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ABSTRACT

Machine learning based vulnerability detection relies on datasets that link vul-
nerabilities to their corresponding patches. However, existing resources such as
Common Vulnerabilities and Exposures (CVE) often lack reliable patch references,
e.g., many CVE entries do not provide patch commits, and a significant share of
existing commits become inaccessible due to code repository changes. To bridge
this gap and better facilitate vulnerability detection, we curate GITPATCHDB, a
large-scale, semantic-rich dataset that pairs CVEs with their corresponding patch
commits, where each commit is formatted not only as code diffs but also as inter-
procedural program slices generated through program slicing and related program
analysis techniques. To leverage this semantic-rich dataset, we further propose
Contrastive Natural-language Programming-language Pre-training (CNPP), a
novel approach that enables multimodal vulnerability patch search via contrastive
learning. Extensive evaluations demonstrate that GITPATCHDB paired with CNPP
achieves 95.99% top-10 accuracy in vulnerability patch search, surpassing baseline
manual methods by over 8% and establishing a new state-of-the-art performance.

1 INTRODUCTION

Software vulnerabilities pose critical threats to digital infrastructures by enabling security exploits,
such as unauthorized access, remote code execution, and data breaches (Tsankov et al., 2018; Li
& Paxson, 2017; Li et al., 2016; Kim et al., 2017). To support vulnerability triage and mitigation,
databases such as the Common Vulnerabilities and Exposures (CVE) (The MITRE Corporation, 2025)
and the National Vulnerability Database (NVD) (National Institute of Standards and Technology,
2025) maintain high-level descriptions of known vulnerabilities (Frei et al., 2006). However, these
databases frequently lack direct references to corresponding patch commits (Ponta et al., 2019;
Nguyen & Massacci, 2013; Chaparro et al., 2017), either because such links were never recorded or
because they have become inaccessible due to repository deletions, branch renames, or pull request
merges (Wang et al., 2021; Fan et al., 2020). This significantly limits their utility for tasks such as
vulnerability analysis, patch auditing, and forensic investigation during incident response, a limitation
well documented in prior studies (Nguyen & Massacci, 2013; Chaparro et al., 2017).

The issue becomes even more pronounced in open-source software (OSS), which is increasingly
central to today’s software ecosystems (Ponta et al., 2020). Recent surveys show that over 96% of
codebases incorporate OSS, and more than 84% contain at least one known vulnerability (MvnRepos-
itory, 2025). Alarmingly, over half of the CVEs in NVD do not include any patch references (Xu
et al., 2022; Tan et al., 2021). Even when patch commits are cited, our empirical study of 193,448
CVE entries shows that only 30.99% include such links, and among these, 41.34% are non-functional
1. This fragmentation makes it difficult to retrieve the actual code fixes for known vulnerabilities.

In this work, we aim to address the problem of linking CVEs to their corresponding source-level
patches, coined as vulnerability patch search. Unlike prior datasets that rely on manually curated
patch references or small-scale heuristics (Xu et al., 2022; Tan et al., 2021; Wang et al., 2022),
we propose a large-scale and semantic-rich dataset named GITPATCHDB for vulnerability patch
search based on automatic program analysis techniques, and further propose Contrastive Natural-
language Programming-language Pre-training (CNPP), a simple and effective approach that enables

1See Appendix A for detailed methodology and empirical results.
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multimodal vulnerability patch search via contrastive learning, with comparisons against other
baselines.
Key Challenges and Insights. We identify four key challenges in accurately modeling the semantics
of a patch and efficiently matching them across thousands of real-world codebases:

• Patch context completeness. Existing vulnerability patch search approaches rely on patch commit
diffs, i.e., added and deleted lines in the patch commit, and keyword matching such as CVE-ID
strings (Tan et al., 2021; Wang et al., 2022; Xu et al., 2022), which fails to capture all contextual
semantics related to vulnerability patches, e.g., other code lines related to the added and deleted
lines in the patch commit. We address this challenge by applying interprocedural program slicing,
which traces data dependencies backward and forward from patch lines to recover full code
context (e.g., variable definitions, function calls).
• Patch context fidelity. Interprocedural program slicing used in extracting patch contextual seman-

tics constructs data dependencies for the program, which requires accurate aliasing information,
e.g., set of program variables pointing to the same object. Traditional approaches handle it
conservatively, often over-approximating all possible aliases and thus bloating program slices (An-
dersen & Lee, 2005). We address this challenge by equipping traditional pointer analysis with
flow-sensitivity (algorithm 1), pruning spurious dependencies while preserving true data flows.
• Analysis scalability. Interprocedural program slicing is computationally infeasible for large code-

bases. We propose a novel approach named on-the-fly patch program co-analysis by combining
program slicing with flow-sensitive pointer analysis on-the-fly, dynamically expanding slices from
patch commit code lines and deferring analyzing irrelevant code regions (algorithm 1).
• Embedding scalability. Interprocedural program slices generated from real-world commits often

yield high-dimensional token sequences (often exceeding 10K tokens). We propose CNPP, which
encodes high-dimensional token sequences with hierarchical attention mechanisms and long
short-term memory (LSTM) into fixed-length embeddings, prioritizing vulnerability-critical tokens
such as bounds checks and pointer dereferences, while preserving long-range dependencies.

Contributions. This work makes the following key contributions:

• We introduce GITPATCHDB, a large-scale and semantic-rich dataset for vulnerability patch search
based on alias-aware interprocudural program slicing, that surpasses existing datasets in scale, se-
mantic coverage, and semantic fidelity. This dataset addresses the longstanding lack of comprehen-
sive patch data linking CVEs to source-level patches, offering the community a reliable foundation
for tasks such as vulnerability patch search, vulnerability understanding, and other downstream
applications in deep learning. By releasing GITPATCHDB 23, we aim to foster research repro-
ducibility and support future work at the intersection of software security and machine learning.
• We propose on-the-fly patch program co-analysis, that combines forward/backward program

slicing with flow-sensitive pointer analysis. By iteratively refining aliasing relationships and
data-flow dependencies, this co-analysis analyzes the patch semantics on-the-fly, which efficiently
boosts the scalability of our dataset, while avoiding the pitfalls in traditional static analysis (e.g.,
over-approximation of data flows) and enabling rich patch semantics.
• We further propose Contrastive Natural-language Programming-language Pre-training (CNPP),

a novel approach that enables multimodal vulnerability patch search by encoding and fusing both
vulnerability and patch information into embeddings for contrastive learning. Extensive evalu-
ations demonstrate that GITPATCHDB paired with CNPP achieves high accuracy in vulnerability
patch search, surpassing baseline methods and establishing a competitive performance.

2 RELATED WORK AND BACKGROUND

Research on vulnerability patch analysis falls into two categories: vulnerability patch classification
and vulnerability patch search. Our proposed dataset GITPATCHDB and approach CNPP mainly
belongs to vulnerability patch search.
Vulnerability patch classification. Early research such as Big-Vul (Fan et al., 2020) and
PatchDB (Wang et al., 2021) focuses on binary classification, i.e., determining whether a given
commit constitutes a vulnerability fix. Big-Vul provides CVE-labeled snippets but lacks complete

2https://anonymous.4open.science/r/gitpatchdb-2EC7
3GITPATCHDB is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-

tional (CC BY-NC-SA 4.0).
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diffs or commits, limiting itself to downstream retrieval tasks. PatchDB extends coverage with
synthetic and wild patches, but it only supports C/C++ and does not incorporate interprocedural or
alias-aware analyses. Similarly, SPI (Zhou et al., 2021) and GraphSPD (Wang et al., 2023) provide
large-scale annotations but are limited to intraprocedural views, often at the function level and without
alias analysis, thereby restricting semantic expressiveness. CommitBART (Liu et al., 2022) scales to
millions of commits but lacks any CVE linkage, rendering it unsuitable for
Vulnerability patch search. Recent retrieval-based systems such as VCMatch (Wang et al., 2022)
and PatchScout (Tan et al., 2021) rely on shallow textual features or ensemble ranking methods, and
are constrained to small, manually curated datasets. Tracing-based tools (Xu et al., 2022) depend on
repository links, which frequently become obsolete due to refactoring, branch renaming, or repository
deletions. Moreover, none of these methods support scalable, multi-language search or leverage
alias-aware, interprocedural semantics, with limitations summarized in Table 1.

Table 1: Comparisons of vulnerability patch analysis datasets.
Dataset (Problem Type) CVE-linked Commits Commit Diff Program Slicing Pointer Analysis Languages
PatchDB
Security Patch Classification 4,076 ✓ ✗ ✗ C/C++ only

SPI
Security Patch Classification 1,045 ✓ ✗ ✗ C only

Big-Vul
Security Patch Classification 3,754 ✓ ✗ ✗ C/C++ only

GraphSPD
Security Patch Classification 5,1214 ✓ ✓ Intraprocedural ✗ C/C++ only

CommitBART
Commit Understanding & Generation ✗ Not CVE-linked ✓ ✗ ✗ Multi-lang (7)

PatchScout
Vulnerability Patch Search 1,628 ✓ ✗ ✗ Multi-lang (2)

VCMATCH
Vulnerability Patch Search 1,669 ✓ ✗ ✗ Multi-lang (3)

GitPatchDB
Vulnerability Patch Search 12,629 ✓ ✓ Interprocedural ✓ Multi-lang (10)

In contrast, GITPATCHDB
is designed to address these
limitations by integrating
rich semantics of both
vulnerabilities and patches
with automatic scalable in-
terprocedural slicing and
pointer analysis across mul-
tiple languages. Prior lit-
erature (Smaragdakis et al.,
2015; Hind & Pioli, 2000) highlights the critical role of pointer analysis in capturing data and control
dependencies, while code property graphs (CPGs) (Yamaguchi et al., 2014) have proven effective
for interprocedural vulnerability detection. As Ponta et al. (Ponta et al., 2019) note that existing
CVE-to-patch mappings suffer from link deterioration and metadata inconsistencies, limiting the
reliability of existing resources, GITPATCHDB offers a semantic-rich dataset that includes CVE
descriptions, commit messages, and program slices, etc., rather than unstable links. To the best of
our knowledge, GITPATCHDB is the first dataset to provide end-to-end CVE-to-patch search with
interprocedural semantics, complete CVE metadata, and retrieval-oriented code embeddings, filling a
critical gap in vulnerability patch analysis research.

We now turn to related work in contrastive learning, the core technique underlying CNPP and
essential for enabling cross-modal vulnerability patch search.
Contrastive Learning for Cross-Modal Alignment. Inspired by recent advances in multimodal
learning (e.g., CLIP (Radford et al., 2021), SimCLR (Chen et al., 2020), SimCSE (Gao et al., 2021)),
CNPP employs contrastive pretraining to align textual vulnerability descriptions and source-level
code patches in a shared semantic space. Gui et al. (Gui et al., 2022) demonstrated the efficacy of
contrastive learning for vulnerability detection, while Allamanis et al. (Allamanis et al., 2021)showed
its potential for code representation. Our work extends these insights to CVE-to-patch retrieval,
addressing the semantic gaps observed in previous vulnerability datasets (Zhou et al., 2019).

3 THE GITPATCHDB DATASET

3.1 GITPATCHDB OVERVIEW

Table 2: GITPATCHDB repository size distribu-
tion.

Size Interval (KB) Repository Count
(0, 1,000] 636
(1,000, 5,000] 690
(5,000, 20,000] 655
(20,000, 50,000] 433
(50,000, 100,000] 268
(100,000, 250,000] 163
(250,000, 500,000] 89
(500,000, 1,000,000] 37
(1,000,000, 2,500,000] 13
(2,500,000, 5,444,607] 11

We introduce GITPATCHDB, a large-scale
dataset that links software vulnerability reports,
e.g., CVEs, to their corresponding code patches.
The dataset contains 14,575 total samples, of
which the positive subset comprises 12,629
CVE-commit pairs spanning 2010-2023 and
drawn from 3,071 distinct GitHub/GitLab/SVN
open-source program code repositories, with its code repository size statistics summarized in Table 2.

Dataset samples of GITPATCHDB comprise two complementary components: CVE side and patch
side: (i) CVE side includes natural language descriptions of the vulnerability, i.e., CVE identifier,

4The GraphSPD dataset does not explicitly report the total number of CVE-linked commits. The cited 5,121
commits is an upper bound by merging SPI-DB and PatchDB, which GraphSPD extends for greater diversity.
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Algorithm 1: On-the-fly co-analysis of program slicing and pointer analysis.

1

Function ENHANCEDDYNAMICSLICING(P ):
Input :Program P with source files
Output :R: Pointer-aware, context-sensitive slice
/* Step 1: Graph Construction (AST, CFG, DFG) */

2 (GAST, GCFG, GDFG)← BUILDGRAPHS(P )
/* Initialize slicing criteria and analysis state */

3 ∆← GETMODIFIEDLINES(P ) // Patch diff lines (e.g., deleted)
4 W ← MAPLINESTONODES(GDFG,∆) // Initial slice worklist
5 Π← ∅ // Points-to map: Var 7→ HeapLoc
6 R← ∅, converged← False
7 while ¬converged do

/* Step 2: Forward and Backward Interprocedural Slicing */
8 S′ ← ∅
9 foreach v ∈W do // v: node in the DFG from diff

10 foreach d ∈ {fwd, bwd} do // d: slice direction
11 S′ ← S′ ∪ INTERPROCEDURALSLICE(GDFG, v,Π, d)

/* Step 3: Flow-Sensitive Pointer Analysis */
12 Πnew ← FLOWSENSITIVEANDERSEN(GCFG,Π,∆)

/* Step 4: Graph Update and Convergence Check */
13 if CFGCHANGED(GCFG,Πnew) then
14 (GCFG, GDFG)← UPDATEGRAPHS(GCFG,Πnew)
15 UPDATEDEFUSECHAINS(GDFG,Πnew)
16 W ← GETAFFECTEDNODES(GDFG, S

′)
17 if (Πnew, S

′) = (Π, R) then
18 converged← True; // Converged: alias and slice unchanged
19 R← R ∪ S′

20 else
21 Π← Πnew, R← R ∪ S′,
22 W ←W ∪ GETNEWWORKITEMS(GDFG,Πnew)
23 return R

CVE detailed description, and CVE references, e.g., CWE category and CVSS severity score. (ii)
Patch side provides the context and technical details of the fix, including commit message, commit
diff that captures the exact code changes, and interprocedural program slice, which enriches the code
semantics by incorporating relevant control and data dependencies across function boundaries.

3.2 PROGRAM ANALYSES IN GITPATCHDB CURATION

3.2.1 MOTIVATION

The aforementioned interprocedural slices extend the patch context, enabling more comprehensive
and accurate analysis of both the vulnerability and its remediation. This requires automatic program
analysis techniques of program slicing and pointer analysis, as motivated in the following:
Motivating example. CVE-2019-17498 is an integer overflow vulnerability in libssh2 5.
Program slicing. The commit message of CVE-2019-17498 vulnerability, “packet.c: improve
message parsing”, obscures the nature of the bug. Thus, only commit diff rarely captures the full
semantic footprint of a vulnerability. Code diffs reflect syntactic edits, but omit surrounding context
such as alias-resolved variables, call chains, and implicit program flows. Applying interprocedural
slicing to the deleted lines reveals that the overflow arose from parsing an attacker-controlled
length field (via _libssh2_ntohu32), followed by an insufficient bounds check (if (len <
datalen - 13)). The forward slice shows this unchecked value propagates into the disconnect
logic, risking an out-of-bounds read. By tracing both data and control dependencies across function
boundaries, the slicing reconstructs a precise narrative of what was vulnerable and how it was
fixed—bridging the abstraction gap between the CVE and the source-level patch.
Pointer analysis. Traditional program slicing struggles with real-world code due to pointer aliasing
and interprocedural flows (Weiser, 1981; Tip, 1994; Lhoták & Hendren, 2003; Pearce et al., 2007;
Sridharan & Bodík, 2006). Slicing directly from deleted lines without pointer analysis often fails
to capture indirect flows (e.g., *p = buf) or shared dependencies across procedure boundaries.
To recover full semantic context, we embed flow-sensitive pointer analysis into an interprocedural
slicing pipeline and iterate to convergence. The process alternates between pointer-aware def-use
slicing and pointer resolution via a customized Andersen-style analysis.

5The movitvating example details can be found in Appendix B
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Figure 1: Overview of GITPATCHDB and downstream task CNPP.
3.2.2 ANALYSES DETAILS

Program slicing is a program analysis technique that extracts the subset of program statements that
affect (backward slice) or are affected by (forward slice) a given slicing criterion such as a variable or
line of code (Weiser, 1981; Tip, 1994).

Pointer analysis is another program analysis technique that analyzes the set of abstract locations each
pointer variable may point to (Møller & Schwartzbach, 2023). With the knowledge of such aliasing
information, it can produce useful dataflow and control flow analysis results.

We listed our on-the-fly co-analysis of program slicing and pointer analysis in Algorithm 1. In a
nutshell, this process involves four stages: Step 1. On-the-Fly Graph Construction (Line 2); Step 2.
Pointer-Aware Def-Use Slicing (Lines 8-11); Step 3. Flow-Sensitive Pointer Analysis (Line 12); Step
4. Convergence and fixed-point check (Lines 13-22). This algorithm offers three salient features 6:
Interprocedural program slicing. In our work, we adopt a static, context-sensitive interprocedural
slicing approach, enhanced with pointer analysis to resolve indirect dependencies. To the best of
our knowledge, we are the first interprocedural slicing approach in patch analysis datasets, as listed
in Table 1.
Flow-sensitive pointer analysis. Classic pointer analysis such as Andersen’s pointer analysis (An-
dersen & Lee, 2005) is flow-insensitive, which computes over-approximated, global alias sets without
tracking control-flow order and can introduce spurious def-use edges. In our work, we design a
flow-sensitive pointer analysis to precisely reason about the aliasing relationships between program
variables. To the best of our knowledge, we are the first pointer analysis adopted in patch analysis
datasets, as listed in Table 1.
On-the-fly co-analysis of program slicing and pointer analysis. In order to analyze vulnerable
programs at scale in the wild real-world cases, GITPATCHDB performs co-analysis of program slicing
and pointer analysis on the current program slice on-the-fly and extends the analysis scope gradually.
This design allows GITPATCHDB to scale slicing across 12,000 patches without sacrificing semantic
precision or completeness.

4 METHOD

Our approach, CNPP, builds on the GITPATCHDB dataset to learn semantic alignment between
vulnerability descriptions and their corresponding code patches. We address two key challenges: (1)
embedding scalability. Patch code diffs and alias-aware program slices often exceed 10K tokens,
making raw representations inefficient, noisy, and even infeasible, and (2) cross-modal matching.
Natural language CVE descriptions must be effectively aligned with programming language written
patches. We tackle these challenges via using hierarchical attention for compact, context-aware code
embeddings and contrastive learning to train a shared embedding space across modalities.

4.1 CROSS-MODAL EMBEDDING

Vulnerability patch retrieval requires aligning heterogeneous information sources: natural language
descriptions, commit messages, diffs, and interprocedural code slices. However, these inputs can
be extremely long: diffs in our dataset exceed 819k tokens, and static slicing generates over 1.3M

6The algorithm details of our program analysis can be found in Appendix C.
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Figure 2: Token-length Distribution. From left: slice log-hist, slice violin, diffs log-hist, and diffs
violin. Plots show that diffs/slices have a heavier tail and need larger context windows.

tokens. Existing large pretrained models like text-embedding-ada-002 (OpenAI, 2023a;b)
offer strong semantic encoding with up to 8192 tokens per pass, but this capacity remains insufficient
for processing real-world patches at scale.
Shared latent space. We design a unified representation framework that encodes all modalities
into a shared semantic space Rd. Given an input consisting, we obtain their token-level embeddings
as: a CVE description D (ECVE = fθ(D)), commit message M (EM = fθ(M)), diff Df (EDf

=

{fθ(dt)}Tt=1), and pointer-aware slice S (ES = {fθ(st)}Ut=1), where fθ(·) denotes the token encoder,
and T and U represent the sequence lengths of the diff and slice. These produce high-dimensional
matrices EDf

∈ RT×d and ES ∈ RU×d, capturing fine-grained semantic signals across modalities.

Directly processing these large embeddings is computationally infeasible. To address this, we apply
hierarchical sequence dimensionality reduction (see Section 4.2), which condenses these token-level
representations into dense, semantic-rich vectors. This allows our method to scale to large patches
while preserving essential context for cross-modal alignment. By embedding all modalities into a
unified space, our framework eliminates the need for specialized encoders, enabling efficient and
generalizable patch retrieval across diverse input types.

4.2 PATCH ENCODER

Processing vulnerability patches involving large diffs Df and pointer-aware slices S present severe
scalability challenges. Figure 2 shows that inputs are overwhelmingly long: around 95% of slices
require ∼235k tokens and around 95% of diffs with ∼143k, far beyond conventional 4-32k context
windows. This motivates the need for a hierarchical dimensionality reduction mechanism to distill
these long sequences into fixed-size embeddings while preserving vulnerability-relevant semantics.
Hierarchical sequence dimensionality reduction. Given token-level embeddings for the diff and
slice, we apply a three-layer residual-enhanced BiLSTM to reduce the sequence dimensionality:

h
(l)
t = BiLSTM(l)(h

(l−1)
t ,h

(l)
t−1) + h

(l−1)
t , l ∈ {1, 2, 3}, (1)

with h
(0)
t = fθ(xt). This yields dimension-reduced hidden states for both Df and S.

We further apply context-gated attention to summarize the sequence into a single vector (Bahdanau
et al., 2016; Vaswani et al., 2017). This mechanism computes token-level attention scores αt by
comparing each token ht with the overall sequence context h, defined as the mean of all token
embeddings. Specifically:

αt =
exp(w⊤ tanh(Wc[ht ⊕ h]))∑L

t′=1 exp(·)
, h =

1

L

L∑
t=1

ht, (2)

where ⊕ denotes vector concatenation. This formulation enables the model to assign higher im-
portance to tokens that are not only locally salient but also globally relevant in the context of the
entire sequence. We apply this attention mechanism to both the diff and slice sequences, resulting in
fixed-size embeddings zDf

∈ R1×d and zS ∈ R1×d.

Bidirectional diff-slice fusion. To capture interactions between the diff and its execution context, we
apply bidirectional cross-attention (Luong et al., 2015; Liu & Guo, 2019):

zds = softmax
(
QdK

⊤
s√

dk

)
Vs︸ ︷︷ ︸

Diff→Slice

+ softmax
(
QsK

⊤
d√

dk

)
Vd︸ ︷︷ ︸

Slice→Diff

(3)

where Qd = zdW
d
q , Ks, Vs = zsW

s
k, zsW

s
v, and vice versa. This dual pathway models both how

diffs affect surrounding slices context and how slices context validates the diff (Seo et al., 2018).

Cross-modal code-message fusion. We further refine the fused representation by applying bidi-
rectional cross-attention between the fused patch embedding zds ∈ R1×d and the commit message
embedding EM ∈ R1×d:

6
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Table 3: Effectiveness of GITPATCHDB.
GITPATCHDB Recall (%) MRRTop 1 2 3 4 5 6 7 8 9 10 15 20 25 30

95% CI 78.56 83.17 88.11 91.37 93.12 94.41 94.87 95.23 95.43 95.99 96.51 97.28 97.98 99.02 0.86

zpatch = CrossAttn(zds,EM ) + CrossAttn(EM , zds) (4)

allowing mutual interaction between the patch context and the commit message, enabling the model
to jointly attend over both sources of information without imposing dominance constraints.

4.3 CVE ENCODER

The CVE description is encoded simply using the pretrained ada-002 model: zCVE = fθ(D). This
ensures that zCVE and zpatch are compatible in the same latent space, facilitating direct similarity
computation.

4.4 CONTRASTIVE VULNERABILITY-PATCH ALIGNMENT

We train CNPP to align zCVE and zpatch using the InfoNCE loss (van den Oord et al., 2019). Given a
batch B of N CVE–patch pairs (Di, Pi), we define:

L = − 1

N

N∑
i=1

log
exp

(
⟨zCVEi ,zpatchi ⟩

τ

)
∑N

j=1 exp
( ⟨zCVEi ,zpatchj ⟩

τ

) (5)

where τ is a temperature hyperparameter and ⟨·, ·⟩ denotes dot product. The objective encourages
matching CVE–patch pairs to lie close in the embedding space while pushing apart non-matching
ones. At inference time, we compute cosine similarity:

sim(zCVE, zpatch) =
z⊤CVEzpatch

∥zCVE∥ · ∥zpatch∥
(6)

This enables efficient top-k retrieval for a given vulnerability. By contrastively training over multiple
modalities (Chen et al., 2020; Radford et al., 2021) and enforcing scalable dimensionality reduction
on long patch contexts, CNPP provides a principled and practical solution to vulnerability patch
search.

5 EXPERIMENTS AND EVALUATION

5.1 IMPLEMENTATION AND EXPERIMENTAL SETUP

System and frameworks. GITPATCHDB is implemented in Scala and Python, integrating Jo-
ern 7 for multi-language intraprocedural CPG extraction. We extend it to interprocedural slicing
using NetworkX 8. Our multimodal encoder and contrastive training are implemented in PyTorch 9.
Experiments run on an Ubuntu 22.04 server with NVIDIA H100 GPUs and AMD EPYC CPUs.
Training configuration. We train our CNPP model for using the AdamW optimizer with a learning
rate of 2× 10−5, batch size of 128, weight decay of 0.01, and gradient accumulation of 2 steps. A
temperature parameter τ = 0.005 is used for the InfoNCE loss, and early stopping is applied based
on validation loss with a patience of 3 epochs.
Dataset composition and splits. Our total 14,575 dataset includes 12,629 CVE-linked patches.
We follow a stratified 70/10/20 train/validation/test split at the patch level. To simulate realistic
retrieval scenarios, we augment the test set with 1,946 randomly selected non-vulnerability (negative)
patches, ensuring the model is evaluated against both true and irrelevant candidates. All code, data,
and evaluation scripts are publicly available at https://anonymous.4open.science/r/
gitpatchdb-2EC7 to support full reproducibility.

5.2 RETRIEVAL EFFECTIVENESS

We evaluate CNPP on top-k patch retrieval, using CVE descriptions and pre-patch slices as queries.
As shown in Table 3, GITPATCHDB achieves Accuracy@1 of 78.56% and MRR of 0.86, consistently
outperforming baselines across all k (Table 4). All results are averaged over five independent runs with

7https://joern.io/
8https://networkx.org/
9https://pytorch.org/

7
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different random seeds to account for variability due to model initialization and data sampling. We
report mean performance along with 95% confidence intervals, computed as±1.96 times the standard
error of the mean across five independent runs. We observe stable performance with low variance
across all reported metrics, demonstrating the robustness of CNPP in realistic retrieval settings.
Error Analysis. We identify two primary sources of false positives: limitations in CVE descriptions
and patch ambiguity. On the CVE side, vague or inconsistent descriptions in the National Vulnerability
Database often lack technical precision, leading to superficial or misleading matches. On the patch
side, errors are often caused by low-quality or sparse commit messages, large commits that combine
security fixes with unrelated changes, or patches addressing multiple issues simultaneously. These
issues hinder precise alignment and underscore the difficulty of bridging noisy natural language
descriptions with complex code changes in real-world software repositories.

5.3 COMPARATIVE ANALYSIS Table 4: Comparative analysis of GITPATCHDB.

Top N
PATCHSCOUT VCMATCH GITPATCHDB

(manual keyword search) (manual keyword search) (automatic search)

Accuracy (%) Accuracy (%) Accuracy (%)
1 57.58 63.13 78.56
2 60.60 74.24 83.17
3 66.68 77.75 88.11
4 71.70 81.30 91.37
5 78.73 84.39 93.12
6 81.92 87.99 94.41
7 83.22 89.38 94.87
8 84.14 90.01 95.23
9 86.88 90.47 95.43

10 87.73 92.22 95.99
15 88.68 94.61 96.51
20 89.01 96.02 97.28
25 89.51 97.44 97.98
30 90.17 98.29 99.02

Baselines. We compare GITPATCHDB against
two state-of-the-art dataset-based approaches:
PATCHSCOUT (Tan et al., 2021) and VC-
MATCH (Wang et al., 2022), both designed
for CVE-to-patch research. We exclude
TRACER (Xu et al., 2022), a web-based dynamic
tracing tool that neither requires nor produces a
reproducible dataset. Other works on patch clas-
sification (Liu et al., 2022; Wang et al., 2021;
Fan et al., 2020; Tian et al., 2012; Wang et al.,
2023; Zhou et al., 2021; 2023), patch presence
testing (Bhandari et al., 2021; Dai et al., 2020), and vulnerability detection (Kim et al., 2017; Li et al.,
2016) are out of scope, as they address different problem settings.

We evaluate GITPATCHDB, VCMATCH (Wang et al., 2022), and PATCHSCOUT (Tan et al., 2021)
on a common test set. As shown in Table 4, GITPATCHDB achieves superior performance with
Accuracy@1 of 78.56%, Accuracy@3 of 88.11%, Accuracy@10 of 95.99%, with nearly all correct
patches retrieved within the top 30 results, substantially outperforming both baselines. Unlike VC-
MATCH and PATCHSCOUT, which rely on manual keyword engineering, GITPATCHDB operates
fully automatically. We observe that baseline performance is lower than reported in their original pub-
lications, likely due to the inclusion of repositories with sparse commit messages in our test set, which
is a common challenge in real-world projects like Wireshark and Apache Airflow. GITPATCHDB ’s
multimodal encoding of both textual and code-level inputs offers robust retrieval even when commit
metadata is incomplete, providing a significant advantage over purely keyword-based approaches.

5.4 EMBEDDING ANALYSIS Table 5: Additional baselines on GITPATCHDB
with frozen encoders and learned projection heads.

Top N Qwen3 SparseCoder GITPATCHDB (CNPP)
1 73.68 58.33 78.56
2 83.34 69.44 83.17
3 88.89 73.15 88.11
4 92.06 78.74 91.37
5 92.95 81.23 93.12
6 93.48 83.33 94.41
7 94.33 86.55 94.87
8 95.13 87.96 95.23
9 95.48 87.97 95.43

10 95.95 89.09 95.99
15 96.39 90.12 96.51
20 97.04 90.33 97.28
25 97.25 90.31 97.98
30 98.61 92.48 99.02

In addition to our primary baselines, we evalu-
ated recent non-OpenAI embedding models 10.
Setup. We evaluate Qwen3-embedding (Yang
et al., 2025) and SparseCoder (Yang et al., 2024)
as frozen encoders for CVE text and patch code.
Lightweight modality-specific projection heads
map encoder outputs into a shared space trained
with a CLIP-style contrastive loss. Backbone
embeddings remain fixed; only the projection
heads are optimized.
Results. Without task-specific tuning, Qwen3 delivers competitive retrieval and closely approaches
our supervised CNPP model; SparseCoder trails but remains strong, as listed in Table 5. These
results indicate that our retrieval method is robust to the choice of embedding encoder, consistently
maintaining strong performance. Note that SparseCoder underperforms due to objective mismatch
(seq2seq + sparse activations) and English centric pretraining on our multilingual GITPATCHDB.
Multilingual pretraining with contrastive fine-tuning should mitigate the discrepancy.

10Additional baselines evaluation result details can be found in Appendix E.
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Table 6: Ablation study of GITPATCHDB.
Top Preprocessing Ablation Study (%) Model Ablation Study (%) GITPATCHDB
N M MD-TRU-AP MD-CON-AP MDC-TRU-AP MDC-CON-AP MLP-RDC SUM-FUS COS-SIM (%)

1 40.90 (37.66 ↓) 50.13 (28.43 ↓) 53.12 (25.44 ↓) 52.65 (25.91 ↓) 52.52 (26.04 ↓) 61.32 (17.24 ↓) 70.56 (8.00 ↓) 73.88 (4.68 ↓) 78.56
2 47.47 (38.66 ↓) 55.17 (28.00 ↓) 58.18 (24.99 ↓) 57.83 (25.34 ↓) 58.92 (24.25 ↓) 69.22 (13.95 ↓) 79.15 (4.02 ↓) 79.34 (3.83 ↓) 83.17
3 50.51 (39.66 ↓) 60.23 (27.88 ↓) 62.22 (25.89 ↓) 62.18 (25.93 ↓) 64.07 (24.04 ↓) 72.19 (15.92 ↓) 81.26 (6.85 ↓) 82.39 (5.72 ↓) 88.11
4 52.53 (40.66 ↓) 65.24 (26.13 ↓) 66.75 (24.62 ↓) 66.62 (24.75 ↓) 66.91 (24.46 ↓) 75.73 (15.64 ↓) 81.74 (9.63 ↓) 87.43 (3.94 ↓) 91.37
5 53.54 (41.66 ↓) 66.78 (26.34 ↓) 68.27 (24.85 ↓) 68.31 (24.81 ↓) 68.50 (24.62 ↓) 77.12 (16.00 ↓) 87.50 (5.62 ↓) 88.78 (4.34 ↓) 93.12
6 55.05 (42.66 ↓) 66.98 (27.43 ↓) 68.38 (26.03 ↓) 69.83 (24.58 ↓) 69.94 (24.47 ↓) 77.98 (16.43 ↓) 88.29 (6.12 ↓) 90.30 (4.11 ↓) 94.41
7 57.07 (43.66 ↓) 68.29 (26.58 ↓) 69.79 (25.08 ↓) 70.29 (24.58 ↓) 70.58 (24.29 ↓) 78.48 (16.39 ↓) 89.51 (5.36 ↓) 91.99 (2.88 ↓) 94.87
8 58.89 (44.66 ↓) 70.30 (24.93 ↓) 70.33 (24.90 ↓) 71.54 (23.69 ↓) 71.69 (23.54 ↓) 80.20 (15.03 ↓) 91.51 (3.72 ↓) 92.01 (3.22 ↓) 95.23
9 61.11 (45.66 ↓) 71.81 (23.62 ↓) 72.37 (23.06 ↓) 73.21 (22.22 ↓) 73.38 (22.05 ↓) 80.91 (14.52 ↓) 92.20 (3.23 ↓) 93.92 (1.51 ↓) 95.43

10 62.13 (46.66 ↓) 72.62 (23.37 ↓) 73.81 (22.18 ↓) 73.92 (22.07 ↓) 74.12 (21.87 ↓) 81.18 (14.81 ↓) 92.97 (3.02 ↓) 94.11 (1.88 ↓) 95.99
15 68.18 (47.66 ↓) 72.83 (23.68 ↓) 73.83 (22.68 ↓) 74.15 (22.36 ↓) 74.88 (21.63 ↓) 82.01 (14.50 ↓) 93.81 (2.70 ↓) 95.33 (1.18 ↓) 96.51
20 69.19 (48.66 ↓) 73.33 (23.95 ↓) 75.07 (22.21 ↓) 76.36 (20.92 ↓) 76.91 (20.37 ↓) 82.92 (14.36 ↓) 94.18 (3.10 ↓) 96.01 (1.27 ↓) 97.28
25 72.22 (49.66 ↓) 76.33 (21.65 ↓) 75.08 (22.90 ↓) 77.95 (20.03 ↓) 78.09 (19.89 ↓) 82.91 (15.07 ↓) 96.18 (1.80 ↓) 97.26 (0.72 ↓) 97.98
30 75.76 (50.66 ↓) 83.53 (15.49 ↓) 75.08 (23.94 ↓) 78.31 (20.71 ↓) 78.88 (20.14 ↓) 83.44 (15.58 ↓) 96.53 (2.49 ↓) 98.21 (0.81 ↓) 99.02

5.5 ABLATION ANALYSIS

Feature Ablation Analysis. To examine the effect of contextual richness on retrieval performance,
we construct five model variants: (1) M: message, (2) MD-TRU-AP: message + truncated diff, (3)
MD-CON-AP: message + concatenated diff, (4) MDC-TRU-AP: message + truncated diff + truncated
sliced code, (5) MDC-CON-AP: message + concatenated diff + concatenated sliced code. Results
indicate a monotonic performance improvement with the inclusion of additional modalities, reaching
its highest with MDC-CON-AP. As listed in Table 6, results affirm that GITPATCHDB ’s multimodal
patch metadata offers complementary semantic context, spanning natural language and code structure
and collectively enhancing retrieval accuracy.
Model Ablation Analysis. Our reference retrieval models:

• MLP-RDC: Replacing the residual BiLSTM encoder with a simple MLP leads to a signifi-
cant 17.24% degradation in Recall@1, underscoring the importance of sequential modeling for
capturing token-level dependencies in diffs and slices.
• SUM-FUS: Substituting the cross-attention fusion mechanism with naive element-wise summation

reduces Recall@1 by 8.00%, validating that GitPatchDB provides sufficient multimodal diversity
to benefit from structured attention-based fusion.
• COS-SIM: Replacing the contrastive InfoNCE objective with cosine similarity ranking incurs a

minor 4.68% drop in Recall@1, highlighting the dataset’s compatibility with contrastive learning
frameworks that leverage both positive and negative sample pairs.

Takeaways. These ablation studies highlight GITPATCHDB ’s effectiveness in enabling controlled,
systematic evaluation of multimodal retrieval systems. The feature ablation results demonstrate that
GitPatchDB offers rich, layered patch metadata that benefits from multi-level contextual fusion. The
model ablation demonstrates that GITPATCHDB introduces sufficient complexity to reveal the impact
of architectural decisions. These findings position GITPATCHDB as a rigorous and informative
benchmark for advancing research in multimodal vulnerability patch analysis.

5.6 SCALABILITY ANALYSIS
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Figure 3: Scalability of GITPATCHDB.

We further evaluate the scalability of GITPATCHDB by
training on increasingly larger subsets of GitPatchDB.
As shown in Figure 3, retrieval performance steadily im-
proves with larger training sizes, achieving competitive
accuracy with as few as 6,000 examples and continuing
to improve beyond 8,000 samples. These results demon-
strate GitPatchDB’s capacity to fuel future advances in
large-scale, data-driven vulnerability analysis.

6 CONCLUSIONS

We introduce GITPATCHDB, a large-scale, semantic-rich dataset for vulnerability patch analysis
that offers a reliable foundation for linking CVEs to their patch fixes in machine learning research.
Our proposed CNPP framework bridges natural language with progamming language code changes,
significant outperforms prior methods and achieving state-of-the-art accuracy (95.99% accuracy).
GitPatchDB’s structured metadata and open availability address longstanding reproducibility barriers
in vulnerability research, providing a scalable benchmark for training and evaluating machine learning
models. Overall, by lowering the barrier to automatic patch analysis, GITPATCHDB advances both
academic research and industrial practices in software security.
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ETHICS STATEMENT

Data Collection. GITPATCHDB is built exclusively from publicly accessible security-patch commits
that correspond to already disclosed CVEs across GitHub, GitLab, and SVN. No zero-day vulnerabil-
ities or live exploits are included. All data collection complies with repository licenses and the terms
of service of the respective platforms.

License. GITPATCHDB is released under the Creative Commons Attribution-NonCommercial-
ShareAlike (CC BY-NC-SA 4.0) license, permitting non-commercial academic use.

Privacy. To safeguard privacy, personal identifiers (e.g., author names, email addresses, usernames)
are removed. Only commit hashes and repository names are retained to ensure reproducibility.

User Agreement. GITPATCHDB is distributed with a Responsible Use Policy and a User Agreement
that explicitly prohibit exploit development, unauthorized penetration testing, surveillance, or other
harmful activities. Violations may result in permanent access revocation and potential legal action
under the applicable license and jurisdictional laws.

Fairness. We acknowledge that GITPATCHDB may inherit natural representation biases from the
underlying public CVE data. No behavioral, biometric, conversational, or telemetry data is collected
or included.
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A APPENDIX A: EMPIRICAL STUDY ON PATCHES IN VULNERABILITY
DATABASES

To assess the current state of patches in vulnerability databases, such as Common Vulnerabilities and
Exposures (CVE) and National Vulnerability Database (NVD), we conducted an empirical study on
the following research questions:

• RQ1: Patch Availability. What percentage of reported CVEs lack GitHub patch links?
• RQ2: Patch Functionality. What percentage of available patch links are non-functioning, and

what are the primary causes?
• RQ3: Patch Recoverability. What percentage of CVEs with non-functioning patch links can be

manually recovered?

A.1 PATCH AVAILABILITY (RQ1)

We examined the availability of explicit patch commits in 193,448 CVE entries from 1999 to 2022
in National Vulnerability Database (NVD) (National Institute of Standards and Technology, 2025).
To efficiently analyze this large volume of CVE entries, we first manually designed patch-matching
regular expressions, and then automatically searched for vulnerability patches using these regular
expressions within the CVE entries, focusing primarily on description section and references section.
The results revealed that 30.99% of the CVEs contained explicit patch commits. The matching patches
were primarily from open source repositories on GitHub, GitLab, BitBucket, SVN repositories, etc.

The aforementioned low percentage indicated limited public accessibility to vulnerable patches.
This limited accessibility may lead to the following security consequences: (i) Systems that rely on
software reuse may remain unpatched and susceptible to attacks. (ii) Security analysts and researchers
might face difficulties in analyzing the vulnerability status. In this paper, we focus on searching for
patches related to open-source software vulnerabilities.

A.2 PATCH FUNCTIONALITY (RQ2)

Based on the 59, 950 CVE entries with explicit patch commits, we further automatically analyzed
the functionality of these patch commits by cloning the repositories and checking out the commits.
Patch commits with clonable repositories and check-out-able commits were considered functioning.
The results revealed that only 35, 164 of these 59,950 patch commits were functioning, constituting
58.66%. This indicates that even among CVE entries with explicit patch commits, a significant
portion (41.34%, 24,786) were non-functioning.

We categorized these non-functioning patch commits into three types: Type-I: Repository relocation.
These patch commits lead to a 404 error due to the deletion or relocation of the repository; Type-II:
Branch relocation. These patch commits display messages about the absence of the linked commit in
any repository branch, often due to branch reorganization; Type-III: Merged commits. These patch
commits are directed to merged pull requests containing multiple commits. Tracking patches for
relocated repositories and branches remains necessary for legacy systems and those reusing code from
these sources. While manual analysis of these cases is possible, it would be tedious and error-prone,
highlighting the need for automatic patch search approaches.

A.3 PATCH RECOVERABILITY (RQ3)

We further conducted patch recoverability analysis on non-existing patch commits and non-
functioning patch commits.

• Non-existing Patch Commits Recovery. In this analysis, we randomly selected 800 CVE entries
without associated patch commits, and examined whether the patch commits could be manually
recovered. The methodology involved searching for patch commits and hosting repositories in
vulnerability databases such as NVD (National Institute of Standards and Technology, 2025) and
security advisories such as Debian (Debian Project, 2024) and Red Hat (Red Hat, Inc., 2024),
searching for commits within the found repositories using commands tailored to commit messages,
narrowing the search window to three months before and four months after each CVE report date,
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69.01%

13.62%

17.37%

CVE entries with commits
(Not cloneable)

CVE entries with commits 
(Cloneable / check-out-able)

CVE entries 
without commits

Figure 4: CVE database entries with explicit patch commits.

and rigorously reviewing potential patch commits. This meticulous validation process, conducted
over 2.5 months by 3 graduate students, successfully associated approximately 53% of the CVEs
that initially lacked patch commits.
• Non-functioning Patch Commits Recovery. In this analysis, we studies 765 non-functioning

patch commits in TRACER (Xu et al., 2022) dataset, and examined whether the patch commits
can be manually recovered. Our approches included: Type-I: Searching for the repository within
online source code hosts such as GitHub to discover new repository URLs. Type-II: Searching
within the project repository using git messages to locate new commit hash IDs corresponding
to relocated patch commits. Type-III: Manually examining the merged pull requests, and cross-
referencing information within the repository using author names of the pull requests and git
messages to recover the correct patch commits. Ultimately, while we successfully restored 80%
of the non-functioning patch commits, 152 CVEs with non-functioning patch commits could not
be recovered. Of these, 103 were hosted on GitHub, and 49 were on the Apache SVN websites.
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B APPENDIX B: MOTIVATING EXAMPLE AND ITS SAMPLE IN GITPATCHDB

// --- Backward Slice (Variables/Expressions Leading to `datalen - 13`) --- 
// datalen: Length of the received SSH packet (unsigned integer)
if (datalen >= 5) {
    ...
   if (datalen >= 9) {
   --- message_len = _libssh2_ntohu32(data + 5); // Read from network data
   +++ _libssh2_get_u32(&buf, &reason);
   +++ _libssh2_get_string(&buf, &message, &message_len); // Validates buffer limits
   +++ _libssh2_get_string(&buf, &language, &language_len); // No manual arithmetic
      ...
      // Bounds check with potential integer overflow:
   --- if (message_len < datalen - 13) { // <-- PROBLEMATIC LINE
      // --- Forward Slice (Consequences of `datalen - 13`) ---
          message = (char *)data + 9; // Offset derived from `datalen`
          language_len = _libssh2_ntohu32(data + 9 + message_len);
          language = (char *)data + 9 + message_len + 4; // Arbitrary offset
          ...

Figure 5: Motivating example.

CVE Side

CVE ID: 
           CVE-2019-17498

CVE detailed description:

CVE Reference：
CWE-190 Integer Overflow or Wraparound; 

          CVSS 3.x Severity and Vector Strings

Patch Side

Commit Message:

Commit Diff:

Code Slicing:

Figure 6: Motivating example sample in GITPATCHDB.

Motivating example. CVE-2019-17498 is an integer overflow vulnerability in libssh2, with
details illustrated in Figure 5 and Figure 6. The patch for CVE-2019-17498, shown in Figure 5,
includes both added (+++) and removed (---) lines from the code diff. To enrich the contextual
understanding of this vulnerability, our program analysis in GITPATCHDB applies both forward
slicing (orange arrows) and backward slicing (blue arrows), resulting in an interprocedural program
slice that spans relevant control and data dependencies across function boundaries. Figure 5 presents
the corresponding input sample in GITPATCHDB, which consists of two complementary components:
the CVE side and the patch side.
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C APPENDIX C: PROGRAM ANALYSES IN GITPATCHDB

C.1 INTERPROCEDURAL PROGRAM SLICING

Program slicing primer. Program slicing extracts the subset of program statements that affect
(backward slice) or are affected by (forward slice) a given slicing criterion such as a variable or
line of code (Weiser, 1981; Tip, 1994). While early approaches focused on intraprocedural slicing,
modern applications require interprocedural slicing to accurately track data and control dependencies
across function boundaries (Reps et al., 1995a; Horwitz et al., 1990). These techniques extend
classic program dependence graphs with interprocedural edges and call-return matching to preserve
contextual semantics (Reps et al., 1995a). Additionally, robust slicing frameworks often integrate
alias-aware def-use chains, which are particularly relevant when analyzing pointer-heavy languages
like C/C++ (Binkley & Gallagher, 1996; Weiser, 1981). In our work, we adopt a static, context-
sensitive interprocedural slicing approach, enhanced with pointer-aware analysis to resolve indirect
dependencies during traversal.

Analysis motivation 1. Context richness. Slicing augments the diff with a contextual slice of
surrounding code, which often spans functions and aliases, yielding an average 6.8× expansion
in code relevant to the deleted lines. This captures how vulnerabilities propagate across program
structure, enabling more precise matching with natural-language CVE descriptions. This motivates
our interprocedural program slicing.

Analysis motivation 2. Analysis scalability. GITPATCHDB performs convergence-based slicing at
scale by alternating interprocedural slicing and flow-sensitive pointer refinement until a fixed point
is reached. While effective, this co-analysis loop poses scalability challenges across thousands of
patches. In order to analyze large-scale programs, prior works on scalable static analysis (Hackett
et al., 2006; Hardekopf & Lin, 2009) often assume whole-program visibility or rely on coarse-grained
modularity. Slicing engines such as PDG-based tools (Binkley & Gallagher, 1996; Weiser, 1981)
or taint tracking systems (Livshits & Lam, 2005) typically operate over precomputed global graphs,
with pointer analysis decoupled as a preprocessing phase, making them unsuitable for patch-level or
real-time analysis. In contrast, this desire of analysis scalability motivates our on-the-fly co-analysis
of program slicing and pointer analysis.

On-the-fly co-analysis of program slicing and pointer analysis. GITPATCHDB introduces a fully
on-the-fly, patch-centric pipeline that incrementally builds control and data flow graphs only for the
code related to each patch. As shown in Algorithm 1, graph structures are updated dynamically
(Line 14), and re-slicing is restricted to alias-affected nodes (Line 11), improving both precision and
efficiency.

Co-analysis design details. Our convergence loop terminates when both program slicing and pointer
analysis reach fix-points (Algorithm 1, Line 17), yielding a semantically complete, minimal patch
slice. Unlike prior systems that decouple slicing and aliasing (Lhoták & Hendren, 2003), we design
this co-analysis to eliminate both irrelevant statements and infeasible pointer aliases.

The process involves four stages:

Step 1. On-the-Fly Graph Construction. The co-analysis begins by parsing the program P into an
abstract syntax tree (AST) and constructing the interprocedural control-flow graph (CFG) and def-use
data-flow graph (DFG) (Horwitz et al., 1990). The CFG captures all control paths across function
calls, while the DFG encodes definition-use chains, as well as aliasing pointers. By preserving call
contexts in the co-analysis, we maintain precise analysis results across procedure boundaries (Reps
et al., 1995a). We extract the changed lines ∆ as the slicing criteria to initialize the slice worklist W .

Step 2. Pointer-Aware Def-Use Slicing. For each seed node v ∈ W , we compute a forward slice
fwd(v) and backward slice bwd(v) over the DFG (Tip, 1994), traversing both def-use and control-
dependence edges. Notably, this traversal is pointer-aware: when encountering indirect accesses
(e.g., *p), we use the current points-to map Π to determine valid aliases (Lhoták & Hendren, 2003).
For instance, if p 7→ {x, y}, an assignment to *p is treated as modifying both x and y. The union of
all slices forms the updated slice set S′, which is strictly more precise than traditional slicing due to
alias disambiguation.
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Algorithm 2: Flow-Sensitive Andersen’s Pointer Analysis

1

Function FLOWSENSITIVEANDERSEN(GCFG, S0, ∆):
Input :CFG GCFG, initial state S0, changed lines ∆
Output :Updated pointer state S

2 Q ← INITIALIZEWORKLIST(∆) // BFS queue for CFG nodes
3 S ← S0, VISITED ← ∅
4 whileQ ̸= ∅ do
5 n← Q.DEQUEUE()
6 VISITED ← VISITED ∪ {n}

/* Kill outdated relations before processing */
7 S ← S − GETKILLSET(n)
8 foreach s ∈ GETSTATEMENTS(n) do
9 Cs ← EXTRACTCONSTRAINTS(s)

10 foreach c ∈ Cs do
11 (Sadd,Skill)← PROCESSCONSTRAINT(c,S)
12 S ← (S − Skill) ∪ Sadd

/* Propagate to successors if state changed */
13 if S ̸= GETPREVSTATE(n) then
14 foreach succ ∈ GETSUCCESSORS(n) do
15 if succ /∈ VISITED then
16 Q.ENQUEUE(succ)

17 return S
Function PROCESSCONSTRAINT(c, S):

switch CONSTRAINTTYPE(c) do
case address-of do // p = &q

18 return ({pts(p) ⊆ {q}}, ∅)
19 case copy do // p = q
20 return ({pts(p) ⊆ pts(q)}, ∅)
21 case store do // ⋆p = q
22 return ({pts(⋆p) ⊆ pts(q)}, ∅)

Step 3. Flow-Sensitive Pointer Analysis. We refine alias sets by applying a flow-sensitive Andersen-
style points-to analysis (Sridharan & Bodík, 2006) restricted to nodes in the current slice S′. Unlike
flow-insensitive pointer analyses (Hardekopf & Lin, 2011), this approach tracks pointer updates
across control paths (Pearce et al., 2007), distinguishing aliasing pointers at different program points.
The result is an updated points-to map Π′, enabling us to prune infeasible aliasing relations and
improve the accuracy of data dependencies in the next slicing iteration.

Step 4. Convergence and fixed-point check. We update the CFG and DFG based on the new pointer
information Πnew (Algorithm 1, Lines 13-22). If control-flow or data dependencies change (e.g.,
resolving indirect calls), we rebuild edges and update the affected nodes. If neither the slice S′

nor pointer state Πnew changed, the co-analysis converges and reaches a fix-point. Otherwise, we
update the slicing result R← R ∪ S′ and repeat Phases 2-4. This loop continues until a fixed point
is reached, yielding a minimal and precise slice R that captures both interprocedural control / data
dependencies and pointer-based aliasing relations (Weiser, 1981; Reps et al., 1995b), critical for
modeling vulnerability semantics.

This detailed description of our program analysis highlight core novelty of our co-analysis: an on-the-
fly co-analysis that couples program slicing with pointer analysis to strengthen context richness and
analysis scalability. This approach is especially well-suited to security patches, where flaws often
span multiple files or functions and are mediated by aliasing or indirect control flow.

Co-analysis implementation details. In our co-analysis, GITPATCHDB incorporates deleted lines as
slicing roots. These lines are recovered from Git parent commits and treated as entry points for back-
ward slicing, providing richer semantic context. This integrates Git-based evolution tracking (Kim
et al., 2025; Fluri et al., 2007) with static def-use semantics, a combination overlooked in earlier
tools.

GITPATCHDB caches intermediate slices across patches with overlapping code, enabling parallelized
ingestion and eliminating redundant recomputation. These design choices collectively allow us to
scale slicing across 12,000 patches without sacrificing semantic precision or completeness.

GITPATCHDB stores backward and forward slices alongside patch metadata, enabling machine
learning models to consume fine-grained semantic context for downstream tasks. Unlike raw diffs,
these slices encode interpretable relationships between variables, control conditions, and pointer
dereferences, supporting contrastive CVE-to-patch alignment and vulnerability pattern learning.
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C.2 FLOW-SENSITIVE ANDERSEN’S POINTER ANALYSIS

In this section, we describe our flow-sensitive Andersen’s pointer analysis in details. We propose a
flow-sensitive variant of Andersen’s inclusion-based pointer analysis (Andersen & Lee, 2005), as
listed in Algorithm 2. Our flow-sensitive pointer analysis resolves constraints such as address-of,
copy, and store, across the interprecedural control-flow graph (CFG) on-the-fly, starting from the
original changed lines in the patch ∆ (Line 1).

• Initialization (Lines 2-3): A worklist Q is initialized with affected CFG nodes based on ∆, and
the pointer state S is initialized to S0.
• Constraint Solving (Lines 4-12): For each node n dequeued from Q, outdated pointer relations are

invalidated (Line 7). New constraints are extracted from statements in n (Lines 8-9) and processed
(Line 10) using the PROCESSCONSTRAINT function (Lines 18-25).
• Constraint Types:

• Address-of (p := &q): Adds {q} to PointsTo(p) (Line 21).
• Copy (p := q): Propagates PointsTo(q) to PointsTo(p) (Line 23).
• Store (∗p := q): Updates all targets of PointsTo(p) with PointsTo(q) (Line 25).

• Constraint Propagation (Lines 13-16): If the pointer state changes, successors are enqueued for
further processing.

Our flow- and context-sensitive pointer analysis balances precision and scalability, enabling fine-
grained tracking of pointer relationships across control-flow and calling contexts. This makes it
particularly suited for downstream tasks such as vulnerability detection, memory safety verification,
and interprocedural slicing.
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D APPENDIX D: STATISTICS OF OUR GITPATCHDB
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Figure 7: Programming languages distribution in our dataset.

Table 7: Top 10 repositories with most CVEs in our dataset.

Project Category Language Description URL Count
Linux Kernel Operating System C Operating System Kernel http://git.kernel.org 1780
moodle Education PHP E-learning platform https://github.com/moodle/moodle 498
TensorFlow AI/ML Python Machine learning framework https://github.com/tensorflow/tensorflow 341
ChakraCore Web C++ JavaScript engine https://github.com/chakra-core/ChakraCore.git 218
ImageMagick Multimedia C Image processing software https://github.com/ImageMagick/ImageMagick 171
WordPress Web PHP Content management system https://github.com/WordPress/WordPress 158
phpmyadmin Management PHP Database management https://github.com/phpmyadmin/phpmyadmin 138
tcpdump Network C Network diagnostic tool https://github.com/the-tcpdump-group/tcpdump 125
rails Web Ruby Web application framework https://github.com/rails/rails 119
vim Editor C Text editor https://github.com/vim/vim 117

The programming languages distribution and the top 10 most CVEs repositories in our dataset are
illustrated in Figure 7 and Table 7, respectively. Note that C# and Swift appear only in the test set and
were not included in training, reflecting the natural underlying distribution of the source CVE corpus
during our collection window, where C#-based and Swift-based projects are comparatively rare.
Nevertheless, our results show strong zero-shot cross-language generalization to these languages,
achieving an Accuracy@10 of 95.99%.
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E APPENDIX E: EMBEDDING BASELINES EVALUATION

Table 8: Additional baselines on GITPATCHDB with frozen encoders and learned projection heads.

Top N Qwen3 SparseCoder GITPATCHDB (CNPP)
1 73.68 58.33 78.56
2 83.34 69.44 83.17
3 88.89 73.15 88.11
4 92.06 78.74 91.37
5 92.95 81.23 93.12
6 93.48 83.33 94.41
7 94.33 86.55 94.87
8 95.13 87.96 95.23
9 95.48 87.97 95.43

10 95.95 89.09 95.99
15 96.39 90.12 96.51
20 97.04 90.33 97.28
25 97.25 90.31 97.98
30 98.61 92.48 99.02

Table 8 highlights the following key results:

• Qwen3 attains a Recall@10 of 95.95%, substantially outperforming SparseCoder (89.09%) and
nearly matching our supervised CNPP model (95.99%).
• At Recall@30, CNPP achieves 99.02%, while Qwen3 and SparseCoder reach 98.61% and 92.48%,

respectively.

E.1 SPARSECODER

Experimental Setup. SparseCoder (Yang et al., 2024) is designed and pre-trained for sequence-to-
sequence generation tasks such as code summarization, as stated in the paper: “We train all models for
10 epochs on the FunCom dataset” (Section 4.2), and its architecture incorporates an encoder-decoder
structure optimized for generating natural language summaries from code (Section 3.1).

In our contrastive retrieval framework, we therefore only utilized the encoder and extracted em-
beddings from the Top-K sparse activation layer (Section 3.3), which was originally intended for
interpretability, not dense similarity matching.

Result Analysis. We attribute SparseCoder’s relatively moderate performance to the following
factors:

(i) SparseCoder is trained with a cross-entropy loss for decoder-based generation rather than a
contrastive loss, making it misaligned with our retrieval objective, which relies on InfoNCE to align
CVE descriptions with patch embeddings.

(ii) SparseCoder was trained exclusively on English-language corpora such as CodeSearchNet and
FunCom (Section 4.1), and does not support multilingual inputs natively. Since GITPATCHDB
includes CVE descriptions and commit messages in multiple natural languages, we had to translate
non-English queries before encoding, introducing noise and additional limitations.

Despite these challenges, SparseCoder still achieved competitive results in our comprehensive
evaluation. We believe future works with multilingual pretraining and contrastive fine-tuning can
further improve its performance in retrieval tasks.

E.2 QWEN3

Experimental Setup. We applied Qwen3 as a frozen encoder for both CVE descriptions and code
patches (via mean pooling and [CLS] token), followed by modality-specific projection heads fθ and
gϕ to embed inputs into a shared latent space. These heads were trained using a CLIP-style InfoNCE
contrastive objective:

LCLIP = −log exp(sim(fθ(zCV E), gϕ(zpatch))/τ)∑
j exp(sim(fθ(zCV E), gϕ(zj))/τ)

Result Analysis. Despite limited epochs and no encoder updates, Qwen3 achieved a Recall@10 of
95.95%, demonstrating its strong potential. With full contrastive fine-tuning and longer convergence,
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we expect it to surpass baseline embeddings. In future work, we plan to fine-tune Qwen3 end-to-end
using the following steps:

• Initialize from Qwen3-embedding as the encoder backbone.
• Freeze the lower transformer layers initially to stabilize gradients.
• Optimize the full system using our contrastive CLIP-style loss on CVE–patch pairs from Git-

PatchDB.
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