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ABSTRACT

We present NeRV-Diffusion, an implicit latent video diffusion model that synthe-
sizes videos via generating neural network weights. The generated weights can
be rearranged as the parameters of a convolutional neural network, which forms
an implicit neural representation (INR), and decodes into videos with frame in-
dices as the input. Our framework consists of two stages: 1) A hypernetwork-
based tokenizer that encodes raw videos from pixel space to neural parameter
space, where the bottleneck latent serves as INR weights to decode. 2) An im-
plicit diffusion transformer that denoises on the latent INR weights. In contrast
to traditional video tokenizers that encode videos into frame-wise feature maps,
NeRV-Diffusion compresses and generates a video holistically as a unified neu-
ral network. This enables efficient and high-quality video synthesis via obviating
temporal cross-frame attentions in the denoiser and decoding video latent with
dedicated decoders. To achieve Gaussian-distributed INR weights with high ex-
pressiveness, we reuse the bottleneck latent across all NeRV layers, as well as
reform its weight assignment, upsampling connection and input coordinates. We
also introduce SNR-adaptive loss weighting and scheduled sampling for effective
training of the implicit diffusion model. NeRV-Diffusion reaches superior video
generation quality over previous INR-based models and comparable performance
to most recent state-of-the-art non-implicit models on real-world video bench-
marks including UCF-101 and Kinetics-600. It also brings a smooth INR weight
space that facilitates seamless interpolations between frames or videos.

1 INTRODUCTION

Video latent diffusion models (LDMs) have achieved impressive generative capability. However,
their tokenizers usually inherit from those of image diffusion models and encode videos as individual
frame-wise feature maps, ignoring the natural coherence across frames and resulting in redundant
representations. Cross-frame attentions (Wang et al., 2023; Guo et al., 2023) are thus introduced
to constrain temporal consistency in both generation and decoding processes, largely increasing the
model size and leading to massive computation footprint. Moreover, a typical tokenizer for diffusion
(Rombach et al., 2022) is usually built in the form of a large-scale variational autoencoder (VAE),
which compresses the visual data into latent code with generalizable decoding quality on diverse
data. During inference, the denoised latent must be processed by the decoder to be rendered into
pixels, demanding high computation for visualization efficiency.

Implicit neural representations (INRs) are neural networks that fit on single data points. An INR
takes unified coordinates as the input and outputs pixels as stored in its model weights. It has shown
significant advantages on compression (Sitzmann et al., 2020; Dupont et al., 2021), fast decoding
(Chen et al., 2021a), and easy transformation (Mildenhall et al., 2021; Kerbl et al., 2023) by repre-
senting data as an integral format of function. The continuity and differentiability of INRs facilitate
advanced single-data generative tasks, such as super-resolution, restoration, style transfer and edit-
ing, via smooth interpolations within the data space. Its compact representation also contributes to
reducing memory overhead, making them highly suitable in resource-constrained environments.

To harness the strengths of both latent generative models and implicit neural representations, we
establish an implicit latent diffusion model, NeRV-Diffusion, for video synthesis by generating INR
weights, where a video is represented as a holistic set of INR weights. It consists of two stages:
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Figure 1: Left: Overview of our NeRV-Diffusion framework. In the tokenization stage, NeRV
encoder projects RGB videos to neural network weights, forming up NeRVs and decoding for re-
construction. In the generation stage, an implicit diffusion transformer is trained to denoise on NeRV
weights. During inference, the implicit DiT generates NeRV weights from random noise, which de-
code into RGB videos. Right: NeRV-Diffusion (orange) outperforms previous INR-based (yellow)
as well as most recent non-implicit (blue) video generation models at all scales with more compact
model sizes. The generative performance is evaluated in gFVD on UCF.

In the tokenization stage, a hypernetwork-based encoder compresses RGB videos into parametric
latent tokens. The tokens instantiate an INR to decode for reconstruction with unified frame indices
input. In the generation stage, a diffusion transformer denoises in the encoded implicit latent space,
mapping random noise to INR weight tokens. Figure 1 (left) overviews the framework.

However, it is not trivial to acquire Gaussian-distributed neural network weights for smooth dif-
fusion that are meanwhile able to represent diverse realistic data with high fidelity. We adopt a
convolutional video INR, NeRV (Chen et al., 2021a), and build a transformer INR encoder based
on FastNeRV (Chen et al., 2024a). They are originally designed toward video compression perfor-
mance only and their produced INR weights are not generatable. To ensure the bottleneck latent
tokens fitful for both faithful reconstruction and smooth diffusive generation, we have made several
critical architectural modifications. The detailed architectures are illustrated in Figure 2.

Specifically, we reuse the encoded weight tokens with multiple linear affine layers such that each
NeRV layer is modulated by all tokens independently. We also redesign the weight modulation ap-
proach, proposing to directly set the latent tokens to be the convolution kernels, instead of repeating
and multiplying them with shared base weights. These upgrades fundamentally enlarge the ex-
pressiveness and smoothness of the implicit space while maintaining its compactness. We leverage
vanilla diffusion transformer (Peebles & Xie, 2023) (DiT) to denoise on weight tokens that imply
no spatial or temporal structures. We also handle the error accumulation with SNR-adaptive loss
weighting and scheduled sampling for optimal denoising in the implicit latent space.

NeRV-Diffusion leverages video INRs as instance-specific decoders, offering faithful reconstruction,
compact model and fast decoding compared to the large, shared decoders in traditional LDMs. It
encodes and generates video frames holistically as integral INR weights, implies the keyframe-
residue representation by reusing the same set of parameters to decode all frames, and thus maintains
temporal associations without cross-frame attention. Furthermore, NeRV-Diffusion generates neural
weights with only a single linear layer after the Gaussian bottleneck, and employs direct channel-
wise parameterization to construct the INRs. This leads to multi-variant normal distribution of our
generative NeRV weights and enables smooth interpolation between frames and videos.

In summary, our contributions are as follows:

• We propose a novel implicit video autoencoder that compresses videos into neural weight
tokens of normal distribution, constituting generation-specialized video INRs.

• We propose an implicit diffusion model that denoises in neural weight space, achieving
dynamic and diverse video synthesis via generating INR parameters.
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Figure 2: Detailed architectures of NeRV-Diffusion. Left: Patchified videos and initialized weight
queries are concatenated and input into NeRV encoder, outputting latent weight tokens; Middle
top: Weight tokens are reused and converted by multi-head affines to instantiate each generative
NeRV layer; Middle bottom: Generative NeRV decodes spatiotemporal positional embeddings
into RGB videos, using the instance-specific modulation weights (gold) and global shared weights
(gray). Block details and side connections are omitted; Right: Weight tokens are added noise and
an implicit diffusion transformer is trained to denoise in this implicit weight space.

• NeRV-Diffusion surpasses prior implicit and most recent non-implicit generative models on
multiple real-world video benchmarks, and conveys smooth time and weight interpolations.

2 RELATED WORK

2.1 IMPLICIT NEURAL REPRESENTATIONS

Implicit neural representations (INRs) are neural networks that fit on single data points. An INR
takes in coordinates and outputs corresponding pixel values of the stored data. It has presented
capacity and flexibility in various modalities, including images (Sitzmann et al., 2020; Dupont et al.,
2021), 3D shapes (Park et al., 2019; Mildenhall et al., 2021) and videos (Chen et al., 2021a; 2022).
They are primarily developed for image compression (Strümpler et al., 2022; Dupont et al., 2022)
and editing (Fan et al., 2022; Yang et al., 2023), video compression (Li et al., 2022; Kwan et al.,
2024; Zhao et al., 2023; Zhang et al., 2021; Lee et al., 2023) and editing (Ouyang et al., 2024), and
novel view rendering (Kerbl et al., 2023; Barron et al., 2023; Cao & Johnson, 2023) and 3D scene
editing (Yuan et al., 2022; Liu et al., 2024). Although some editing applications have been explored,
they create the INRs after manipulating the data in pixel space.

A standard INR is trained via memorizing the pixel data, which is time-consuming in a backprop-
agation manner. Chen & Wang (2022); Kim et al. (2023a); Chen et al. (2024a) suggest using
transformer-based hypernetworks to create INR weights given RGB data in a feed-forward fash-
ion at scale. However, these methods are optimized solely toward reconstruction performance and
incorporate no distribution regularization on the produced INR weights, leaving the implicit gener-
ative task that synthesizes novel data points from random noise under-addressed.

2.2 IMPLICIT NEURAL REPRESENTATION GENERATION

INR generation is a challenging task. Traditional generative models learn mapping random noise to
pixels or latent features, while implicit generative models aim to associate neural parameters with
Gaussian distribution. Several efforts have been made toward implicit generation. Skorokhodov
et al. (2021) builds a GAN for image INRs (Sitzmann et al., 2020), and Yu et al. (2022) extends it to
videos by involving the temporal axis. Erkoç et al. (2023); Chen et al. (2023); Müller et al. (2023);
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Shue et al. (2023) study generating 3D NeRF parameters via diffusion models. (Chen et al., 2024b)
applies latent diffusion models on image INRs (Chen et al., 2021b) for image synthesis, while their
INR weights are derived by a complex decoder from the denoising latent space. Recently, Wang et al.
(2024b; 2025b) propose to leverage the hypernetwork-INR architecture to conduct flow matching on
image or 3D pixel data. Lee et al. (2025) also developed a masked image autoencoder for inpainting
with a similar structure. Despite these efforts, no video diffusion model that generates INR weights
has yet been explored, casting this a challenging task as videos embed more dynamic information
and diffusion models have a more strict demand on its denoising space.

2.3 LATENT VIDEO DIFFUSION MODELS

Latent video diffusion models (Wang et al., 2023; Blattmann et al., 2023b; Guo et al., 2023) have
achieved significant success in video generative modeling. However, traditional video tokenizers of-
ten encode video frames as individual feature maps, calling cross-frame attentions in the denoising
network to constrain temporal consistency. Kim et al. (2023b); Wu et al. (2025) start to explore video
autoencoders with motion awareness and temporal compression, splitting the complexity between
the tokenization and generation stages. Recent 1D tokenization (Yu et al., 2024b; Wang et al., 2025a;
Zha et al., 2025) encodes visual data into holistic tokens that project no spatial or temporal align-
ment with pixels, while they remain focused on images or auto-regressive generation only. In this
work, we look to synthesize videos by generating INR weights via diffusion, obviating frame-wise
representations by using the whole INR model to decode all frames given time indices. Moreover,
symmetric autoencoders rely on a large-scale decoder to render synthesized latent to diverse RGB
data with high fidelity, consuming non-negligible computational resources and time for end users
to visualize. We explore the space of asymmetric hypernetwork-INR autoencoders, where the INR
acts as an efficient instance-specific decoder as it only needs to represent a single data point.

3 NERV DIFFUSION

NeRV-Diffusion is a two-stage generative framework. In the tokenization stage, an implicit autoen-
coder (§3.1) is trained to compress a video from pixels to latent neural weight tokens, and the tokens
function as the parameters of an INR (§3.2) and self-decode to reconstruct the video. In the gen-
eration stage, an implicit diffusion transformer (§3.3) is trained to generate the weight tokens from
random noise. Figures 1 (left) and 2 illustrate our full pipeline of both stages.

3.1 NERV AUTOENCODER

In the first stage, we aim to tokenize a video into a latent space that represents the video through
the parameters of an INR. This is achieved by training an implicit autoencoder, where the encoder
E is a hypernetwork that produces INR parameters θ = E(x) given pixel input x. The decoder is
implemented as an INR Dθ(·), which decodes to pixel values given corresponding coordinates. We
build the backbone of our INR encoder E upon ViT-based FastNeRV (Chen et al., 2024a), where we
make several critical modifications to align the learned latent space with generative tasks.

The RGB video is first segmented into patches and converted to transformer input embeddings.
Since the output weight tokens have no spatiotemporal correspondence to the input patches, instead
of mapping them directly we introduce dedicated query tokens and concatenate them with the data
patches following (Peebles et al., 2022). Only the output tokens corresponding to the queries are
retained. They are batch normalized along the token embedding dimension.

KL Bottleneck. Two additional fully connected (FC) layers are appended after the NeRV en-
coder’s output to create an information bottleneck of compact latent dimension. KL divergence loss
is applied to align their distribution toward standard Gaussian distribution N (0, 1).

Multi-head Affine Mapping. FastNeRV use its encoded latent to modulate the parameters of a
subset of the INR layers, which limits the capacity of the latent tokens especially when KL con-
straint is applied for generation tasks. Inspired by the multiple affine layers in Karras et al. (2019),
we expand the post-bottleneck FC layer into multi-head affine mappings, and the single set of weight
tokens are reused to modulate all NeRV layers independently. Specifically, for each NeRV layer, a
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Figure 3: Video reconstruction of our NeRV autoencoder on UCF (left) and K600 (right).

dedicated affine head maps all the weight tokens into modulation parameters. This strategy signif-
icantly expands the expressiveness of the weight tokens, as a compact latent space will reduce the
complexity of the diffusion process in the generation stage.

Channel-wise INR Parameterization. FastNeRV repeats the weight tokens and multiply them
to the instance-agnostic INR base weights via dot product as the modulation. Skorokhodov et al.
(2021); Yu et al. (2022) perform low-rank vector cross product to amplify the modulation matrix
dimension from condensed weight latent. Inspired by Lin et al. (2021) that prunes a pretrained
GAN generator by subsetting its kernels, we propose to directly set affined instance-specific weight
tokens to be the convolutional kernels at a certain group of INR channels. Other parameters θs are
shared among all training data and are learnable during training. All kernel values are normalized
along all dimensions except the output channels, following the demodulation in Karras et al. (2019).
In this way, the generated weight tokens are directly involved in decoding with maximal degrees of
freedom. This also enables smooth parameter interpolation between our INR decoders.

Convolutional Discriminator. To generate realistic videos we incorporate adversarial training
(Goodfellow et al., 2020). We choose a convolutional discriminator (Karras et al., 2019) over a
transformer-based one, as we observe that the latter introduces flickering artifacts across frames.

Training Objectives. We train NeRV-VAE with the reconstruction objective. With an additional
perceptual loss (Zhang et al., 2018) LLPIPS and the adversarial loss LGAN, it is optimized via

LVAE(E , θs) = ∥x− x̃∥2 + LLPIPS(x, x̃) + LGAN(x, x̃) +DKL(N (0, 1), θ̃). (1)

3.2 GENERATIVE NERV

The encoded weight tokens are formed into a video INR Dθ(·) that decodes to reconstruct the video.
NeRV (Chen et al., 2021a) is a convolutional video INR that takes time index t as the input query
and yields a whole frame at each forwarding. We construct our implicit decoder based on it while
introducing several upgrades to enhance its capacity for generative purposes.

Spatiotemporal Embedding Input. Time-query video INRs upsamples from RT×D×1×1 to
RT×3×H×W , where no spatial dimension is input. With this structure, we observe distinct move-
ment in the reconstruction, however the spatial content lacks clarity. To balance between the ap-
pearance and motion quality, we expand the input time embedding to 3D spatiotemporal, while time
remains the sole query axis. Specifically, we sample a 3D positional embedding and reshape it to
RT×3D×h×w. This spatiotemporal input supplements geometric prior and avoids the leading FC
layer in vanilla NeRV that were designed for transforming 1D time embedding input. We observe
that full convolutions fit optimally for generative quality with our multi-head affine modulation.

Scaling up Blocks. Benefited from the reused weight modulation with multi-head affine map-
pings, we are able to largely scale up our generative NeRV without extra weight tokens. We expand
the upsampling layers to blocks, each performing one-level (2×) upsampling with additional con-
volutions that don’t change the shape. Compared to the assorted upsampling scales in limited layers
in vanilla NeRV, this periodic upsampling structure evenly distributes the information from low to
high resolutions, and cooperates well with our multi-head affine modulation. We also double the
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Table 1: Model and bottleneck representation size comparison. rFVD and gFVD are results on UCF.
† Note that for implicit GANs we conceptually separate the mapping network as the generator and
the generator network as the decoder, as the latter takes in the frame index and decodes as the INR.

Method #Params #Tokens rFVD↓ gFVD↓
Detokenizer Generator UCF K600 UCF K600

Non-Implicit Models

CogVideo (Hong et al., 2022) - 9.4B - - - 626 109
TATS (Ge et al., 2022) 16M 362M 1024 162 - 332 -
MAGVIT-AR (Yu et al., 2023a) 79M 306M 1024 25 - 265 -
Latte (Ma et al., 2024) 49M 674M 512 21 - 202 -
OmniTokenizer (Wang et al., 2024a) 41M 650M 1280 42 - 191 33
VideoFusion (Luo et al., 2023) - 2B - - - 173 -
MAGVITv2-AR (Yu et al., 2024a) 58M 840M 1280 8.6 - 109 -
LARP (Wang et al., 2025a) 86M 343M 1024 20 - 102 6.2

Implicit Models

DIGAN (Yu et al., 2022) 58M† 5.5M† - - - 465 -
NeRV-Diffusion-S (Ours) 3.5M 467M 128 85 40 184 46
NeRV-Diffusion-B (Ours) 14M 467M 128 59 27 133 30
NeRV-Diffusion-L (Ours) 55M 467M 128 41 19 97 22

hidden dimensions of the layers in the last block following Karras et al. (2020) so that more native
high-resolution information can be processed with sufficient capacity.

Upsampling Algorithm. While vanilla NeRV has tested that pixelshuffle results in the best recon-
struction performance with similar amount of parameters, we again compare different upsampling
algorithms for our generative NeRV. We find that transposed convolutions achieve non-negligible
better generation quality to pixelshuffle with merely a quarter of parameters and computations.
Therefore we choose transposed convolutions for all the upsampling layers in our generative NeRV.

Side Connections. With the increased depth of our generative NeRV by upscaled blocks, we fur-
ther append side connections to effectively collate all intermediate resolution information with min-
imal computation overhead. We investigate the residual and skip connections as in Karras et al.
(2020). If the side connection needs additional layers, they are also modulated by the same set of
our weight tokens thanks to our multi-head affine mappings and no extra trainable parameter is in-
troduced. Residual connection fuses latent features at different scales before decoding to RGB and
is experimented to yield clearer appearance and stabler motion.

3.3 IMPLICIT DIFFUSION

With visual data tokenized from pixel space to NeRV weight space by the implicit autoencoder
described above, we perform diffusion process on these weight tokens by θt = αtθ0 + σtϵ and train
a denoising network ϕ toward

LIDM = Eθ,ϵ∼N (0,1),t[∥ϵ0 − ϵ(ϵt, t)∥2] (2)

It is not trivial to model denoising process on neural weights. Previous diffusion models are de-
signed for pixel data or their latent feature maps. Since NeRV weight tokens have no spatiotemporal
structure, transformers are more suitable than U-Nets to process them, and temporal attention is un-
necessary in our denoising network like those in traditional video diffusion models (Ma et al., 2024).
G.pt (Peebles et al., 2022) uses transformers to evolve neural network weights in a meta-learning
fashion but not on noisy data. DiT (Peebles & Xie, 2023) tailors transformers for image diffusion
and Zha et al. (2025) also use it to process 1D image tokens in diffusion. We explored these back-
bone options and DiT reaches the optimal performance with a straightforward architecture. Besides,
we curate the training scheme as below to fill the gap when adapting DiT to the implicit space.

Min-SNR-γ Loss Weighting. We observe that our implicit diffusion model converge slower on
early denoising timesteps than late ones, i.e. it is tougher to learn to parse more noisy input. To
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Figure 4: Class-conditioned video generation on UCF.

address this issue and speed up its convergence, we adopt Min-SNR-γ loss weighting (Hang et al.,
2023) and apply the coefficient wt = min{SNR(t), γ} on the denoising loss, where SNR(t) =

α2
t

σ2
t

reflects the signal-noise ratio at timestep t, and constant γ controls the minimum of wt. This loss
weighting strategy prevent the diffusion training to focus too much on the low noise levels and
descends evenly toward the denoising directions at all timesteps.

Scheduled Sampling. To further enhance the implicit denoising chain and tackle the exposure bias
issue, we introduce scheduled sampling (Bengio et al., 2015) into our training scheme. It is initially
proposed for auto-regressive models, and has been applied on diffusion models (Ning et al., 2023;
Ren et al., 2024) to fill the training-inference gap brought by Teacher Forcing. During training, after
the first forward round at step t, we randomly use the model predictions ˜θt−1 = θϕ(θt, t) as the new
input and execute another forward pass, and calculate the total losses. It aligns the the training and
inference modes, ensures low input disparity and minimizes error accumulation during sampling.

4 EXPERIMENTS

4.1 SETUPS

Datasets. We demonstrate NeRV-Diffusion on two real-world video benchmarks: video genera-
tion on UCF-101 (Soomro et al., 2012) (UCF) and frame prediction on Kinetics-600 (Kay et al.,
2017) (K600). All experiments are conducted on 16 frames of 1282 resolution. We use the train
split of K600, and all videos from UCF, following prior work (Yu et al., 2023a; Wang et al., 2025a).

Implementations. We realize our NeRV encoder with the backbone of Vision Transformer (Doso-
vitskiy et al., 2021) (ViT). We scale up our generative NeRV decoder to three configurations of pro-
gressive sizes: -Small (3.5M), -Base (14M) and -Large (55M). We ablate our key design options in
§4.4. Detailed model and training configurations are provided in Appendix A.

Metrics. We measure Fréchet Video Distance (FVD) (Unterthiner et al., 2018) to evaluate the
reconstruction and generation quality of NeRV-Diffusion. We calculate FVD on 2,048 sampled
videos following prior work (Yu et al., 2022; 2023a; Wang et al., 2025a) for fair comparison.

4.2 VIDEO RECONSTRUCTION

Visualized reconstruction output of our implicit tokenizer are displayed in Figure 3. The quanti-
tative results, together with the model and bottleneck latent size comparisons are listed in Table
1. NeRV-Diffusion achieves comparable performance to other non-implicit methods, with much
more compact model and latent sizes. It also worth noting that NeRV-Diffusion features a small
reconstruction-generation gap compared to other models, indicating our effective design of implicit
video representations for generation purposes, and thus efficient usage of our latent space.

7
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Figure 5: Frame prediction on K600. Frames in front of the orange line are input conditions.

4.3 VIDEO GENERATION

Class-Conditioned Video Generation. We conduct class-conditioned video generation on UCF
and present our visual results in Figure 4. We quantitatively compare NeRV-Diffusion with other
models in Table 1. NeRV-Diffusion outperforms previous INR-based generative methods as well
as most recent non-implicit models of various mechanisms, including GAN, diffusion and auto-
regressive architectures. It is able to synthesize dynamic videos with diversity in both appearances
and motions, ranging from detailed objects to complex scenes. More samples in Appendix D.

Frame Prediction. Following the settings in Hong et al. (2022), we train our implicit diffusion
model given the initial 5 frames to predict the rest 11 frames. We construct a sequence of the 5 given
frames and 11 duplicate 5th frames and encode them as a video clip to the NeRV weight space.
We expand the input embedder of DiT by doubling its input channels to fuse the clean condition
and noised ground truth. The quantitative results are listed in Table 1 and the visualizations are
displayed in Figure 5. Our model faithfully propagates the spatial content and movement flows to
future frames.

4.4 ABLATION STUDIES

We conduct ablation studies to assess the key components we propose in §3 and validate the optimal
design options for generative objectives. The quantitative results are tested with NeRV-Diffusion-S
configuration on UCF and are listed in Tables 2 and 3.

Table 2a indicates that in our NeRV autoencoder, our channel-wise parameterization outperforms
due to its maximal transparency to decode directly using the encoded weight tokens. In Table 2b,
our multi-head affines significantly boost the capacity of NeRV by mapping the whole bottleneck
weight tokens to different NeRV layers for reused modulation. Table 2c demonstrates that the spa-
tiotemporal input embedding of shape h = w = 8 expands the input space with peak expressiveness,
while smaller sizes lead to truncated space and bigger sizes result in fewer upsampling layers. We
compare different upsampling operations in Table 2d, and find that transposed convolution surpasses
pixelshuffle by much fewer parameters and computations without inflated channels. We further ex-
plore side connection types in Table 2e, and observe that residual connections fuse raw features
at diverse scales without visible artifacts brought by skip connections when summing up multi-
resolution RGB output. Finally we scale up our implicit latent space by increasing the number of
tokens, as we meanwhile observe that the token dimension only makes slight impact on the output
quality. 128 tokens reaches the peak performance and more tokens will lead to an over complex
latent space for diffusion although the reconstruction error continues dropping.

For our implicit denoising network, we consider three backbone candidates in Table 3a. G.pt was
designed for neural weight evolution, but not adapted to diffusion tasks. Latte was designed for
video generation and incorporate with temporal attentions, which are not beneficial to our implicit
generation as NeRV weight tokens lack spatiotemporal structure. Table 3b showcases that both
Min-SNR-γ loss weighting and scheduled sampling scheme effectively minimize the gap between
implicit diffusion training and inference, by emphasizing the denoising model more on high-noise
predictions and imperfect input.
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Table 2: Ablation studies of the key design options in our NeRV autoencoder and generative NeRV,
tested with NeRV-Diffusion-S and the best implicit denoiser configuration on UCF.

Modulation gFVD↓
Repeat 741
FMM 636
Channel 570

(a)

Reuse gFVD↓
No reuse 570
Direct reuse 562
Multi-head affines 283

(b)

Spatial PE gFVD↓
h = w = 1 283
h = w = 4 269
h = w = 8 254
h = w = 16 277

(c)

Upsampling gFVD↓
PixelShuffle 254
Transposed Conv 248
Bilinear 287

(d)

Side Connection gFVD↓
Vanilla 248
Residual 219
Skips 235

(e)

Token Shape gFVD↓
32× 128 219
64× 128 193
128× 128 184
256× 128 206

(f)

Table 3: Ablation studies of the key design options in our implicit diffusion model, tested with
NeRV-Diffusion-S and the best NeRV autoencoder configuration on UCF.

Model gFVD↓
G.pt (Peebles et al., 2022) 550
DiT (Peebles & Xie, 2023) 295
Latte (Ma et al., 2024) 342

(a)

Configurations gFVD↓
Vanilla DiT 295
w/ Min-SNR-γ 238
w/ Scheduled Sampling 261
w/ Both 184

(b)

4.5 PROPERTIES OF GENERATIVE NERV

4.5.1 LONG VIDEO GENERATION VIA TIME INTERPOLATION AND EXTRAPOLATION

Benefited from the continuous frame index positional embedding, our generative NeRV features
flexible time interpolation and extrapolation capability. In Figure A1, we interpolate the input time
embeddings by a factor of 8× to sample 128-frame videos with smooth and distinct motions. This
property indicates that our generative NeRV efficiently encodes high-density information and un-
derstand the residual intrinsic of frame sequences. It enables compact representation of long videos
and efficient training with fewer frames and large frame intervals.

4.5.2 GENERATIVE NERV WEIGHT INTERPOLATION

Our generative NeRV also features smooth interpolation between two distinct videos by interpo-
lating their instance parameters. Given two generative NeRVs’ parameters θ1 and θ2, we perform
linear interpolation λθ1 + (1 − λ)θ2 between them. The visual outcomes are exhibited in Figure
A2. Our model produces progressively interpretable results compared to DIGAN. We attribute this
parametric continuity to not only the Gaussian distribution constraint of our weight latent, but also
our simple yet effective linear bottleneck mapping and channel-wise parameterization.

5 CONCLUSION

We propose NeRV-Diffusion, a two-staged video synthesis model via NeRV weight generation.
Our NeRV autoencoder projects videos into a Gaussian weight latent space for tokenization, where
our implicit diffusion model denoises to generate neural weights that render into videos. NeRV-
Diffusion outperforms both INR-based and most recent non-implicit video generative models on
multiple real-world video benchmarks, demonstrating promising scaling law. It also features smooth
temporal and parametric interpolation properties. The outstanding performance of NeRV-Diffusion
highlights the potential of a new holistic video synthesis paradigm with efficient representations.
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A IMPLEMENTATION DETAILS

A.1 ADDITIONAL MODEL AND TRAINING DETAILS

We use a medium configuration of ViT with 18 blocks, 14 heads and 896 hidden dimensions for our
NeRV encoder. We set the scale of KL divergence loss to 1×10−5. It patchifies the RGB videos into
8×8×1 patches along height, width and time dimensions. We use sinusoidal positional embedding
for our generative NeRV’s input time index, instead of the exponential embedding in vanilla NeRV.
For residual connections we use bilinear to upsample the earlier feature maps before merging them
into the main branch.

Our discriminator is adapted from a 3D StyleGAN with 5 blocks, 64 unit hidden dimensions and a
channel multiplier of 2 for each block. Its learning rate is set to one fifth of the NeRV autoencoder’s,
and it is updated every five iterations to stabilize the training. The scale of the GAN loss added to
our NeRV autoencoder is 1.

Our implicit diffusion transformer adopts DiT-L configuration with 24 layers, 16 heads and 1024
hidden dimensions. Its patch size follows the token shape as output by our NeRV encoder. Our
implicit DiT is optimized for predicting the noise ϵ at each timestep, and thus also adjust the Min-
SNR-γ loss weighting accordingly. We employ CFG for class-conditioned sampling and the optimal
guidance scale is 2.

Both our NeRV autoencoder and implicit DiT train with L2 reconstruction loss. We use
AdamW(Loshchilov, 2017) optimizer with a linear warmup learning rate schedule and cosine decay.
Both learning rates are set to 1× 10−4. We train our NeRV autoencoder for 2M iterations and train
our implicit DiT for for 1M iterations.

A.2 GENERATIVE NERV ARCHITECTURE

We list the layer-wise architecture of our NeRV model in Table A1. “Feature Map” refers to the
output feature map of each layer. “Modulation Weight” refers to the instance-specific weight latent
to be assigned to each NeRV layers. T is the number of frames.

We set the dimensions of the time, height and width positional embeddings all to 16. We start from
sampling a spatiotemporal positional embedding of shape [8, 8, T, 48]. It is transposed to queries
along the time axis [T, 48, 8, 8], and then spatial convolutions are applied on it.

We use kernel size k = 4 for all upsampling transposed convolutions and k = 3 for all other convolu-
tions that don’t change the feature map shape. We set the base hidden dimensions D = 128, 256, 512
for NeRV-Diffusion-S, -B and -L configurations, respectively. gelu is used for activations in all
blocks while tanh is used after the tailing toRGB layer.

B TIME INTERPOLATION

As discussed in §4.5.1, we train NeRV-Diffusion on UCF with an interval of 8 frames, and inter-
polate the input time embeddings by an 8× factor to sample 128-frame videos. The results are
presented in Figure A1.

C INR WEIGHT INTERPOLATION

We further illustrate our generative NeRV’s superiority in INR weight interpolation. DIGAN (Yu
et al., 2022) proposes to interpolate between the latent noise vectors. When being interpolated be-
tween the whole weights, their video INR presents non-continuous transitions as shown in Figure A2
(top). This is because 1) their latent vectors are decoded from Gaussian noise with a complex non-
linear mapping network; 2) their INR weights are modulated with low-rank cross product, termed as
Factorized Matrix Multiplication (FMM) in Skorokhodov et al. (2021)), of the latent vectors, which
break the arithmetic property. In contrast, our weight latent is directly used for modulation with
a single linear affine layer from the KL bottleneck, and is directly assigned as NeRV parameters
with minimal transforms. Our generative NeRV presents smooth interpolation effect as shown in
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Table A1: Detailed architecture of our generative NeRV model and modulated weight shape. Batch
size is omitted.

Layer Feature
Map Shape

Modulation
Weight Shape

Input Init [8, 8, T, 48] -
Reshape [T, 48, 8, 8] -

Conv [T,D, 8, 8] [48, D, 3, 3] or [24, D/2, 3, 3]
Transposed Conv [T,D, 16, 16] [64, 64, 4, 4]

Conv [T,D, 16, 16] [64, 64, 3, 3]

Conv [T,D, 16, 16] [64, 64, 3, 3]
Transposed Conv [T,D, 32, 32] [64, 64, 4, 4]

Conv [T,D, 32, 32] [64, 64, 3, 3]

Conv [T,D, 32, 32] [64, 64, 3, 3]
Transposed Conv [T,D, 64, 64] [64, 64, 4, 4]

Conv [T,D, 64, 64] [64, 64, 3, 3]

Conv [T, 2D, 64, 64] [128, 64, 3, 3]
Transposed Conv [T, 2D, 128, 128] [64, 64, 4, 4]

Conv [T, 2D, 128, 128] [64, 64, 3, 3]

toRGB [T, 3, 128, 128] [D, 3, 3, 3]
Reshape to Output [T, 128, 128, 3] -

Figure A2 (bottom). This property also opens up the potential of general direct manipulations on
the tokenized NeRVs in a compositional manner with our NeRV autoencoder.

D ADDITIONAL RESULTS

We provide more generation samples of NeRV-Diffusion on UCF dataset in Figure A3. Video files
in MP4 format are attached in the supplementary materials.

E ADDITIONAL EXPERIMENTS AND DISCUSSIONS

E.1 INFERENCE EFFICIENCY COMPARISON

We compare the inference speed and peak GPU memory of NeRV-Decoder and NeRV-
Diffusion with other video decoders and generators, at 16 frames and both 1282 and 2562

resolutions. All results are tested on a single NVIDIA A6000 GPU in bfloat16 at batch
size 1 and averaged for 100 runs. All generators have enabled CFG and iterate for their
default sampling timesteps. “-” denotes that the method was not developed for the resolution.
We also extend NeRV-Diffusion to 2562 resolutions with a sublinear increase in model and
latent size. Full configurations are detailed in Appendix E.3.

The results are listed in Tables A2 and A3. We also include the VAE of Stable Diffusion
(SD) and Stable Video Diffusion (SVD), which are also commercial large-scale foundation
models that are trained on open-world data with considerable resources and extensive time.
Overall, our models cost far less latency and VRAM footprint in both decoding and generation
stages. It demonstrates the superior efficiency of our implicit framework, especially due to
obviating temporal attentions by reusing the same set of parameters to decode all frames with
redundancy.

E.2 ADDITIONAL QUANTITATIVE METRICS.
The use of FVD for quantifying both reconstruction and generation quality on UCF and K600
datasets is a common protocol that have been widely practiced by SOTA work in recent top
venues including MAGVITs (Yu et al., 2023a; 2024a), OmniTokenizer (Wang et al., 2024a),
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Figure A1: 128-frame video interpolation results on UCF. NeRV-Diffusion can be easily extended to
efficient long video generation via smooth time interpolation after trained with large frame intervals.

Table A2: Decoding efficiency comparison.

Decoders #Params Latency↓ VRAM↓
1282 2562 1282 2562 1282 2562

Latte (Ma et al., 2024) - 49M - 0.288s - 5.2G
CMD (Yu et al., 2024c) 24M 24M 0.129s 1.030s 1.2G 4.1G
Open-MAGVIT2 (Luo et al., 2024) 226M - 0.127s - 45G -
SD-VAE (Rombach et al., 2022) 49M 49M 0.048s 0.260s 1.2G 4.3G
SVD-VAE (Blattmann et al., 2023a) 98M 98M 0.094s 0.411s 1.3G 4.5G

NeRV-VAE-L 55M 64.5M 0.032s 0.133s 0.99G 2.6G

HPDM (Skorokhodov et al., 2024), LARP (Wang et al., 2025a) and AR-Diffusion (Sun et al.,
2025) etc. They didn’t report extra metrics and now we perform additional comparisons with
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Figure A2: Interpolation of the whole parameters of the video INRs in DIGAN (top) and our gener-
ative NeRVs (bottom).

the open-sourced work that have released pre-trained checkpoints.

We extend our reconstruction metrics to PNSR, SSIM and LPIPS between the output and
input videos, and extend our generation metrics to cross-frame LPIPS (fLPIPS) and C3D
(Tran et al., 2015) / I3D (Carreira & Zisserman, 2017) -based Inception Score (Salimans
et al., 2016) (IS) on the output videos. Due to the lack of pair-wise supervision in generation,
we also evaluate generators on the non-text subsets of VBench Huang et al. (2024), including
Subject Consistency (SC), Background Consistency (BC), Temporal Flickering (TF), Motion
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Figure A3: Additional class-conditioned generation samples on UCF.

Table A3: Generation efficiency comparison.

Generators #Params #Tokens Steps Latency↓ VRAM↓
1282 2562 1282 2562 1282 2562

Latte (Ma et al., 2024) 674M - 512 250 - 37s - 4.4G
LARP-L (Wang et al., 2025a) 343M 1024 - 1024 20s - 1.6G -
OmniTokenizer (Wang et al., 2024a) 650M - 1280 5120 - 139s - 4.5G

NeRV-Diffusion-L 467M 128 160 250 6.8s 8.2s 1.8G 2.1G

Smoothness (MS), Dynamic Degree (DD), Aesthetic Quality (AQ) and Imaging Quality (IQ).
For comparing methods, we use their pretrained checkpoints for inference.
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It worth noting that the ultimate purpose of NeRV-VAE (and the comparing tokenizers) is to
encode RGB videos into smooth latents for high-quality video generation, and we optimize it
for best generative quality instead of solely reconstruction faithfulness. Our models achieve
SOTA generation performance on UCF across all dimensions, and reach comparable SOTA
performance on K600 frame prediction.

Table A4: Reconstruction performance comparison on UCF.

Reconstruction (UCF) PNSR↑ SSIM↑ LPIPS↓ rFVD↓
TATS (Ge et al., 2022) 22.43 0.765 0.108 162
Open-MAGVIT2 (Luo et al., 2024) 25.84 0.862 0.045 16
LARP-L (Wang et al., 2025a) 27.87 0.891 0.038 20

NeRV-VAE-L 26.63 0.879 0.043 22

Table A5: Generation performance comparison on UCF.

Generation (UCF) fLPIPS↕ IS↑ VBench↑ gFVD↓
SC BC TF MS DD AQ IQ

Ground Truth 0.031 86.24 0.954 0.977 0.981 0.988 0.282 0.410 0.443 0
TATS (Ge et al., 2022) 0.048 68.79 0.910 0.958 0.978 0.980 0.314 0.348 0.437 332
VIDM (Mei & Patel, 2023) - 64.17 - - - - - - - 263
VideoDiffusion (Luo et al., 2023) - 80.03 - - - - - - - 173
LARP-L (Wang et al., 2025a) 0.025 68.79 0.955 0.977 0.985 0.991 0.218 0.398 0.393 102

NeRV-Diffusion-L 0.028 82.17 0.958 0.978 0.983 0.989 0.262 0.392 0.433 97

Table A6: Reconstruction performance comparison on K600.

Reconstruction (K600) PNSR↑ SSIM↑ LPIPS↓ rFVD↓
LARP-L (Wang et al., 2025a) 28.22 0.867 0.035 11

NeRV-VAE-L 26.45 0.823 0.044 19

E.3 SCALING UP VIDEO RESOLUTION AND LENGTH

We scale up NeRV-Diffusion to 2562 resolution and 128 frames on UCF. Conventional VAEs
encode videos into frame-wise feature maps with a fixed spatial downsampling factor, and
thus their latent size increases quadratically w.r.t. to RGB resolutions. In contrast, NeRV-
Diffusion uses INRs as instance-specific decoders, and we append one additional layer/block
to the end to perform an extra upsampling to double the output resolution. Therefore, our
model parameters increase sublinearly, and the neural weight latent size also only needs to
increase accordingly. Specifically, our NeRV decoder size increases by 17% as shown in
Table A2, and we increase the neural latent token numbe by 25% for simple alignment of
channel-wise parameterization. Besides, our GNeRV incorporates skip connections (§3.2) so
multi-resolution output and joint training are also feasible.
For video length, conventional VAEs increase their frame-wise latent size linearly with a fixed
temporal downsampling factor, while our NeRV features smooth native time interpolation
and can be trained with large frame intervals as shown in Section 4.5.1. In our 128-frame
experiment, we train NeRV-Diffusion at 16 frames with the downsampling interval of 8 and
sample it with 8× frame interpolation. This would be more challenging as no ground truth
frames between the anchored frames are seen by our models.
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Table A7: Generation performance comparison on K600.

Generation (K600) fLPIPS↕ IS↑ VBench↑ gFVD↓
SC BC TF MS DD AQ IQ

Ground Truth 0.031 31.20 0.950 0.945 0.978 0.988 0.266 0.406 0.461 0
LARP-L (Wang et al., 2025a) 0.029 23.51 0.933 0.973 0.981 0.989 0.292 0.337 0.293 17

NeRV-Diffusion-L 0.034 27.09 0.928 0.967 0.977 0.979 0.354 0.392 0.432 22

We report the generation performance comparison in Tables A8 and A9. In both cases our
NeRV-Encoder remains the same configuration. NeRV-Diffusion outperforms recent SOTAs
with high compactness and easy extensibility.

Table A8: Generation performance comparison on UCF with 2562 resolution.

Method gFVD256↓
VIDM (Mei & Patel, 2023) 263
Latte (Ma et al., 2024) 202
OmniTokenizer (Wang et al., 2024a) 191
AR-Diffusion (Sun et al., 2025) 186
HPDM-M (Skorokhodov et al., 2024) 143

NeRV-Diffusion-L (Ours) 140

Table A9: Generation performance comparison on UCF with 128 frames.

Method gFVD128↓
Latte (Ma et al., 2024) 1157
DIGAN (Yu et al., 2022) 1103
PVDM (Yu et al., 2023b) 505
VIDM (Mei & Patel, 2023) 426
CoordTok (Jang et al., 2025) 369

NeRV-Diffusion-L (Ours) 366

E.4 DATASET SCALE AND COMPLEXITY

UCF and K600 are the common standard benchmarks to evaluate novel video generation ar-
chitectures, widely adopted by SOTA work in recent top venues including MAGVITs (Yu
et al., 2023a; 2024a), OmniTokenizer (Wang et al., 2024a), HPDM (Skorokhodov et al.,
2024), LARP (Wang et al., 2025a) and AR-Diffusion (Sun et al., 2025) etc. Our computa-
tion resources in academia are limited and training open-world text-to-video is not feasible.
NeRV-Diffusion follows the generic diffusion pipeline and it can be extended to additional
condition input (please refer to Appendix E.7).
Meanwhile, UCF dataset contains over 13K real-world videos sourced from YouTube of aver-
age 180 frames, totally about 27 hours. K600 dataset contains about 500K videos of average
250 frames, summing up to about 57 days in length. The total information is far more than
our models’ parameters. They are realistic and complex data and training and evaluating on
them are non-trivial.
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Figure A4: Qualitative comparisons with LARP on UCF.

E.5 QUALITATIVE COMPARISONS

We present additional visual comparisons with LARP (Wang et al., 2025a) on UCF in Figures
A4 and A5. We sample both models with the same class label input. We updated the attached
supplementary materials to include all raw video files. We also embed the videos in Figure A6
that can be displayed directly in PDF. Compared to LARP, NeRV-Diffusion also constructs
holistic video representations but meanwhile still maintain the spatiotemporal integrity via the
query time indices and spatial input embeddings, and thus produces more structural videos
with less morphing or tearing.
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Figure A5: Qualitative comparisons with LARP on UCF class-conditioned generation.

E.6 QUANTITATIVE VERIFICATION OF TIME INTERPOLATION

We quantitatively measure long video semantic consistency in terms of object identity and
action logic preservation. Specifically, we leverage the Subject Consistency (SC) and Back-
ground Consistency (BC) metrics in VBench, which extract the subject and background fea-
tures via pre-trained DINO (Caron et al., 2021), and calculate their pairwise similarities across
all frames for appearance preservation. Inspired by it, we further employ C3D, a pre-trained
action recognizer network, and feed it with all sub-clips from the long videos to extract ac-
tion features. We calculate pairwise similarities of the action features across all windows to
measure the action logic preservation. These metrics don’t only rely on consecutive distance
but average along the whole video, accurately reflecting the drifting issues for long video
generation. The results are listed in Table A10.
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(a1) LARP (a2) Ours (b1) LARP (b2) Ours (c1) LARP (c2) Ours

(d1) LARP (d2) Ours (e1) LARP (e2) Ours (f1) LARP (f2) Ours

(g1) LARP (g2) Ours (h1) LARP (h2) Ours (i1) LARP (i2) Ours

Figure A6: Videos of visual comparisons between LARP and NeRV-Diffusion, following the
orders in Figures A4 and A5. Please use Adobe Acrobat Reader on laptop/desktop and click
to play.

Table A10: Time interpolation semantic consistency.

Long Consistency VBench↑ Action Sim.↑
SC BC

Ground Truth 0.931 0.956 0.912

Ours 0.919 0.942 0.901

E.7 GENERALIZABILITY TO DOWNSTREAM TASKS WITH CONTROLLABILITY

Our implicit diffusion model follows standard diffusion framework but only switches to neural
weight latents, and thus can be trained with versatile condition types. Additional condition
input can be integrated with standard cross attention so that different modalities other than
videos or images are also supported. We follow the prior work that developed novel tokenizers
to majorly test on the foundation tasks. Due to time limit and resource scale, we extend
NeRV-Diffusion to several additional downstream tasks, including image-to-video generation
and unconditional video generation. To showcase the support of granular controllability of
our nerual weight latents, we also include an edge-to-video generation experiment. Previous
work didn’t evaluate on these setups, and we present our qualitative results in Figure A7.
These experiments demonstrate the native extensibility of NeRV-Diffusion spanning from
none to fine-grained condition controls with high quality.
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(a) Unconditional generation on UCF.

(b) Image-to-video generation on K600.

(c) Edge-conditioned video generation on K600.

Figure A7: Versatile condition types of video generation supported by NeRV-Diffusion.

E.8 NOVELTY AND CONTRIBUTION COMPARED TO DIGAN
GANs and diffusions are two distinct generative model families. The idea of generating INR
weights has emerged before DIGAN and has been developed for various modalities with
different model designs, and we have discussed them in §2. Our proposed modules such as
multi-head affine and channel-wise parameterization has effectively boosted the performance
of our models to achieve the first implicit video diffusion model, and we have depicted the
impact of key design options in §4.4.
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E.9 TWO-STAGE TOKENIZER-GENERATOR FRAMEWORK

A two-stage tokenizer-generator framework has been widely adopted for almost all large-scale
generative models. Latent Diffusion Models (LDMs, or Stable Diffusions, SDs) encodes RGB
data into continuous latents and train diffusion models on the latents. Vector-Quantized GANs
(VQGANs) also encodes RGB data into discrete codes and train autoregressive (AR) models
on the codes. They have achieved successes in various domains, including T2I, T2V, etc. Al-
though they need to be trained in separate stages and need to balance between expressiveness
and Gaussianity, two-stage frameworks are known for their stability and efficiency compared
to single-stage generation models such as GANs, especially when scaled up to large-scale
models and data. The expressiveness and dynamics of latent diffusion models for larger-scale
and more complex data will not be limited by the KL trade-off.

E.10 TRADE-OFF BETWEEN EXPRESSIVENESS AND GAUSSIANITY

All tokenizers designed for generative modeling in a two-stage framework need to balance
between the latent compactness and expressive richness. For VAEs it is the KL distance
on the continuous latents, and for VQGANs it is the codebook alignment on the discrete
code. One-stage generators like pixel diffusion models have to process raw RGB data and
map bigger random noise, which are harder to scale up. An autoencoder without variational
(KL) constraint leads to sparse and unbounded latent values, which have no impact on video
compression but cannot be used to train diffusions. In our work, we are able to manage this
balance well and provide a stable and clear recipe with high quality.
On the other hand, our proposed modules, such as multi-head affine and channel-wise pa-
rameterization, are mainly designed for adapting and enhancing the NeRV decoder interface.
These components exist in prior work such as StyleGAN, DIGAN, TransINR and FastNeRV
for encoder-decoder connection and latent space modulation, and we make simple yet effec-
tive upgrades to largely lift their expressiveness.

E.11 GRANULARITY OF NEURAL NETWORK WEIGHTS

Our neural latents form up the convolution weights of NeRV decoder, taking in unified spa-
tiotemporal input embeddings to render pixel frames. Although it is holistic and different
from conventional frame-wise feature maps, on the other hand it still performs convolutions,
i.e. matrix multiplications over the spatiotemporal input grid (in the opposite positions), and
thus still maintains spatiotemporal information. This is a major difference of our implicit
representations between discrete holistic video latents such as LARP. We demonstrate the
smoothness of our neural network weight space in Appendix C by direct interpolations be-
tween them.
We further design another probing experiment to validate the spatiotemporal association be-
tween our neural weight latents and pixel frames. We crop RGB videos into random clips with
random spatial and temporal ranges, and encode them using various video encoders. For each
video encoder, we perform K-Means on its encoded latents, with the raw video sources as
the class labels. We calculate the purity and normalized mutual information (NMI) between
the latent clusters and their real labels, i.e. which raw video the corresponding clip is cropped
from. Table A11 shows that our neural weight latents have spatiotemporal relations with pixel
operations, indicating its potential to facilitate granular editing.

Table A11: Time interpolation semantic consistency.

Granularity Purity↑ NMI↑
SD-VAE 0.484 0.753
LARP 0.285 0.591

Ours 0.366 0.656
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E.12 IMPACT OF KL LOSS SCALE.
In all two-stage frameworks, the reconstruction fidelity of the first-stage VAE determines the
upper bound of the generation quality of the second-stage generator. Given other factors (e.g.
KL loss scale) fixed, the generation quality will follow the change of reconstruction quality.
Table 1 shows that for different model size configurations (NeRV-Diffusion-S, -B, -L), our
gFVD changes following rFVD. The gap between gFVD and rFVD is controlled by the KL
loss scale. A high KL loss scale will harm rFVD but reduce the gap between gFVD and rFVD,
while a low KL loss scale will improve rFVD but enlarge the gap between gFVD and rFVD.
We ablate its impact on NeRV-Diffusion-S configuration in Table A12.
Moreover, Table 1 displays that different methods have their own optimal gFVD-rFVD gap,
corresponding to their individual optimal balance between the reconstruction fidelity and la-
tent space smoothness constraint. NeRV-Diffusion features a relatively low gFVD-rFVD gap
at all scales, indicating the smoothness of our implicit latent space. We also attribute this to
that conventional frame-wise tokenizers rely on input videos to guide their motion flow for
reconstruction, while usually needing temporal attentions to constrain temporal consistancy
in the generator, which create extra challenge and thus reconstruction-generation gap. NeRV-
Diffusion highlights its holistic video representations without cross-frame regularization in
either VAE and the implicit DiT, leading to consistent performance across reconstruction and
generation.

Table A12: Ablation on KL loss scales on NeRV-Diffusion-S configuration.

KL Loss Scale 1× 10−6 5× 10−6 1× 10−5 5× 10−5

rFVD 73 82 85 107

gFVD 198 186 184 202

E.13 LATENT GAUSSIANITY DIAGNOSTICS

We conduct marginal tests and normality plots on our encoded neural weight latent as sug-
gested, and compare it to LDM/SD’s VAE latent. The statistics and visualizations are pre-
sented in Table A13 and Figure A8.

Table A13: Latent Gaussianity statistics.

Gaussianity mean std skew kurtosis
LDM/SD-VAE −0.0165 5.2505 −0.4756 0.1693

NeRV-VAE-L −0.0036 0.9979 −0.0001 0.2568

E.14 FURTHER SCALING UP

Our explorations started from compact NeRV decoders and we found that scaling up NeRV
decoders would considerably improve the performance. We have ablated neural weight latent
size in Table 2f, and it shows that oversized latents will be harder for DiT of the same size
to train on. However this is the common pattern for all VAEs and latent diffusions, as the
upper bound of latent size would be the raw RGB size without encoding, and LDMs usually
outperform pixel diffusions. Due to resource limit, we haven’t been able to further scale up
the latent or decoder size as our current experiments have exhibited scaling-up boost.
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(a) Histogram of SD-VAE latents. (b) Histogram of NeRV-VAE latents.

(c) Quantile-Quantile of SD-VAE latents. (d) Quantile-Quantile of NeRV-VAE latents.

Figure A8: Gaussianity verifications of the latents encoded by NeRV-VAE and SD-VAE.

E.15 COMPARISON WITH OPEN-WORLD LARGE-SCALE VIDEO TOKENIZERS.
LTX (HaCohen et al., 2024) and WAN (Wan et al., 2025) are commercial foundation models
that are trained on open-world large-scale data with considerable resources and extensive
time. As a research work, we are not able to compete against them but mainly to explore a
novel architecture of implicit tokenization and generation that outperforms previous SOTAs
under similar settings. Though, we list the quantitative comparisons in Table A14. We also
include the VAE of Stable Diffusion (SD) and Stable Video Diffusion (SVD), which are also
large-scale foundation models at earlier stages.

Table A14: Comparison of reconstruction performance on UCF with foundation video tok-
enizers.

Reconstruction (UCF) PNSR↑ SSIM↑ LPIPS↓ rFVD↓
SD-VAE 24.79 0.783 0.068 63
SVD-VAE 27.24 0.856 0.058 39
LTX-VAE 31.29 0.909 0.061 32
WAN-VAE 31.14 0.935 0.022 7

NeRV-VAE-L 26.63 0.879 0.043 22
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E.16 ENCODING AND DECODING EFFICIENCY ON 720P
We create random data and test the encoding/decoding latency on a 1280 × 720 video. The
encoding takes approximately 1.9s, and the decoding takes approximately 1.8s, both on a
single NVIDIA A6000 GPU.

E.17 TRAINING EFFICIENCY COMPARISON

We train each of our first-stage NeRV-VAE and second-stage NeRV-Diffusion for 1 week on 8
NVIDIA A6000 GPUs. We train NeRV-VAE at a small batch size of 32 for 2M iterations. In
comparison, LARP-L-Long is trained for 500K iterations at batch size of 128. MAGVIT-v2
is trained for 300K iterations at batch size 256. OmniTokenizer is trained for 1M iterations
on 8 NVIDIA A100 GPUs for 2 weeks.

E.18 EXPLANATION OF MULTI-HEAD AFFINE MODULATION

In standard configurations of previous INR autoendoers like TransINR and FastNeRV, the
bottleneck is formed with two FC layers after the encoder and before the decoder. The two
FC layers downsample and upsample the token dimensions to form the information bottle-
neck. Our Multi-head affine module contains multiple second FC layers after the bottleneck
latent, upsampling it from one to multiple sets of latent tokens. In this way, our model is
able to modulate all layers in the NeRV decoder with different values that sourced from one
bottleneck latent, largely expand its capacity.

E.19 NEURAL WEIGHT LATENT DIMENSION ABLATION

We ablate different neural latent token dimensions with NeRV-Diffusion-S configuration in
Table A15. It results in a slight performance drop when being reduced, but not as significant as
token numbers shown in Table 2f. We attribute this to that our neural weight latents are holistic
representations unlike conventional frame-wise feature maps, and the token dimension doesn’t
correspond to the RGB color channel.

Table A15: Ablations on neural weight latent dimensions.

Token Shape 128× 32 128× 64 128× 96 128× 128

rFVD↓ 114 99 92 85

gFVD↓ 230 212 197 184

E.20 EFFICIENT RECONSTRUCTION WITH FEW TOKENS

Our implicit video tokenizer features its INR decoder dedicated for each data point, i.e. the
neural tokens directly serve as decoder parameters instead of input, showing its effectiveness
over traditional feature map latents. Our multi-head affine module reuses the neural tokens
for all layers in the INR decoder, which also enlarges the expressiveness.

E.21 NEURAL LATENT TOKEN NUMBER OPTIONS

For generation, there is usually a balance that too few tokens will lack expressiveness, and
too many tokens will harm the smoothness of the latent space. Given the certain amount of
each token deviating from standard Gaussian distribution, more tokens will introduce higher
total variance and the diffusion model will thereby be harder to converge. This applies to all
two-stage generation frameworks, given fixed VAE and denoising model sizes. We ablated
different token numbers in Table 2f, and adopted for the optimal generative quality. Due to
time and resource limit, we didn’t ablate on more tokens beyond.
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E.22 PERFORMANCE CEILING OVER EFFICIENCY

So far we haven’t noticed such a ceiling as NeRV-Diffusion surpasses previous SOTA methods
of both diffusion and autoregressive models. We attribute this to that our implicit neural
weight latent is a holistic representation and leverages the redundancy in videos. Meanwhile,
the outstanding efficiency of NeRV-Diffusion also indicates its extra potential when scaling
up. If performance is prioritized over efficiency, NeRV-Diffusion can also further scale up to
comparable efficiency for extra performance boost.

F REPRODUCIBILITY STATEMENT

Our code and trained checkpoints will be made publicly available upon publication. We have dis-
cussed our complete implementation details in §4.1 and Appendix A, including the model configu-
ration and training recipe.
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