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Abstract

Decentralized data markets can provide more equitable forms of data acquisition for1

machine learning. However, to realize practical marketplaces, efficient techniques2

for seller selection need to be developed. We propose and benchmark federated data3

measurements to allow a data buyer to find sellers with relevant and diverse datasets.4

Diversity and relevance measures enable a buyer to make relative comparisons5

between sellers without requiring intermediate brokers and training task-dependent6

models.7

1 Introduction8

Massive training datasets have proved foundational to AI breakthroughs, from earlier deep learning9

breakthroughs in computer vision to large language models (LLM) [65, 35]. However, AI companies10

face increasing scrutiny and backlash for their data collection practices, resulting in lawsuits from data11

owners such as artists, software developers, and journalists [24, 61, 60]. As AI applications continue12

to be developed and deployed, more equitable and transparent means of data acquisition must be13

designed and implemented [53, 16]. Recently, data markets have been proposed to incentivize greater14

data sharing and access for data-restricted domains [9, 2]. As the ethical challenges and legal risks of15

acquiring data increase, data market platforms will be crucial to address the ethical and economic16

challenges in training AI models.17

To facilitate practical data market platforms, we investigate the challenge of seller selection for a data18

buyer using a framework based on federated data measurements. We benchmark several proposed19

heuristic measures of diversity and relevance, which can be used by the buyer to compare the relative20

value of different sellers. The advantage of this federated data measurement framework is that it does21

not require direct access to the seller’s data, is training-free, and is task-agnostic. These attributes are22

desirable for a decentralized marketplace to enable scalable seller selection for many different buyers.23

The three main steps of the data measurement framework are depicted in Figure 1. We evaluate24

several definitions of diversity and relevance on multiple computer vision datasets by benchmarkiing25

each data measurement for its ability to rank sellers, correlation with classification performance, and26

robustness to duplicate and noisy data. In summary, we show that federated data measurements allow27

private and lightweight seller discovery that can lower search costs for a data buyer in a decentralized28

data marketplace.29

2 Decentralized Data Markets30

Current data brokers are highly centralized and aggregate vast amounts of data, often without a user’s31

knowledge, consent, or compensation [57, 13]. This massive centralization of data has led to increased32
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Figure 1: Steps of data measurements framework. A buyer embeds their data through some
embedding model and sends a private query of matrix projections to each seller. Each seller responds
with data measurements that allow the buyer to compare and transact with sellers that have the most
relevant data.

data breaches, the erosion of privacy, and harmful data misuse. For example, the 2017 Equifax data33

breach exposed the private records of more than 150 million people [74]. In contrast, decentralized34

data markets may present a more equitable and efficient approach to data acquisition [53, 55, 36].35

On a decentralized marketplace platform, buyers can transact directly with sellers, bypassing inter-36

mediate data brokers by utilizing decentralized and privacy-enhancing technologies such as smart37

contracts and trusted execution environments [28, 6]. Bypassing data brokers may result in lower38

transaction costs and greater market efficiency by allowing data owners to capture more of the39

revenue generated from their data. In addition, whereas data brokers indiscriminately acquire data40

and sell bundled datapoints wholesale, data marketplaces could take a more targeted approach to41

data acquisition. by only paying for the most valuable datapoints, lowering the overall privacy42

incursion [51]. Lastly, compensating data owners may incentivize greater data access from a more43

diverse range of individual data producers, which may decrease bias in data acquisition by increasing44

participation from smaller, more heterogeneous data sources.45

However, to fully realize this paradigm shift to decentralized data marketplaces, scalable methods46

are needed to match buyers with relevant data sellers. A survey of data market participants found47

that finding relevant sellers was a major source of friction and recommended lowering search costs48

for the data buyer [36]. In a centralized one-sided marketplace, this process can be facilitated by a49

data broker. However, in the absence of brokers in a decentralized marketplace, we need federated50

techniques to signal the value of data sellers to different buyers, each of whom may have different51

preferences and goals for data acquisition. This problem of seller selection is related to client selection52

in federated learning [22]. Without new federated methods to lower search costs, market platforms53

will struggle to attract enough participants to attain the scale and network effects for a sustainable54

marketplace.55

Most current work in data valuation, such as Data Shapley [23], assumes a centralized setting where56

all data is fully accessible to train models to estimate data value. In a decentralized setting, a seller57

would not permit data access before payment since data is easily copied. However, a buyer would be58

reluctant to pay a fair price for data if they cannot be assured of its value. Therefore, a fundamental59

asymmetry arises between the buyer and seller, related to Arrow’s Information Paradox [5], resulting60

in increased search costs and fewer transactions taking place. New methods must be developed for61

the decentralized data market setting taking into account only limited, “white-box” data access [10].62

To allow a buyer to search for the most promising sellers in a decentralized marketplace, we evaluate63

federated data measurements, which have the advantage of being computationally cheap to compute,64

task-agnostic, and only require indirect data access. Many different data measurements have been65

developed to quantify intrinsic, task-agnostic characteristics [48, 40, 43]. Data measurements can66

be general-purpose, such as central tendency (e.g., mean, median) and “distance” (e.g., Euclidean67

distance, KL divergence) or modality-specific, such as Fréchet Inception Distance [3] and lexical68

diversity [31]. Recent work proposed to use conditional diversity and relevance measurements to69

value data without requiring model training or validation data evaluation [4]. We incorporate their70

work by evaluating several other definitions of diversity and relevance in the context of private and71

federated data valuation on medical imaging datasets.72
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3 Federated Data Measurements73

Instead of directly attempting to measure the contribution of each datapoint in the seller’s dataset, we74

measure inherent properties of the seller’s aggregate dataset through data measurements. These data75

measurements, µ, can be used by the buyer to compare between data sellers. For instance, a seller j76

with measurement µj ≫ µi would be deemed to have more valuable data than seller i.77

Many data measurements have been developed to quantify intrinsic, task-agnostic characteristics [48,78

40, 43]. Data measurements can be general-purpose, such as central tendency and distance metrics, or79

modality-specific, such as Fréchet Inception Distance [3] and lexical diversity [31]. Many data quality80

measures have been developed for structured relational data, such as completeness, consistency, and81

accuracy; however, data quality becomes more complicated for unstructured data [8].82

Before measuring the seller’s data, a buyer sends a personalized query, Q, to each seller. We assume83

that a buyer has a small sample of reference data, Xbuyer
i ∼ Dbuyer, from the desired distribution84

to create the query. The buyer communicates this query to the seller, and the seller uses this query85

to transform their data, calculate the data measurements, and return the measurements to the buyer.86

The query can be any matrix projection to measure the seller’s data. For instance, this basis can be87

chosen to maximize variance (PCA), independence (ICA), or class separability (LDA) [46, 29, 7].88

Empirically, we found PCA with 10 principal directions appropriate for most datasets as most of the89

variance is captured in the first few components (see Figure 11).90

Another common preprocessing step is to embed data into a low-dimensional representation using91

a deep learning model [47, 42, 69]. The choice of embedding, f : X → Rd, can incorporate92

domain-specific knowledge and has become popular for retrieval augmented generation (RAG) and93

vector databases [44, 52]. For our benchmark, we use a pretrained CLIP (ViT-16) model — due to its94

good performance for zero-shot capabilities across a wide range of image domains — to precompute95

512-dimensional embedding vectors for each dataset [54]. We envision that more application-specific96

platforms could use multiple choices of embeddings, such as medical foundation models [49].97

First, buyer i sends seller j their query, Q = πk

(
f
(
Xbuyer

))
, where πk : Rn×d → Rk×d computes98

the first k principal directions using the buyer’s reference data. Then, the seller uses this query99

to transform their data and returns certain information to the buyer to calculate a specified data100

measurement. The measurement function, g : Rk×d × Rk×d → R, takes in the projected data from101

the seller and buyer to produce a scalar data measurement µij ∈ R, µij = g
(
QCseller,QCbuyer

)
,102

where C ≜ f(X)⊤f(X) is the covariance matrix of the embedded data.103

In prior work, g has been defined as measuring heuristic notions of relevance and diversity [4, 70, 21].104

For our benchmark, we evaluate the four different definitions of relevance and four definitions of105

diversity for our decentralized data market setting. Intuitively, relevance should capture the similarity106

between the buyer and seller. For example, if the buyer has chest X-ray (CXR) images with COVID-107

19, then a seller with similar COVID-19 CXR images would be more relevant than CXR from normal108

patients. Likewise, CXR data should be more relevant than MRI data or photography images. We109

evaluate four definitions of relevance for seller selection.110

1. Negative Euclidean (L2) distance between the mean vectors of the buyer and seller:111

−
∥∥X̄buyer − X̄seller

∥∥
2
, where X̄ ≜ 1

k

∑k
i=1 QiCi.112

2. Cosine similarity between mean vectors: (X̄buyer · X̄seller)/∥X̄buyer∥
2
∥X̄seller∥

2
.113

3. Correlation between mean vectors: Cov(X̄buyer, X̄seller)/
√

Var(X̄buyer) · Var(X̄seller).114

4. Overlap between principal components [4]: k

√∏k
i=1

min(λbuyer
i ,λseller

i )/max(λbuyer
i ,λseller

i ),115

where λi ≜ ∥QiCi∥2 is the magnitude of the projected vector.116

For many machine learning applications, using only relevance measures is insufficient to guarantee117

useful training data. For example, a seller’s data may be highly relevant but have duplicate data118

or imbalanced classes that result in brittle, low-performing models. Intuitively, a seller with X-ray119

images from 1,000 unique patients contains more non-redundant information than 1,000 X-rays from120

3



a single patient. Then, training on the more diverse seller should lead to better model generalization121

on unseen test data as more of the input space has been learned [70, 20]. We evaluate four definitions122

of diversity.123

1. Volume of the projected covariance [70]: log
(
det

(
QCseller

))
124

2. Vendi score [21], defined as the exponential of negative entropy of eigenvalues of the125

covariance: exp
(
−trace

(
QCseller logQCseller

))
.126

3. Dispersion of the features, measured as the geometric mean of standard deviations [40]:127

k

√(∏k
i=1 diag (QCsellerQ⊤)i

)
128

4. Difference in the normalized magnitude between principal components [4]:129

k

√∏k
i=1

|λbuyer
i −λseller

i |/max(λbuyer
i ,λseller

i ), where λi ≜ ∥QiCi∥2.130

These data measurements of diversity and relevance are computationally efficient to compute, even131

for large datasets (>100,000 datapoints), and only require indirect data access from each seller.132

Additionally, leveraging deep embeddings allows high-dimensional, multi-modal data such as images133

and text to be measured in a task-agnostic and training-free manner.134

4 Experiments135

Ranking Sellers with Measurements We first evaluate each data measurement in correctly ranking136

the seller with data IID with the buyer’s distribution. For example, when the buyer has reference137

data from ImageNet, the seller with ImageNet data should have the largest data measurement (see138

Figure 8). A common metric to evaluate ranking quality in information retrieval is discounted139

cumulative gain (DCG) [30]. For simplicity, we assume that the IID seller has a maximum gain of 1140

and non-IID sellers have a gain of 0. In Table 1, we report the mean rank of the IID seller and DCG141

over 10 random trials using 20 computer vision datasets (listed in Appendix A). For all experiments,142

we use 100 datapoints for the buyer query and 10,000 datapoints for each seller unless otherwise143

specified.144

Overall, we find that relevance measurements, such as L2 distance and the “overlap” measure, are145

better than diversity measurements at ranking the IID seller. This reflects the intuition that relevance146

directly compares distributional information between buyer and seller. On the other hand, most147

diversity measures only consider information from the buyer through the query projection step.148

Among all data measurements, the “difference” measure had the lowest DCG, often ranking the IID149

seller very low (see Figure 8 for an example).150

Table 1: Performance of data measurements for seller ranking
DATA MEASUREMENT AVG. RANKING ↓ AVG. DCG ↑

RELEVANCE

L2 1.25± 0.85 0.94± 0.15
COSINE 1.28± 0.99 0.94± 0.16
CORRELATION 1.34± 1.16 0.93± 0.17
OVERLAP [4] 1.18± 0.53 0.95± 0.14

DIVERSITY

VOLUME [70] 3.64± 5.28 0.79± 0.30
VENDI [21] 3.38± 2.87 0.69± 0.31
DISPERSION [40] 2.73± 2.87 0.80± 0.29
DIFFERENCE [4] 19.47± 1.04 0.23± 0.0

Correlation with Downstream Classifier Performance Next, we evaluate how useful each data151

measurement is as a proxy for training data quality. In this experiment, we assume that the buyer152

wants to use the seller’s data to train a model to predict a held-out test set, which is IID with the153

buyer’s query data. We train a model for each seller using their data as a training set and correlate the154
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Table 2: Correlation test performance across three tasks on four MedMNIST datasets
PREDICTION TASK VALUATION METHOD CORRELATION WITH TEST ACCURACY ↑

BLOOD ORGAN PATH TISSUE AVG.

BINARY
CLASSIFICATION

L2 -0.02 0.04 0.03 0.10 0.04
COSINE 0.16 0.09 0.13 0.20 0.15
CORRELATION 0.13 0.07 0.13 0.21 0.14
OVERLAP 0.04 -0.02 0.01 0.06 0.02

VOLUME 0.28 0.29 0.31 0.28 0.29
VENDI 0.19 0.19 0.22 0.18 0.20
DISPERSION 0.17 0.18 0.18 0.14 0.17
DIFFERENCE -0.03 0.02 0.03 -0.09 -0.02

KNN SHAPLEY 0.10 0.07 0.05 0.08 0.08
LAVA -0.02 -0.02 0.02 0.01 0.00

MULTICLASS
CLASSIFICATION

L2 0.22 0.15 0.19 0.22 0.20
COSINE 0.23 0.14 0.12 0.18 0.17
CORRELATION 0.24 0.15 0.12 0.19 0.18
OVERLAP 0.27 0.19 0.19 0.24 0.22

VOLUME 0.42 0.35 0.32 0.36 0.36
VENDI 0.30 0.23 0.19 0.22 0.24
DISPERSION 0.22 0.20 0.12 0.18 0.18
DIFFERENCE -0.23 -0.14 -0.14 -0.18 -0.17

KNN SHAPLEY 0.09 0.12 0.07 0.12 0.10
LAVA -0.01 0.00 -0.02 0.00 -0.01

K-MEANS
CLUSTERING

L2 0.22 0.23 0.20 0.19 0.21
COSINE 0.29 0.28 0.31 0.26 0.29
CORRELATION 0.29 0.29 0.31 0.26 0.29
OVERLAP 0.31 0.35 0.36 0.32 0.34

VOLUME 0.55 0.54 0.52 0.55 0.54
VENDI 0.45 0.45 0.49 0.48 0.47
DISPERSION 0.35 0.38 0.32 0.36 0.25
DIFFERENCE -0.22 -0.27 -0.29 -0.25 -0.26

KNN SHAPLEY 0.01 0.05 0.02 -0.01 0.02
LAVA 0.01 0.00 -0.03 0.02 0.00

resulting model’s test performance with the data measurements for that seller. In this way, a seller155

with a high data measurement value should ideally have test performance for a particular buyer than156

a seller with a lower data measurement value.157

We use four medical imaging datasets (BloodMNIST, OrganMNIST, PathMNIST, and TissueMNIST)158

from the MedMNIST benchmark (see Figure 6 for example images) [71]. To introduce heterogeneity159

between sellers, we sample classes from a Dirichlet distribution as standard practice in federated160

learning to simulate non-IID clients [73, 45]. For each dataset, we evaluate three different prediction161

task scenarios: binary classification with logistic regression, multiclass classification with a random162

forest classifier, and K-means clustering. For each data buyer, we randomly sample a subset of163

classes for multiclass classification and evaluate the accuracy score as the performance metric. For164

binary classification, we consider the selected subset of classes as “positive” and the other classes165

as “negative” and evaluate accuracy. For clustering, we set the number of clusters equal to the total166

number of classes for each dataset and evaluate homogeneity score, a common clustering metric, as167

the performance metric [58].168

For another baseline, we also evaluate two centralized data valuation, KNN Shapley [32] and169

LAVA [34], using the OpenDataVal framework [33]. We selected these two valuation methods for170
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their efficient runtime. We split the seller’s data into 20% for training and used the other 80% as a171

validation set. To aggregate a value for each seller, we take the average data value of the validation172

datapoints. In Table 2, we report these correlations between data measurement and test accuracy for173

500 sellers, each with 5,000 datapoints, and average correlations over 10 buyers for each dataset.174

Intuitively, we expect that sellers with more similar data as the buyer will learn higher-performing175

classifiers and be associated with larger data measurement values. For several of the diversity measures176

(volume, Vendi score), we find a moderate-strong correlation to test performance across datasets and177

prediction tasks. See Figure 9 for an example of strong correlations between volume measurements178

and test prediction accuracy. Compared to diversity measures, relevance measures and the centralized179

data valuation methods (KNN Shapley, LAVA) had a weak correlation with downstream classification180

performance. These results support that a seller with higher diversity measurements is more likely to181

have training data that is more useful for a particular, even without specifying the exact prediction task182

or model architecture. Similar observations between generalization performance and data diversity183

are reported in determinantal point processes [70, 38].184

Detecting Seller Misreporting with Multiple Queries One practical challenge that arises with185

a decentralized marketplace is ensuring that the seller is not able to “cheat” by artificially inflating186

the value of their data measurements. In the case of relevance measures, a malicious seller would187

aim to report mean vectors similar to those of the buyer, but a buyer could avoid sending their own188

mean vectors to prevent this. However, this strategy would not work for diversity measures, which189

are independent of the buyer’s data given the query.190

To counteract this, a buyer could send multiple queries containing “false” directions that may be191

computed using non-relevant data or even random directions in addition to their actual data (see192

Figure 10. Then, the buyer could discount sellers with large data measurements in these false193

directions while only considering sellers with high value using the real query. We evaluate each data194

measurement’s ability to discriminate between data measurements using the real query and false195

queries with the following ratio196

ratio(%) =
µreal

quantile({µ(i)
false}mi ,%)

, (1)

which is simply the ratio of the data measurement using the real query µreal over the %-quantile of197

measurement using false queries. In our experiment, we compute false queries using 20 non-IID198

datasets and consider three quantile threshold ratios: 50%, 75%, and 90%. The 50% ratio corresponds199

to the real IID measurement divided by the median measurement when using buyer queries from the200

19 other non-IID datasets.

Table 3: Ratio of measurement using real query over measurements of false queries
DATA MEASUREMENT RATIOS ↑

50% 75% 90%

RELEVANCE

L2 1.02× 0.93× 0.89×
COSINE 2.97× 1.57× 1.25×

CORRELATION 2.83× 1.53× 1.18×
OVERLAP 2.88× 2.02× 1.64×

DIVERSITY

VOLUME 1.39× 1.31× 1.24×
VENDI SCORE 2.20× 1.92× 1.64×
DISPERSION 1.91× 1.73× 1.58×
DIFFERENCE 0.38× 0.30× 0.27×

201

In Table 3, we report measurement ratios and find that most data measurements of relevance and202

diversity have high ratios, implying that sending multiple queries can be an effective strategy to deal203

with adversarial sellers that misreport their measurements. This will incentivize the sellers to honestly204

report their true data measurements as they do not know which queries are real or fake. Sending205
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additional queries increases communication overhead, but this may be tolerable since each query is206

cheap — being only a k× d matrix, where k ≪ n. For instance, each of our queries is 10× 512 in207

our experiments.208

Robustness to Duplicate Data Because there is no cost to copying data, an adversarial seller may209

duplicate portions of their data to try to obtain higher measurement values. In Figure 2, we vary210

the amount of duplicate data to observe the effect on each data measurement when both the seller211

and buyer have IID data. We note that the implementation of the considered volume method [70]212

explicitly quantizes the data into a d-dimensional hypercube to achieve robustness to duplicate213

data. Therefore, increasing the amount of duplicated data has a negative effect on volume. For all214

other data measurements, the value is relatively consistent until falling off for extreme numbers215

of duplicates, e.g., each datapoint is duplicated 200 times, leaving only 10,000/200 = 50 unique216

datapoints. Exploring duplicate-robust versions of data measurements would be interesting for future217

work.218
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Figure 2: Effect of duplicate data on data measurements. Each seller has 10,000 total datapoints,
and a subset of datapoints are duplicated, keeping the total number of datapoints the same. Each
colored dotted line represents an individual dataset, and the solid black line represents the average of
all datasets. Errors bars represent one standard deviation.
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Figure 3: Effect of different types of noise corruptions on each data measurement. See Figure 7 for
example images on the ImageNet-C dataset.

Effect of Noisy and Corrupted Data In this experiment, we utilize the ImageNet-C benchmark219

dataset [26] to study the effect of 19 different types of noise corruptions (blurring, intensity changes,220
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Figure 4: Varying the amount of data each IID seller has while fixing the buyer query to 100
datapoints.

101 102 103 104

Amount of buyer data

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Correlation

101 102 103 104

Amount of buyer data

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Overlap

101 102 103 104

Amount of buyer data

−0.04

−0.03

−0.02

−0.01

0.00

0.01
L2

101 102 103 104

Amount of buyer data

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Co ine

101 102 103 104

Amount of buyer data

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Difference

101 102 103 104

Amount of buyer data

65
70
75
80
85
90
95

100
105

Volume

101 102 103 104

Amount of buyer data

1

2

3

4

5

6
Vendi

101 102 103 104

Amount of buyer data

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Di per ion

Figure 5: Varying the amount of data in the buyer query has while fixing each seller to 5,000
datapoints.

compression, style effects, etc.) applied to the original ImageNet dataset [59]. Each corruption and221

noise type has 5 levels of increasing severity. See Figure 7 for an example images. The buyer has222

100 datapoints from the original ImageNet dataset, while each seller has 10,000 datapoints from one223

ImageNet-C corruption type.224

As shown in Figure 3, as the severity of the noise/corruption increases, the values of all data225

measurements decrease (with the exception of the “difference” measurement, which increases). This226

degradation in diversity and relevance also depends on the type of noise corruption. More subtle227

changes, such as brightness shifts and saturation, which do not change the spatial information in228

the image and result in more gradual decreases in measured values. In contrast, heavy corruptions,229

such as Gaussian noise and glass blur, which affect the image’s semantic structure, have much larger230

effects on measured diversity and relevance.231

Varying the Amount of Seller and Buyer Data For these experiments, we use the 20 datasets in232

Appendix A. In Figure 4, we vary the amount of data each seller has from 10 datapoints to 50,000233

datapoints while keeping the buyer’s query fixed at 100 datapoints. We find all data measurements,234

except volume, stabilized after around 1,000 seller datapoints. The volume value continued to235

increase with the number of seller datapoints. We also vary the amount of in the buyer’s query236

from 10 datapoints to 10,000 datapoints while fixing the number of seller datapoints to 5,000 in237

8



Figure 5. We find that data measurements were relatively stable for most datasets after around 100238

query datapoints.239

5 Discussion240

As observed in the experiments, both diversity and relevance measures capture important aspects of241

data value for a buyer. Relevance measures allow a buyer to filter out irrelevant data and identify242

sellers with in-domain data distributions. On the other hand, diversity measures, such as volume,243

reveal which sellers have the most informative and useful data (correlated with test performance,244

non-duplicated data). As shown with the corruption experiments using ImageNet-C, both diversity245

and relevance are associated with data quality as noisier and more corrupted data have lower data246

measurements.247

In contrast with prior work [4], we find their “difference” definition of diversity to underperform in248

most experiments compared to other definitions of diversity. Subjectively, we observe that “difference”249

measurements tend to be the inverse of “overlap” measurements and thus redundant in terms of250

information. On the other hand, volume has additional nice properties, such as being robust to data251

duplication and increasing with the number of seller datapoints. Based on our benchmark experiments,252

we conclude that cosine similarity and “overlap” are appropriate relevance measures and that the253

volume-based definition of diversity is well-suited for seller selection.254

Advantages of Federated Data Measurements Unlike centralized and training-based approaches255

to data valuation, using federated data measurements is a lightweight and private way to match a256

buyer with relevant sellers in a decentralized marketplace with millions of participants. Measuring a257

seller’s data is agnostic to the modeling task and model architecture. This approach allows a buyer to258

compare the value of multiple sellers relatively without requiring direct access to the seller’s data,259

which would not be allowed before payment. Different choices of embedding functions could be260

precomputed to serve different types of modalities and domains. In summary, this decentralized data261

valuation scheme allows private and scalable seller discovery to lower search costs for a data buyer,262

enabling more efficient markets and lower transaction costs.263

Limitations While our work presents an initial benchmark of different data measurements, it is264

limited in several ways. Firstly, while our data measurements framework can accommodate other265

types of data modalities such as text and tabular data, we only consider common computer vision266

datasets for our benchmark. Future work would extend the experiments and embeddings for other267

domains such as natural language and graphical data. Another limitation is the lack of formal268

privacy guarantees. While the federated nature of the query and measurement step should prevent269

reconstruction attacks, techniques such as differential privacy [18] and homomorphic encryption [1]270

could be employed to provide explicit guarantees. Additionally, further work could incorporate271

incentive mechanisms to study adversarial seller behavior.272

6 Conclusion273

Reimagining a new decentralized model of data acquisition where individual data producers are fairly274

compensated for sharing data could help redistribute the economic benefits from AI technology to275

those whose data enables AI research and development [64]. Decentralized data markets may address276

issues with current centralized settings by providing a more equitable and efficient exchange of data277

resources, as well as enabling more collective data governance [53, 17].278

In this paper, we presented federated data measurements for decentralized data marketplaces. These279

measurements allow a buyer to perform seller selection without direct access to the seller’s data and280

are more scalable than current data valuation approaches. We benchmark several properties of data281

measurements on computer vision datasets and find that a combination of relevance and diversity282

performs well for several practical data marketplace considerations.283
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Checklist438

The checklist follows the references. Please read the checklist guidelines carefully for information on439

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or440

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing441

the appropriate section of your paper or providing a brief inline description. For example:442

• Did you include the license to the code and datasets? [Yes] See Section ??.443

• Did you include the license to the code and datasets? [No] The code and the data are444

proprietary.445

• Did you include the license to the code and datasets? [N/A]446

Please do not modify the questions and only use the provided macros for your answers. Note that the447

Checklist section does not count towards the page limit. In your paper, please delete this instructions448

block and only keep the Checklist section heading above along with the questions/answers below.449

1. For all authors...450

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s451

contributions and scope? [Yes]452

(b) Did you describe the limitations of your work? [Yes] We discuss limitations in the453

discussion section.454

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss455

the broader impacts in Appendix D.456

(d) Have you read the ethics review guidelines and ensured that your paper conforms to457

them? [Yes]458

2. If you are including theoretical results...459

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not460

present theoretical results.461

(b) Did you include complete proofs of all theoretical results? [N/A]462

3. If you ran experiments (e.g. for benchmarks)...463

(a) Did you include the code, data, and instructions needed to reproduce the main exper-464

imental results (either in the supplemental material or as a URL)? [Yes] We include465

code for our experiments in the supplemental materials.466

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they467

were chosen)? [Yes] We specify additional experimental details in the Appendix.468
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(c) Did you report error bars (e.g., with respect to the random seed after running exper-469

iments multiple times)? [Yes] We report error bars of 1 standard deviation over 10470

random trials for all results.471

(d) Did you include the total amount of compute and the type of resources used (e.g., type472

of GPUs, internal cluster, or cloud provider)? [Yes] We include hardware details in the473

Appendix B.474

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...475

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all the476

datasets used in the Appendix A.477

(b) Did you mention the license of the assets? [Yes] The license will be included in the478

code repository upon release.479

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]480

We include a sample of code as supplemental materials.481

(d) Did you discuss whether and how consent was obtained from people whose data you’re482

using/curating? [N/A]483

(e) Did you discuss whether the data you are using/curating contains personally identifiable484

information or offensive content? [N/A]485

5. If you used crowdsourcing or conducted research with human subjects...486

(a) Did you include the full text of instructions given to participants and screenshots, if487

applicable? [N/A]488

(b) Did you describe any potential participant risks, with links to Institutional Review489

Board (IRB) approvals, if applicable? [N/A]490

(c) Did you include the estimated hourly wage paid to participants and the total amount491

spent on participant compensation? [N/A]492
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A Datasets493

We use the following computer vision datasets in our experiments:494

• MNIST Handwritten Digits [41]495

• Fashion-MNIST [68]496

• EMNIST [12]497

• SVHN [50]498

• CIFAR10 [37]499

• STL-10 [11]500

• ImageNet (validation set) [59]501

• ImageNet-Sketch [66]502

• ImageNet-Rendition [25]503

• ImageNet-Adversarial [27]504

• ImageNet-V2 [56]505

• ImageNet-Corruption [26]506

• BloodMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]507

• BreastMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]508

• ChestMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]509

• DermaMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]510

• OrganAMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]511

• PathMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]512

• PneumoniaMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]513

• RetinaMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]514

• TissueMNIST (224 by 224 pixel version) from MedMNIST-V2 Benchmark [72]515

B Experimental Setup516

Each experiment is averaged over 10 trials of randomly splitting buyer and seller data. For the binary517

classification task, a random subset of classes was selected for each buyer to be the positive class,518

while the rest of the classes were labeled negative. For the multiclass classification, a random subset519

of classes was selected for each buyer, while for the clustering task, all classes were used. Logistic520

regression was used for the binary task, a random forest model for the multiclass classification, and a521

K-means model was used for clustering with the number of clusters being initialized to the number522

of total classes. 100 datapoints were used for the buyer query, and 500 datapoints were used for a test523

set. For each seller, 5,000 datapoints were randomly sampled from a Dirichlet class distribution and524

used to train a model to predict the held-out test set. The centralized data valuation baselines (KNN525

Shapley and LAVA) used 1.000 samples from the seller for training and the rest of the 4000 samples526

for validation, and the average data value was reported for the seller. The test performance metric527

was prediction accuracy for binary and multiclass classification, while the homogeneity score was528

used for the clustering task. In general, the diversity measure is the most correlated with prediction529

performance across datasets and tasks.530

For hardware details, we use an Intel Xeon E5-2620 CPU with 32 cores equipped with Nvidia GTX531

1080 Ti GPUs. For baseline implementation of centralized KNN Shapley and LAVA data valuation532

methods, we use the OpenDataVal package [33] version 1.2.1 with the default hyperparameter533

settings.534

15



Figure 6: Example images from datasets in the MedMNIST benchmark. See medmnist.com for
more information.

C Additional Figures535
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Figure 7: Example noise and image corruptions at the highest severity from the ImageNet-C dataset.
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Figure 8: Ranked data measurements of each seller when the buyer query consists of 100 samples
from ImageNet. The orange bar denotes the seller with IID data distribution (ImageNet) that should
be ranked first.
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Figure 9: Correlation between volume data measurements and test prediction accuracy on MedMNIST
datasets.
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Figure 10: Comparing diversity and relevance measurements when the buyer sends a real query
computed on their actual data (left), a false query computed on a random dataset (middle), and a false
query computed using random data (right).
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Figure 11: varying the number of principal components used to calculate diversity and relevance.
10,00 samples from the buyer and 10,000 samples from the seller were randomly sampled.
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D Broader Impact536

We believe that AI developers must reconcile important ethical questions regarding data acquisition in537

current AI development. Class-action lawsuits have been filed against several AI companies for their538

data collection practices, raising questions about data compensation and consent from data owners.539

Current data acquisition norms may actively discourage further data sharing, which can hamper the540

progress and impact of AI, especially in data-limited domains such as healthcare.541

Current centralized data brokers acquire data and operate in nontransparent and obfuscatory ways542

— data is resold between interlinked brokers that make data provenance and traceability of the543

source difficult [67, 14]. Individuals are often left without recourse or due process over what544

data is collected or how that data is used [15]. Outdated, incorrect, or out-of-context data may545

cause harm to the individual. For instance, millions of mugshots of arrested — but not necessarily546

convicted — individuals are routinely sold on commercial websites and impact those individuals’547

future employment opportunities and access to housing [39]. Data brokers may also pose risks to civil548

liberties, such as when individuals’ data on race, ethnicity, gender, sexual orientation, immigration549

status, and other demographic characteristics is utilized in discriminatory practices, policing, and550

surveillance by corporations and government agencies [62].551

In contrast, decentralized data marketplaces may be more robust and transparent. However, to fully552

realize the promises of a paradigm shift to decentralized data markets, several social, ethical, and553

technical challenges need to be addressed, such as privacy protections, fair data pricing mechanism,554

and secure platform infrastructure [63, 19]. Enabling data market platforms also raises ethical555

concerns and security risks associated with the commodification of personal data, such as the loss of556

privacy and lack of consent in the collection and use of this data [75]. Marginalized and vulnerable557

groups are more at risk of data commodification and privacy erosion, and special protections should558

be enforced for these groups. Safeguards need to be developed to ensure the participation, consent,559

and compensation of the data owners and producers in establishing the provenance and use of data.560
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1. Submission introducing new datasets must include the following in the supplementary561

materials:562

(a) Dataset documentation and intended uses. Recommended documentation frameworks563

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and564

accountability frameworks.565

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded566

by the reviewers.567

(c) URL to Croissant metadata record documenting the dataset/benchmark available for568

viewing and downloading by the reviewers. You can create your Croissant metadata569

using e.g. the Python library available here: https://github.com/mlcommons/croissant570

(d) Author statement that they bear all responsibility in case of violation of rights, etc., and571

confirmation of the data license.572

(e) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as573

long as you ensure access to the data (possibly through a curated interface) and will574

provide the necessary maintenance.575

2. To ensure accessibility, the supplementary materials for datasets must include the following:576

(a) Links to access the dataset and its metadata. This can be hidden upon submission if the577

dataset is not yet publicly available but must be added in the camera-ready version. In578

select cases, e.g when the data can only be released at a later date, this can be added579

afterward. Simulation environments should link to (open source) code repositories.580

(b) The dataset itself should ideally use an open and widely used data format. Provide a581

detailed explanation on how the dataset can be read. For simulation environments, use582

existing frameworks or explain how they can be used.583

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,584

either by uploading to a data repository or by explaining how the authors themselves585

will ensure this.586

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an587

open source license for code (e.g. RL environments).588

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like589

schema.org and DCAT): This allows it to be discovered and organized by anyone. If590

you use an existing data repository, this is often done automatically.591

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by592

a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.593

GitHub, GitLab,...) for code. If this is not possible or useful, please explain why.594

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-595

ducible. Where possible, use a reproducibility framework such as the ML reproducibility596

checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary597

datasets, code, and evaluation procedures must be accessible and documented.598

4. For papers introducing best practices in creating or curating datasets and benchmarks, the599

above supplementary materials are not required.600
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