'0.42°11} . ,{.} -1

System Prompts:

You are a talented novelist. When given
story outlines, you can skillfully combine
them and write a full novel. A story outline
consists of a video description and an audio
description.

—

Query Prompts:
This is input video captions: ...
This is input audio captions: ...

= You must use all of the audio text in the final

output. You must follow the event order strictly
based on the timestamps provided in the video
segments. The events must appear in the exact
order of the given video segments. Audio and
video content must be matched carefully based
on their time ranges. If there is a speaker in the
audio but no corresponding person in the video
segment, still include their dialogue in the final
novel. Try to avoid repeating descriptions. Since
there might be overlapping information between
video and audio descriptions, use diverse language
to extend the novel and reduce repetition of
phrases as much as possible.

Figure 6: pipeline example with prompts
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Output:
Novel style long texts

**Title: The Enchanted
Birthday Adventure**\n\n--
-\n\n**Chapter 1: The
Gathering of Joy** n\nThe
sun shone brightly over
the quaint residential
neighborhood, casting a
warm glow on the gathering
below. \n\n---
\n\n...**Chapter 2: The
Birthday Bash**\n\nInside,
the scene was equally
vibrant...**Chapter 3:
Games and
Surprises**\n\nThe party
was in full swing, the air
filled with laughter and
the occasional exclamation
of surprise.\n\n---
\n\n...**Chapter 4: The
Grand Finale**\n\nAs the
sun began to set, casting
a golden hue over the
festivities, the children
gathered for one last
game...**The End**



PROMPT = {
"system_prompt": """
You are an expert reviewer with advanced knowledge in storytelling and writing
evaluation.
Your task is to evaluate novel excerpts based on specific storytelling elements
provided by the user.

Always adhere to the following guidelines:

- Focus on the user's instructions and evaluate only the requested elements.

- For "Speech Description,” prioritize whether the excerpt includes human speech,
gialogue, or direct quotes, and assess the realism, engagement, and clarity of such

anguage.
e - Output results in strict JSON format, including integer scores (©-5) for each

category and an overall score.

- Ensure the JSON format is valid, follows the structure provided, and contains no
extraneous information.

If there are ambiguities in the user prompt, infer the most reasonable evaluation
criteria based on common storytelling practices. Always explain each score succinctly if
required by the user.

nwn

"user_prompt":
Please evaluate the following novel excerpt based on the five key elements of
storytelling:

1. **Psychological/Emotional Description**: Does the excerpt convey the
emotions and inner thoughts of characters? How detailed and rich is the emotional
portrayal?

2. **Speech Description**: Does the excerpt include vivid and expressive
use of human speech or dialogue? Are there realistic and engaging conversations or quotes?
Is the language style engaging and evocative when depicting spoken words?

3. **Character Description**: Are the characters described in detail? How
well does the excerpt develop or portray the characters?

4, **Environment Description**: Is the setting described effectively? How
vivid and detailed is the description of the surroundings?

5. **Plot Development**: How reasonable, deep, and engaging is the
progression of the story's plot? Does the plot feel well-developed and logical?

For each category, provide a **score as an integer from @ to 5** (e.g., @ =
completely absent, 5 = excellent).

**Qutput the evaluation strictly in the following JSON format:**
"psychological_emotional™: <integer from @ to 5>,
"speech”: <integer from 8 to 5>,
“character": <integer from @ to 5>,

“"environment": <integer from @ to 5>,
"plot": <integer from @ to 5>,

}

Now, please evaluate the following text strictly and professionally:

Figure 7: GPT prompts for qualitative evaluation
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