
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GITPATCHDB: A LARGE-SCALE GITHUB COMMIT
DATABANK FOR VULNERABILITY PATCH ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning based vulnerability detection relies on datasets that link vul-
nerabilities to their corresponding patches. However, existing resources such as
Common Vulnerabilities and Exposures (CVE) often lack reliable patch references,
e.g., many CVE entries do not provide patch commits, and a significant share of
existing commits become inaccessible due to code repository changes. To bridge
this gap and better facilitate vulnerability detection, we curate GITPATCHDB, a
large-scale, semantic-rich dataset that pairs CVEs with their corresponding patch
commits, where each commit is formatted not only as code diffs but also as inter-
procedural program slices generated through program slicing and related program
analysis techniques. To leverage this semantic-rich dataset, we further propose
Contrastive Natural-language Programming-language Pre-training (CNPP), a
novel approach that enables multimodal vulnerability patch search via contrastive
learning. Extensive evaluations demonstrate that GITPATCHDB paired with CNPP
achieves 95.99% top-10 accuracy in vulnerability patch search, surpassing baseline
manual methods by over 8% and establishing a new state-of-the-art performance.

1 INTRODUCTION

Software vulnerabilities pose critical threats to digital infrastructures by enabling security exploits,
such as unauthorized access, remote code execution, and data breaches (Tsankov et al., 2018; Li
& Paxson, 2017; Li et al., 2016; Kim et al., 2017). To support vulnerability triage and mitigation,
databases such as the Common Vulnerabilities and Exposures (CVE) (The MITRE Corporation, 2025)
and the National Vulnerability Database (NVD) (National Institute of Standards and Technology,
2025) maintain high-level descriptions of known vulnerabilities (Frei et al., 2006). However, these
databases frequently lack direct references to corresponding patch commits (Ponta et al., 2019;
Nguyen & Massacci, 2013; Chaparro et al., 2017), either because such links were never recorded or
because they have become inaccessible due to repository deletions, branch renames, or pull request
merges (Wang et al., 2021; Fan et al., 2020). This significantly limits their utility for tasks such as
vulnerability analysis, patch auditing, and forensic investigation during incident response, a limitation
well documented in prior studies (Nguyen & Massacci, 2013; Chaparro et al., 2017).

The issue becomes even more pronounced in open-source software (OSS), which is increasingly
central to today’s software ecosystems (Ponta et al., 2020). Recent surveys show that over 96% of
codebases incorporate OSS, and more than 84% contain at least one known vulnerability (MvnRepos-
itory, 2025). Alarmingly, over half of the CVEs in NVD do not include any patch references (Xu
et al., 2022; Tan et al., 2021). Even when patch commits are cited, our empirical study of 193,448
CVE entries shows that only 30.99% include such links, and among these, 41.34% are non-functional
1. This fragmentation makes it difficult to retrieve the actual code fixes for known vulnerabilities.

In this work, we aim to address the problem of linking CVEs to their corresponding source-level
patches, coined as vulnerability patch search. Unlike prior datasets that rely on manually curated
patch references or small-scale heuristics (Xu et al., 2022; Tan et al., 2021; Wang et al., 2022),
we propose a large-scale and semantic-rich dataset named GITPATCHDB for vulnerability patch
search based on automatic program analysis techniques, and further propose Contrastive Natural-
language Programming-language Pre-training (CNPP), a simple and effective approach that enables

1See Appendix A for detailed methodology and empirical results.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multimodal vulnerability patch search via contrastive learning, with comparisons against other
baselines.
Key Challenges and Insights. We identify four key challenges in accurately modeling the semantics
of a patch and efficiently matching them across thousands of real-world codebases:

• Patch context completeness. Existing vulnerability patch search approaches rely on patch commit
diffs, i.e., added and deleted lines in the patch commit, and keyword matching such as CVE-ID
strings (Tan et al., 2021; Wang et al., 2022; Xu et al., 2022), which fails to capture all contextual
semantics related to vulnerability patches, e.g., other code lines related to the added and deleted
lines in the patch commit. We address this challenge by applying interprocedural program slicing,
which traces data dependencies backward and forward from patch lines to recover full code
context (e.g., variable definitions, function calls).
• Patch context fidelity. Interprocedural program slicing used in extracting patch contextual seman-

tics constructs data dependencies for the program, which requires accurate aliasing information,
e.g., set of program variables pointing to the same object. Traditional approaches handle it
conservatively, often over-approximating all possible aliases and thus bloating program slices (An-
dersen & Lee, 2005). We address this challenge by equipping traditional pointer analysis with
flow-sensitivity (algorithm 1), pruning spurious dependencies while preserving true data flows.
• Analysis scalability. Interprocedural program slicing is computationally infeasible for large code-

bases. We propose a novel approach named on-the-fly patch program co-analysis by combining
program slicing with flow-sensitive pointer analysis on-the-fly, dynamically expanding slices from
patch commit code lines and deferring analyzing irrelevant code regions (algorithm 1).
• Embedding scalability. Interprocedural program slices generated from real-world commits often

yield high-dimensional token sequences (often exceeding 10K tokens). We propose CNPP, which
encodes high-dimensional token sequences with hierarchical attention mechanisms and long
short-term memory (LSTM) into fixed-length embeddings, prioritizing vulnerability-critical tokens
such as bounds checks and pointer dereferences, while preserving long-range dependencies.

Contributions. This work makes the following key contributions:

• We introduce GITPATCHDB, a large-scale and semantic-rich dataset for vulnerability patch search
based on alias-aware interprocudural program slicing, that surpasses existing datasets in scale, se-
mantic coverage, and semantic fidelity. This dataset addresses the longstanding lack of comprehen-
sive patch data linking CVEs to source-level patches, offering the community a reliable foundation
for tasks such as vulnerability patch search, vulnerability understanding, and other downstream
applications in deep learning. By releasing GITPATCHDB 23, we aim to foster research repro-
ducibility and support future work at the intersection of software security and machine learning.
• We propose on-the-fly patch program co-analysis, that combines forward/backward program

slicing with flow-sensitive pointer analysis. By iteratively refining aliasing relationships and
data-flow dependencies, this co-analysis analyzes the patch semantics on-the-fly, which efficiently
boosts the scalability of our dataset, while avoiding the pitfalls in traditional static analysis (e.g.,
over-approximation of data flows) and enabling rich patch semantics.
• We further propose Contrastive Natural-language Programming-language Pre-training (CNPP),

a novel approach that enables multimodal vulnerability patch search by encoding and fusing both
vulnerability and patch information into embeddings for contrastive learning. Extensive evalu-
ations demonstrate that GITPATCHDB paired with CNPP achieves high accuracy in vulnerability
patch search, surpassing baseline methods and establishing a competitive performance.

2 RELATED WORK AND BACKGROUND

Research on vulnerability patch analysis falls into two categories: vulnerability patch classification
and vulnerability patch search. Our proposed dataset GITPATCHDB and approach CNPP mainly
belongs to vulnerability patch search.
Vulnerability patch classification. Early research such as Big-Vul (Fan et al., 2020) and
PatchDB (Wang et al., 2021) focuses on binary classification, i.e., determining whether a given
commit constitutes a vulnerability fix. Big-Vul provides CVE-labeled snippets but lacks complete

2https://anonymous.4open.science/r/gitpatchdb-2EC7
3GITPATCHDB is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-

tional (CC BY-NC-SA 4.0).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

diffs or commits, limiting itself to downstream retrieval tasks. PatchDB extends coverage with
synthetic and wild patches, but it only supports C/C++ and does not incorporate interprocedural or
alias-aware analyses. Similarly, SPI (Zhou et al., 2021) and GraphSPD (Wang et al., 2023) provide
large-scale annotations but are limited to intraprocedural views, often at the function level and without
alias analysis, thereby restricting semantic expressiveness. CommitBART (Liu et al., 2022) scales to
millions of commits but lacks any CVE linkage, rendering it unsuitable for
Vulnerability patch search. Recent retrieval-based systems such as VCMatch (Wang et al., 2022)
and PatchScout (Tan et al., 2021) rely on shallow textual features or ensemble ranking methods, and
are constrained to small, manually curated datasets. Tracing-based tools (Xu et al., 2022) depend on
repository links, which frequently become obsolete due to refactoring, branch renaming, or repository
deletions. Moreover, none of these methods support scalable, multi-language search or leverage
alias-aware, interprocedural semantics, with limitations summarized in Table 1.

Table 1: Comparisons of vulnerability patch analysis datasets.
Dataset (Problem Type) CVE-linked Commits Commit Diff Program Slicing Pointer Analysis Languages
PatchDB
Security Patch Classification 4,076 ✓ ✗ ✗ C/C++ only

SPI
Security Patch Classification 1,045 ✓ ✗ ✗ C only

Big-Vul
Security Patch Classification 3,754 ✓ ✗ ✗ C/C++ only

GraphSPD
Security Patch Classification 5,1214 ✓ ✓ Intraprocedural ✗ C/C++ only

CommitBART
Commit Understanding & Generation ✗ Not CVE-linked ✓ ✗ ✗ Multi-lang (7)

PatchScout
Vulnerability Patch Search 1,628 ✓ ✗ ✗ Multi-lang (2)

VCMATCH
Vulnerability Patch Search 1,669 ✓ ✗ ✗ Multi-lang (3)

GitPatchDB
Vulnerability Patch Search 12,629 ✓ ✓ Interprocedural ✓ Multi-lang (10)

In contrast, GITPATCHDB
is designed to address these
limitations by integrating
rich semantics of both
vulnerabilities and patches
with automatic scalable in-
terprocedural slicing and
pointer analysis across mul-
tiple languages. Prior lit-
erature (Smaragdakis et al.,
2015; Hind & Pioli, 2000) highlights the critical role of pointer analysis in capturing data and control
dependencies, while code property graphs (CPGs) (Yamaguchi et al., 2014) have proven effective
for interprocedural vulnerability detection. As Ponta et al. (Ponta et al., 2019) note that existing
CVE-to-patch mappings suffer from link deterioration and metadata inconsistencies, limiting the
reliability of existing resources, GITPATCHDB offers a semantic-rich dataset that includes CVE
descriptions, commit messages, and program slices, etc., rather than unstable links. To the best of
our knowledge, GITPATCHDB is the first dataset to provide end-to-end CVE-to-patch search with
interprocedural semantics, complete CVE metadata, and retrieval-oriented code embeddings, filling a
critical gap in vulnerability patch analysis research.

We now turn to related work in contrastive learning, the core technique underlying CNPP and
essential for enabling cross-modal vulnerability patch search.
Contrastive Learning for Cross-Modal Alignment. Inspired by recent advances in multimodal
learning (e.g., CLIP (Radford et al., 2021), SimCLR (Chen et al., 2020), SimCSE (Gao et al., 2021)),
CNPP employs contrastive pretraining to align textual vulnerability descriptions and source-level
code patches in a shared semantic space. Gui et al. (Gui et al., 2022) demonstrated the efficacy of
contrastive learning for vulnerability detection, while Allamanis et al. (Allamanis et al., 2021)showed
its potential for code representation. Our work extends these insights to CVE-to-patch retrieval,
addressing the semantic gaps observed in previous vulnerability datasets (Zhou et al., 2019).

3 THE GITPATCHDB DATASET

3.1 GITPATCHDB OVERVIEW

Table 2: GITPATCHDB repository size distribu-
tion.

Size Interval (KB) Repository Count
(0, 1,000] 636
(1,000, 5,000] 690
(5,000, 20,000] 655
(20,000, 50,000] 433
(50,000, 100,000] 268
(100,000, 250,000] 163
(250,000, 500,000] 89
(500,000, 1,000,000] 37
(1,000,000, 2,500,000] 13
(2,500,000, 5,444,607] 11

We introduce GITPATCHDB, a large-scale
dataset that links software vulnerability reports,
e.g., CVEs, to their corresponding code patches.
The dataset contains 14,575 total samples, of
which the positive subset comprises 12,629
CVE-commit pairs spanning 2010-2023 and
drawn from 3,071 distinct GitHub/GitLab/SVN
open-source program code repositories, with its code repository size statistics summarized in Table 2.

Dataset samples of GITPATCHDB comprise two complementary components: CVE side and patch
side: (i) CVE side includes natural language descriptions of the vulnerability, i.e., CVE identifier,

4The GraphSPD dataset does not explicitly report the total number of CVE-linked commits. The cited 5,121
commits is an upper bound by merging SPI-DB and PatchDB, which GraphSPD extends for greater diversity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: On-the-fly co-analysis of program slicing and pointer analysis.

1

Function ENHANCEDDYNAMICSLICING(P):
Input :Program P with source files
Output :R: Pointer-aware, context-sensitive slice
/* Step 1: Graph Construction (AST, CFG, DFG) */

2 (GAST, GCFG, GDFG)← BUILDGRAPHS(P)
/* Initialize slicing criteria and analysis state */

3 ∆← GETMODIFIEDLINES(P) // Patch diff lines (e.g., deleted)
4 W ← MAPLINESTONODES(GDFG,∆) // Initial slice worklist
5 Π← ∅ // Points-to map: Var 7→ HeapLoc
6 R← ∅, converged← False
7 while ¬converged do

/* Step 2: Forward and Backward Interprocedural Slicing */
8 S′ ← ∅
9 foreach v ∈W do // v: node in the DFG from diff

10 foreach d ∈ {fwd, bwd} do // d: slice direction
11 S′ ← S′ ∪ INTERPROCEDURALSLICE(GDFG, v,Π, d)

/* Step 3: Flow-Sensitive Pointer Analysis */
12 Πnew ← FLOWSENSITIVEANDERSEN(GCFG,Π,∆)

/* Step 4: Graph Update and Convergence Check */
13 if CFGCHANGED(GCFG,Πnew) then
14 (GCFG, GDFG)← UPDATEGRAPHS(GCFG,Πnew)
15 UPDATEDEFUSECHAINS(GDFG,Πnew)
16 W ← GETAFFECTEDNODES(GDFG, S

′)
17 if (Πnew, S

′) = (Π, R) then
18 converged← True; // Converged: alias and slice unchanged
19 R← R ∪ S′

20 else
21 Π← Πnew, R← R ∪ S′,
22 W ←W ∪ GETNEWWORKITEMS(GDFG,Πnew)
23 return R

CVE detailed description, and CVE references, e.g., CWE category and CVSS severity score. (ii)
Patch side provides the context and technical details of the fix, including commit message, commit
diff that captures the exact code changes, and interprocedural program slice, which enriches the code
semantics by incorporating relevant control and data dependencies across function boundaries.

3.2 PROGRAM ANALYSES IN GITPATCHDB CURATION

3.2.1 MOTIVATION

The aforementioned interprocedural slices extend the patch context, enabling more comprehensive
and accurate analysis of both the vulnerability and its remediation. This requires automatic program
analysis techniques of program slicing and pointer analysis, as motivated in the following:
Motivating example. CVE-2019-17498 is an integer overflow vulnerability in libssh2 5.
Program slicing. The commit message of CVE-2019-17498 vulnerability, “packet.c: improve
message parsing”, obscures the nature of the bug. Thus, only commit diff rarely captures the full
semantic footprint of a vulnerability. Code diffs reflect syntactic edits, but omit surrounding context
such as alias-resolved variables, call chains, and implicit program flows. Applying interprocedural
slicing to the deleted lines reveals that the overflow arose from parsing an attacker-controlled
length field (via _libssh2_ntohu32), followed by an insufficient bounds check (if (len <
datalen - 13)). The forward slice shows this unchecked value propagates into the disconnect
logic, risking an out-of-bounds read. By tracing both data and control dependencies across function
boundaries, the slicing reconstructs a precise narrative of what was vulnerable and how it was
fixed—bridging the abstraction gap between the CVE and the source-level patch.
Pointer analysis. Traditional program slicing struggles with real-world code due to pointer aliasing
and interprocedural flows (Weiser, 1981; Tip, 1994; Lhoták & Hendren, 2003; Pearce et al., 2007;
Sridharan & Bodík, 2006). Slicing directly from deleted lines without pointer analysis often fails
to capture indirect flows (e.g., *p = buf) or shared dependencies across procedure boundaries.
To recover full semantic context, we embed flow-sensitive pointer analysis into an interprocedural
slicing pipeline and iterate to convergence. The process alternates between pointer-aware def-use
slicing and pointer resolution via a customized Andersen-style analysis.

5The movitvating example details can be found in Appendix B

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Commit Message
Embedding

Commit Diff
Embedding

Commit Code
Embedding

Patch
Embedding

BiLSTM
Layer-2

BiLSTM
Layer-1

BiLSTM
Layer-3

M
ulti-H

ead A
ttention

A
dd &

N

orm

Cross-
Attention

Cross-
Attention

BiLSTM
Layer-2

BiLSTM
Layer-1

BiLSTM
Layer-3

M
ulti-H

ead A
ttention

A
dd &

N

orm

Residual
Connection

Q

Q

K

K

V

V

M
LP

Bidirectional
Cross-Attention

Cross-
Attention

Cross-
Attention

Q

Q

K

KV

M
LP

Bidirectional
Cross-Attention

V

Residual
Connection

P
A
T
C
H

CVE Embedding
COSINE(EPatch, ECVE) Similarity

Score

CVE Patch Ranking

1

2

3

4

5

k

+
+

+

+
+

+
+

+
+

+

+
+

+
+

+
+

+

+
+

+
+

Commit
Message

Commit
Diff

+++
–––
+++
–––

Interprocedural
Program Slice

CVE
Description

+
+

+
+

+
+

+

C
V
E

Matching

Figure 1: Overview of GITPATCHDB and downstream task CNPP.
3.2.2 ANALYSES DETAILS

Program slicing is a program analysis technique that extracts the subset of program statements that
affect (backward slice) or are affected by (forward slice) a given slicing criterion such as a variable or
line of code (Weiser, 1981; Tip, 1994).

Pointer analysis is another program analysis technique that analyzes the set of abstract locations each
pointer variable may point to (Møller & Schwartzbach, 2023). With the knowledge of such aliasing
information, it can produce useful dataflow and control flow analysis results.

We listed our on-the-fly co-analysis of program slicing and pointer analysis in Algorithm 1. In a
nutshell, this process involves four stages: Step 1. On-the-Fly Graph Construction (Line 2); Step 2.
Pointer-Aware Def-Use Slicing (Lines 8-11); Step 3. Flow-Sensitive Pointer Analysis (Line 12); Step
4. Convergence and fixed-point check (Lines 13-22). This algorithm offers three salient features 6:
Interprocedural program slicing. In our work, we adopt a static, context-sensitive interprocedural
slicing approach, enhanced with pointer analysis to resolve indirect dependencies. To the best of
our knowledge, we are the first interprocedural slicing approach in patch analysis datasets, as listed
in Table 1.
Flow-sensitive pointer analysis. Classic pointer analysis such as Andersen’s pointer analysis (An-
dersen & Lee, 2005) is flow-insensitive, which computes over-approximated, global alias sets without
tracking control-flow order and can introduce spurious def-use edges. In our work, we design a
flow-sensitive pointer analysis to precisely reason about the aliasing relationships between program
variables. To the best of our knowledge, we are the first pointer analysis adopted in patch analysis
datasets, as listed in Table 1.
On-the-fly co-analysis of program slicing and pointer analysis. In order to analyze vulnerable
programs at scale in the wild real-world cases, GITPATCHDB performs co-analysis of program slicing
and pointer analysis on the current program slice on-the-fly and extends the analysis scope gradually.
This design allows GITPATCHDB to scale slicing across 12,000 patches without sacrificing semantic
precision or completeness.

4 METHOD

Our approach, CNPP, builds on the GITPATCHDB dataset to learn semantic alignment between
vulnerability descriptions and their corresponding code patches. We address two key challenges: (1)
embedding scalability. Patch code diffs and alias-aware program slices often exceed 10K tokens,
making raw representations inefficient, noisy, and even infeasible, and (2) cross-modal matching.
Natural language CVE descriptions must be effectively aligned with programming language written
patches. We tackle these challenges via using hierarchical attention for compact, context-aware code
embeddings and contrastive learning to train a shared embedding space across modalities.

4.1 CROSS-MODAL EMBEDDING

Vulnerability patch retrieval requires aligning heterogeneous information sources: natural language
descriptions, commit messages, diffs, and interprocedural code slices. However, these inputs can
be extremely long: diffs in our dataset exceed 819k tokens, and static slicing generates over 1.3M

6The algorithm details of our program analysis can be found in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Token-length Distribution. From left: slice log-hist, slice violin, diffs log-hist, and diffs
violin. Plots show that diffs/slices have a heavier tail and need larger context windows.

tokens. Existing large pretrained models like text-embedding-ada-002 (OpenAI, 2023a;b)
offer strong semantic encoding with up to 8192 tokens per pass, but this capacity remains insufficient
for processing real-world patches at scale.
Shared latent space. We design a unified representation framework that encodes all modalities
into a shared semantic space Rd. Given an input consisting, we obtain their token-level embeddings
as: a CVE description D (ECVE = fθ(D)), commit message M (EM = fθ(M)), diff Df (EDf

=

{fθ(dt)}Tt=1), and pointer-aware slice S (ES = {fθ(st)}Ut=1), where fθ(·) denotes the token encoder,
and T and U represent the sequence lengths of the diff and slice. These produce high-dimensional
matrices EDf

∈ RT×d and ES ∈ RU×d, capturing fine-grained semantic signals across modalities.

Directly processing these large embeddings is computationally infeasible. To address this, we apply
hierarchical sequence dimensionality reduction (see Section 4.2), which condenses these token-level
representations into dense, semantic-rich vectors. This allows our method to scale to large patches
while preserving essential context for cross-modal alignment. By embedding all modalities into a
unified space, our framework eliminates the need for specialized encoders, enabling efficient and
generalizable patch retrieval across diverse input types.

4.2 PATCH ENCODER

Processing vulnerability patches involving large diffs Df and pointer-aware slices S present severe
scalability challenges. Figure 2 shows that inputs are overwhelmingly long: around 95% of slices
require ∼235k tokens and around 95% of diffs with ∼143k, far beyond conventional 4-32k context
windows. This motivates the need for a hierarchical dimensionality reduction mechanism to distill
these long sequences into fixed-size embeddings while preserving vulnerability-relevant semantics.
Hierarchical sequence dimensionality reduction. Given token-level embeddings for the diff and
slice, we apply a three-layer residual-enhanced BiLSTM to reduce the sequence dimensionality:

h
(l)
t = BiLSTM(l)(h

(l−1)
t ,h

(l)
t−1) + h

(l−1)
t , l ∈ {1, 2, 3}, (1)

with h
(0)
t = fθ(xt). This yields dimension-reduced hidden states for both Df and S.

We further apply context-gated attention to summarize the sequence into a single vector (Bahdanau
et al., 2016; Vaswani et al., 2017). This mechanism computes token-level attention scores αt by
comparing each token ht with the overall sequence context h, defined as the mean of all token
embeddings. Specifically:

αt =
exp(w⊤ tanh(Wc[ht ⊕ h]))∑L

t′=1 exp(·)
, h =

1

L

L∑
t=1

ht, (2)

where ⊕ denotes vector concatenation. This formulation enables the model to assign higher im-
portance to tokens that are not only locally salient but also globally relevant in the context of the
entire sequence. We apply this attention mechanism to both the diff and slice sequences, resulting in
fixed-size embeddings zDf

∈ R1×d and zS ∈ R1×d.

Bidirectional diff-slice fusion. To capture interactions between the diff and its execution context, we
apply bidirectional cross-attention (Luong et al., 2015; Liu & Guo, 2019):

zds = softmax
(
QdK

⊤
s√

dk

)
Vs︸ ︷︷ ︸

Diff→Slice

+ softmax
(
QsK

⊤
d√

dk

)
Vd︸ ︷︷ ︸

Slice→Diff

(3)

where Qd = zdW
d
q , Ks, Vs = zsW

s
k, zsW

s
v, and vice versa. This dual pathway models both how

diffs affect surrounding slices context and how slices context validates the diff (Seo et al., 2018).

Cross-modal code-message fusion. We further refine the fused representation by applying bidi-
rectional cross-attention between the fused patch embedding zds ∈ R1×d and the commit message
embedding EM ∈ R1×d:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Effectiveness of GITPATCHDB.
GITPATCHDB Recall (%) MRRTop 1 2 3 4 5 6 7 8 9 10 15 20 25 30

95% CI 78.56 83.17 88.11 91.37 93.12 94.41 94.87 95.23 95.43 95.99 96.51 97.28 97.98 99.02 0.86

zpatch = CrossAttn(zds,EM) + CrossAttn(EM , zds) (4)

allowing mutual interaction between the patch context and the commit message, enabling the model
to jointly attend over both sources of information without imposing dominance constraints.

4.3 CVE ENCODER

The CVE description is encoded simply using the pretrained ada-002 model: zCVE = fθ(D). This
ensures that zCVE and zpatch are compatible in the same latent space, facilitating direct similarity
computation.

4.4 CONTRASTIVE VULNERABILITY-PATCH ALIGNMENT

We train CNPP to align zCVE and zpatch using the InfoNCE loss (van den Oord et al., 2019). Given a
batch B of N CVE–patch pairs (Di, Pi), we define:

L = − 1

N

N∑
i=1

log
exp

(
⟨zCVEi ,zpatchi ⟩

τ

)
∑N

j=1 exp
(⟨zCVEi ,zpatchj ⟩

τ

) (5)

where τ is a temperature hyperparameter and ⟨·, ·⟩ denotes dot product. The objective encourages
matching CVE–patch pairs to lie close in the embedding space while pushing apart non-matching
ones. At inference time, we compute cosine similarity:

sim(zCVE, zpatch) =
z⊤CVEzpatch

∥zCVE∥ · ∥zpatch∥
(6)

This enables efficient top-k retrieval for a given vulnerability. By contrastively training over multiple
modalities (Chen et al., 2020; Radford et al., 2021) and enforcing scalable dimensionality reduction
on long patch contexts, CNPP provides a principled and practical solution to vulnerability patch
search.

5 EXPERIMENTS AND EVALUATION

5.1 IMPLEMENTATION AND EXPERIMENTAL SETUP

System and frameworks. GITPATCHDB is implemented in Scala and Python, integrating Jo-
ern 7 for multi-language intraprocedural CPG extraction. We extend it to interprocedural slicing
using NetworkX 8. Our multimodal encoder and contrastive training are implemented in PyTorch 9.
Experiments run on an Ubuntu 22.04 server with NVIDIA H100 GPUs and AMD EPYC CPUs.
Training configuration. We train our CNPP model for using the AdamW optimizer with a learning
rate of 2× 10−5, batch size of 128, weight decay of 0.01, and gradient accumulation of 2 steps. A
temperature parameter τ = 0.005 is used for the InfoNCE loss, and early stopping is applied based
on validation loss with a patience of 3 epochs.
Dataset composition and splits. Our total 14,575 dataset includes 12,629 CVE-linked patches.
We follow a stratified 70/10/20 train/validation/test split at the patch level. To simulate realistic
retrieval scenarios, we augment the test set with 1,946 randomly selected non-vulnerability (negative)
patches, ensuring the model is evaluated against both true and irrelevant candidates. All code, data,
and evaluation scripts are publicly available at https://anonymous.4open.science/r/
gitpatchdb-2EC7 to support full reproducibility.

5.2 RETRIEVAL EFFECTIVENESS

We evaluate CNPP on top-k patch retrieval, using CVE descriptions and pre-patch slices as queries.
As shown in Table 3, GITPATCHDB achieves Accuracy@1 of 78.56% and MRR of 0.86, consistently
outperforming baselines across all k (Table 4). All results are averaged over five independent runs with

7https://joern.io/
8https://networkx.org/
9https://pytorch.org/

7

https://anonymous.4open.science/r/gitpatchdb-2EC7
https://anonymous.4open.science/r/gitpatchdb-2EC7
https://joern.io/
https://networkx.org/
https://pytorch.org/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

different random seeds to account for variability due to model initialization and data sampling. We
report mean performance along with 95% confidence intervals, computed as±1.96 times the standard
error of the mean across five independent runs. We observe stable performance with low variance
across all reported metrics, demonstrating the robustness of CNPP in realistic retrieval settings.
Error Analysis. We identify two primary sources of false positives: limitations in CVE descriptions
and patch ambiguity. On the CVE side, vague or inconsistent descriptions in the National Vulnerability
Database often lack technical precision, leading to superficial or misleading matches. On the patch
side, errors are often caused by low-quality or sparse commit messages, large commits that combine
security fixes with unrelated changes, or patches addressing multiple issues simultaneously. These
issues hinder precise alignment and underscore the difficulty of bridging noisy natural language
descriptions with complex code changes in real-world software repositories.

5.3 COMPARATIVE ANALYSIS Table 4: Comparative analysis of GITPATCHDB.

Top N
PATCHSCOUT VCMATCH GITPATCHDB

(manual keyword search) (manual keyword search) (automatic search)

Accuracy (%) Accuracy (%) Accuracy (%)
1 57.58 63.13 78.56
2 60.60 74.24 83.17
3 66.68 77.75 88.11
4 71.70 81.30 91.37
5 78.73 84.39 93.12
6 81.92 87.99 94.41
7 83.22 89.38 94.87
8 84.14 90.01 95.23
9 86.88 90.47 95.43

10 87.73 92.22 95.99
15 88.68 94.61 96.51
20 89.01 96.02 97.28
25 89.51 97.44 97.98
30 90.17 98.29 99.02

Baselines. We compare GITPATCHDB against
two state-of-the-art dataset-based approaches:
PATCHSCOUT (Tan et al., 2021) and VC-
MATCH (Wang et al., 2022), both designed
for CVE-to-patch research. We exclude
TRACER (Xu et al., 2022), a web-based dynamic
tracing tool that neither requires nor produces a
reproducible dataset. Other works on patch clas-
sification (Liu et al., 2022; Wang et al., 2021;
Fan et al., 2020; Tian et al., 2012; Wang et al.,
2023; Zhou et al., 2021; 2023), patch presence
testing (Bhandari et al., 2021; Dai et al., 2020), and vulnerability detection (Kim et al., 2017; Li et al.,
2016) are out of scope, as they address different problem settings.

We evaluate GITPATCHDB, VCMATCH (Wang et al., 2022), and PATCHSCOUT (Tan et al., 2021)
on a common test set. As shown in Table 4, GITPATCHDB achieves superior performance with
Accuracy@1 of 78.56%, Accuracy@3 of 88.11%, Accuracy@10 of 95.99%, with nearly all correct
patches retrieved within the top 30 results, substantially outperforming both baselines. Unlike VC-
MATCH and PATCHSCOUT, which rely on manual keyword engineering, GITPATCHDB operates
fully automatically. We observe that baseline performance is lower than reported in their original pub-
lications, likely due to the inclusion of repositories with sparse commit messages in our test set, which
is a common challenge in real-world projects like Wireshark and Apache Airflow. GITPATCHDB ’s
multimodal encoding of both textual and code-level inputs offers robust retrieval even when commit
metadata is incomplete, providing a significant advantage over purely keyword-based approaches.

5.4 EMBEDDING ANALYSIS Table 5: Additional baselines on GITPATCHDB
with frozen encoders and learned projection heads.

Top N Qwen3 SparseCoder GITPATCHDB (CNPP)
1 73.68 58.33 78.56
2 83.34 69.44 83.17
3 88.89 73.15 88.11
4 92.06 78.74 91.37
5 92.95 81.23 93.12
6 93.48 83.33 94.41
7 94.33 86.55 94.87
8 95.13 87.96 95.23
9 95.48 87.97 95.43

10 95.95 89.09 95.99
15 96.39 90.12 96.51
20 97.04 90.33 97.28
25 97.25 90.31 97.98
30 98.61 92.48 99.02

In addition to our primary baselines, we evalu-
ated recent non-OpenAI embedding models 10.
Setup. We evaluate Qwen3-embedding (Yang
et al., 2025) and SparseCoder (Yang et al., 2024)
as frozen encoders for CVE text and patch code.
Lightweight modality-specific projection heads
map encoder outputs into a shared space trained
with a CLIP-style contrastive loss. Backbone
embeddings remain fixed; only the projection
heads are optimized.
Results. Without task-specific tuning, Qwen3 delivers competitive retrieval and closely approaches
our supervised CNPP model; SparseCoder trails but remains strong, as listed in Table 5. These
results indicate that our retrieval method is robust to the choice of embedding encoder, consistently
maintaining strong performance. Note that SparseCoder underperforms due to objective mismatch
(seq2seq + sparse activations) and English centric pretraining on our multilingual GITPATCHDB.
Multilingual pretraining with contrastive fine-tuning should mitigate the discrepancy.

10Additional baselines evaluation result details can be found in Appendix E.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Ablation study of GITPATCHDB.
Top Preprocessing Ablation Study (%) Model Ablation Study (%) GITPATCHDB
N M MD-TRU-AP MD-CON-AP MDC-TRU-AP MDC-CON-AP MLP-RDC SUM-FUS COS-SIM (%)

1 40.90 (37.66 ↓) 50.13 (28.43 ↓) 53.12 (25.44 ↓) 52.65 (25.91 ↓) 52.52 (26.04 ↓) 61.32 (17.24 ↓) 70.56 (8.00 ↓) 73.88 (4.68 ↓) 78.56
2 47.47 (38.66 ↓) 55.17 (28.00 ↓) 58.18 (24.99 ↓) 57.83 (25.34 ↓) 58.92 (24.25 ↓) 69.22 (13.95 ↓) 79.15 (4.02 ↓) 79.34 (3.83 ↓) 83.17
3 50.51 (39.66 ↓) 60.23 (27.88 ↓) 62.22 (25.89 ↓) 62.18 (25.93 ↓) 64.07 (24.04 ↓) 72.19 (15.92 ↓) 81.26 (6.85 ↓) 82.39 (5.72 ↓) 88.11
4 52.53 (40.66 ↓) 65.24 (26.13 ↓) 66.75 (24.62 ↓) 66.62 (24.75 ↓) 66.91 (24.46 ↓) 75.73 (15.64 ↓) 81.74 (9.63 ↓) 87.43 (3.94 ↓) 91.37
5 53.54 (41.66 ↓) 66.78 (26.34 ↓) 68.27 (24.85 ↓) 68.31 (24.81 ↓) 68.50 (24.62 ↓) 77.12 (16.00 ↓) 87.50 (5.62 ↓) 88.78 (4.34 ↓) 93.12
6 55.05 (42.66 ↓) 66.98 (27.43 ↓) 68.38 (26.03 ↓) 69.83 (24.58 ↓) 69.94 (24.47 ↓) 77.98 (16.43 ↓) 88.29 (6.12 ↓) 90.30 (4.11 ↓) 94.41
7 57.07 (43.66 ↓) 68.29 (26.58 ↓) 69.79 (25.08 ↓) 70.29 (24.58 ↓) 70.58 (24.29 ↓) 78.48 (16.39 ↓) 89.51 (5.36 ↓) 91.99 (2.88 ↓) 94.87
8 58.89 (44.66 ↓) 70.30 (24.93 ↓) 70.33 (24.90 ↓) 71.54 (23.69 ↓) 71.69 (23.54 ↓) 80.20 (15.03 ↓) 91.51 (3.72 ↓) 92.01 (3.22 ↓) 95.23
9 61.11 (45.66 ↓) 71.81 (23.62 ↓) 72.37 (23.06 ↓) 73.21 (22.22 ↓) 73.38 (22.05 ↓) 80.91 (14.52 ↓) 92.20 (3.23 ↓) 93.92 (1.51 ↓) 95.43

10 62.13 (46.66 ↓) 72.62 (23.37 ↓) 73.81 (22.18 ↓) 73.92 (22.07 ↓) 74.12 (21.87 ↓) 81.18 (14.81 ↓) 92.97 (3.02 ↓) 94.11 (1.88 ↓) 95.99
15 68.18 (47.66 ↓) 72.83 (23.68 ↓) 73.83 (22.68 ↓) 74.15 (22.36 ↓) 74.88 (21.63 ↓) 82.01 (14.50 ↓) 93.81 (2.70 ↓) 95.33 (1.18 ↓) 96.51
20 69.19 (48.66 ↓) 73.33 (23.95 ↓) 75.07 (22.21 ↓) 76.36 (20.92 ↓) 76.91 (20.37 ↓) 82.92 (14.36 ↓) 94.18 (3.10 ↓) 96.01 (1.27 ↓) 97.28
25 72.22 (49.66 ↓) 76.33 (21.65 ↓) 75.08 (22.90 ↓) 77.95 (20.03 ↓) 78.09 (19.89 ↓) 82.91 (15.07 ↓) 96.18 (1.80 ↓) 97.26 (0.72 ↓) 97.98
30 75.76 (50.66 ↓) 83.53 (15.49 ↓) 75.08 (23.94 ↓) 78.31 (20.71 ↓) 78.88 (20.14 ↓) 83.44 (15.58 ↓) 96.53 (2.49 ↓) 98.21 (0.81 ↓) 99.02

5.5 ABLATION ANALYSIS

Feature Ablation Analysis. To examine the effect of contextual richness on retrieval performance,
we construct five model variants: (1) M: message, (2) MD-TRU-AP: message + truncated diff, (3)
MD-CON-AP: message + concatenated diff, (4) MDC-TRU-AP: message + truncated diff + truncated
sliced code, (5) MDC-CON-AP: message + concatenated diff + concatenated sliced code. Results
indicate a monotonic performance improvement with the inclusion of additional modalities, reaching
its highest with MDC-CON-AP. As listed in Table 6, results affirm that GITPATCHDB ’s multimodal
patch metadata offers complementary semantic context, spanning natural language and code structure
and collectively enhancing retrieval accuracy.
Model Ablation Analysis. Our reference retrieval models:

• MLP-RDC: Replacing the residual BiLSTM encoder with a simple MLP leads to a signifi-
cant 17.24% degradation in Recall@1, underscoring the importance of sequential modeling for
capturing token-level dependencies in diffs and slices.
• SUM-FUS: Substituting the cross-attention fusion mechanism with naive element-wise summation

reduces Recall@1 by 8.00%, validating that GitPatchDB provides sufficient multimodal diversity
to benefit from structured attention-based fusion.
• COS-SIM: Replacing the contrastive InfoNCE objective with cosine similarity ranking incurs a

minor 4.68% drop in Recall@1, highlighting the dataset’s compatibility with contrastive learning
frameworks that leverage both positive and negative sample pairs.

Takeaways. These ablation studies highlight GITPATCHDB ’s effectiveness in enabling controlled,
systematic evaluation of multimodal retrieval systems. The feature ablation results demonstrate that
GitPatchDB offers rich, layered patch metadata that benefits from multi-level contextual fusion. The
model ablation demonstrates that GITPATCHDB introduces sufficient complexity to reveal the impact
of architectural decisions. These findings position GITPATCHDB as a rigorous and informative
benchmark for advancing research in multimodal vulnerability patch analysis.

5.6 SCALABILITY ANALYSIS

1000 2000 3000 4000 5000 6000 7000 8000
Training Set Size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Top-1
Top-3
Top-5

Figure 3: Scalability of GITPATCHDB.

We further evaluate the scalability of GITPATCHDB by
training on increasingly larger subsets of GitPatchDB.
As shown in Figure 3, retrieval performance steadily im-
proves with larger training sizes, achieving competitive
accuracy with as few as 6,000 examples and continuing
to improve beyond 8,000 samples. These results demon-
strate GitPatchDB’s capacity to fuel future advances in
large-scale, data-driven vulnerability analysis.

6 CONCLUSIONS

We introduce GITPATCHDB, a large-scale, semantic-rich dataset for vulnerability patch analysis
that offers a reliable foundation for linking CVEs to their patch fixes in machine learning research.
Our proposed CNPP framework bridges natural language with progamming language code changes,
significant outperforms prior methods and achieving state-of-the-art accuracy (95.99% accuracy).
GitPatchDB’s structured metadata and open availability address longstanding reproducibility barriers
in vulnerability research, providing a scalable benchmark for training and evaluating machine learning
models. Overall, by lowering the barrier to automatic patch analysis, GITPATCHDB advances both
academic research and industrial practices in software security.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Data Collection. GITPATCHDB is built exclusively from publicly accessible security-patch commits
that correspond to already disclosed CVEs across GitHub, GitLab, and SVN. No zero-day vulnerabil-
ities or live exploits are included. All data collection complies with repository licenses and the terms
of service of the respective platforms.

License. GITPATCHDB is released under the Creative Commons Attribution-NonCommercial-
ShareAlike (CC BY-NC-SA 4.0) license, permitting non-commercial academic use.

Privacy. To safeguard privacy, personal identifiers (e.g., author names, email addresses, usernames)
are removed. Only commit hashes and repository names are retained to ensure reproducibility.

User Agreement. GITPATCHDB is distributed with a Responsible Use Policy and a User Agreement
that explicitly prohibit exploit development, unauthorized penetration testing, surveillance, or other
harmful activities. Violations may result in permanent access revocation and potential legal action
under the applicable license and jurisdictional laws.

Fairness. We acknowledge that GITPATCHDB may inherit natural representation biases from the
underlying public CVE data. No behavioral, biometric, conversational, or telemetry data is collected
or included.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection
and repair. Advances in Neural Information Processing Systems, 34:27865–27876, 2021.

Lars Ole Andersen and Peter Lee. Program analysis and specialization for the c programming
language. 2005. URL https://api.semanticscholar.org/CorpusID:20876553.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio. End-to-
end attention-based large vocabulary speech recognition. In 2016 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pp. 4945–4949. IEEE, 2016.

Guru Bhandari, Amara Naseer, and Leon Moonen. CVEfixes: automated collection of vulnerabilities
and their fixes from open-source software. In Proceedings of the 17th International Conference on
Predictive Models and Data Analytics in Software Engineering, pp. 30–39, 2021.

David W Binkley and Keith Brian Gallagher. Program slicing. Advances in computers, 43:1–50,
1996.

Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta, Andrian
Marcus, Gabriele Bavota, and Vincent Ng. Detecting missing information in bug descrip-
tions. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017, pp. 396–407, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450351058. doi: 10.1145/3106237.3106285. URL https:
//doi.org/10.1145/3106237.3106285.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning.
PMLR, 2020.

Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu Xing, Xiaohan Zhang, Xin
Tan, Min Yang, and Zhemin Yang. BScout: Direct whole patch presence test for java executables.
In 29th USENIX Security Symposium (USENIX Security 20), pp. 1147–1164. USENIX Association,
August 2020. ISBN 978-1-939133-17-5. URL https://www.usenix.org/conference/
usenixsecurity20/presentation/dai.

Debian Project. Debian: The universal operating system. https://www.debian.org, 2024.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. A C/C++ code vulnerability dataset with
code changes and CVE summaries. In Proceedings of the 17th international conference on mining
software repositories, pp. 508–512, 2020.

Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Transactions on software engineering, 33
(11):725–743, 2007.

Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. Large-scale vulnerability analysis. In
Proceedings of the 2006 SIGCOMM workshop on Large-scale attack defense, pp. 131–138, 2006.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Yi Gui, Yao Wan, Hongyu Zhang, Huifang Huang, Yulei Sui, Guandong Xu, Zhiyuan Shao, and
Hai Jin. Cross-language binary-source code matching with intermediate representations. In 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), pp.
601–612. IEEE, 2022.

Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular checking for buffer overflows
in the large. In Proceedings of the 28th International Conference on Software Engineering,
ICSE ’06, pp. 232–241, New York, NY, USA, 2006. Association for Computing Machinery.
ISBN 1595933751. doi: 10.1145/1134285.1134319. URL https://doi.org/10.1145/
1134285.1134319.

11

https://api.semanticscholar.org/CorpusID:20876553
https://doi.org/10.1145/3106237.3106285
https://doi.org/10.1145/3106237.3106285
https://www.usenix.org/conference/usenixsecurity20/presentation/dai
https://www.usenix.org/conference/usenixsecurity20/presentation/dai
https://doi.org/10.1145/1134285.1134319
https://doi.org/10.1145/1134285.1134319

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer analysis. In Proceedings of
the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’09, pp. 226–238, New York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605583792. doi: 10.1145/1480881.1480911. URL https://doi.org/10.1145/
1480881.1480911.

Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of lines of code. In
International Symposium on Code Generation and Optimization (CGO 2011), pp. 289–298, 2011.
doi: 10.1109/CGO.2011.5764696.

Michael Hind and Anthony Pioli. Which pointer analysis should i use? In Proceedings of the 2000
ACM SIGSOFT international symposium on Software testing and analysis, pp. 113–123, 2000.

Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 12(1):26–60, 1990.

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. Vuddy: A scalable approach for
vulnerable code clone discovery. In 2017 IEEE Symposium on Security and Privacy (SP), pp.
595–614, 2017. doi: 10.1109/SP.2017.62.

Sunghun Kim, Shivkumar Shivaji, and Jim Whitehead. A reflection on change classification in the
era of large language models. IEEE Transactions on Software Engineering, 51(3):864–869, 2025.
doi: 10.1109/TSE.2025.3539566.

Ondřej Lhoták and Laurie Hendren. Scaling java points-to analysis using spark. In Görel Hedin (ed.),
Compiler Construction, pp. 153–169, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN
978-3-540-36579-2.

Frank Li and Vern Paxson. A large-scale empirical study of security patches. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2201–2215, 2017.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. Vulpecker: an automated
vulnerability detection system based on code similarity analysis. In Proceedings of the 32nd annual
conference on computer security applications, pp. 201–213, 2016.

Gang Liu and Jiabao Guo. Bidirectional lstm with attention mechanism and convolutional layer for
text classification. Neurocomputing, 337:325–338, 2019.

Shangqing Liu, Yanzhou Li, Xiaofei Xie, and Yang Liu. CommitBART: A large pre-trained model
for github commits. arXiv preprint arXiv:2208.08100, 2022.

V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java applications with
static analysis. In Proceedings of the 14th Conference on USENIX Security Symposium, USA,
2005. USENIX Association.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

MvnRepository. Maven central repository. https://mvnrepository.com/repos/
central, 2025.

Anders Møller and Michael I. Schwartzbach. Static Program Analysis. May 2023. URL https:
//cs.au.dk/~amoeller/spa/.

National Institute of Standards and Technology. National Vulnerability Database. https://nvd.
nist.gov, 2025.

Viet Hung Nguyen and Fabio Massacci. The (un) reliability of nvd vulnerable versions data: An
empirical experiment on google chrome vulnerabilities. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, pp. 493–498, 2013.

OpenAI. Openai embeddings documentation, 2023a. URL https://platform.openai.com/
docs/guides/embeddings.

12

https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1145/1480881.1480911
https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central
https://cs.au.dk/~amoeller/spa/
https://cs.au.dk/~amoeller/spa/
https://nvd.nist.gov
https://nvd.nist.gov
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4 technical report, 2023b.

David J. Pearce, Paul H.J. Kelly, and Chris Hankin. Efficient field-sensitive pointer analysis of
C. ACM Trans. Program. Lang. Syst., 30(1):4–es, November 2007. ISSN 0164-0925. doi:
10.1145/1290520.1290524. URL https://doi.org/10.1145/1290520.1290524.

Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric Dangremont. A
manually-curated dataset of fixes to vulnerabilities of open-source software. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR), pp. 383–387. IEEE, 2019.

Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. Detection, assessment and mitigation of
vulnerabilities in open source dependencies. Empirical Software Engineering, 25(5):3175–3215,
2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/radford21a.html.

Red Hat, Inc. Red hat security. https://access.redhat.com/security/, 2024.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’95, pp. 49–61, New York, NY, USA, 1995a. Association
for Computing Machinery. ISBN 0897916921. doi: 10.1145/199448.199462. URL https:
//doi.org/10.1145/199448.199462.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’95, pp. 49–61, New York, NY, USA, 1995b. Association
for Computing Machinery. ISBN 0897916921. doi: 10.1145/199448.199462. URL https:
//doi.org/10.1145/199448.199462.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension, 2018. URL https://arxiv.org/abs/1611.01603.

Yannis Smaragdakis, George Balatsouras, et al. Pointer analysis. Foundations and Trends® in
Programming Languages, 2(1):1–69, 2015.

Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis for java.
In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06, pp. 387–400, New York, NY, USA, 2006. Association for Computing
Machinery. ISBN 1595933204. doi: 10.1145/1133981.1134027. URL https://doi.org/
10.1145/1133981.1134027.

Xin Tan, Yuan Zhang, Chenyuan Mi, Jiajun Cao, Kun Sun, Yifan Lin, and Min Yang. Locating the
security patches for disclosed oss vulnerabilities with vulnerability-commit correlation ranking. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3282–3299, 2021.

The MITRE Corporation. Common Vulnerabilities and Exposures. https://cve.mitre.org/,
2025.

Yuan Tian, Julia Lawall, and David Lo. Identifying linux bug fixing patches. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE), pp. 386–396, 2012. doi: 10.1109/ICSE.2012.
6227176.

Frank Tip. A survey of program slicing techniques. Centrum voor Wiskunde en Informatica
Amsterdam, 1994.

13

https://doi.org/10.1145/1290520.1290524
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://access.redhat.com/security/
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://arxiv.org/abs/1611.01603
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1133981.1134027
https://cve.mitre.org/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buenzli, and Martin
Vechev. Securify: Practical security analysis of smart contracts. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pp. 67–82, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding, 2019. URL https://arxiv.org/abs/1807.03748.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Shichao Wang, Yun Zhang, Liagfeng Bao, Xin Xia, and Minghui Wu. VCMatch: A ranking-
based approach for automatic security patches localization for oss vulnerabilities. In 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 589–
600, 2022. doi: 10.1109/SANER53432.2022.00076.

Shu Wang, Xinda Wang, Kun Sun, Sushil Jajodia, Haining Wang, and Qi Li. GraphSPD: Graph-based
security patch detection with enriched code semantics. In 2023 IEEE Symposium on Security and
Privacy (SP), pp. 2409–2426, 2023. doi: 10.1109/SP46215.2023.10179479.

Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. PatchDB: A large-scale security
patch dataset. In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 149–160, 2021. doi: 10.1109/DSN48987.2021.00030.

Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on Software
Engineering, ICSE ’81, pp. 439–449. IEEE Press, 1981. ISBN 0897911466.

Congying Xu, Bihuan Chen, Chenhao Lu, Kaifeng Huang, Xin Peng, and Yang Liu. Tracking patches
for open source software vulnerabilities. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 860–871,
2022.

Fabian Yamaguchi, Nicklaus Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering
vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security and Privacy, pp.
590–604, Berkeley, CA, USA, 2014. doi: 10.1109/SP.2014.44.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Xueqi Yang, Mariusz Jakubowski, Li Kang, Haojie Yu, and Tim Menzies. Sparsecoder: Advancing
source code analysis with sparse attention and learned token pruning, 2024. URL https:
//arxiv.org/abs/2310.07109.

Jiayuan Zhou, Michael Pacheco, Jinfu Chen, Xing Hu, Xin Xia, David Lo, and Ahmed E Has-
san. CoLeFunDa: Explainable silent vulnerability fix identification. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), pp. 2565–2577. IEEE, 2023.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

Yaqin Zhou, Jing Kai Siow, Chenyu Wang, Shangqing Liu, and Yang Liu. SPI: Automated identifica-
tion of security patches via commits. ACM Transactions on Software Engineering and Methodology
(TOSEM), 31(1):1–27, 2021.

14

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2310.07109
https://arxiv.org/abs/2310.07109

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX A: EMPIRICAL STUDY ON PATCHES IN VULNERABILITY
DATABASES

To assess the current state of patches in vulnerability databases, such as Common Vulnerabilities and
Exposures (CVE) and National Vulnerability Database (NVD), we conducted an empirical study on
the following research questions:

• RQ1: Patch Availability. What percentage of reported CVEs lack GitHub patch links?
• RQ2: Patch Functionality. What percentage of available patch links are non-functioning, and

what are the primary causes?
• RQ3: Patch Recoverability. What percentage of CVEs with non-functioning patch links can be

manually recovered?

A.1 PATCH AVAILABILITY (RQ1)

We examined the availability of explicit patch commits in 193,448 CVE entries from 1999 to 2022
in National Vulnerability Database (NVD) (National Institute of Standards and Technology, 2025).
To efficiently analyze this large volume of CVE entries, we first manually designed patch-matching
regular expressions, and then automatically searched for vulnerability patches using these regular
expressions within the CVE entries, focusing primarily on description section and references section.
The results revealed that 30.99% of the CVEs contained explicit patch commits. The matching patches
were primarily from open source repositories on GitHub, GitLab, BitBucket, SVN repositories, etc.

The aforementioned low percentage indicated limited public accessibility to vulnerable patches.
This limited accessibility may lead to the following security consequences: (i) Systems that rely on
software reuse may remain unpatched and susceptible to attacks. (ii) Security analysts and researchers
might face difficulties in analyzing the vulnerability status. In this paper, we focus on searching for
patches related to open-source software vulnerabilities.

A.2 PATCH FUNCTIONALITY (RQ2)

Based on the 59, 950 CVE entries with explicit patch commits, we further automatically analyzed
the functionality of these patch commits by cloning the repositories and checking out the commits.
Patch commits with clonable repositories and check-out-able commits were considered functioning.
The results revealed that only 35, 164 of these 59,950 patch commits were functioning, constituting
58.66%. This indicates that even among CVE entries with explicit patch commits, a significant
portion (41.34%, 24,786) were non-functioning.

We categorized these non-functioning patch commits into three types: Type-I: Repository relocation.
These patch commits lead to a 404 error due to the deletion or relocation of the repository; Type-II:
Branch relocation. These patch commits display messages about the absence of the linked commit in
any repository branch, often due to branch reorganization; Type-III: Merged commits. These patch
commits are directed to merged pull requests containing multiple commits. Tracking patches for
relocated repositories and branches remains necessary for legacy systems and those reusing code from
these sources. While manual analysis of these cases is possible, it would be tedious and error-prone,
highlighting the need for automatic patch search approaches.

A.3 PATCH RECOVERABILITY (RQ3)

We further conducted patch recoverability analysis on non-existing patch commits and non-
functioning patch commits.

• Non-existing Patch Commits Recovery. In this analysis, we randomly selected 800 CVE entries
without associated patch commits, and examined whether the patch commits could be manually
recovered. The methodology involved searching for patch commits and hosting repositories in
vulnerability databases such as NVD (National Institute of Standards and Technology, 2025) and
security advisories such as Debian (Debian Project, 2024) and Red Hat (Red Hat, Inc., 2024),
searching for commits within the found repositories using commands tailored to commit messages,
narrowing the search window to three months before and four months after each CVE report date,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

69.01%

13.62%

17.37%

CVE entries with commits
(Not cloneable)

CVE entries with commits
(Cloneable / check-out-able)

CVE entries
without commits

Figure 4: CVE database entries with explicit patch commits.

and rigorously reviewing potential patch commits. This meticulous validation process, conducted
over 2.5 months by 3 graduate students, successfully associated approximately 53% of the CVEs
that initially lacked patch commits.
• Non-functioning Patch Commits Recovery. In this analysis, we studies 765 non-functioning

patch commits in TRACER (Xu et al., 2022) dataset, and examined whether the patch commits
can be manually recovered. Our approches included: Type-I: Searching for the repository within
online source code hosts such as GitHub to discover new repository URLs. Type-II: Searching
within the project repository using git messages to locate new commit hash IDs corresponding
to relocated patch commits. Type-III: Manually examining the merged pull requests, and cross-
referencing information within the repository using author names of the pull requests and git
messages to recover the correct patch commits. Ultimately, while we successfully restored 80%
of the non-functioning patch commits, 152 CVEs with non-functioning patch commits could not
be recovered. Of these, 103 were hosted on GitHub, and 49 were on the Apache SVN websites.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B APPENDIX B: MOTIVATING EXAMPLE AND ITS SAMPLE IN GITPATCHDB

// --- Backward Slice (Variables/Expressions Leading to `datalen - 13`) ---
// datalen: Length of the received SSH packet (unsigned integer)
if (datalen >= 5) {
 ...
 if (datalen >= 9) {
 --- message_len = _libssh2_ntohu32(data + 5); // Read from network data
 +++ _libssh2_get_u32(&buf, &reason);
 +++ _libssh2_get_string(&buf, &message, &message_len); // Validates buffer limits
 +++ _libssh2_get_string(&buf, &language, &language_len); // No manual arithmetic
 ...
 // Bounds check with potential integer overflow:
 --- if (message_len < datalen - 13) { // <-- PROBLEMATIC LINE
 // --- Forward Slice (Consequences of `datalen - 13`) ---
 message = (char *)data + 9; // Offset derived from `datalen`
 language_len = _libssh2_ntohu32(data + 9 + message_len);
 language = (char *)data + 9 + message_len + 4; // Arbitrary offset
 ...

Figure 5: Motivating example.

CVE Side

CVE ID:
 CVE-2019-17498

CVE detailed description:

CVE Reference：
CWE-190 Integer Overflow or Wraparound;

 CVSS 3.x Severity and Vector Strings

Patch Side

Commit Message:

Commit Diff:

Code Slicing:

Figure 6: Motivating example sample in GITPATCHDB.

Motivating example. CVE-2019-17498 is an integer overflow vulnerability in libssh2, with
details illustrated in Figure 5 and Figure 6. The patch for CVE-2019-17498, shown in Figure 5,
includes both added (+++) and removed (---) lines from the code diff. To enrich the contextual
understanding of this vulnerability, our program analysis in GITPATCHDB applies both forward
slicing (orange arrows) and backward slicing (blue arrows), resulting in an interprocedural program
slice that spans relevant control and data dependencies across function boundaries. Figure 5 presents
the corresponding input sample in GITPATCHDB, which consists of two complementary components:
the CVE side and the patch side.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C APPENDIX C: PROGRAM ANALYSES IN GITPATCHDB

C.1 INTERPROCEDURAL PROGRAM SLICING

Program slicing primer. Program slicing extracts the subset of program statements that affect
(backward slice) or are affected by (forward slice) a given slicing criterion such as a variable or
line of code (Weiser, 1981; Tip, 1994). While early approaches focused on intraprocedural slicing,
modern applications require interprocedural slicing to accurately track data and control dependencies
across function boundaries (Reps et al., 1995a; Horwitz et al., 1990). These techniques extend
classic program dependence graphs with interprocedural edges and call-return matching to preserve
contextual semantics (Reps et al., 1995a). Additionally, robust slicing frameworks often integrate
alias-aware def-use chains, which are particularly relevant when analyzing pointer-heavy languages
like C/C++ (Binkley & Gallagher, 1996; Weiser, 1981). In our work, we adopt a static, context-
sensitive interprocedural slicing approach, enhanced with pointer-aware analysis to resolve indirect
dependencies during traversal.

Analysis motivation 1. Context richness. Slicing augments the diff with a contextual slice of
surrounding code, which often spans functions and aliases, yielding an average 6.8× expansion
in code relevant to the deleted lines. This captures how vulnerabilities propagate across program
structure, enabling more precise matching with natural-language CVE descriptions. This motivates
our interprocedural program slicing.

Analysis motivation 2. Analysis scalability. GITPATCHDB performs convergence-based slicing at
scale by alternating interprocedural slicing and flow-sensitive pointer refinement until a fixed point
is reached. While effective, this co-analysis loop poses scalability challenges across thousands of
patches. In order to analyze large-scale programs, prior works on scalable static analysis (Hackett
et al., 2006; Hardekopf & Lin, 2009) often assume whole-program visibility or rely on coarse-grained
modularity. Slicing engines such as PDG-based tools (Binkley & Gallagher, 1996; Weiser, 1981)
or taint tracking systems (Livshits & Lam, 2005) typically operate over precomputed global graphs,
with pointer analysis decoupled as a preprocessing phase, making them unsuitable for patch-level or
real-time analysis. In contrast, this desire of analysis scalability motivates our on-the-fly co-analysis
of program slicing and pointer analysis.

On-the-fly co-analysis of program slicing and pointer analysis. GITPATCHDB introduces a fully
on-the-fly, patch-centric pipeline that incrementally builds control and data flow graphs only for the
code related to each patch. As shown in Algorithm 1, graph structures are updated dynamically
(Line 14), and re-slicing is restricted to alias-affected nodes (Line 11), improving both precision and
efficiency.

Co-analysis design details. Our convergence loop terminates when both program slicing and pointer
analysis reach fix-points (Algorithm 1, Line 17), yielding a semantically complete, minimal patch
slice. Unlike prior systems that decouple slicing and aliasing (Lhoták & Hendren, 2003), we design
this co-analysis to eliminate both irrelevant statements and infeasible pointer aliases.

The process involves four stages:

Step 1. On-the-Fly Graph Construction. The co-analysis begins by parsing the program P into an
abstract syntax tree (AST) and constructing the interprocedural control-flow graph (CFG) and def-use
data-flow graph (DFG) (Horwitz et al., 1990). The CFG captures all control paths across function
calls, while the DFG encodes definition-use chains, as well as aliasing pointers. By preserving call
contexts in the co-analysis, we maintain precise analysis results across procedure boundaries (Reps
et al., 1995a). We extract the changed lines ∆ as the slicing criteria to initialize the slice worklist W .

Step 2. Pointer-Aware Def-Use Slicing. For each seed node v ∈ W , we compute a forward slice
fwd(v) and backward slice bwd(v) over the DFG (Tip, 1994), traversing both def-use and control-
dependence edges. Notably, this traversal is pointer-aware: when encountering indirect accesses
(e.g., *p), we use the current points-to map Π to determine valid aliases (Lhoták & Hendren, 2003).
For instance, if p 7→ {x, y}, an assignment to *p is treated as modifying both x and y. The union of
all slices forms the updated slice set S′, which is strictly more precise than traditional slicing due to
alias disambiguation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2: Flow-Sensitive Andersen’s Pointer Analysis

1

Function FLOWSENSITIVEANDERSEN(GCFG, S0, ∆):
Input :CFG GCFG, initial state S0, changed lines ∆
Output :Updated pointer state S

2 Q ← INITIALIZEWORKLIST(∆) // BFS queue for CFG nodes
3 S ← S0, VISITED ← ∅
4 whileQ ̸= ∅ do
5 n← Q.DEQUEUE()
6 VISITED ← VISITED ∪ {n}

/* Kill outdated relations before processing */
7 S ← S − GETKILLSET(n)
8 foreach s ∈ GETSTATEMENTS(n) do
9 Cs ← EXTRACTCONSTRAINTS(s)

10 foreach c ∈ Cs do
11 (Sadd,Skill)← PROCESSCONSTRAINT(c,S)
12 S ← (S − Skill) ∪ Sadd

/* Propagate to successors if state changed */
13 if S ̸= GETPREVSTATE(n) then
14 foreach succ ∈ GETSUCCESSORS(n) do
15 if succ /∈ VISITED then
16 Q.ENQUEUE(succ)

17 return S
Function PROCESSCONSTRAINT(c, S):

switch CONSTRAINTTYPE(c) do
case address-of do // p = &q

18 return ({pts(p) ⊆ {q}}, ∅)
19 case copy do // p = q
20 return ({pts(p) ⊆ pts(q)}, ∅)
21 case store do // ⋆p = q
22 return ({pts(⋆p) ⊆ pts(q)}, ∅)

Step 3. Flow-Sensitive Pointer Analysis. We refine alias sets by applying a flow-sensitive Andersen-
style points-to analysis (Sridharan & Bodík, 2006) restricted to nodes in the current slice S′. Unlike
flow-insensitive pointer analyses (Hardekopf & Lin, 2011), this approach tracks pointer updates
across control paths (Pearce et al., 2007), distinguishing aliasing pointers at different program points.
The result is an updated points-to map Π′, enabling us to prune infeasible aliasing relations and
improve the accuracy of data dependencies in the next slicing iteration.

Step 4. Convergence and fixed-point check. We update the CFG and DFG based on the new pointer
information Πnew (Algorithm 1, Lines 13-22). If control-flow or data dependencies change (e.g.,
resolving indirect calls), we rebuild edges and update the affected nodes. If neither the slice S′

nor pointer state Πnew changed, the co-analysis converges and reaches a fix-point. Otherwise, we
update the slicing result R← R ∪ S′ and repeat Phases 2-4. This loop continues until a fixed point
is reached, yielding a minimal and precise slice R that captures both interprocedural control / data
dependencies and pointer-based aliasing relations (Weiser, 1981; Reps et al., 1995b), critical for
modeling vulnerability semantics.

This detailed description of our program analysis highlight core novelty of our co-analysis: an on-the-
fly co-analysis that couples program slicing with pointer analysis to strengthen context richness and
analysis scalability. This approach is especially well-suited to security patches, where flaws often
span multiple files or functions and are mediated by aliasing or indirect control flow.

Co-analysis implementation details. In our co-analysis, GITPATCHDB incorporates deleted lines as
slicing roots. These lines are recovered from Git parent commits and treated as entry points for back-
ward slicing, providing richer semantic context. This integrates Git-based evolution tracking (Kim
et al., 2025; Fluri et al., 2007) with static def-use semantics, a combination overlooked in earlier
tools.

GITPATCHDB caches intermediate slices across patches with overlapping code, enabling parallelized
ingestion and eliminating redundant recomputation. These design choices collectively allow us to
scale slicing across 12,000 patches without sacrificing semantic precision or completeness.

GITPATCHDB stores backward and forward slices alongside patch metadata, enabling machine
learning models to consume fine-grained semantic context for downstream tasks. Unlike raw diffs,
these slices encode interpretable relationships between variables, control conditions, and pointer
dereferences, supporting contrastive CVE-to-patch alignment and vulnerability pattern learning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2 FLOW-SENSITIVE ANDERSEN’S POINTER ANALYSIS

In this section, we describe our flow-sensitive Andersen’s pointer analysis in details. We propose a
flow-sensitive variant of Andersen’s inclusion-based pointer analysis (Andersen & Lee, 2005), as
listed in Algorithm 2. Our flow-sensitive pointer analysis resolves constraints such as address-of,
copy, and store, across the interprecedural control-flow graph (CFG) on-the-fly, starting from the
original changed lines in the patch ∆ (Line 1).

• Initialization (Lines 2-3): A worklist Q is initialized with affected CFG nodes based on ∆, and
the pointer state S is initialized to S0.
• Constraint Solving (Lines 4-12): For each node n dequeued from Q, outdated pointer relations are

invalidated (Line 7). New constraints are extracted from statements in n (Lines 8-9) and processed
(Line 10) using the PROCESSCONSTRAINT function (Lines 18-25).
• Constraint Types:

• Address-of (p := &q): Adds {q} to PointsTo(p) (Line 21).
• Copy (p := q): Propagates PointsTo(q) to PointsTo(p) (Line 23).
• Store (∗p := q): Updates all targets of PointsTo(p) with PointsTo(q) (Line 25).

• Constraint Propagation (Lines 13-16): If the pointer state changes, successors are enqueued for
further processing.

Our flow- and context-sensitive pointer analysis balances precision and scalability, enabling fine-
grained tracking of pointer relationships across control-flow and calling contexts. This makes it
particularly suited for downstream tasks such as vulnerability detection, memory safety verification,
and interprocedural slicing.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D APPENDIX D: STATISTICS OF OUR GITPATCHDB

C C++ PHP Java

JavaScrip
t

Python Go
Ruby C# Swift

Programming Languages

0

100

200

300

400

500

600

700
722

513

445
388

356

268

159
127

11 6

Figure 7: Programming languages distribution in our dataset.

Table 7: Top 10 repositories with most CVEs in our dataset.

Project Category Language Description URL Count
Linux Kernel Operating System C Operating System Kernel http://git.kernel.org 1780
moodle Education PHP E-learning platform https://github.com/moodle/moodle 498
TensorFlow AI/ML Python Machine learning framework https://github.com/tensorflow/tensorflow 341
ChakraCore Web C++ JavaScript engine https://github.com/chakra-core/ChakraCore.git 218
ImageMagick Multimedia C Image processing software https://github.com/ImageMagick/ImageMagick 171
WordPress Web PHP Content management system https://github.com/WordPress/WordPress 158
phpmyadmin Management PHP Database management https://github.com/phpmyadmin/phpmyadmin 138
tcpdump Network C Network diagnostic tool https://github.com/the-tcpdump-group/tcpdump 125
rails Web Ruby Web application framework https://github.com/rails/rails 119
vim Editor C Text editor https://github.com/vim/vim 117

The programming languages distribution and the top 10 most CVEs repositories in our dataset are
illustrated in Figure 7 and Table 7, respectively. Note that C# and Swift appear only in the test set and
were not included in training, reflecting the natural underlying distribution of the source CVE corpus
during our collection window, where C#-based and Swift-based projects are comparatively rare.
Nevertheless, our results show strong zero-shot cross-language generalization to these languages,
achieving an Accuracy@10 of 95.99%.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E APPENDIX E: EMBEDDING BASELINES EVALUATION

Table 8: Additional baselines on GITPATCHDB with frozen encoders and learned projection heads.

Top N Qwen3 SparseCoder GITPATCHDB (CNPP)
1 73.68 58.33 78.56
2 83.34 69.44 83.17
3 88.89 73.15 88.11
4 92.06 78.74 91.37
5 92.95 81.23 93.12
6 93.48 83.33 94.41
7 94.33 86.55 94.87
8 95.13 87.96 95.23
9 95.48 87.97 95.43

10 95.95 89.09 95.99
15 96.39 90.12 96.51
20 97.04 90.33 97.28
25 97.25 90.31 97.98
30 98.61 92.48 99.02

Table 8 highlights the following key results:

• Qwen3 attains a Recall@10 of 95.95%, substantially outperforming SparseCoder (89.09%) and
nearly matching our supervised CNPP model (95.99%).
• At Recall@30, CNPP achieves 99.02%, while Qwen3 and SparseCoder reach 98.61% and 92.48%,

respectively.

E.1 SPARSECODER

Experimental Setup. SparseCoder (Yang et al., 2024) is designed and pre-trained for sequence-to-
sequence generation tasks such as code summarization, as stated in the paper: “We train all models for
10 epochs on the FunCom dataset” (Section 4.2), and its architecture incorporates an encoder-decoder
structure optimized for generating natural language summaries from code (Section 3.1).

In our contrastive retrieval framework, we therefore only utilized the encoder and extracted em-
beddings from the Top-K sparse activation layer (Section 3.3), which was originally intended for
interpretability, not dense similarity matching.

Result Analysis. We attribute SparseCoder’s relatively moderate performance to the following
factors:

(i) SparseCoder is trained with a cross-entropy loss for decoder-based generation rather than a
contrastive loss, making it misaligned with our retrieval objective, which relies on InfoNCE to align
CVE descriptions with patch embeddings.

(ii) SparseCoder was trained exclusively on English-language corpora such as CodeSearchNet and
FunCom (Section 4.1), and does not support multilingual inputs natively. Since GITPATCHDB
includes CVE descriptions and commit messages in multiple natural languages, we had to translate
non-English queries before encoding, introducing noise and additional limitations.

Despite these challenges, SparseCoder still achieved competitive results in our comprehensive
evaluation. We believe future works with multilingual pretraining and contrastive fine-tuning can
further improve its performance in retrieval tasks.

E.2 QWEN3

Experimental Setup. We applied Qwen3 as a frozen encoder for both CVE descriptions and code
patches (via mean pooling and [CLS] token), followed by modality-specific projection heads fθ and
gϕ to embed inputs into a shared latent space. These heads were trained using a CLIP-style InfoNCE
contrastive objective:

LCLIP = −log exp(sim(fθ(zCV E), gϕ(zpatch))/τ)∑
j exp(sim(fθ(zCV E), gϕ(zj))/τ)

Result Analysis. Despite limited epochs and no encoder updates, Qwen3 achieved a Recall@10 of
95.95%, demonstrating its strong potential. With full contrastive fine-tuning and longer convergence,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

we expect it to surpass baseline embeddings. In future work, we plan to fine-tune Qwen3 end-to-end
using the following steps:

• Initialize from Qwen3-embedding as the encoder backbone.
• Freeze the lower transformer layers initially to stabilize gradients.
• Optimize the full system using our contrastive CLIP-style loss on CVE–patch pairs from Git-

PatchDB.

23

	Introduction
	Related Work and Background
	The GitPatchDB Dataset
	GitPatchDB Overview
	Program Analyses in GitPatchDB Curation
	Motivation
	Analyses Details

	Method
	Cross-Modal Embedding
	Patch Encoder
	CVE Encoder
	Contrastive Vulnerability-Patch Alignment

	Experiments and Evaluation
	Implementation and Experimental Setup
	Retrieval Effectiveness
	Comparative Analysis
	Embedding Analysis
	Ablation Analysis
	Scalability Analysis

	Conclusions
	Appendix A: Empirical Study on Patches in Vulnerability Databases
	Appendix B: Motivating Example and Its Sample in GitPatchDB
	Appendix C: Program Analyses in GitPatchDB
	Appendix D: Statistics of our GitPatchDB
	Appendix E: Embedding Baselines Evaluation
	SparseCoder
	Qwen3

