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Abstract

Notable progress has been made in generalist medical large language models across
various healthcare areas. However, large-scale modeling of in-hospital time series
data - such as vital signs, lab results, and treatments in critical care - remains
underexplored. Existing datasets are relatively small, but combining them can
enhance patient diversity and improve model robustness. To effectively utilize
these combined datasets for large-scale modeling, it is essential to address the
distribution shifts caused by varying treatment policies, necessitating the harmo-
nization of treatment variables across the different datasets. This work aims to
establish a foundation for training large-scale multi-variate time series models
on critical care data and to provide a benchmark for machine learning models in
transfer learning across hospitals to study and address distribution shift challenges.
We introduce a harmonized dataset for sequence modeling and transfer learning
research, representing the first large-scale collection to include core treatment vari-
ables. Future plans involve expanding this dataset to support further advancements
in transfer learning and the development of scalable, generalizable models for
critical healthcare applications.
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1 Introduction

Foundation models trained on complex multi-modal medical data have the potential to significantly
transform healthcare [33]. Considerable advancements have been made in the development of
generalist medical Large Language Models (LLM) [43, 6], computer vision models in pathology [51],
single-cell multi-omics models [8], and sequence models on coded Electronic Health Records
(EHR) [54].

One area that remains underexplored is the foundation models for critical care time series10. It is
promising because of the prospective benefits for patients and the availability of large (multi-site and
multi-national) and rich (multi-variate, including vital signs, lab measurements, and treatments) data.

Developing a large-scale foundation model with robust generalization capabilities across hospitals and
countries requires a comprehensive dataset with high patient diversity [40]. Individually published
datasets from Intensive Care Units (ICU) and Emergency Departments (ED) [26, 12, 46, 41, 25, 53]
are relatively small compared to modern standards in fields such as Natural Language Processing
(NLP) [13]. However, by aggregating them, it is possible to scale the number of admissions by an
order of magnitude and increase their diversity. Previous works addressing such aggregation did not
include all the ICU datasets, add ED datasets, or harmonize treatment variables [4, 57].

A key challenge in creating a foundation model is to ensure its robustness to distribution shifts.
In the clinical domain, this is especially difficult because of substantial differences in recording
formats and treatment policies between hospitals and countries [21]. Robustness to these shifts would
suggest that the model generalizes beyond cohort-specific pattern matching and achieves a deeper
understanding of human physiology. Specifically on critical care time series, most previous works
considered single-center performance [19, 58, 5]. The few publications that did consider transfer,
either focused on a specific task [34] or did not attempt to improve model generalization and ensure
its robustness [48].

Our aim is to establish the foundation for training and evaluating large-scale multi-variate time-series
models on real-world hospital data from critical care. To achieve this goal, we create a large multi-
center dataset covering a wide array of clinical features and build an understanding of what machine
learning algorithms work well on such data.

We expect this work to become the basis for a future foundational model with a wide range of
downstream medical applications. Specifically, it will unlock research for small cohorts of specific
patients using few-shot learning or fine-tuning, mirroring the impact of pretrained language models
in NLP. Furthermore, for the ML community, the dataset we present will be a valuable resource for
research into sequence modeling, meta and transfer learning, domain adaptation, and generalization.

Our current contributions are two-fold:

• Dataset. We introduce the largest harmonized critical care time series medical dataset. It is
the first of such datasets to (a) harmonize the core treatment variables, (b) include datasets
from both ICU and ED, (c) incorporate data from Asia in addition to Europe and the USA,
and (d) provide annotations and results on multiple organ failure tasks on the same data. It
is extendable and can be used for research in sequence modeling, domain generalization,
and meta-learning.

• Benchmark. We run a comprehensive benchmark of machine learning models on the new
dataset. We perform transfer studies and evaluate performance on clinically relevant real-
time prediction tasks in-distribution as well as out-of-distribution.

2 Experiments

2.1 Setup

Data With the goal of maximizing the number of harmonized physiological measurements and
treatment data points, we incorporate all ICU datasets that are freely available to the academic
community. These include datasets from the USA (MIMIC-III [24], MIMIC-IV [27, 24], and

10We call critical care a setting, where a patient is being closely monitored (e.g., in emergency departments
and intensive care units, during surgery, etc.)
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eICU [38]), Europe (AmsterdamUMCdb [46], SICdb [41], and HiRID [12]), and China (PICdb [30]
and Zigong EHR [56]). Additionally, we incorporate an ED dataset [25]. Most datasets are available
on the Physionet Platform [14] or directly with the dataset provider (e.g. AmsterdamUMCdb [46]).
Further details are in Appendix C.

Figure 1: Visualization of har-
monized and processed data
by t-SNE [49]. Each point rep-
resents a time step.

Figure 1 shows visualization of harmonized and processed data by t-
SNE [49]. The apparent clustering by source hospital emphasizes the
challenge of developing a predictor that is robust to these distribution
shifts across sites.

Models We consider two groups of machine learning algorithms.
The first group consists of classical machine learning methods (Light-
GBM [28] for gradient boosted decision trees and regularized Linear
Regression [39]), which are highly effective for real-time prediction
tasks on critical care time series [19, 22, 58]. For these models, we
either use the forward-filled last available measurement for each
variable (Last Meas.) or include hand-extracted features from the
history based on the work by Soenksen et al. [44], which we further
expanded to improve performance (Appendix C.4.3). The second
group is focused on deep learning methods. We select established
and state-of-the-art sequence architectures for this group: Gated Recurrent Unit (GRU) [7], Trans-
former [50], Mamba [9] and xLSTM [3]. Training details in Appendix D.

2.2 In-distribution and out-of-distribution Benchmark

Single-center in-distribution training represents the classical setting where a model is trained and
evaluated on the train and test subsets of a single source dataset. We can furthermore, consider training
on multiple datasets jointly and reporting individual in-distribution performances. Comprehensive
benchmark results can be found in Tables 1 and 2 in Appendix A. Results for disposition prediction
on MIMIC-IV-ED are presented in Table 5 (Appendix A).

In the single-center out-of-distribution setting, we train a model on any single dataset and report test
performance on the held-out dataset (e.g. Figure 2 shows results for LightGBM, further results on
other models in Appendix A.3). In the multi-center hold-out setting, we train a model on all but the
target dataset and then report test set performance on the held-out dataset.

Results for out-of-distribution transfer for single- and multi-center training are presented in Ta-
bles 3 and 4 (Appendix A). Hyperparameter optimization is always performed on the in-distribution
validation sets corresponding to the collection of training sets.

Figure 2: LGBM (Feat.) single-center transfer performance heatmaps (AUROC).

2.3 Fine-tuning Study

We performed a supervised pretraining and fine-tuning study, as shown in Figure 3 and Ap-
pendix A Figure 5, using the HiRID dataset [12]. We trained models from scratch on progressively
increasing number of HiRID patients: LightGBM with extracted features, GRU as the best performing
deep sequence architecture, and Mamba as a modern RNN variant. Further, we pretrained a GRU (or
Mamba) backbone on all other datasets in a supervised fashion and reported the zero-shot transfer
performance without using any HiRID data. Finally, we initialized a GRU (or Mamba) network with
the aformentioned supervised pretrained weights and fine-tuned either the full network or only the
linear logit head.
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3 Discussion
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Figure 3: Supervised fine-tuning
study performed on HiRID for cir-
culatory failure predictions at 8
hour horizon by progressively in-
creasing the number of patients
used for training or fine-tuning.

Overall, the transfer performance in- and out-of-distribution
suggests that even without fine-tuning the resulting time series
models are capable of performing early event prediction for
relevant medical labels reasonably well. In all settings, we
see that gradient-boosted trees with feature extraction are the
best-performing model across the board (see Tables 1 and 3).
This is consistent with the previous findings [22, 58].

At the same time, we note that the performance of deep models
is often within just one or two AUROC points of the classical
algorithms. For disposition prediction, the gap is even smaller,
around a tenth of a point (Table 5). In some cases, they manage
to outperform tree-based alternatives, especially in multi-center
settings.

From the transfer heatmaps Figure 2 we notice that (1) models
generally transfer better in particular groups of datasets and (2)
the transfer performance depends on the task.

On average, both LGBM and GRU generally transfer well be-
tween the eICU, MIMIC, HiRID, UMCdb, and SICdb datasets
(Figures 4a and 4b). We hypothesize that this is due to their
locality. These datasets originate from the USA and Europe,
where clinical practices might be more similar than for example
between the USA and China (PICdb and Zigong EHR datasets).
This is reinforced by the particularly good transfer between
eICU and MIMIC, both originating in the USA.

The fine-tuning study (see Figure 3 and Appendix A Figure 5)
suggests that the models trained on the harmonized collection
of datasets are able to generalize to a new, previously unseen
dataset. They outperform a model trained from scratch for
dataset sizes of up to tens of thousands of admissions. The prac-
tical implication is that training on publicly available datasets
should be the go-to strategy for small and medium scale studies
on critical care time series. We also see that a fine-tuned GRU model performs better or is on par
with the LGBM model trained from scratch on admission counts fewer and larger than 10,000. This
result suggests that deep learning models might be a preferable choice when transferred from large
datasets.

4 Conclusion

In this work, we established the foundation for large-scale time series models on critical care data.
We created the largest harmonized dataset that includes hospitals from three continents, incorporates
treatment variables, and integrates data from both ICU and ED units. The dataset is further supported
by a comprehensive transfer learning benchmark.

Our results demonstrated that with the access to an increased amount of carefully harmonized and
labeled data, machine learning models are capable of generalizing when transferring across countries
and continents, even without extensive fine-tuning. Notably, gradient-boosted trees with feature
extraction consistently outperformed other models, although deep learning models came remarkably
close, particularly in multi-center settings and for disposition prediction tasks. Importantly, our study
highlights how dataset resolution and geographic origin influence transferability. Finally, fine-tuned
models, trained on harmonized datasets, significantly improved performance on previously unseen
data, especially for small and medium-sized datasets.

In future work, we plan to explore further improvements to the data coverage and training procedure
to create the first foundation model for critical care time series and beyond.
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Dec. 24h 93.7 95.4 97.3 95.8 95.7 95.8 95.8 92.0 94.7 96.1 95.8 95.0 95.0 95.7
Circ. 8h 93.5 95.2 95.6 94.9 94.9 94.8 95.0 92.5 94.6 95.1 94.5 94.4 94.5 94.7
Resp. 24h 76.4 79.7 81.1 79.9 79.7 79.7 79.8 74.1 78.7 79.9 79.3 78.9 79.5 79.5
Kidn. 48h 83.2 87.5 89.8 88.3 87.7 87.9 88.3 81.6 86.9 89.2 87.8 86.2 88.1 88.3

eICU

Dec. 24h 91.1 93.0 95.8 93.4 93.3 93.4 93.5 89.1 92.4 93.9 92.8 92.4 92.9 93.1
Circ. 8h 94.4 95.6 96.0 95.4 95.4 95.2 95.3 93.2 95.2 95.6 94.7 94.8 94.8 94.9
Resp. 24h 79.2 82.1 83.6 82.8 82.3 82.2 82.1 78.1 81.7 82.5 81.8 81.3 81.8 82.1
Kidn. 48h 74.5 82.0 85.6 83.7 82.9 83.3 83.8 73.0 81.0 84.2 82.1 81.5 82.7 83.1

HiRID

Dec. 24h 93.0 93.8 94.5 94.6 94.0 94.4 94.3 92.4 94.4 95.1 94.3 94.1 94.4 94.5
Circ. 8h 90.8 91.9 92.6 92.3 92.0 92.0 92.2 90.7 92.1 92.8 92.6 92.4 92.3 92.6
Resp. 24h 75.2 76.6 78.1 77.2 76.9 76.6 76.8 75.1 77.1 78.4 78.0 77.5 77.4 77.3
Kidn. 48h 91.2 93.0 93.7 92.3 91.1 91.9 92.1 90.7 93.4 94.3 93.6 93.2 93.0 93.4

UMCdb

Dec. 24h 88.9 92.3 95.9 92.9 91.8 92.1 92.3 88.4 92.3 95.2 93.2 92.9 93.4 93.4
Circ. 8h 96.2 97.1 97.5 97.6 97.3 97.3 97.5 95.7 97.0 97.7 97.8 97.7 97.7 97.8
Resp. 24h 78.8 80.4 82.0 81.2 80.7 80.6 80.5 78.2 80.5 82.1 81.4 81.2 80.8 80.7
Kidn. 48h 93.4 95.1 95.6 94.5 94.1 93.9 94.3 93.4 95.8 96.1 95.2 95.0 95.2 95.0

SICdb

Dec. 24h 83.7 88.1 88.8 87.9 86.7 87.2 87.8 81.8 88.8 90.9 89.2 89.2 89.0 89.6
Circ. 8h 88.7 90.3 91.6 91.0 90.7 90.6 90.5 95.7 90.3 91.7 91.3 91.1 91.1 91.3
Resp. 24h 77.9 80.8 81.4 80.7 80.2 80.3 80.1 78.2 80.9 81.7 81.1 80.7 81.2 81.0
Kidn. 48h 87.3 89.4 90.8 88.9 87.7 88.3 88.1 93.4 90.1 91.9 89.2 89.2 89.1 89.3

PICdb

Dec. 24h 85.3 85.6 90.3 87.8 88.0 87.2 87.8 70.6 87.0 88.8 83.2 81.8 84.5 84.0
Circ. 8h 94.2 94.7 96.8 96.0 96.0 95.8 96.4 88.6 92.4 92.1 92.0 92.2 93.2 93.6
Resp. 24h 71.3 66.3 68.5 68.4 70.7 70.2 65.9 65.9 59.5 59.3 66.1 66.2 66.8 67.3
Kidn. 48h 73.5 81.9 78.9 63.5 63.8 66.5 69.0 57.4 71.8 81.2 67.5 67.1 67.0 64.5

Zigong Dec. 24h 69.3 78.3 92.2 86.4 85.1 76.6 68.7 66.8 70.1 80.3 73.8 71.6 71.4 74.4
Circ. 8h 88.2 92.3 93.5 88.8 86.6 84.8 84.7 89.0 90.0 89.1 86.0 84.9 86.0 86.2

Table 1: Benchmarking results in-distribution (AUROC). Bold is best in each row. Multi-center trains
on all datasets together and provides the individual test performances. All results show the mean over
three different random initialization, except for LR models that are trained using convex optimization.

A Results

A.1 In-distribution Transfer Table

In multi-center in-distribution setting a model is trained on all the harmonized datasets jointly and
evaluated on a test set of a single dataset. By carefully normalizing the features not to depend on
resolution and passing appropriate positional encoding at each time step, we can train the model in a
multi-resolution fashion. Test results then report the individual performances of this single model on
each source dataset separately.

A.2 Out-of-distribution Transfer Table

For single-center experiments, we report the performance of the model and dataset which transferred
the best. We do not consider this to be a realistic deployment scenario, but rather a reference point for
the multi-center results. It verifies whether training on a single dataset that is similar to the target
dataset is better than training on a collection of harmonized datasets. In real-world, selecting such a
training dataset would require either a strong evidence of “similarity” (hard to justify as we observe
transfer difficulties even within the same country) or considerable validation effort (technically
infeasible for the majority of hospitals).

The multi-center hold-out is a more realistic setting as it does not require any prior knowledge or
evaluation sets for the selection of the training set for transfer. It represents a deployment scenario,
where a hospital with little data suitable for ML training uses and adapts the model built on open-
access data.
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Dec. 24h 44.7 53.5 62.4 57.4 55.6 56.4 56.4 39.2 49.8 56.4 52.9 49.5 53.1 53.5
Circ. 8h 59.7 66.8 68.2 65.7 65.4 65.3 66.2 55.7 63.8 66.0 63.7 63.2 63.9 64.8
Resp. 24h 75.4 79.6 81.2 79.6 79.2 79.3 79.4 73.6 78.5 80.0 79.4 78.7 79.4 79.4
Kidn. 48h 40.8 48.6 51.8 46.9 45.6 46.0 47.0 39.5 47.2 50.8 47.6 45.9 48.3 48.6

eICU

Dec. 24h 33.1 37.9 51.4 41.2 40.9 40.8 40.9 30.0 36.8 41.8 39.5 38.0 38.9 39.5
Circ. 8h 56.8 64.7 65.3 63.8 63.2 62.8 63.5 54.2 61.7 63.4 60.9 60.6 61.4 62.2
Resp. 24h 72.6 78.2 80.0 79.1 78.3 78.4 78.3 71.3 77.7 78.7 78.0 77.1 77.9 78.2
Kidn. 48h 33.6 42.5 47.3 43.3 42.5 43.1 43.8 32.7 40.7 44.5 41.2 40.7 42.4 42.9

HiRID

Dec. 24h 43.3 50.1 52.9 54.1 51.9 52.7 53.4 42.1 51.3 55.7 53.4 51.8 52.5 52.7
Circ. 8h 52.5 55.4 57.3 57.6 56.7 56.9 57.6 51.8 57.0 59.0 59.2 58.3 57.8 58.6
Resp. 24h 88.7 90.1 90.9 90.3 90.1 89.9 90.0 88.3 90.4 91.0 90.9 90.6 90.6 90.6
Kidn. 48h 44.4 52.6 54.6 50.1 48.8 47.9 48.7 41.4 53.8 57.9 50.7 52.8 49.6 51.4

UMCdb

Dec. 24h 36.0 42.2 55.7 47.1 44.0 43.8 43.6 35.4 43.7 54.4 50.5 48.5 48.5 48.1
Circ. 8h 85.5 89.8 91.7 90.8 90.3 90.5 90.8 82.2 87.6 91.4 91.4 91.4 91.4 91.7
Resp. 24h 85.3 86.9 88.1 87.5 87.0 86.9 86.8 84.6 87.0 88.1 87.7 87.5 87.3 87.1
Kidn. 48h 50.8 56.5 58.9 56.0 53.9 53.6 54.2 49.1 59.1 63.3 56.6 58.5 55.2 57.2

SICdb

Dec. 24h 31.0 31.7 32.6 33.4 34.5 32.3 32.9 28.4 35.6 39.7 38.5 38.5 38.1 40.4
Circ. 8h 49.1 53.4 56.2 55.1 54.0 54.3 54.1 47.8 53.9 56.6 56.6 55.8 55.8 57.0
Resp. 24h 85.6 88.1 88.6 88.0 87.6 87.4 87.3 85.5 88.3 89.0 88.6 88.2 88.5 88.4
Kidn. 48h 31.5 33.9 42.6 35.9 31.4 32.4 33.1 29.1 39.5 45.8 37.0 37.9 35.8 36.2

PICdb

Dec. 24h 15.2 12.0 16.5 16.6 16.5 16.2 16.4 6.9 16.0 19.1 13.7 12.0 13.5 13.2
Circ. 8h 92.9 93.9 96.3 95.1 95.2 95.0 95.7 87.0 91.1 90.9 90.8 91.1 92.2 92.8
Resp. 24h 8.2 8.2 11.3 10.6 10.4 11.1 9.9 4.6 3.6 3.7 4.8 5.5 5.5 7.2
Kidn. 48h 5.1 9.2 11.8 3.2 3.7 3.8 3.9 6.6 7.6 11.3 9.3 8.4 7.3 7.1

Zigong Dec. 24h 22.3 30.3 54.0 41.4 37.8 29.9 32.6 20.3 20.4 28.3 23.2 24.5 22.5 25.5
Circ. 8h 98.0 98.6 98.8 98.0 97.5 97.0 94.4 98.2 98.3 98.2 97.6 97.2 97.3 97.5

Table 2: Benchmarking results in-distribution (AUPRC). Bold is best in each row. Multi-center trains
on all datasets together and provides the individual test performances. All results show the mean over
three different random initialization, except for LR models that are trained using convex optimization.
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Dataset Task Single-Center Multi-Center hold-out

AUROC Best Model Src. Data LR
(L

ast
M

ea
s.)

LGBM
(L

ast
M

ea
s.)

LGBM
(F

ea
t.)

GRU
Tran

sfo
rm

er

M
am

ba

xL
STM

MIMIC-IV

Dec. 24h 95.8 LGBM (Feat.) eICU 91.5 94.0 95.6 94.1 94.0 93.8 94.5
Circ. 8h 94.5 LGBM (Feat.) eICU 91.6 92.9 94.5 93.6 93.5 93.3 93.5
Resp. 24h 78.5 LGBM (Feat.) eICU 72.7 76.2 78.0 76.8 76.5 76.7 76.7
Kidn. 48h 89.1 LGBM (Feat.) eICU 80.8 84.4 88.0 85.0 83.8 84.7 83.3

eICU

Dec. 24h 92.3 LGBM (Feat.) MIMIC-IV 86.3 90.9 92.2 90.3 90.5 90.5 90.4
Circ. 8h 95.0 LGBM (Feat.) MIMIC-IV 92.5 93.9 95.2 93.7 93.6 93.7 93.7
Resp. 24h 81.4 LGBM (Feat.) MIMIC-IV 76.6 79.6 80.4 78.6 78.2 79.2 78.8
Kidn. 48h 83.7 LGBM (Feat.) MIMIC-IV 71.9 78.7 82.2 77.5 77.4 77.9 77.2

HiRID

Dec. 24h 91.1 LGBM (Feat.) UMCdb 89.7 92.3 92.8 91.9 92.1 92.2 91.8
Circ. 8h 90.7 LGBM (Feat.) SICdb 89.7 91.1 91.5 90.7 90.7 89.8 90.0
Resp. 24h 75.3 LGBM (Feat.) MIMIC-IV 74.1 74.4 75.7 75.9 75.8 75.0 74.7
Kidn. 48h 93.2 LGBM (Feat.) MIMIC-IV 89.9 92.3 93.2 92.3 92.0 91.1 90.7

UMCdb

Dec. 24h 89.8 LGBM (Feat.) HiRID 86.1 90.0 91.3 90.6 90.4 89.8 90.1
Circ. 8h 96.4 GRU HiRID 95.2 95.9 95.9 96.5 96.3 96.3 96.6
Resp. 24h 79.7 LGBM (Feat.) eICU 77.0 78.1 78.1 79.2 77.7 76.4 76.7
Kidn. 48h 95.6 LGBM (Last Meas.) MIMIC-IV 93.1 95.8 96.2 95.0 94.4 94.4 93.4

SICdb

Dec. 24h 83.3 LGBM (Feat.) eICU 79.7 84.3 84.4 83.4 83.0 82.3 81.6
Circ. 8h 89.1 LGBM (Feat.) HiRID 87.3 88.2 88.8 88.9 89.4 88.5 88.9
Resp. 24h 78.8 LGBM (Feat.) eICU 76.5 78.2 79.0 77.7 77.2 77.6 77.5
Kidn. 48h 88.8 LGBM (Feat.) UMCdb 84.2 87.8 90.0 85.7 85.9 85.5 85.5

PICdb

Dec. 24h 75.0 LGBM (Feat.) HiRID 67.9 74.3 79.6 66.1 66.0 62.6 61.5
Circ. 8h 90.4 GRU MIMIC-IV 88.3 89.3 87.5 87.6 87.1 86.4 86.6
Resp. 24h 70.8 GRU HiRID 66.6 60.6 68.1 66.6 63.0 65.3 65.9
Kidn. 48h 71.9 LGBM (Last Meas.) HiRID 57.6 67.7 68.5 63.0 61.2 56.7 69.0

Zigong Dec. 24h 72.8 LGBM (Feat.) UMCdb 66.6 69.3 72.4 69.0 67.0 68.5 68.7
Circ. 8h 91.4 LGBM (Last Meas.) MIMIC-IV 89.0 88.6 89.0 87.1 86.5 85.2 84.7

Table 3: Benchmarking results out-of-distribution (AUROC). Bold is best in each row (separately
for single-cente and multi-center). Single-center results are an argmax over training datasets while
testing on a hold-out dataset. Multi-center models are trained on all but the test dataset. All results
show the mean over three different random initialization, except for LR models that are trained using
convex optimization.
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Dataset Task Single-Center Multi-Center hold-out
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Dec. 24h 55.5 LGBM (Feat.) eICU 36.9 46.0 54.0 47.6 43.8 48.7 46.8
Circ. 8h 62.9 LGBM (Feat.) eICU 52.2 56.0 62.9 59.0 58.1 57.4 57.9
Resp. 24h 78.8 LGBM (Feat.) eICU 72.1 76.3 78.4 76.9 76.5 76.9 76.6
Kidn. 48h 51.7 LGBM (Feat.) eICU 38.9 45.9 48.9 44.1 43.1 44.9 42.5

eICU

Dec. 24h 38.2 LGBM (Feat.) MIMIC-IV 27.1 34.3 37.0 34.3 35.0 33.3 33.7
Circ. 8h 62.2 LGBM (Feat.) MIMIC-IV 52.9 54.8 61.6 56.4 55.6 57.5 57.5
Resp. 24h 77.5 LGBM (Feat.) MIMIC-IV 69.5 75.7 76.8 74.4 73.3 74.9 74.2
Kidn. 48h 43.8 LGBM (Feat.) MIMIC-IV 31.9 39.1 42.3 34.3 34.8 35.3 34.7

HiRID

Dec. 24h 39.3 LGBM (Feat.) UMCdb 38.4 42.2 42.5 43.1 45.4 43.9 42.8
Circ. 8h 50.6 LGBM (Feat.) SICdb 49.8 52.8 53.5 51.7 52.0 48.3 49.3
Resp. 24h 89.7 LGBM (Feat.) MIMIC-IV 87.7 89.2 90.0 90.0 89.9 89.4 89.4
Kidn. 48h 52.8 LGBM (Feat.) MIMIC-IV 39.2 51.4 55.7 48.3 47.7 44.0 46.7

UMCdb

Dec. 24h 38.2 LGBM (Feat.) HiRID 34.3 38.6 41.9 41.6 40.9 39.5 39.0
Circ. 8h 85.5 GRU HiRID 80.0 81.6 83.6 85.4 83.9 84.1 84.9
Resp. 24h 86.7 LGBM (Feat.) eICU 83.8 85.5 86.6 86.3 85.1 84.4 84.6
Kidn. 48h 59.4 LGBM (Last Meas.) MIMIC-IV 46.7 56.9 60.6 52.6 49.9 50.9 45.4

SICdb

Dec. 24h 28.6 LGBM (Feat.) eICU 24.1 31.0 30.8 29.4 28.0 28.3 28.9
Circ. 8h 46.9 LGBM (Feat.) HiRID 46.1 47.9 48.1 46.2 48.7 45.8 46.3
Resp. 24h 87.6 LGBM (Feat.) eICU 84.8 87.0 87.7 86.9 86.6 86.6 86.7
Kidn. 48h 37.0 LGBM (Feat.) UMCdb 25.4 36.0 41.6 31.9 32.1 32.1 30.9

PICdb

Dec. 24h 7.9 LGBM (Feat.) HiRID 5.9 7.3 8.3 6.5 4.5 5.1 2.7
Circ. 8h 89.4 GRU MIMIC-IV 86.7 86.9 85.6 86.8 86.1 85.6 85.4
Resp. 24h 7.7 GRU HiRID 5.1 4.1 7.3 5.8 5.8 5.2 4.8
Kidn. 48h 8.1 LGBM (Last Meas.) HiRID 6.6 7.3 7.5 7.7 8.0 7.9 8.8

Zigong Dec. 24h 22.2 LGBM (Feat.) UMCdb 20.8 19.1 20.3 17.2 18.1 18.9 18.8
Circ. 8h 98.6 LGBM (Last Meas.) MIMIC-IV 98.2 97.9 98.2 97.9 97.7 97.0 97.1

Table 4: Benchmarking results out-of-distribution (AUPRC). Bold is best in each row (separately
for single-cente and multi-center). Single-center results are an argmax over training datasets while
testing on a hold-out dataset. Multi-center models are trained on all but the test dataset. All results
show the mean over three different random initialization, except for LR models that are trained using
convex optimization.
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A.3 Transfer Heatmaps

Figure 4 shows single-center task-averaged transfer results for LGBM [28], GRU [7], Mamba [9] and
Transformer [50].
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Figure 4: Single-center task-averaged transfer performance heatmaps (AUROC).

A.4 Disposition Prediction

Models Disposition

LR (Last Meas.) 72.7
LR 78.2
LGBM (Last Meas.) 74.8± 0.02
LGBM (Feat.) 80.4± 0.01
GRU 79.9± 0.04
Transformer 79.9± 0.03
Mamba 79.9± 0.09
xLSTM 80.1± 0.16

Table 5: Disposition prediction on MIMIC-IV-ED (AUROC).
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A.5 Fine-tuning Study

In Figure 5 we show further fine-tuning study results for respiratory failure and kidney failure
predictions, which confirm the trend already highlighted and discussed in Figure 3. The performed
data harmonization work is highly valuable for small to medium-sized hospitals, which only have
limited amounts of training patients available and can thus significantly benefit from pretraining on
data from other hospitals.

0.91

0.92

0.93

0.94

0.95

102 103 104

Number of HiRID training/validation patient stays

0.5

0.6

0.7

0.8

0.9
GRU Sup. pretrained
Mamba Sup. pretrained
LightGBM w. feat.
GRU
Mamba
GRU fine-tune head
GRU fine-tune full
Mamba fine-tune head
Mamba fine-tune full

Te
st

 A
uR

OC
 o

n 
Hi

RI
D

(a) Dec. 24h (AUROC)

0.40

0.45

0.50

0.55

102 103 104

Number of HiRID training/validation patient stays

0.0

0.1

0.2

0.3
GRU Sup. pretrained
Mamba Sup. pretrained
LightGBM w. feat.
GRU
Mamba
GRU fine-tune head
GRU fine-tune full
Mamba fine-tune head
Mamba fine-tune full

Te
st

 A
uP

R 
on

 H
iR

ID

(b) Dec. 24h (AUPRC)

0.76

0.77

0.78

0.79

102 103 104

Number of HiRID training/validation patient stays

0.50

0.55

0.60

0.65

0.70

0.75

GRU Sup. pretrained
LightGBM w. feat.
GRU
GRU fine-tune head
GRU fine-tune full

Te
st

 A
uR

OC
 o

n 
Hi

RI
D

(c) Resp. 24h (AUROC)

0.890

0.895

0.900

0.905

0.910

0.915

102 103 104

Number of HiRID training/validation patient stays

0.70

0.75

0.80

0.85

GRU Sup. pretrained
LightGBM w. feat.
GRU
GRU fine-tune head
GRU fine-tune full

Te
st

 A
uP

R 
on

 H
iR

ID

(d) Resp. 24h (AUPRC)

0.910

0.915

0.920

0.925

0.930

0.935

0.940

102 103 104

Number of HiRID training/validation patient stays

0.5

0.6

0.7

0.8

0.9

GRU Sup. pretrained
LightGBM w. feat.
GRU
GRU fine-tune head
GRU fine-tune full

Te
st

 A
uR

OC
 o

n 
Hi

RI
D

(e) Kidney 24h (AUROC)

0.46

0.48

0.50

0.52

0.54

102 103 104

Number of HiRID training/validation patient stays

0.1

0.2

0.3

0.4

GRU Sup. pretrained
LightGBM w. feat.
GRU
GRU fine-tune head
GRU fine-tune full

Te
st

 A
uP

R 
on

 H
iR

ID

(f) Kidney 24h (AUPRC)

Figure 5: Supervised fine-tuning study performed on HiRID for decompensation (Figures 5a and 5b,
respiratory failure (Figures 5d and 5e), and kidney failure (Figures 5e and 5f) by progressively
increasing the number of patients shown during training or fine-tuning. GRU and LGBM w. feat. are
trained from scratch using HiRID data only. GRU pretrained is trained on all data excluding HiRID
patients. GRU fine-tuned (head/full) initialize the network with GRU pretrained and fine-tune the full
network or only the single linear logit head.
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[45] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
[34] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
[48] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Multi-dataset critical care time-series benchmarks

B Related Work

Time Series Foundation Models Following advances in natural language processing (NLP), Large-
scale multi-purpose pretrained models referred to as "foundation models" have sprouted across data
and application types. When considering time series, a large body of works has exclusively focused
on forecasting non-medical data [10, 16, 60, 1].

Foundation Models for Healthcare In the clinical domain, existing foundation models have not
considered in-hospital critical care time series but rather other forms of Electronic Health Records
(EHR) such as billing codes [54] and medical reports [6]. Some studies [18, 55] explored the
adaptability of public EHR models for clinical prediction tasks, while others [17] evaluated their
effectiveness in improving in-distribution and out-of-distribution performance.

Benchmarks on ICU time-series In the literature, we observe two benchmarking strategies:
single- and multi-center. Harutyunyan et al. [19] provided the first standardized and reproducible
single-center benchmarks built on MIMIC-III [24]. Following this seminal work, a line of studies
emerged that defined new tasks or explored different datasets, such as Sheikhalishahi et al. [42] on
eICU [38], Yèche et al. [58] on HiRID [12], and Wang et al. [52] as an alternative on MIMIC-III. The
proliferation of work around single-center data has led researchers to aggregate them into multi-center
studies such as [34] and [48]. We present a comparison in Table 6. It is important to emphasize that,
unlike previous efforts, we both perform a new largest to-date dataset harmonization and build a
comprehensive benchmark.

C Data Harmonization and Processing

C.1 Data Sources

The overview of the datasets is shown in Table 7. We do not harmonize RICD [51] as it is not free
access (a separate contract and payment are required). Other datasets are available via PhysioNet
[14] or directly from the providers.

To the best of our knowledge, this is the first work bringing together critical care datasets from the US,
Europe, and, for the first time, China. Harmonizing datasets across different continents can improve
generalization and is crucial to the fairness and inclusiveness of ML research on critical care data.
The diversity of our dataset enables research for small but specific cohorts of patients. For example,
PICdb [30] is a small pediatric dataset. The average age is under one year, while it is over 60 on other
datasets (see Table 7 in Appendix C). By providing an easy way to pretrain on large amounts of data,
we create an opportunity for smaller-scale targeted studies to benefit from the existing larger-scale
research on modeling for critical care time series.

11Certificate “Data or Specimens Only Research” from the Collaborative Institutional Training Initiative
(CITI) program: physionet.org/about/citi-course/
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Time 2001-12 2008-19 2014-15 2003-16 2008-16 2013-21 2010-18 2019-20 2011-19 2017-23
Country US US US NL CH AU CN CN US RU
Easy access* + + + ± ± ± + + + −
Max resolution, min 60 60 60 60 2 1 5 60 – 6
Admissions 61532 76540 200859 23106 33905 27386 13499 2790 ∼ 425000 3291
Patients 46476 53150 – 20109 – – 12881 2790 – 2562
Mean LoS, days 2.1 11 1.57 1.08 0.95 3.5 9.3 4 – 32
Mean age, years 65.8 64.7 65 65 65 – 0.8 69.2 – 57.8
Mortality, % 8.5 11.6 9.94 12.05 6.52 3.45 6.9 5.77 – 12.31

E
xt
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ct

ed

Resolution, min 60 60 60 5 5 5 60 60 60 –
Admissions 53713 70831 183695 22889 33558 24522 13295 2525 177714 –

L
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,%

Decompensation 24h 8 7 5 10 6 5 7 43 – –
Circulatory 8h 14 19 7 23 31 30 16 32 – –
Respiratory 24h 22 25 14 45 45 54 2 0 – –
Kidney 48h 5 7 7 5 3 5 1 0 – –
ED Disposition – – – – – – – – 51 –

Table 7: Datasets overview.
* Denoted as + if only a CITI certificate11and ± if additional provider approval is required, − otherwise.
§ Shortened AmsterdamUMCdb to “UMCdb”.
† We consider ED admissions for MIMIC-IV-ED, and ICU admissions for other datasets.

By incorporating both ICU and ED datasets, we provide a way to study joint ED-ICU models,
potentially leading to a unified clinical prediction model regardless of the hospital unit.

C.2 Inclusion criteria

We consider patient stays that after extraction have a valid admission and discharge time, a valid
length of stay (LoS) that is longer than 4 fours, a maxium gap between measurements smaller than
48 hour, and more than 4 measurements.

Compared to Van De Water et al. [48], we broaden the inclusion criteria by reducing the LoS
requirement from 6 to 4 hours, and increasing the allowed maximum gap between measurements
from 12 to 48 hours.

By including as many patients as possible, we aim to create a more general version of the dataset, that
can be further trimmed down for specific studies. Additionally, a wide range of stays can improve the
generalizability of predictive models.

C.3 Harmonization

The datasets we consider are recorded using different, non-standardized, formats. We perform dataset
harmonization with the ricu package as a basis Bennett et al. [4]. ricu defines data source agnostic
concepts as an abstraction for encoding clinical concepts. These include static information about the
patient (e.g., height), observations (e.g., heart rate), and treatments (e.g., administration of antibiotics).
By mapping the concepts to source variables from each dataset the package facilitates exporting a
unified view of the data across all of them.

Expanding prior work [48, 33, 4], we implement new observation concepts and incorporate new ICU
datasets, namely SICdb, PICdb, Zigong EHR, creating the largest harmonized ICU dataset to date.
Further, we integrate an ED dataset (MIMIC-IV-ED), increasing the number of processed stays from
around 400,000 [48] to over 600,000. The expansion increases the total number of final extracted
individual data points from approximately 400 million close to one billion.

Crucially, we introduce a principled way to harmonize a wide range of treatment variables. This
significantly increases the number of concepts compared to previous works [33, 48]. We define
the new concepts using clinical expert opinion informed by what variables were reported as most
important for various tasks and models in the literature (see Table 8, Appendix C). Previous works
[33] have suggested that including medication variables harms the accuracy of predictive models,
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Variables Clinical importance Task importance* Literature Importance†

Meta variable Type Organ system Group Included as Priority Circ. Resp. Kidn. Sepsis CircEWS RMS KDIGO Moor

Dobutamine Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Levosimendan Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

Norepinephrine Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Epinephrine Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Milrinone Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Theophylline Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Dopamine Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Vasopressin Drug Cardiovascular Vasopressor / Inotropes Rate & ind. High ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Heparin Drug Cardiovascular Anticoagulants Rate & ind. High ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Propofol Drug Nervous Sedatives / Anxiolytics Rate & ind. High ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Benzodiacepine Drug Nervous Sedatives / Anxiolytics Rate & ind. High ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Loop diuretic Drug Renal Diuretics Rate & ind. High ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Other sedatives Drug Nervous Sedatives / Anxiolytics Indicator High ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Opiate painkillers Drug Nervous Pain killers Indicator High ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Non-opioid analgesic Drug Nervous Pain killers Indicator High ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Paralytics Drug Nervous Paralyzing Indicator High ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Administration of antibotics Drug Infectious Antibiotics Indicator High ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Insulin Drug Endocrine Insulin Indicator High ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗

Anti delirant medi Drug Nervous Anti delirant medi Indicator Med ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Other diuretics Drug Renal Diuretics Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Other anticoagulants Drug Cardiovascular Anticoagulants Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Vasodilators Drug Cardiovascular Antihypertensive + Vasodilators Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Antiarrhythmics Drug Cardiovascular Antiarrhythmic Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Packed red blood cells Blood Cardiovascular / Renal Infusion of blood products Indicator Med ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

FFp Blood Cardiovascular / Renal Infusion of blood products Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Platelets Blood Cardiovascular / Renal Infusion of blood products Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Albumin Blood Cardiovascular / Renal Infusion of blood products Indicator Med ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Fluid administration Feeding / Electrolyte Gastrointestinal / Renal Electrolytes Indicator Med ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗

Electrolytes-Phosphate Feeding / Electrolyte Gastrointestinal / Renal Electrolytes None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Electrolytes-Kalium Feeding / Electrolyte Gastrointestinal / Renal Electrolytes None Low ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Elektrolytes-Mg Feeding / Electrolyte Gastrointestinal / Renal Electrolytes None Low ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Enteral feeding Feeding / Electrolyte Gastrointestinal / Renal Feeding None Low ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Parenteral feeding Feeding / Electrolyte Gastrointestinal / Renal Feeding None Low ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Glucose Drug Endocrine Glucose None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Antiepileptic Drug Nervous Antiepileptic None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Inhalation Drug Respiratory Inhalation None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Platelet inhibitors Drug Cardiovascular Platelet inhibitors None Low ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Desmopressin Drug Cardiovascular Vasopressor / Inotropes None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Inhalation Drug Respiratory Inhalation None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Immunmodulation Drug Immune Immunmodulation None Low ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Laxatives Drug Gastrointestinal Laxatives None Low ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Peritoneal dialysis Blood Cardiovascular / Renal Dialysis None Low ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Infusion of blood products Blood Cardiovascular / Renal Blood products None Low ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Supplemental oxygen Ventilator Respiratory Respirator settings Rate Med ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

Other ventilator settings Ventilator Respiratory Respirator settings None Low ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓

Table 8: Treatment concepts and their importance in clinical practice and ML literature.
* Circ. is circulatory, Resp. is respiratory, and Kidn. is kidney failure.
† CircEWS [22], RMS [21], KDIGO [32], Moor [34].

but little research has been done into the reasons behind this effect and what can be done to mitigate
it. The information about administered medications is an insight into the actions of the clinicians,
and could drastically improve the model accuracy and transfer. By including these variables in the
harmonization pipeline, we prepared the ground for deeper investigation in this direction.

Oliver et al. [36] have proposed a processing pipeline for a subset of the source datasets considered
in this work and harmonized treatments by including drug exposure information as indicators.
We improve on this by (1) considering not only indicators, but also administration rates for core
medications used in critical care settings, and (2) grouping individual drugs into abstract treatment
concepts, thereby increasing the overlap across datasets in concepts while maintaining relevance for
downstream applications.

Ultimately, providing harmonized treatment information including administered dosages across a
collection of datasets enables future research on learning generalizable treatment effect estimations
on critical care time series.

C.3.1 Concepts for treatment variables

In Table 8 we present concepts for treatments that were identified as important in the ML literature
with their clinical importance. The choice of concepts balances granularity, missingness, and time
effort, to incorporate as much of the signal from the data as possible while keeping missingness
across datasets low and the variable labeling feasible for the medical experts.

The statistics for the new concepts covering medications are shown in Table 9. We note that we
include all medications as indicators, and, for the most important ones, rates if possible to compute
(e.g., the information on dosage is included with a convertible unit and appropriate time information
is available).
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dobutamine dobu 1 1 4 1 3 1 13 1 2 27
levosimendan levo 0 1 0 0 1 1 0 0 0 3
norepinephrine norepi 1 5 3 1 5 1 41 1 6 64
epinephrine epi 2 5 8 1 1 1 20 1 10 49
milrinone milirin 1 2 2 2 1 1 10 0 2 21
theophylline teophyllin 1 6 3 2 1 2 6 4 0 25
dopamine dopa 1 0 7 1 1 1 17 1 2 31
vasopressin adh 1 2 17 0 1 0 22 0 3 46
heparin hep 4 3 52 1 1 2 75 2 8 148
propofol prop 2 13 4 1 5 3 39 1 3 71
benzodiacepine benzdia 3 18 19 7 9 7 110 13 45 231
loop diuretic loop_diur 3 8 9 2 4 4 62 2 7 101

In
di

ca
to

rs

other sedatives sed 9 5 36 3 16 7 57 8 24 165
opiate painkiller op_pain 7 32 52 9 21 12 309 13 86 541
non-opioid analgesic nonop_pain 2 32 9 14 12 14 163 11 38 295
paralytic paral 7 0 56 2 3 4 100 5 7 184
antibotics abx 55 125 208 164 49 90 330 53 99 1173
insulin ins 8 5 20 6 7 13 132 7 6 204
fluid administration fluid 7 2 59 0 23 14 297 9 7 418
packed red blood cells inf_rbc 3 2 3 0 0 0 14 1 0 23
fresh frozen plasma ffp 3 2 8 0 0 0 7 1 0 21
platelets plat 3 2 3 0 1 0 7 1 0 17
albumin infusion inf_alb 2 0 14 1 4 2 57 1 0 81
anti deliriant anti_delir 1 16 0 1 0 2 9 1 4 34
other diuretics oth_diur 1 10 28 3 13 1 46 6 10 118
other anticoagulants anti_coag 8 18 43 6 15 16 161 14 20 301
antihypertensive and vasodilators vasod 11 78 62 14 65 53 313 41 84 721
antiarrhythmic anti_arrhythm 14 8 23 8 14 8 95 11 27 208

Used 442 891 9458 719 1595 1077 9763 1113 1085 26143
Not used 292 492 8751 470 1332 818 7278 908 602 20943
Total 453 893 9503 720 1608 1078 9790 1117 1102 26264

Table 9: Presence of medication concepts across datasets

We labeled but did not include the data in the MIMIC-III prescriptions table because it only specifies
the prescription and not the drug administration.
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C.3.2 Concept reference table

The full concept (or variable) reference table is shown in Table 10. It includes 141 variable: 6 static
demographic, 80 observation, and 55 treatment variables.

Tag Name Type Organ System Unit

map Mean Arterial Blood Pressure observation circulatory mmHg
lact Lactate observation circulatory mmol/L
age Age demographic None years
weight Weight demographic None kg
sex Sex demographic None categorical
height Height demographic None cm
hr Heart Rate observation circulatory bpm
fio2 FiO2 observation respiratory %
resp Respiratory Rate observation respiratory insp/min
temp Temperature observation infection C
crea Creatinine observation metabolic_renal mg/dL
urine_rate Urine Rate Per Hour observation metabolic_renal mL/h
po2 Partial Pressure Of Oxygen observation respiratory mmHg
ethnic Ethnic Group demographic None categorical
alb Albumin observation gastrointestinal g/dL
alp Alkaline Phosphatase observation gastrointestinal IU/L
alt Alanine Aminotransferase observation gastrointestinal IU/L
ast Aspartate Aminotransferase observation gastrointestinal IU/L
be Base Excess observation metabolic_renal mmol/l
bicar Bicarbonate observation metabolic_renal mmol/l
bili Total Bilirubin observation gastrointestinal mg/dL
bili_dir Bilirubin Direct observation gastrointestinal mg/dL
bnd Band Form Neutrophils observation infection %
bun Blood Urea Nitrogen observation metabolic_renal mg/dL
ca Calcium observation metabolic_renal mg/dL
cai Calcium Ionized observation metabolic_renal mmol/L
ck Creatine Kinase observation circulatory IU/L
ckmb Creatine Kinase MB observation circulatory ng/mL
cl Chloride observation metabolic_renal mmol/l
crp C-Reactive Protein observation infection mg/L
dbp Diastolic Blood Pressure observation circulatory mmHg
fgn Fibrinogen observation circulatory mg/dL
glu Glucose observation metabolic_renal mg/dL
hgb Hemoglobin observation circulatory g/dL
inr_pt Prothrombin observation circulatory INR
k Potassium observation metabolic_renal mmol/l
lymph Lymphocytes observation infection %
methb Methemoglobin observation circulatory %
mg Magnesium observation metabolic_renal mg/dL
na Sodium observation metabolic_renal mmol/l
neut Neutrophils observation infection %
pco2 CO2 Partial Pressure observation respiratory mmHg
ph pH Of Blood observation metabolic_renal pH
phos Phosphate observation metabolic_renal mg/dL
plt Platelet Count observation circulatory G/l
ptt Partial Thromboplastin Time observation circulatory sec
sbp Systolic Blood Pressure observation circulatory mmHg
tnt Troponin T observation circulatory ng/mL
wbc White Blood Cell Count observation infection G/l
basos Basophils observation infection %
eos Eosinophils observation infection %
mgcs Glasgow Comma Scale Motor observation neuro categorical
tgcs Glasgow Comma Scale Total observation neuro categorical
vgcs Glasgow Comma Scale Verbal observation neuro categorical
egcs Glasgow Comma Scale Eye observation neuro categorical
hct Hematocrit observation circulatory %
rbc Red Blood Cell Count observation circulatory m/uL
tri Troponin I observation circulatory ng/mL
etco2 Endtital CO2 observation respiratory mmHg
rass Richmond Agitation Sedation Scale observation neuro categorical
hbco Carboxyhemoglobin observation circulatory %
esr Erythrocyte Sedimentation Rate observation infection mm/hr
pt Prothrombine Time observation circulatory sec
adm Patient Admission Type demographic None categorical
hba1c Hemoglobin A1C observation metabolic_renal %
samp Body Fluid Sampling, Detected Bacterial Growth observation infection categorical
spo2 Pulse Oxymetry Oxygen Saturation observation respiratory %
sao2 Oxygen Saturation In Arterial Blood observation respiratory %
icp Intra Cranial Pressure observation neuro mmHg
cout Cardiac Output observation circulatory l/min
mpap Mean Pulmonal Arterial Pressure observation circulatory mmHg
spap Systolic Pulmonal Arterial Pressure observation circulatory mmHg
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dpap Diastolic Pulmonal Arterial Pressure observation circulatory mmHg
cvp Central Venous Pressure observation circulatory mmHg
svo2 Mixed Venous Oxygenation observation circulatory %
pcwp Pulmonary Capillary Wedge Pressure observation circulatory mmHg
peep Positive End Expiratory Pressure - Mechanical Ventilation observation respiratory cmH2O
peak Peak Pressure - Mechanical Ventilation observation respiratory cmH2O
plateau Plateau Pressure - Mechanical Ventilation observation respiratory cmH2O
ps Pressure Support - Mechanical Ventilation observation respiratory cmH2O
tv Tidal Volume observation respiratory ml
airway Type Of Airway Ventilation observation respiratory categorical
supp_o2_vent Supplemental Oxygen From Ventilator treatment respiratory %
ygt Gamma GT observation gastrointestinal U/L
amm Ammoniak observation gastrointestinal mmol/L
amyl Amylase observation gastrointestinal U/L
lip Lipase observation gastrointestinal U/L
ufilt Ultrafiltration On Continuous RRT treatment metabolic_renal ml
ufilt_ind Ultrafiltration On Continuous RRT Indicator treatment metabolic_renal indicator
dobu Dobutamine treatment circulatory mcg/min
levo Levosimendan treatment circulatory mcg/min
norepi Norepinephrine treatment circulatory mcg/min
epi Epinephrine treatment circulatory mcg/min
milrin Milrinone treatment circulatory mcg/min
teophyllin Theophylline treatment circulatory mg/min
dopa Dopamine treatment circulatory mcg/min
adh Vasopressin treatment circulatory U/min
hep Heparin treatment circulatory U/h
prop Propofol treatment neuro mcg/min
benzdia Benzodiacepine treatment neuro mg/h
sed Other Sedatives treatment neuro indicator
op_pain Opiate Painkiller treatment neuro indicator
nonop_pain Non-Opioid Analgesic treatment neuro indicator
paral Paralytic treatment neuro indicator
abx Antibotics treatment infection indicator
loop_diur Loop Diuretic treatment metabolic_renal mg/h
ins_ind Insulin treatment None indicator
fluid Fluid Administration treatment None indicator
inf_rbc Packed Red Blood Cells treatment None indicator
ffp Fresh Frozen Plasma treatment None indicator
plat Platelets treatment None indicator
inf_alb Albumin Infusion treatment None indicator
anti_delir Anti Deliriant treatment neuro indicator
oth_diur Other Diuretics treatment metabolic_renal indicator
anti_coag Other Anticoagulants treatment circulatory indicator
vasod Antihypertensive And Vasodilators treatment circulatory indicator
anti_arrhythm Antiarrhythmic treatment circulatory indicator
dobu_ind Dobutamine Indicator treatment circulatory indicator
levo_ind Levosimendan Indicator treatment circulatory indicator
norepi_ind Norepinephrine Indicator treatment circulatory indicator
epi_ind Epinephrine treatment circulatory indicator
milrin_ind Milrinone Indicator treatment circulatory indicator
teophyllin_ind Theophylline Indicator treatment circulatory indicator
dopa_ind Dopamine Indicator treatment circulatory indicator
adh_ind Vasopressin Indicator treatment circulatory indicator
hep_ind Heparin Indicator treatment circulatory indicator
prop_ind Propofol Indicator treatment circulatory indicator
benzdia_ind Benzodiacepine Indicator treatment circulatory indicator
loop_diur_ind Loop Diuretics Indicator treatment circulatory indicator
dobu_ind Dobutamine Indicator treatment circulatory indicator
levo_ind Levosimendan Indicator treatment circulatory indicator
norepi_ind Norepinephrine Indicator treatment circulatory indicator
epi_ind Epinephrine Indicator treatment circulatory indicator
milrin_ind Milrinone Indicator treatment circulatory indicator
teophyllin_ind Theophylline Indicator treatment circulatory indicator
dopa_ind Dopamine Indicator treatment circulatory indicator
adh_ind Vasopressin Indicator treatment circulatory indicator
hep_ind Heparin Indicator treatment circulatory indicator
prop_ind Propofol Indicator treatment neuro indicator
benzdia_ind Benzodiacepine Indicator treatment neuro indicator
loop_diur_ind Loop Diuretic Indicator treatment metabolic_renal indicator

Table 10: Concept reference
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C.4 Processing

We use anonymized data with permissive exclusion criteria (Appendix C.2) to include as many
patients as possible. The time series are extracted as a uniform grid at resolutions of 5 and 60 minutes
depending on the dataset balancing sampling precision and interoperability (see Table 7, Appendix C).
Further, similar to Yèche et al. [58], we remove outliers, impute missing values, scale variables,
extract features for tree-based models, and define task labels.

Finally, we export the processed data into two formats consumable by modern deep learning and
classical machine learning algorithms. First, a dense fully imputed time-grid (including feature
extraction if applicable for the model) and second a tokenized data format [15, 20], which encodes
only ground truth measured data points as a triplet of time, variable, and observed value. The second
format removes the need for imputation and has recently been proposed as a more suitable data
representation format for scaling models on highly irregular time-series data [47] and sharing of
data processing outputs [2]. Further details on data harmonization and processing are described in
Appendix C.

C.4.1 Data Scaling

Data is scaled depending on its type:

• continuous observations are standardized (i.e. centered and scaled to unit variance),

• categorical observations are one-hot encoded and each variable has a dedicated class to
encode missing information,

• continuous treatments are quantile-transformed and mapped to the [0, 1] range such that a 0
represents no medication given,

• treatment indicators are binary encoded using {0, 1}.

C.4.2 Imputation

Gridded time-step data as inputs for model training are forward-filled indefinitely for all observation
variables. The remaining missing values are then imputed with 0 for continuous variables, which
corresponds to a population mean imputation after considering standard scaling before the imputation
stage. The remaining categorical entries are imputed with a value corresponding to the dedicated
class that encodes missing information for each categorical variable.

Any treatment variable is excluded from forward-filling operations and missing data points are
strictly filled using 0, which given the previously introduced scaling and encoding scheme always
corresponds to no treatment being applied.

C.4.3 Feature Extraction

We build on the feature set proposed by Soenksen et al. [44] to process the MIMIC-IV [23] dataset.
To improve performance we then further expand this set of features and select specific features for
each variable type. For each time-step, each feature is computed over three history sizes of 8, 24, and
72 hours:

• For continuous observations and continuous treatment variables, we compute:

– mean on raw and imputed data,
– standard deviation on raw data,
– slope of a linear fit on the raw data and imputed data,
– mean absolute change over imputed data,
– fraction of non-missing data points,
– quantiles: 0% (Min.), 10%, 50%, 90%, 100% (Max.).

• For categorical variables, we compute the mode, number of missing points, and a binary
indicator of whether there are any missing points at all.

• For treatment indicators we compute the number of points with treatment and a binary
indicator whether any treatment was applied.
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C.4.4 Task Annotations

Our study focuses on clinically relevant real-time prediction tasks where patient outcomes in ICU can
be influenced by timely intervention. These include: circulatory failure [22], respiratory failure [21],
and kidney function [32]. Additionally, to ensure a diverse range of tasks and to facilitate comparison
with previous works, we include the prediction of decompensation [19]. All of these are modeled
as binary early event prediction tasks [59] with a clinically relevant prediction horizon. On the
emergency department data, we consider disposition prediction [5, 29].

We define sample labels by annotating the time series following the clinical definitions. Most
importantly, we annotate a positive and a negative case only if there’s enough evidence in favor of
either. Based on these cases, we define early event prediction labels (e.g., respiratory failure) that are
then used for online classification of the future state of the patient.

Early event prediction (EEP) label for a given time step is computed as follows: (1) a detection
(positive EEP label) is marked if any time-point in the future within the horizon is annotated as the
patient is in a failure state; (2) a negative EEP label (a stable patient without any upcoming failure
state) is annotated only if there is no failure state annotation and there is at least one confirmed stable
state within the horizon; (3) if there is no data confirmed evidence for either the patient being in
failure or being stable within the horizon, no EEP label is assigned and no training and evaluation is
performed for that specific time step. We use task-specific and clinically relevant prediction horizons
from existing literature (8 hours for circulatory failure [22], 24 hours for decompensation [19] and
respiratory failure [21], and 48 hours for kidney failure [32]).

D Training details

We trained deep learning models using AdamW optimizer [31], with a cross-entropy objective for
classification tasks. We evaluated models using task-specific metrics: the area under the receiver
operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) for
classification tasks. For all models, we tuned a subset of important hyper-parameters using grid
search. Each set of parameters was run with 3 different random initializations and we report mean
metric performance (standard deviations are shown in tables if space permits it). Further details are
presented in Appendix D.

In the fine-tuning study, GRU and LGBM w. feat. are trained from scratch using HiRID data only.
GRU pretrained is trained on all data excluding HiRID patients. GRU fine-tuned (head/full) initialize
the network with GRU pretrained and fine-tune the full network or only the single linear logit head.

Deep learning approaches were implemented in pytorch [37]. All metrics were computed using
torchmetrics [35].

We evaluate performance of 7 model architectures. For each, we find the best set of hyperparameters
using grid search with a set of approximately 12 points per model. For deep learning architec-
tures we focus on hidden dimensions, number of layers, and architecture-specific parameters. For
LightGBM [28] we choose a strong starting point based on hyperparameters reported by Yèche
et al. [58], Hyland et al. [22] and then further tune: colsample_bytree, subsample, num_leaves,
min_child_samples, and subsample_for_bin. For linear models trained using glum [39] we
optimize regularization parameters. For each set of hyperparameters, model performance is evaluated
as an average across three seeds.

Single center experiments involve training on every dataset and evaluating on every other dataset for
each task, resulting in 30 training runs per architecture. Multi-center experiments involve training on
all datasets except one in leave=one-out fashion, also resulting in 30 runs, but with larger training
sets. For disposition prediction experiments training is performed once for each model, as it is not a
transfer study.

Overall, approximately 7 · 12 · (30 + 30 + 1) = 5124 runs were performed. We use one to four
top-of-the-line Nvidia H200 GPUs with up to 100GB of GPU memory for each run, depending on
the task, architecture, and training set size. Multi-card training is done using pytorch-lightning
[11]. Each compute server, an Nvidia Grace Hopper GH200 Superchip server, is equipped with up to
400GB of main memory, an ARM CPU with up to 288 cores, and has 4 GPUs. Experiments were
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run on a cluster infrastructure providing many servers with the aforementioned specifications. Each
experiment shown in the paper was run on a single node (server).

E Impact and limitations

Impact. This work advances ML research for healthcare by enhancing models for early event
prediction of adverse medical conditions. This research could in the future lead to improved care for
patients in emergency units. This research incorporates data from multiple continents, making ML
research in critical care time series more accessible and fair. Potential harmful impacts may include
compromised patient safety. Investigation of the models to ensure their fairness, robustness, and
privacy is an open topic for future works.

Limitations. This work has considered online early event prediction tasks as they are clinically
relevant and typically harder than the alternatives. Other tasks can be considered (e.g., prediction of
mortality, length of stay, sepsis) [34, 12]. We limit hyperparameter search to approximately 12 points
per model due to huge computational burden of running the benchmark experiments (multiple seeds,
multiple datasets, multiple tasks).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are included and supported
with experiments where applicable.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the relevant section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [N/A]
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Justification: This work does not present theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification: The paper uses well known architectures and describes the general structure of
the pipeline. The code and harmonization tables are not yet fully released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The paper does not release the code pending a broader study.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [No]
Justification: The paper specifies most of the training and test details. The particular splits
and hyperparameter sets are too numerous to include in the text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments were made for multiple seeds, the paper does not present
errorbars due to space constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information is provided on the scale of compute resources used and rough
specifications of the servers without disclosing the specific architectures as it might disclose
the computing center upon submission for double blind review.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the relevant section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [N/A]
Justification: The paper does not release data or models, so no safeguards are currently
needed. The access to data is regulated and safeguarded by the providers.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the sources of code and data used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [N/A]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [N/A]
Justification: This research does not involve human subjects (anonymized public access
data).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [N/A]
Justification: This research does require IRB approval (anonymized public access data).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29


	Introduction
	Experiments
	Setup
	In-distribution and out-of-distribution Benchmark
	Fine-tuning Study

	Discussion
	Conclusion
	Results
	In-distribution Transfer Table
	Out-of-distribution Transfer Table
	Transfer Heatmaps
	Disposition Prediction
	Fine-tuning Study

	Related Work
	Data Harmonization and Processing
	Data Sources
	Inclusion criteria
	Harmonization
	Concepts for treatment variables
	Concept reference table

	Processing
	Data Scaling
	Imputation
	Feature Extraction
	Task Annotations


	Training details
	Impact and limitations

