Capacity Matters: Investigating Transformer Models
for Real-World Data Memorization

Anonymous ACL submission

Abstract

Transformer models’ memorization capacity
studies often focus on theoretical bounds or use
synthetic datasets that lack real-world complex-
ity. This study systematically evaluates how
model architecture and data configurations in-
fluence the capacity of decoder transformers
using datasets derived from the Systematized
Nomenclature of Medicine (SNOMED) knowl-
edge graph: triplets, representing static con-
nections, and sequences, simulating complex
relation patterns.

Our findings highlight key factors affecting
training dynamics and memorization. Embed-
ding size is the primary determinant of learn-
ing speed and capacity, while additional layers
provide limited benefits and may hinder per-
formance on simpler datasets. Activation func-
tions play a crucial role, with Softmax demon-
strating greater stability and capacity. Addi-
tionally, increased dataset complexity enhances
final memorization. These insights improve our
understanding of transformer memory mecha-
nisms and provide a framework for optimizing
model design with structured real-world data.

1 Introduction

Transformer-based Large Language Models
(LLMs) have revolutionized natural language
processing by demonstrating remarkable capabil-
ities in tasks ranging from text generation and
translation to question answering and summariza-
tion. Despite these advances, the fundamental
mechanisms underpinning their capacity to
memorize and retrieve structured knowledge
remain an active area of research. Understanding
these mechanisms is crucial for optimizing model
performance, making it computationally cheap
in order to apply to real-world problems. One
particularly impactful example is healthcare, where
LLMs could assist clinicians through wearable
devices such as smart glasses or watches (Gupta
et al., 2024; Wu et al., 2024; Balloccu et al., 2024).

Due to privacy and reliability, the preferred system
would be a local on-edge LLM with minimal
computational requirements, but with a capacity to
memorize all relevant facts in the relevant area of
healthcare.

Recent theoretical and empirical studies have
sought to quantify the memorization capacity of
transformers. Kim et al. (2023) introduced mathe-
matical bounds for memory capacity, demonstrat-
ing that transformers could memorize O(d + n +
vnN) parameters, where d,n, N correspond to
embedding dimensions, dataset size, and model
size, respectively. Additionally, Kajitsuka and Sato
(2024) proved, that O(v/nN) parameters are not
only sufficient, but also necessary for some types
of transformers. Mahdavi et al. (2024) extended
this work by analyzing the effects of multi-head
attention on memorization, revealing the interplay
between architectural components and the model’s
ability to store and recall information. The ex-
periments in Harmi et al. (2024) used randomly
generated sequences of numbers to evaluate the
memorization capabilities of the transformer mod-
els on unstructured data. Most capacity studies
use synthetic datasets because accurate capacity
measurement becomes very difficult in the case of
uncontrolled free text content.

The experiments reported in the current paper
use sentence data generated from the knowledge
graph which, while being controlled, has some
of the hierarchical and relational complexity of
real-world text content. More specifically, GPT-
like transformer models (Brown et al., 2020) were
trained to memorize structured sentences derived
from the Systematized Nomenclature of Medicine
(SNOMED) knowledge graph (KG) (El-Sappagh
et al., 2018). SNOMED, a comprehensive medical
ontology, encodes semantic relationships between
medical concepts, offering a rich dataset to explore
memory and retrieval mechanisms under realistic
conditions. Exact memorization of a selection of

such relations would be critical, for example, in the
healthcare use case described above.

By employing both theoretical insights and em-
pirical evaluation, this study seeks to answer three
key research questions. How can real-world data,
such as knowledge graphs, be used to investigate
transformers’ memorization capacity? How do ar-
chitectural variations affect the efficiency and scal-
ability of memorization in transformer models?
How do dataset structure and complexity influence
memorization behavior during training?

To measure the memorization capacity of trans-
former models, the Maximum Attainable Capacity
(MAC) method was used. It is a computationally
efficient alternative to the Maximum Library Size
(MLS) method. While MLS involves iteratively
training models on progressively larger datasets to
determine the largest library size that can be fully
memorized, MAC evaluates the practical limit of
samples a model can retain when trained on a large
dataset. Previous research has shown a strong cor-
relation between MLS and MAC (Héarmi et al.,
2024), making MAC an effective and time-efficient
choice for this study.

Our approach leverages structured datasets con-
structed through two methods: triplet generation
and sequence generation. Triplets represent static
relationships in the form (Concept, Property,
Related Concept), providing a baseline for as-
sessing memorization. Sequences extend this by
simulating graph traversal paths, capturing relation-
ship patterns between concepts. These datasets
allowed us to empirically analyze how model archi-
tecture, training configurations, dataset size, and
complexity influence training dynamics and final
memorization performance.

2 Methods
2.1 Data

2.1.1 Data Source and Preprocessing

To evaluate transformer-based models’ memory
and retrieval capabilities, we used SNOMED KG,
which encodes medical concepts and their rela-
tionships as nodes and edges of a graph. It
was accessed using the owlready? library (Lamy,
2017), filtering out non-informative or overly spe-
cific properties to ensure meaningful relationships.
While graph transformers leverage Graph Neural
Networks (Shehzad et al., 2024), our approach pri-
oritizes a universal architecture applicable across
diverse datasets. Hence, the graph was transformed

to: (1) triplets, representing concept-property rela-
tionships (see 2.1.2), and (2) sequences, simulating
graph traversal paths (see 2.1.3).

2.1.2 Triplets Generation

The goal of triplet generation was to create a dataset
of the form (Concept, Property, Related
Concept), capturing semantic relationships in the
SNOMED KG. This process (see Figure 1A) in-
volves graph initialization and the exclusion of non-
informative properties. After the algorithm extracts
triplets: for each concept in the KG, it retrieves all
allowed properties and their associated related con-
cepts. Additionally, when multiple related concepts
are associated with a (Concept, Property) pair,
one is selected randomly to maintain uniqueness.

2.1.3 Sequences Generation

The sequence generation simulated graph traversal
and encoded local and global graph structures. The
complete algorithm is depicted in Figure 1B.

The extended graph (G) is constructed from an
ontology by: (1) excluding banned properties, as
in the triplets generation; (2) along with each re-
lationship, adding an edge with opposite direc-
tion with a corresponding reversed_ prefix for
bidirectional traversal. Additionally, labels were
cleaned (metadata were removed) to standardize
their format. The sequences were generated to re-
flect the traversal path in the graph, capturing both
nodes and edges: (node;, edge;, nodea, . . .,
node,_1, edge,_1, node,)

For each sequence, the algorithm first selects a
random starting node from the full graph G, ensur-
ing that the node has at least one unused edge. A
subgraph is then created around the starting node
using a breadth-first search (BFS) with a depth de-
fined by the hops parameter. This step limits the
scope of the traversal to a manageable subset of
the graph, improving performance by focusing on
local neighborhoods.

Step 2 of the algorithm generates a sequence
of nodes and edges by traversing the subgraph.
The algorithm starts from a randomly selected
node and go through available edges (neighbors
are chosen randomly to introduce variability). Ev-
ery time, check that the same (node, edge) pair
is not already visited before, maintaining global
uniqueness. The traversal stops when: a ran-
domly chosen number of edges within a predefined
range (edge_count_range) is reached, or no valid
neighbors (those, that maintain uniqueness) remain

/A_ 1. Graph and exclusion list initialization \

3
O3 @
TO_EXCLUDE =[c, €] @

2. Go through every triplet, check conditions

}‘1—a‘ occurs 2 times, choose randomly

1-c-4 } exclude, since ‘¢’ is banned
} include, this triplet is okay

}these 2 are fine: <node>+<prop> are unique

3. Final list
1-a-2
1-b-5
3-d-6
5-d-6

1. Initial graph: banned properties deleted \

w)

reversed d reversed a

3. Select subgraph, using BFS:
- from randomly selected node (here - *17),

4. Create sequence by traversing subgraph:
remember to check the uniqueness of <node+edge>
Stop when:

- # edges in sequence > predefined limit

- no valid neighbors

do not include:
already selected

edge "a’ from node “1°

reversed d

do not include: limit of length
5. Final sequence:

\ 1"-"a’-"2-"reversedd’ - 3" - ‘reversed d’ - ‘4 /

Figure 1: Algorithms of triplets (A) and sequences (B)
data generation.

for further traversal.

The above steps are repeated for a specified num-
ber of iterations (rows), generating the desired num-
ber of sequences.

2.2 Transformers training

To evaluate the ability of transformer models to
memorize and retrieve structured data, decoder-
only transformer models with variations in archi-
tecture were implemented. Each unique node and
edge was assigned a distinct integer identifier (en-
suring that repeated elements were consistently to-
kenized), followed by the learned positional encod-
ing. The core architecture consisted of three main
components: an embedding layer to map tokenized
inputs into continuous vector representations, trans-
former decoder layers with multi-head attention
mechanisms, and a linear output layer to predict
target tokens.

For all experiments, the task was to predict a con-
cept, based on the previous concepts and relations.
The accuracy was evaluated as: ﬁiﬁg:{ffﬁf;;ﬁggggs
— the proportion of correctly predicted related con-
cepts to the total number of predictions. Addi-
tionally, Maximum Attainable Capacity (MAC)
was used as a more suitable metric for measuring
the model capacity. As detailed in the introduc-
tion, MAC is a computationally efficient alterna-
tive to Maximum Library Size (MLS), with results
strongly correlated to MLS, making it the preferred
choice for this research.

To minimize the effect of randomness, each
experiment was repeated 10 times for the first
and second setups, and 3 times for the third and
fourth setup (see below). All figures and tables
present mean values with doubled standard devi-
ations. Training and evaluation followed a con-
sistent protocol for all setups, with the training
accuracy evaluated every second epoch, which al-
lowed meaningful comparisons between different

configurations.
All code was written in PyTorch
v1.13.1+cul17 (Paszke et al., 2017) and

Transformers v4.30.2 (Wolf et al., 2019).
The cross-entropy loss function was used for
optimization, along with the Adam optimizer
(Kingma and Ba, 2017) and a learning rate of
0.001. All other settings were kept at their default
library implementations, except where specified in
experiment configurations. In total, 546 models
were trainded on NVIDIA A100 GPU with 16GB
memory, totaling approximately 3,100 hours
of training time. Model sizes ranged from 2.9
to 44.5 million parameters, primarily varying
with embedding size and layer count, but also
influenced by vocabulary size.

All data and code pertinent to the methods and
results presented in this work will be made avail-
able at the time of the conference.

2.2.1 Triplets memorization

Three experimental setups on the dataset with
triplets were devised to explore the models’ be-
havior. For all of them, since the prediction of the
related concept is based on unique combinations of
concept and relation, it is straightforward to unam-
biguously determine whether a related concept was
predicted correctly or not.

In the first setup, dataset sizes ranged in
{50,000; 60,000; ...; 100,000} samples. The
model architecture consisted of a single trans-
former layer with an embedding size of 128, four
attention heads, and a Rectified Linear Unit (ReLU)
activation function (Agarap, 2019) with the batch
size of 64, and 500 training epochs. This setup
focused on evaluating memorization performance
under a fixed architecture while varying dataset
sizes.

The second experimental setup introduced vari-
ations in the transformer architecture, allowing
a deeper investigation into the impact of model
depth and activation functions. Dataset sizes in-
cluded 50,000, 70,000, and 100,000 samples,
with the numbers of transformer layers set to
1, 2, or 4. Activation functions were var-
ied across RelLU, Gaussian Error Linear Unit
(GELU) (Hendrycks and Gimpel, 2023), Random-
ized Leaky Rectified Linear Unit (RReLU) (Xu
et al., 2015), and Softmax (Boltzmann, 1868).
To ensure fair comparisons, the total number
of model parameters was kept constant across
configurations by adjusting the embedding size
(d_model parameter in PyTorch implementation
of Transformers) proportionally to the number of

layers, using the formula: embedding_size =
{base_numbnerl_ai/fe_rpsarametersJ with a base
number of pa_rameters of 128. This approach en-

sured that variations in performance could be at-
tributed solely to architectural differences rather
than changes in the total parameter count. For this
setup, however, the batch size was increased to 128,
and the number of training epochs was 1000, since
it was required for achieving a plateau.

The third setup focused on evaluating the
interplay between model depth, and embed-
ding size while keeping other hyperparam-
eters the same. Dataset sizes ranged in
{1,000; 10,000; 50,000; 100,000} samples.

The architectural variations included transformer
layers set to 1 or 2 and base numbers of parame-
ters for embedding sizes in {16; 32; 64; 128} (cal-
culated as in the second experiment). Only the
Softmax activation function and a fixed number of
4 attention heads were used. To ensure fair compar-
isons, configurations were designed to evaluate the
impact of increasing embedding sizes and model
depth on memorization performance. The total
parameter count was recalculated for each config-
uration using the same formula as in the second
experiment. For this setup, as previously, the batch
size of 128 was used, and the number of training
epochs was 500.

2.2.2 Sequences memorization

The dataset for sequence memorization tasks was
prepared using the same tokenization process.
However, to standardize sequence lengths, padding
with zeros was applied at the end of each sequence,
serving both as a filler and a marker for sequence
termination. The task required distinguishing be-
tween nodes and edges, and a node mask was gener-
ated to identify the positions of node tokens within
the sequence. It enabled the computation of met-
rics by isolating node positions during the training
and evaluation processes. Notably, each node was
predicted based on all preceding tokens in the se-
quence, meaning the last node in a sequence ben-
efited from the most context. This setup provided
deeper insights into the transformer model’s ability
to handle more structured data and its patterns.

The experimental setup was consistent with the
previous experiments described in 2.2.1: the em-
bedding size was fixed at 64, with four atten-
tion heads, the batch size was set to 128, and
the number of epochs to 400. The number of
layers varied across {1,2,4}, and the activation
functions used were RReLU and Softmax. As
before, the model incorporated a learned posi-
tional encoding. The dataset sizes were varied
in {20, 000; 50,000; 100,000}, representing the
number of sequences. Each sequence was limited
to 4-6 nodes (and 3-5 edges, respectively), selected
randomly. During dataset construction, 5 hops
were used to isolate the subgraph (see 2.1.3 for
details).

For sequence memorization, accuracy and ca-
pacity were measured similarly to the triplet-based
experiments, with slight adaptations to account for
the sequential structure of the data. Accuracy was
defined as the proportion of correctly predicted to-

Accuracy during training process for different data sizes

100 100
90 1 90 1
80 4 80
X 7041 70 A
]
3
g 404 40
30 1 30 1
201 _—/ 20 Experiment 1:
10 1 10 1 data size
0 T T T r T 07 : : , .) 50000
0 5 10 15 20 25 30 0 100 200 300 400 500 60000
Capacity during training process for different data sizes 70000
100000 | 100000 — 80000
90000 - 90000 —— 90000
80000 - 80000 — 100000
70000 70000
-—g 60000 60000 //
S 50000 50000
O 40000 40000 1
30000 30000
20000 = 20000 |
10000 10000 A
0 : : : . . . 0, : : : : ,
0 5 10 15 20 25 30 0 100 200 300 400 500
Epochs Epochs

Figure 2: Trends in training accuracy (upper) and capacity (lower) for the first setup (different data sizes, for triplets
dataset). Left: first 30 epochs; right: full training process of 500 epochs.

kens at node positions to the total number of node
predictions in the dataset and are equal to all nodes
across all sequences, excluding starting points. To-
tal correct predictions also represent MAC.

3 Results

3.1 Dataset Size Influence

Figure 2 illustrates capacity and accuracy trends
across dataset sizes in the first setup. Smaller
datasets learn faster, with accuracy and capacity in-
creasing rapidly within the first 5-6 epochs, reach-
ing maximum capacity by epoch 20. In contrast,
larger datasets show minimal improvement in the
first 15 epochs but exhibit a later inflection point,
leading to higher final accuracy and capacity. This
suggests a threshold existence (~ 70,000 rows
for this case), beyond which the training process
changes and a lot more epochs are required for full
memorization.

The final accuracy and capacity (Table 1) indi-
cate that although smaller datasets initially achieve
higher accuracy, their capacity remains well below
the size of the dataset (e.g., 50, 000 rows yield only
46, 811 samples). In contrast, larger datasets, such
as 100, 000 rows, significantly improve memoriza-
tion (86, 776 samples), highlighting the model’s
ability to use more data. The progressive capacity
increase suggests that dataset size plays a crucial
role in optimizing memorization; however, the rea-
sons behind the unlearned data, despite available

capacity, remain unclear.

data size accuracy, % capacity
50,000 93.62+0.3 46,811 £+ 149
60,000 92.42+£0.2 55,455+ 126
70,000 91.14+1.08 63,773 £ 756
80,000 89.63+1.66 71,706+ 1326
90,000 87.244+1.66 78,517+ 2173
100,000 86.78 =2.42 86,776 £ 2484

Table 1: Final results after the full training process for
the first setup (data sizes, for triplets dataset).

3.2 Architectural Variations Influences

In the second experimental setup, the batch size
was increased from 64 to 128, since larger batch
sizes seem reduce gradient noise and improve mem-
orization. Consequently, the one-layer models in
this setup converged faster and achieved higher
capacity than in the first setup.

Softmax consistently outperformed other acti-
vation functions, yielding the highest average ca-
pacity, fewer outliers, and more stable training be-
havior. Notably, four-layer models with Softmax
achieved capacities comparable to one- or two-
layer models without sacrificing convergence speed
(Figure 3), suggesting its scalability with depth.

In contrast, ReLU and RReLLU showed moderate
performance, but suffered from increased variabil-
ity and decreased capacity as the layers increased,

Capacity during training process for different data sizes, activation functions, and numbers of layers

100000 100000

Experiment 2:

90000 I 90000
80000 ~ 80000

70000

70000 §

number of layers,
data size
1, 50000
1, 70000

60000

— 1, 100000

“7 600001 §

2, 50000
2,70000
— 2, 100000

Capacity

50000 50000

40000 40000
30000

20000 20000

10000 10000

0 0

== 30000 §£/

4, 50000
—— 4,70000
— 4, 100000

activation function
— Rell

=-=-- GELU
------- RRelLU
-=- softmax

0 5 10 15 20 25 30
Epochs

200 400 800 1000

600
Epochs

Figure 3: Trends in training capacity for the second setup (different data sizes, activation functions, and numbers of
layers for triplets dataset). Left: first 30 epochs; right: full training process of 1000 epochs.

aligning with the findings of Paik and Choi (2023)
and Chen and Ge (2024). These activations exhib-
ited inconsistent learning patterns, with unexpected
slowdowns in capacity improvements (Fu et al.,
2024). GELU followed a similar trend, though it
performed better in the early training stages with
larger datasets.

As previously, the size of the dataset significantly
affected training: larger datasets required longer
warm-up phases, initially achieving lower capac-
ities than smaller datasets under the same condi-
tions. This suggests the existence of distinct learn-
ing phases where improvements depend on archi-
tectural depth, dataset size, and activation function.

Furthermore, adding more layers did not im-
prove performance; instead, it slowed training and
reduced final capacity. This is likely due to the sim-
plicity of the dataset (triplets), where additional lay-
ers do not provide any advantage in capturing pat-
terns. Although deeper architectures benefit more
complex datasets (He et al., 2024), their impact
may be reduced for data with simple relationships.

3.3 Numbers of Parameters influence

The third experiment further confirmed that, for
simple datasets, learning dynamics depend primar-
ily on embedding size, not the number of layers.
Models with the same embedding size but different
layer counts exhibited nearly identical accuracy im-
provement rates. For instance, as shown in Figure
4, a one-layer model with 16 parameters (embed-
ding size is 16, light green) converged at almost
the same rate as a two-layer transformer with 32
parameters (embedding size is 16 per layer, dark
blue). Similar trends were observed for models
with embedding sizes of 32 and 64, regardless of
layer count.

These results highlight that embedding size is

the key factor influencing learning speed, while
adding layers without increasing embedding size
neither accelerates convergence nor improves fi-
nal capacity. In fact, additional layers often slow
the training, as evidenced by the faster growth of
accuracy of one-layer models (Figure 4). Smaller
embedding sizes further reduced the learning speed,
consistent with previous experiments. However, all
configurations ultimately reached similar accuracy,
highlighting that the simplicity of the dataset allows
embedding size to dominate training dynamics.

Final capacity values remained nearly identical
across configurations, regardless of embedding size
or layer count: with a dataset size of 1,000 sam-
ples, capacities for one- and two-layer models were
near-accurate. Similarly, at 10,000 and 50, 000
samples, one-layer models achieved 9,874 + 11
and 46, 939+ 105, while two-layer models reached
9,875+7 and 46,911+117, respectively. However,
at 100, 000 samples, a capacity "barrier" emerged.
Two-layer transformers with an embedding size of
8 (16 total parameters) showed the capacity drop
to 85,935 £ 153, compared to ~ 88, 200 for other
configurations, while one-layer models maintained
a higher capacity of 88, 240462. This suggests that
larger datasets, smaller embeddings, and deeper ar-
chitectures may introduce limitations due to slower
convergence or suboptimal capacity utilization.

Evaluating consistency with the 2 bits per pa-
rameter rule (Allen-Zhu and Li, 2024b) was chal-
lenging due to dataset size limitations. While most
configurations achieved similar capacities, the drop
in the two-layer model with 16 parameters likely
reflects incomplete convergence, possibly caused
by slower learning dynamics in deeper models.

Accuracy during training process for different data sizes, numbers of parameters, and numbers of layers

IS
S

Accuracy, %
w & a O N ® ©
g8 &8 8383 3 &8 8

20

e

N o a3 28

/ Experiment 3:
model size,
» number of layers
16,1
— 16,2
32,1

Capacity during training process for different data sizes, numbers of parameters, and numbers of layers

100000

— 32,2
64,1
— 64,2

100 200 300 400 500

100000

90000

80000

70000

60000

50000

128, 1
— 128,2
data size

o
-
-
e

==+ 100000

Capacity

40000

30000

20000

100004---

0

3
Epochs

0 40 50 0

100 200 400 500

300
Epochs

Figure 4: Trends in training accuracy (upper) and capacity (lower) for the third setup (different data sizes, numbers
of parameters, and numbers of layers for triplets dataset). Left: first 50 epochs; right: full training process of 500
epochs. Light color corresponds to 1 layer, dark — to 2; number of parameters is a total number for all layers: green
— 16, blue — 32, violet — 64, red — 128; embedding size can be computed by dividing it by layer count.

3.4 Insights from Sequence Datasets

In the fourth setup, model capacity was evaluated
by testing its ability to memorize each node in a se-
quence using the full preceding sequence of nodes
and edges (instead of triplets). This required multi-
ple predictions per sequence: 34, 908, 85,972, and
167,965 for datasets containing 20, 50, and 100
thousand sequences, respectively.

Compared to triplet datasets, models trained on
sequences achieved near-perfect memorization in
significantly fewer epochs, with most configura-
tions plateauing within 150 epochs (Figure 5). The
sequential structure likely facilitated more efficient
learning, though it also increased training time
due to the higher information per sequence. Train-
ing exhibited greater capacity fluctuations across
epochs, likely reflecting the dataset’s increased
complexity, as sequences encode more intricate
patterns than triplets. Nonetheless, models demon-
strated exceptional memorization, achieving 100%
capacity for the 20 thousand sequence dataset and
over 99.5% for 50 and 100 thousand sequences.

Regarding activation functions: as previously,
RReLU converged more slowly than Softmax,
though final capacities were nearly identical for
one- and two-layer models: with 100 thousand se-

quences, RReLLU achieved 166,934 + 243 (one
layer) and 166, 995 4 118 (two layers), while Soft-
max reached 166, 992 + 110 and 166, 985 4 904,
respectively. In deeper models (4 layers), RReLU
showed lower final capacities and greater fluctu-
ations (165,271 + 1,068 vs. 166,825 + 319 for
Softmax). This contrasts with previous findings
(Shen et al., 2023), which suggest ReLU outper-
forms Softmax. The discrepancy may indicate that
activation function effectiveness may vary based on
dataset structure and task, therefore it needs further
investigation. Despite the increased complexity
of sequence datasets, models adapted quickly and
demonstrated strong memorization performance.

4 Discussion

This study provided insights into the memoriza-
tion capacity of transformer models trained on real-
world structured datasets. Returning to the medical
domain of SNOMED, the original KG contains
over a million relations, integrating diverse fields
of medicine (e.g., substances, diseases, anatomical
structures). However, in mobile applications, e.g.
LLMs in smart glasses or smartwatches, models
must efficiently retain only specific subsets of in-
formation. For instance, a cardiac surgeon’s smart

Capacity during training process for different data sizes.

167965 167965

activation functions, and number of layers

160000
150000
140000

== 160000
150000
140000
130000
120000
110000
100000

—

130000
120000
110000
100000

85972

ity

Capaci

70000
60000
50000

60000
50000

3490 34908

200004 7. 20000
10000 10000
0 0

Experiment 4:
number of layers,
data size

1, 20000

1, 50000
—— 1, 100000

2, 20000

70000+ {f

2, 50000
— 2, 100000

4, 20000
—— 4, 50000
— 4, 100000

activation function
— RelU
-=- softmax

0 5 10 15 20 25 30
Epochs

0

50 100 150 200

Epochs

250 300 350 400

Figure 5: Trends in training capacity for the fourth setup (different data sizes, activation functions, and numbers of
layers for sequences dataset). Left: first 30 epochs; right: full training process of 400 epochs.

glasses would require an LLM specialized in cardi-
ology, while a smartwatch may store personalized
health data for a specific user, limiting the dataset
size to 10-100 thousand triplets or sequences.
This research offers insights into efficient train-
ing strategies for such models, analyzing how
dataset characteristics and architectural choices im-
pact convergence speed and capacity utilization.

4.1 Effect of Dataset Structure

Smaller datasets led to faster convergence but lower
capacity, while larger datasets required longer
warm-up periods but improved retention. Beyond
a certain size, training slowed significantly, indicat-
ing optimization bottlenecks.

Sequence-based datasets outperformed triplets,
achieving near-perfect memorization with fewer
epochs. Sequences aided and complicated learn-
ing, reinforcing relationships between data but also
introducing greater training fluctuations, aligning
with Ju et al. (2021). This suggests that longer
traversal sequences could further improve memo-
rization in domain-specific medical applications.

4.2 Architectural Influence

Embedding size was the key factor in learning
speed and capacity, while adding layers provided
little benefit and sometimes reduced performance,
likely due to dataset simplicity. This aligns with
He et al. (2024), who found that many transformer
layers exhibit high similarity and, sometimes, re-
dundancy and can be pruned without performance
loss, reducing computational overhead.

For larger datasets, smaller embeddings strug-
gled to reach full capacity, particularly in deeper
architectures, suggesting that increasing embed-
ding size is more beneficial than adding depth, at
least for structured, domain-specific memorization.

Softmax led to greater stability and capacity,
while ReLLU-based activations showed higher vari-
ability and performance drops in deeper models,
aligning with Paik and Choi (2023); Chen and Ge
(2024). However, this contrasts with prior work
by Shen et al. (2023), emphasizing that activation
effectiveness is highly dependent on the task and
dataset structure.

5 Conclusions

This study explored the memorization capacity of
transformer models on structured datasets from
SNOMED KG, analyzing how architecture and
dataset structure affect learning efficiency and ca-
pacity retention.

Key findings show that embedding size and ac-
tivation function were more influential than depth,
while larger datasets improved memorization but
required longer training. Triplets performed well
in simpler models, whereas sequences excelled but
introduced fluctuations. Challenges remain in effi-
ciency, layer-specific contributions, and generaliza-
tion, necessitating further research on scalability,
compression, and architecture optimization.

For real-world applications, such as LLMs in
medical smart devices, models must efficiently
store specialized knowledge while maintaining
computational feasibility. Future work should ex-
plore longer sequences, adaptive memory compres-
sion, and layer-wise analysis to enhance structured
knowledge retention in practical deployments.

6 Limitations

While this study provides meaningful insights, sev-
eral open questions remain:

* It is unclear why certain samples remain un-
learned within the same model architecture

despite available capacity. Future research
should explore optimization strategies to im-
prove memorization efficiency.

* Future research should test these findings and
hypotheses on longer sequences and larger
datasets to confirm them at scale.

* The specific role of each layer in memoriza-
tion was not investigated, missing insights
from probing methods as suggested in Allen-
Zhu and Li (2024a). Future studies could
apply probing techniques to analyze layer-
specific role in memorization capacity.

» Additionally, sparse autoencoders (Bricken
et al., 2023) or transcoders (Paulo et al., 2025)
could be integrated into transformer layers to
distinguish memorization from generalization,
helping determine whether certain layers store
specific relationships or contribute to broader
model generalizability.

By addressing these limitations, future work can
further refine transformer optimization strategies
for structured data modeling and knowledge reten-
tion.

References

Abien Fred Agarap. 2019. Deep learning using rectified
linear units (relu). Preprint, arXiv:1803.08375.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024a. Physics of
language models: Part 3.1, knowledge storage and
extraction. Preprint, arXiv:2309.14316.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024b. Physics
of language models: Part 3.3, knowledge capacity
scaling laws. Preprint, arXiv:2404.05405.

Simone Balloccu, Ehud Reiter, Vivek Kumar, Diego Re-
forgiato Recupero, and Daniele Riboni. 2024. Ask
the experts: sourcing high-quality datasets for nutri-
tional counselling through Human-AlI collaboration.
arXiv preprint. ArXiv:2401.08420 [cs].

Ludwig Boltzmann. 1868. Studien iiber das gle-
ichgewicht der lebendigen kraft zwischen bewegten
materiellen punkten. Wiener Berichte, 58:517-560.
Studies on the balance of living force between mov-
ing material points.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian
Chen, Adam Jermyn, Tom Conerly, Nicholas L.
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zach
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Bray-
den McLean, Josiah E. Burke, Tristan Hume, Shan

Carter, Tom Henighan, and Chris Olah. 2023. To-
wards monosemanticity: Decomposing language
models with dictionary learning. Transformer Cir-
cuits Thread.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Wenlin Chen and Hong Ge. 2024. Neural characteristic
activation analysis and geometric parameterization
for relu networks. Preprint, arXiv:2305.15912.

Shaker El-Sappagh, Francesco Franda, Farman Ali, and
Kyung-Sup Kwak. 2018. Snomed ct standard on-
tology based on the ontology for general medical
science. BMC Medical Informatics and Decision
Making, 18(1):76.

Jingwen Fu, Tao Yang, Yuwang Wang, Yan Lu, and
Nanning Zheng. 2024. Breaking through the learn-
ing plateaus of in-context learning in transformer.
Preprint, arXiv:2309.06054.

Bhumika Gupta, Pralaypati Ta, Keerthi Ram, and Mo-
hanasankar Sivaprakasam. 2024. Comprehensive
Modeling and Question Answering of Cancer Clin-
ical Practice Guidelines using LLMs. In 2024
IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB),
pages 1-8. ISSN: 2994-9408.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li.
2024. What matters in transformers? not all attention
is needed. Preprint, arXiv:2406.15786.

Dan Hendrycks and Kevin Gimpel. 2023. Gaussian er-
ror linear units (gelus). Preprint, arXiv:1606.08415.

Aki Hiarmi, Marcin Pietrasik, and Anna Wilbik. 2024.
Empirical capacity model for self-attention neural
networks. Preprint, arXiv:2407.15425.

Yue Ju, Alka Isac, and Yimin Nie. 2021. Chunkformer:
Learning long time series with multi-stage chunked
transformer. Preprint, arXiv:2112.15087.

Tokio Kajitsuka and Issei Sato. 2024. Optimal
memorization capacity of transformers. Preprint,
arXiv:2409.17677.

Junghwan Kim, Michelle Kim, and Barzan Mozafari.
2023. Provable memorization capacity of transform-
ers. In The Eleventh International Conference on
Learning Representations.

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://doi.org/10.48550/arXiv.2401.08420
https://doi.org/10.48550/arXiv.2401.08420
https://doi.org/10.48550/arXiv.2401.08420
https://doi.org/10.48550/arXiv.2401.08420
https://doi.org/10.48550/arXiv.2401.08420
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.15912
https://arxiv.org/abs/2305.15912
https://arxiv.org/abs/2305.15912
https://arxiv.org/abs/2305.15912
https://arxiv.org/abs/2305.15912
https://doi.org/10.1186/s12911-018-0651-5
https://doi.org/10.1186/s12911-018-0651-5
https://doi.org/10.1186/s12911-018-0651-5
https://doi.org/10.1186/s12911-018-0651-5
https://doi.org/10.1186/s12911-018-0651-5
https://arxiv.org/abs/2309.06054
https://arxiv.org/abs/2309.06054
https://arxiv.org/abs/2309.06054
https://doi.org/10.1109/CIBCB58642.2024.10702112
https://doi.org/10.1109/CIBCB58642.2024.10702112
https://doi.org/10.1109/CIBCB58642.2024.10702112
https://doi.org/10.1109/CIBCB58642.2024.10702112
https://doi.org/10.1109/CIBCB58642.2024.10702112
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2407.15425
https://arxiv.org/abs/2407.15425
https://arxiv.org/abs/2407.15425
https://arxiv.org/abs/2112.15087
https://arxiv.org/abs/2112.15087
https://arxiv.org/abs/2112.15087
https://arxiv.org/abs/2112.15087
https://arxiv.org/abs/2112.15087
https://arxiv.org/abs/2409.17677
https://arxiv.org/abs/2409.17677
https://arxiv.org/abs/2409.17677
https://openreview.net/forum?id=8JCg5xJCTPR
https://openreview.net/forum?id=8JCg5xJCTPR
https://openreview.net/forum?id=8JCg5xJCTPR

Diederik P. Kingma and Jimmy Ba. 2017. Adam:

A method for stochastic optimization. Preprint,
arXiv:1412.6980.
Jean-Baptiste Lamy. 2017. Owlready: Ontology-

oriented programming in python with automatic clas-
sification and high level constructs for biomedical
ontologies. Artificial Intelligence in Medicine, 80:11—
28.

Sadegh Mahdavi, Renjie Liao, and Christos Thram-

poulidis. 2024. Memorization capacity of
multi-head attention in transformers. Preprint,
arXiv:2306.02010.

Inyoung Paik and Jaesik Choi. 2023. The dishar-

mony between bn and relu causes gradient explosion,
but is offset by the correlation between activations.
Preprint, arXiv:2304.11692.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Gongalo Paulo, Stepan Shabalin, and Nora Belrose.
2025. Transcoders beat sparse autoencoders for in-
terpretability. Preprint, arXiv:2501.18823.

Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan
Peng, Shuo Yu, Dongyu Zhang, and Karin Verspoor.
2024. Graph transformers: A survey. Preprint,
arXiv:2407.09777.

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui
Wang, and Jiang Bian. 2023. A study on relu and
softmax in transformer. Preprint, arXiv:2302.06461.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Jinlin Wu, Xusheng Liang, Xuexue Bai, and Zhen
Chen. 2024. SurgBox: Agent-Driven Operating
Room Sandbox with Surgery Copilot. arXiv preprint.
ArXiv:2412.05187 [cs].

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015.
Empirical evaluation of rectified activations in con-
volutional network. Preprint, arXiv:1505.00853.

10

A Appendix: Additional Representations
of the Results

This appendix provides supplementary visualiza-
tions and tables for the experiments conducted:

* Second experiment:

— Figure 6: Accuracy trends during train-
ing.
— Table 2: Final capacities.

* Third experiment:

— Table 3: Final capacities.

* Fourth experiment:

— Figure 7: Accuracy trends during train-
ing.
— Table 4: Final capacities.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/10.1016/j.artmed.2017.07.002
https://arxiv.org/abs/2306.02010
https://arxiv.org/abs/2306.02010
https://arxiv.org/abs/2306.02010
https://arxiv.org/abs/2304.11692
https://arxiv.org/abs/2304.11692
https://arxiv.org/abs/2304.11692
https://arxiv.org/abs/2304.11692
https://arxiv.org/abs/2304.11692
https://arxiv.org/abs/2501.18823
https://arxiv.org/abs/2501.18823
https://arxiv.org/abs/2501.18823
https://arxiv.org/abs/2407.09777
https://arxiv.org/abs/2302.06461
https://arxiv.org/abs/2302.06461
https://arxiv.org/abs/2302.06461
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/arXiv.2412.05187
https://doi.org/10.48550/arXiv.2412.05187
https://doi.org/10.48550/arXiv.2412.05187
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853

Accuracy during training process for different data sizes, activation functions, and numbers of layers

100

Accuracy, %
(2]
i

Experiment 2:

= 907
= ol
701 |
604 l
504
404
= sl

204

number of layers,
data size
1, 50000
1, 70000
—— 1, 100000
2, 50000
2,70000
— 2,100000
4, 50000
—— 4,70000
— 4, 100000

activation function
— RelU
--- GELU
RRelLU
--- softmax

15
Epochs

20 25

200

400 600
Epochs

800 1000

Figure 6: Trends in training accuracy for the second setup (different data sizes, activation functions, and numbers of
layers for triplets dataset). Left: first 30 epochs; right: full training process of 1000 epochs.

activation function | layers count data sizes
50, 000 70,000 100, 000

1 46,898 + 158 64,091 + 192 88,148 + 312

ReLU 2 46,920 + 112 64,086 + 130 88,217 £ 125
4 46,391 +£2,268 61,931 8,480 86,558 + 3,291

1 46,925 + 105 64,096 + 184 88,195 + 123

GELU 2 46,926 + 115 64,080 + 120 88,215 + 128
4 46,798 £ 156 62,949+ 1,906 86,589 + 2,202

1 46,930 + 125 64,080 + 122 88,180 £ 180

RReLU 2 46,927 £ 121 64,088 +£ 117 88,208 £ 132
4 46,730 £223 62,818+ 3,680 80,755+ 15,844

1 46,924 + 87 64,082 + 166 88211 £+ 192

softmax 2 46,908 + 127 64,074 + 134 88,213 £ 171

4 46,923 + 104 64,085 + 131 88,197 + 134

1 46,919 £ 119 64,087 £ 162 88,183 + 210

all 2 46,920 + 115 64,082 + 121 88,213 + 135
4 46,710 £ 1169 62,945 +4,92 85,525+ 9,720

Table 2: Final capacity after the full training process for the second setup (different numbers of layers, data sizes,
and activation functions for triplets dataset).

embedding parameters | layers count data sizes
1,000 10,000 50, 000 100, 000
16 1 1,000+1 9,870 +10 46,937 4+ 148 88,236 + 74
2 998 + 3 9,875 +4 46,858 =93 85,935 + 153
3 1 998 £3 9,872+ 11 46,955+ 119 88,234 + 62
2 999 + 3 9,876 £9 46,927 + 128 88,252 4+ 82
64 1 999 4+ 2 9,878+9 46,932+ 122 88,242 4+ 102
2 999 + 3 9,876 £7 46,919+ 96 88,237 + 58
128 1 999 +2 9,877+ 12 46,930+ 85 88,248 + 29
2 999 + 3 9,872+6 46,938 + 131 88,214 + 53
all 1 999 +2 9,874+ 11 46,939+ 105 88,240 + 62
2 999 + 3 9,875+ 7 46,911 +£117 87,660 + 2,082

Table 3: Final capacity after the full training process for the third setup (different data sizes, numbers of parameters,
and numbers of layers for triplets dataset).

11

Accuracy during training process for different data sizes, activation functions, and number of layers

Accuracy, %
(2]
o

= 904 /i
i
i
801
701
601
501
404
301

204

0
= A . i o

Experiment 4:
number of layers,
data size
1, 20000
1, 50000
—— 1, 100000
2, 20000
2, 50000
— 2, 100000
4, 20000
—— 4, 50000
— 4,100000

activation function
— RelU
—-=-- softmax

15 20 25
Epochs

30 0 50

100

150 200
Epochs

250

300

350 400

Figure 7: Trends in training accuracy for the fourth setup (different data sizes, activation functions, and numbers of
layers for sequences dataset). Left: first 30 epochs; right: full training process of 400 epochs.

activation function | layers count # of sequences (# of predictions)

20,000 (34,908) 50,000 (85,972) 100,000 (167, 965)

1 34,908 £ 0 85,936 + 31 166,934 + 243

RReLU 2 34,908 £0 85,917+ 34 166,995 + 118
4 34,908 £ 0 85,647 £ 270 165,271 £ 1,068

1 34,908 £ 0 85,931 £ 18 166,992 + 110

softmax 2 34,908 £0 85,888 + 33 166, 985 + 904

4 34,908 £ 0 85,771 £ 42 166,825 + 319

1 34,908 £ 0 85,934 + 23 166,963 + 180

all 2 34,908 £0 85,903 + 44 166,990 + 577
4 34,908 £ 0 85,709 £+ 220 166,048 + 1,842

Table 4: Final capacity after the full training process for the fourth setup (different data sizes, activation functions,
and numbers of layers for sequences dataset).

12

	Introduction
	Methods
	Data
	Data Source and Preprocessing
	Triplets Generation
	Sequences Generation

	Transformers training
	Triplets memorization
	Sequences memorization

	Results
	Dataset Size Influence
	Architectural Variations Influences
	Numbers of Parameters influence
	Insights from Sequence Datasets

	Discussion
	Effect of Dataset Structure
	Architectural Influence

	Conclusions
	Limitations
	Appendix: Additional Representations of the Results

