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Abstract

Transformer models’ memorization capacity001
studies often focus on theoretical bounds or use002
synthetic datasets that lack real-world complex-003
ity. This study systematically evaluates how004
model architecture and data configurations in-005
fluence the capacity of decoder transformers006
using datasets derived from the Systematized007
Nomenclature of Medicine (SNOMED) knowl-008
edge graph: triplets, representing static con-009
nections, and sequences, simulating complex010
relation patterns.011
Our findings highlight key factors affecting012
training dynamics and memorization. Embed-013
ding size is the primary determinant of learn-014
ing speed and capacity, while additional layers015
provide limited benefits and may hinder per-016
formance on simpler datasets. Activation func-017
tions play a crucial role, with Softmax demon-018
strating greater stability and capacity. Addi-019
tionally, increased dataset complexity enhances020
final memorization. These insights improve our021
understanding of transformer memory mecha-022
nisms and provide a framework for optimizing023
model design with structured real-world data.024

1 Introduction025

Transformer-based Large Language Models026

(LLMs) have revolutionized natural language027

processing by demonstrating remarkable capabil-028

ities in tasks ranging from text generation and029

translation to question answering and summariza-030

tion. Despite these advances, the fundamental031

mechanisms underpinning their capacity to032

memorize and retrieve structured knowledge033

remain an active area of research. Understanding034

these mechanisms is crucial for optimizing model035

performance, making it computationally cheap036

in order to apply to real-world problems. One037

particularly impactful example is healthcare, where038

LLMs could assist clinicians through wearable039

devices such as smart glasses or watches (Gupta040

et al., 2024; Wu et al., 2024; Balloccu et al., 2024).041

Due to privacy and reliability, the preferred system 042

would be a local on-edge LLM with minimal 043

computational requirements, but with a capacity to 044

memorize all relevant facts in the relevant area of 045

healthcare. 046

Recent theoretical and empirical studies have 047

sought to quantify the memorization capacity of 048

transformers. Kim et al. (2023) introduced mathe- 049

matical bounds for memory capacity, demonstrat- 050

ing that transformers could memorize O(d+ n+ 051√
nN) parameters, where d, n,N correspond to 052

embedding dimensions, dataset size, and model 053

size, respectively. Additionally, Kajitsuka and Sato 054

(2024) proved, that Õ(
√
nN) parameters are not 055

only sufficient, but also necessary for some types 056

of transformers. Mahdavi et al. (2024) extended 057

this work by analyzing the effects of multi-head 058

attention on memorization, revealing the interplay 059

between architectural components and the model’s 060

ability to store and recall information. The ex- 061

periments in Härmä et al. (2024) used randomly 062

generated sequences of numbers to evaluate the 063

memorization capabilities of the transformer mod- 064

els on unstructured data. Most capacity studies 065

use synthetic datasets because accurate capacity 066

measurement becomes very difficult in the case of 067

uncontrolled free text content. 068

The experiments reported in the current paper 069

use sentence data generated from the knowledge 070

graph which, while being controlled, has some 071

of the hierarchical and relational complexity of 072

real-world text content. More specifically, GPT- 073

like transformer models (Brown et al., 2020) were 074

trained to memorize structured sentences derived 075

from the Systematized Nomenclature of Medicine 076

(SNOMED) knowledge graph (KG) (El-Sappagh 077

et al., 2018). SNOMED, a comprehensive medical 078

ontology, encodes semantic relationships between 079

medical concepts, offering a rich dataset to explore 080

memory and retrieval mechanisms under realistic 081

conditions. Exact memorization of a selection of 082
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such relations would be critical, for example, in the083

healthcare use case described above.084

By employing both theoretical insights and em-085

pirical evaluation, this study seeks to answer three086

key research questions. How can real-world data,087

such as knowledge graphs, be used to investigate088

transformers’ memorization capacity? How do ar-089

chitectural variations affect the efficiency and scal-090

ability of memorization in transformer models?091

How do dataset structure and complexity influence092

memorization behavior during training?093

To measure the memorization capacity of trans-094

former models, the Maximum Attainable Capacity095

(MAC) method was used. It is a computationally096

efficient alternative to the Maximum Library Size097

(MLS) method. While MLS involves iteratively098

training models on progressively larger datasets to099

determine the largest library size that can be fully100

memorized, MAC evaluates the practical limit of101

samples a model can retain when trained on a large102

dataset. Previous research has shown a strong cor-103

relation between MLS and MAC (Härmä et al.,104

2024), making MAC an effective and time-efficient105

choice for this study.106

Our approach leverages structured datasets con-107

structed through two methods: triplet generation108

and sequence generation. Triplets represent static109

relationships in the form (Concept, Property,110

Related Concept), providing a baseline for as-111

sessing memorization. Sequences extend this by112

simulating graph traversal paths, capturing relation-113

ship patterns between concepts. These datasets114

allowed us to empirically analyze how model archi-115

tecture, training configurations, dataset size, and116

complexity influence training dynamics and final117

memorization performance.118

2 Methods119

2.1 Data120

2.1.1 Data Source and Preprocessing121

To evaluate transformer-based models’ memory122

and retrieval capabilities, we used SNOMED KG,123

which encodes medical concepts and their rela-124

tionships as nodes and edges of a graph. It125

was accessed using the owlready2 library (Lamy,126

2017), filtering out non-informative or overly spe-127

cific properties to ensure meaningful relationships.128

While graph transformers leverage Graph Neural129

Networks (Shehzad et al., 2024), our approach pri-130

oritizes a universal architecture applicable across131

diverse datasets. Hence, the graph was transformed132

to: (1) triplets, representing concept-property rela- 133

tionships (see 2.1.2), and (2) sequences, simulating 134

graph traversal paths (see 2.1.3). 135

2.1.2 Triplets Generation 136

The goal of triplet generation was to create a dataset 137

of the form (Concept, Property, Related 138

Concept), capturing semantic relationships in the 139

SNOMED KG. This process (see Figure 1A) in- 140

volves graph initialization and the exclusion of non- 141

informative properties. After the algorithm extracts 142

triplets: for each concept in the KG, it retrieves all 143

allowed properties and their associated related con- 144

cepts. Additionally, when multiple related concepts 145

are associated with a (Concept, Property) pair, 146

one is selected randomly to maintain uniqueness. 147

2.1.3 Sequences Generation 148

The sequence generation simulated graph traversal 149

and encoded local and global graph structures. The 150

complete algorithm is depicted in Figure 1B. 151

The extended graph (G) is constructed from an 152

ontology by: (1) excluding banned properties, as 153

in the triplets generation; (2) along with each re- 154

lationship, adding an edge with opposite direc- 155

tion with a corresponding reversed_ prefix for 156

bidirectional traversal. Additionally, labels were 157

cleaned (metadata were removed) to standardize 158

their format. The sequences were generated to re- 159

flect the traversal path in the graph, capturing both 160

nodes and edges: (node1, edge1, node2, . . . , 161

noden−1, edgen−1, noden) 162

For each sequence, the algorithm first selects a 163

random starting node from the full graph G, ensur- 164

ing that the node has at least one unused edge. A 165

subgraph is then created around the starting node 166

using a breadth-first search (BFS) with a depth de- 167

fined by the hops parameter. This step limits the 168

scope of the traversal to a manageable subset of 169

the graph, improving performance by focusing on 170

local neighborhoods. 171

Step 2 of the algorithm generates a sequence 172

of nodes and edges by traversing the subgraph. 173

The algorithm starts from a randomly selected 174

node and go through available edges (neighbors 175

are chosen randomly to introduce variability). Ev- 176

ery time, check that the same (node, edge) pair 177

is not already visited before, maintaining global 178

uniqueness. The traversal stops when: a ran- 179

domly chosen number of edges within a predefined 180

range (edge_count_range) is reached, or no valid 181

neighbors (those, that maintain uniqueness) remain 182
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Figure 1: Algorithms of triplets (A) and sequences (B)
data generation.

for further traversal.183

The above steps are repeated for a specified num-184

ber of iterations (rows), generating the desired num-185

ber of sequences.186

2.2 Transformers training 187

To evaluate the ability of transformer models to 188

memorize and retrieve structured data, decoder- 189

only transformer models with variations in archi- 190

tecture were implemented. Each unique node and 191

edge was assigned a distinct integer identifier (en- 192

suring that repeated elements were consistently to- 193

kenized), followed by the learned positional encod- 194

ing. The core architecture consisted of three main 195

components: an embedding layer to map tokenized 196

inputs into continuous vector representations, trans- 197

former decoder layers with multi-head attention 198

mechanisms, and a linear output layer to predict 199

target tokens. 200

For all experiments, the task was to predict a con- 201

cept, based on the previous concepts and relations. 202

The accuracy was evaluated as: #correct_predictions
#total_predictions 203

– the proportion of correctly predicted related con- 204

cepts to the total number of predictions. Addi- 205

tionally, Maximum Attainable Capacity (MAC) 206

was used as a more suitable metric for measuring 207

the model capacity. As detailed in the introduc- 208

tion, MAC is a computationally efficient alterna- 209

tive to Maximum Library Size (MLS), with results 210

strongly correlated to MLS, making it the preferred 211

choice for this research. 212

To minimize the effect of randomness, each 213

experiment was repeated 10 times for the first 214

and second setups, and 3 times for the third and 215

fourth setup (see below). All figures and tables 216

present mean values with doubled standard devi- 217

ations. Training and evaluation followed a con- 218

sistent protocol for all setups, with the training 219

accuracy evaluated every second epoch, which al- 220

lowed meaningful comparisons between different 221

configurations. 222

All code was written in PyTorch 223

v1.13.1+cu117 (Paszke et al., 2017) and 224

Transformers v4.30.2 (Wolf et al., 2019). 225

The cross-entropy loss function was used for 226

optimization, along with the Adam optimizer 227

(Kingma and Ba, 2017) and a learning rate of 228

0.001. All other settings were kept at their default 229

library implementations, except where specified in 230

experiment configurations. In total, 546 models 231

were trainded on NVIDIA A100 GPU with 16GB 232

memory, totaling approximately 3, 100 hours 233

of training time. Model sizes ranged from 2.9 234

to 44.5 million parameters, primarily varying 235

with embedding size and layer count, but also 236

influenced by vocabulary size. 237
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All data and code pertinent to the methods and238

results presented in this work will be made avail-239

able at the time of the conference.240

2.2.1 Triplets memorization241

Three experimental setups on the dataset with242

triplets were devised to explore the models’ be-243

havior. For all of them, since the prediction of the244

related concept is based on unique combinations of245

concept and relation, it is straightforward to unam-246

biguously determine whether a related concept was247

predicted correctly or not.248

In the first setup, dataset sizes ranged in249

{50, 000; 60, 000; . . . ; 100, 000} samples. The250

model architecture consisted of a single trans-251

former layer with an embedding size of 128, four252

attention heads, and a Rectified Linear Unit (ReLU)253

activation function (Agarap, 2019) with the batch254

size of 64, and 500 training epochs. This setup255

focused on evaluating memorization performance256

under a fixed architecture while varying dataset257

sizes.258

The second experimental setup introduced vari-259

ations in the transformer architecture, allowing260

a deeper investigation into the impact of model261

depth and activation functions. Dataset sizes in-262

cluded 50, 000, 70, 000, and 100, 000 samples,263

with the numbers of transformer layers set to264

1, 2, or 4. Activation functions were var-265

ied across ReLU, Gaussian Error Linear Unit266

(GELU) (Hendrycks and Gimpel, 2023), Random-267

ized Leaky Rectified Linear Unit (RReLU) (Xu268

et al., 2015), and Softmax (Boltzmann, 1868).269

To ensure fair comparisons, the total number270

of model parameters was kept constant across271

configurations by adjusting the embedding size272

(d_model parameter in PyTorch implementation273

of Transformers) proportionally to the number of274

layers, using the formula: embedding_size =275 ⌊
base_number_of_parameters

n_layers

⌋
with a base276

number of parameters of 128. This approach en-277

sured that variations in performance could be at-278

tributed solely to architectural differences rather279

than changes in the total parameter count. For this280

setup, however, the batch size was increased to 128,281

and the number of training epochs was 1000, since282

it was required for achieving a plateau.283

The third setup focused on evaluating the284

interplay between model depth, and embed-285

ding size while keeping other hyperparam-286

eters the same. Dataset sizes ranged in287

{1, 000; 10, 000; 50, 000; 100, 000} samples.288

The architectural variations included transformer 289

layers set to 1 or 2 and base numbers of parame- 290

ters for embedding sizes in {16; 32; 64; 128} (cal- 291

culated as in the second experiment). Only the 292

Softmax activation function and a fixed number of 293

4 attention heads were used. To ensure fair compar- 294

isons, configurations were designed to evaluate the 295

impact of increasing embedding sizes and model 296

depth on memorization performance. The total 297

parameter count was recalculated for each config- 298

uration using the same formula as in the second 299

experiment. For this setup, as previously, the batch 300

size of 128 was used, and the number of training 301

epochs was 500. 302

2.2.2 Sequences memorization 303

The dataset for sequence memorization tasks was 304

prepared using the same tokenization process. 305

However, to standardize sequence lengths, padding 306

with zeros was applied at the end of each sequence, 307

serving both as a filler and a marker for sequence 308

termination. The task required distinguishing be- 309

tween nodes and edges, and a node mask was gener- 310

ated to identify the positions of node tokens within 311

the sequence. It enabled the computation of met- 312

rics by isolating node positions during the training 313

and evaluation processes. Notably, each node was 314

predicted based on all preceding tokens in the se- 315

quence, meaning the last node in a sequence ben- 316

efited from the most context. This setup provided 317

deeper insights into the transformer model’s ability 318

to handle more structured data and its patterns. 319

The experimental setup was consistent with the 320

previous experiments described in 2.2.1: the em- 321

bedding size was fixed at 64, with four atten- 322

tion heads, the batch size was set to 128, and 323

the number of epochs to 400. The number of 324

layers varied across {1, 2, 4}, and the activation 325

functions used were RReLU and Softmax. As 326

before, the model incorporated a learned posi- 327

tional encoding. The dataset sizes were varied 328

in {20, 000; 50, 000; 100, 000}, representing the 329

number of sequences. Each sequence was limited 330

to 4-6 nodes (and 3-5 edges, respectively), selected 331

randomly. During dataset construction, 5 hops 332

were used to isolate the subgraph (see 2.1.3 for 333

details). 334

For sequence memorization, accuracy and ca- 335

pacity were measured similarly to the triplet-based 336

experiments, with slight adaptations to account for 337

the sequential structure of the data. Accuracy was 338

defined as the proportion of correctly predicted to- 339
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Figure 2: Trends in training accuracy (upper) and capacity (lower) for the first setup (different data sizes, for triplets
dataset). Left: first 30 epochs; right: full training process of 500 epochs.

kens at node positions to the total number of node340

predictions in the dataset and are equal to all nodes341

across all sequences, excluding starting points. To-342

tal correct predictions also represent MAC.343

3 Results344

3.1 Dataset Size Influence345

Figure 2 illustrates capacity and accuracy trends346

across dataset sizes in the first setup. Smaller347

datasets learn faster, with accuracy and capacity in-348

creasing rapidly within the first 5–6 epochs, reach-349

ing maximum capacity by epoch 20. In contrast,350

larger datasets show minimal improvement in the351

first 15 epochs but exhibit a later inflection point,352

leading to higher final accuracy and capacity. This353

suggests a threshold existence (∼ 70, 000 rows354

for this case), beyond which the training process355

changes and a lot more epochs are required for full356

memorization.357

The final accuracy and capacity (Table 1) indi-358

cate that although smaller datasets initially achieve359

higher accuracy, their capacity remains well below360

the size of the dataset (e.g., 50, 000 rows yield only361

46, 811 samples). In contrast, larger datasets, such362

as 100, 000 rows, significantly improve memoriza-363

tion (86, 776 samples), highlighting the model’s364

ability to use more data. The progressive capacity365

increase suggests that dataset size plays a crucial366

role in optimizing memorization; however, the rea-367

sons behind the unlearned data, despite available368

capacity, remain unclear. 369

data size accuracy, % capacity
50, 000 93.62± 0.3 46, 811± 149
60, 000 92.42± 0.2 55, 455± 126
70, 000 91.1± 1.08 63, 773± 756
80, 000 89.63± 1.66 71, 706± 1326
90, 000 87.24± 1.66 78, 517± 2173
100, 000 86.78± 2.42 86, 776± 2484

Table 1: Final results after the full training process for
the first setup (data sizes, for triplets dataset).

3.2 Architectural Variations Influences 370

In the second experimental setup, the batch size 371

was increased from 64 to 128, since larger batch 372

sizes seem reduce gradient noise and improve mem- 373

orization. Consequently, the one-layer models in 374

this setup converged faster and achieved higher 375

capacity than in the first setup. 376

Softmax consistently outperformed other acti- 377

vation functions, yielding the highest average ca- 378

pacity, fewer outliers, and more stable training be- 379

havior. Notably, four-layer models with Softmax 380

achieved capacities comparable to one- or two- 381

layer models without sacrificing convergence speed 382

(Figure 3), suggesting its scalability with depth. 383

In contrast, ReLU and RReLU showed moderate 384

performance, but suffered from increased variabil- 385

ity and decreased capacity as the layers increased, 386
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Figure 3: Trends in training capacity for the second setup (different data sizes, activation functions, and numbers of
layers for triplets dataset). Left: first 30 epochs; right: full training process of 1000 epochs.

aligning with the findings of Paik and Choi (2023)387

and Chen and Ge (2024). These activations exhib-388

ited inconsistent learning patterns, with unexpected389

slowdowns in capacity improvements (Fu et al.,390

2024). GELU followed a similar trend, though it391

performed better in the early training stages with392

larger datasets.393

As previously, the size of the dataset significantly394

affected training: larger datasets required longer395

warm-up phases, initially achieving lower capac-396

ities than smaller datasets under the same condi-397

tions. This suggests the existence of distinct learn-398

ing phases where improvements depend on archi-399

tectural depth, dataset size, and activation function.400

Furthermore, adding more layers did not im-401

prove performance; instead, it slowed training and402

reduced final capacity. This is likely due to the sim-403

plicity of the dataset (triplets), where additional lay-404

ers do not provide any advantage in capturing pat-405

terns. Although deeper architectures benefit more406

complex datasets (He et al., 2024), their impact407

may be reduced for data with simple relationships.408

3.3 Numbers of Parameters influence409

The third experiment further confirmed that, for410

simple datasets, learning dynamics depend primar-411

ily on embedding size, not the number of layers.412

Models with the same embedding size but different413

layer counts exhibited nearly identical accuracy im-414

provement rates. For instance, as shown in Figure415

4, a one-layer model with 16 parameters (embed-416

ding size is 16, light green) converged at almost417

the same rate as a two-layer transformer with 32418

parameters (embedding size is 16 per layer, dark419

blue). Similar trends were observed for models420

with embedding sizes of 32 and 64, regardless of421

layer count.422

These results highlight that embedding size is423

the key factor influencing learning speed, while 424

adding layers without increasing embedding size 425

neither accelerates convergence nor improves fi- 426

nal capacity. In fact, additional layers often slow 427

the training, as evidenced by the faster growth of 428

accuracy of one-layer models (Figure 4). Smaller 429

embedding sizes further reduced the learning speed, 430

consistent with previous experiments. However, all 431

configurations ultimately reached similar accuracy, 432

highlighting that the simplicity of the dataset allows 433

embedding size to dominate training dynamics. 434

Final capacity values remained nearly identical 435

across configurations, regardless of embedding size 436

or layer count: with a dataset size of 1, 000 sam- 437

ples, capacities for one- and two-layer models were 438

near-accurate. Similarly, at 10, 000 and 50, 000 439

samples, one-layer models achieved 9, 874 ± 11 440

and 46, 939±105, while two-layer models reached 441

9, 875±7 and 46, 911±117, respectively. However, 442

at 100, 000 samples, a capacity "barrier" emerged. 443

Two-layer transformers with an embedding size of 444

8 (16 total parameters) showed the capacity drop 445

to 85, 935± 153, compared to ∼ 88, 200 for other 446

configurations, while one-layer models maintained 447

a higher capacity of 88, 240±62. This suggests that 448

larger datasets, smaller embeddings, and deeper ar- 449

chitectures may introduce limitations due to slower 450

convergence or suboptimal capacity utilization. 451

Evaluating consistency with the 2 bits per pa- 452

rameter rule (Allen-Zhu and Li, 2024b) was chal- 453

lenging due to dataset size limitations. While most 454

configurations achieved similar capacities, the drop 455

in the two-layer model with 16 parameters likely 456

reflects incomplete convergence, possibly caused 457

by slower learning dynamics in deeper models. 458
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Figure 4: Trends in training accuracy (upper) and capacity (lower) for the third setup (different data sizes, numbers
of parameters, and numbers of layers for triplets dataset). Left: first 50 epochs; right: full training process of 500
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3.4 Insights from Sequence Datasets459

In the fourth setup, model capacity was evaluated460

by testing its ability to memorize each node in a se-461

quence using the full preceding sequence of nodes462

and edges (instead of triplets). This required multi-463

ple predictions per sequence: 34, 908, 85, 972, and464

167, 965 for datasets containing 20, 50, and 100465

thousand sequences, respectively.466

Compared to triplet datasets, models trained on467

sequences achieved near-perfect memorization in468

significantly fewer epochs, with most configura-469

tions plateauing within 150 epochs (Figure 5). The470

sequential structure likely facilitated more efficient471

learning, though it also increased training time472

due to the higher information per sequence. Train-473

ing exhibited greater capacity fluctuations across474

epochs, likely reflecting the dataset’s increased475

complexity, as sequences encode more intricate476

patterns than triplets. Nonetheless, models demon-477

strated exceptional memorization, achieving 100%478

capacity for the 20 thousand sequence dataset and479

over 99.5% for 50 and 100 thousand sequences.480

Regarding activation functions: as previously,481

RReLU converged more slowly than Softmax,482

though final capacities were nearly identical for483

one- and two-layer models: with 100 thousand se-484

quences, RReLU achieved 166, 934 ± 243 (one 485

layer) and 166, 995± 118 (two layers), while Soft- 486

max reached 166, 992 ± 110 and 166, 985 ± 904, 487

respectively. In deeper models (4 layers), RReLU 488

showed lower final capacities and greater fluctu- 489

ations (165, 271 ± 1, 068 vs. 166, 825 ± 319 for 490

Softmax). This contrasts with previous findings 491

(Shen et al., 2023), which suggest ReLU outper- 492

forms Softmax. The discrepancy may indicate that 493

activation function effectiveness may vary based on 494

dataset structure and task, therefore it needs further 495

investigation. Despite the increased complexity 496

of sequence datasets, models adapted quickly and 497

demonstrated strong memorization performance. 498

4 Discussion 499

This study provided insights into the memoriza- 500

tion capacity of transformer models trained on real- 501

world structured datasets. Returning to the medical 502

domain of SNOMED, the original KG contains 503

over a million relations, integrating diverse fields 504

of medicine (e.g., substances, diseases, anatomical 505

structures). However, in mobile applications, e.g. 506

LLMs in smart glasses or smartwatches, models 507

must efficiently retain only specific subsets of in- 508

formation. For instance, a cardiac surgeon’s smart 509
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Figure 5: Trends in training capacity for the fourth setup (different data sizes, activation functions, and numbers of
layers for sequences dataset). Left: first 30 epochs; right: full training process of 400 epochs.

glasses would require an LLM specialized in cardi-510

ology, while a smartwatch may store personalized511

health data for a specific user, limiting the dataset512

size to 10–100 thousand triplets or sequences.513

This research offers insights into efficient train-514

ing strategies for such models, analyzing how515

dataset characteristics and architectural choices im-516

pact convergence speed and capacity utilization.517

4.1 Effect of Dataset Structure518

Smaller datasets led to faster convergence but lower519

capacity, while larger datasets required longer520

warm-up periods but improved retention. Beyond521

a certain size, training slowed significantly, indicat-522

ing optimization bottlenecks.523

Sequence-based datasets outperformed triplets,524

achieving near-perfect memorization with fewer525

epochs. Sequences aided and complicated learn-526

ing, reinforcing relationships between data but also527

introducing greater training fluctuations, aligning528

with Ju et al. (2021). This suggests that longer529

traversal sequences could further improve memo-530

rization in domain-specific medical applications.531

4.2 Architectural Influence532

Embedding size was the key factor in learning533

speed and capacity, while adding layers provided534

little benefit and sometimes reduced performance,535

likely due to dataset simplicity. This aligns with536

He et al. (2024), who found that many transformer537

layers exhibit high similarity and, sometimes, re-538

dundancy and can be pruned without performance539

loss, reducing computational overhead.540

For larger datasets, smaller embeddings strug-541

gled to reach full capacity, particularly in deeper542

architectures, suggesting that increasing embed-543

ding size is more beneficial than adding depth, at544

least for structured, domain-specific memorization.545

Softmax led to greater stability and capacity, 546

while ReLU-based activations showed higher vari- 547

ability and performance drops in deeper models, 548

aligning with Paik and Choi (2023); Chen and Ge 549

(2024). However, this contrasts with prior work 550

by Shen et al. (2023), emphasizing that activation 551

effectiveness is highly dependent on the task and 552

dataset structure. 553

5 Conclusions 554

This study explored the memorization capacity of 555

transformer models on structured datasets from 556

SNOMED KG, analyzing how architecture and 557

dataset structure affect learning efficiency and ca- 558

pacity retention. 559

Key findings show that embedding size and ac- 560

tivation function were more influential than depth, 561

while larger datasets improved memorization but 562

required longer training. Triplets performed well 563

in simpler models, whereas sequences excelled but 564

introduced fluctuations. Challenges remain in effi- 565

ciency, layer-specific contributions, and generaliza- 566

tion, necessitating further research on scalability, 567

compression, and architecture optimization. 568

For real-world applications, such as LLMs in 569

medical smart devices, models must efficiently 570

store specialized knowledge while maintaining 571

computational feasibility. Future work should ex- 572

plore longer sequences, adaptive memory compres- 573

sion, and layer-wise analysis to enhance structured 574

knowledge retention in practical deployments. 575

6 Limitations 576

While this study provides meaningful insights, sev- 577

eral open questions remain: 578

• It is unclear why certain samples remain un- 579

learned within the same model architecture 580

8



despite available capacity. Future research581

should explore optimization strategies to im-582

prove memorization efficiency.583

• Future research should test these findings and584

hypotheses on longer sequences and larger585

datasets to confirm them at scale.586

• The specific role of each layer in memoriza-587

tion was not investigated, missing insights588

from probing methods as suggested in Allen-589

Zhu and Li (2024a). Future studies could590

apply probing techniques to analyze layer-591

specific role in memorization capacity.592

• Additionally, sparse autoencoders (Bricken593

et al., 2023) or transcoders (Paulo et al., 2025)594

could be integrated into transformer layers to595

distinguish memorization from generalization,596

helping determine whether certain layers store597

specific relationships or contribute to broader598

model generalizability.599

By addressing these limitations, future work can600

further refine transformer optimization strategies601

for structured data modeling and knowledge reten-602

tion.603
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Figure 6: Trends in training accuracy for the second setup (different data sizes, activation functions, and numbers of
layers for triplets dataset). Left: first 30 epochs; right: full training process of 1000 epochs.

activation function layers count data sizes
50, 000 70, 000 100, 000

ReLU
1 46, 898± 158 64, 091± 192 88, 148± 312
2 46, 920± 112 64, 086± 130 88, 217± 125
4 46, 391± 2, 268 61, 931± 8, 480 86, 558± 3, 291

GELU
1 46, 925± 105 64, 096± 184 88, 195± 123
2 46, 926± 115 64, 080± 120 88, 215± 128
4 46, 798± 156 62, 949± 1, 906 86, 589± 2, 202

RReLU
1 46, 930± 125 64, 080± 122 88, 180± 180
2 46, 927± 121 64, 088± 117 88, 208± 132
4 46, 730± 223 62, 818± 3, 680 80, 755± 15, 844

softmax
1 46, 924± 87 64, 082± 166 88211± 192
2 46, 908± 127 64, 074± 134 88, 213± 171
4 46, 923± 104 64, 085± 131 88, 197± 134

all
1 46, 919± 119 64, 087± 162 88, 183± 210
2 46, 920± 115 64, 082± 121 88, 213± 135
4 46, 710± 1169 62, 945± 4, 92 85, 525± 9, 720

Table 2: Final capacity after the full training process for the second setup (different numbers of layers, data sizes,
and activation functions for triplets dataset).

embedding parameters layers count data sizes
1, 000 10, 000 50, 000 100, 000

16 1 1, 000± 1 9, 870± 10 46, 937± 148 88, 236± 74
2 998± 3 9, 875± 4 46, 858± 93 85, 935± 153

32 1 998± 3 9, 872± 11 46, 955± 119 88, 234± 62
2 999± 3 9, 876± 9 46, 927± 128 88, 252± 82

64 1 999± 2 9, 878± 9 46, 932± 122 88, 242± 102
2 999± 3 9, 876± 7 46, 919± 96 88, 237± 58

128 1 999± 2 9, 877± 12 46, 930± 85 88, 248± 29
2 999± 3 9, 872± 6 46, 938± 131 88, 214± 53

all 1 999± 2 9, 874± 11 46, 939± 105 88, 240± 62
2 999± 3 9, 875± 7 46, 911± 117 87, 660± 2, 082

Table 3: Final capacity after the full training process for the third setup (different data sizes, numbers of parameters,
and numbers of layers for triplets dataset).
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Figure 7: Trends in training accuracy for the fourth setup (different data sizes, activation functions, and numbers of
layers for sequences dataset). Left: first 30 epochs; right: full training process of 400 epochs.

activation function layers count # of sequences (# of predictions)
20, 000 (34, 908) 50, 000 (85, 972) 100, 000 (167, 965)

RReLU
1 34, 908± 0 85, 936± 31 166, 934± 243
2 34, 908± 0 85, 917± 34 166, 995± 118
4 34, 908± 0 85, 647± 270 165, 271± 1, 068

softmax
1 34, 908± 0 85, 931± 18 166, 992± 110
2 34, 908± 0 85, 888± 33 166, 985± 904
4 34, 908± 0 85, 771± 42 166, 825± 319

all
1 34, 908± 0 85, 934± 23 166, 963± 180
2 34, 908± 0 85, 903± 44 166, 990± 577
4 34, 908± 0 85, 709± 220 166, 048± 1, 842

Table 4: Final capacity after the full training process for the fourth setup (different data sizes, activation functions,
and numbers of layers for sequences dataset).
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