
Iterative Repair with Weak Verifiers
for Few-shot Transfer in KBQA with Unanswerability

Anonymous ACL submission

Abstract001

Real-world applications of KBQA require mod-002
els to handle unanswerable questions with a003
limited volume of in-domain labeled training004
data. We propose the novel task of few-shot005
transfer for KBQA with unanswerable ques-006
tions and contribute two new datasets for perfor-007
mance evaluation. We present FUn-FuSIC – a008
novel solution for our task that extends FuSIC-009
KBQA, the state-of-the-art few-shot transfer010
model for answerable-only KBQA. We first011
note that FuSIC-KBQA’s iterative repair makes012
a strong assumption that all questions are an-013
swerable. As a remedy, we propose Feedback014
for Unanswerability (FUn), which uses itera-015
tive repair using feedback from a suite of strong016
and weak verifiers, and an adaptation of self-017
consistency for unanswerabilty to better assess018
the answerability of a question. Our experi-019
ments show that FUn-FuSIC significantly out-020
performs suitable adaptations of multiple LLM-021
based and supervised SoTA models on our task,022
while establishing a new SoTA for answerable023
few-shot transfer as well.024

1 Introduction025

The semantic parsing formulation of the Knowl-026

edge Base Question Answering (KBQA) task takes027

as input a Knowledge Base (KB) and a natural028

language question, and outputs a logical form (or029

program) that produces the answer upon execution030

over the KB. KBQA has important real-world ap-031

plications, which can require systems to be low032

resource (i.e., trained only with a few task-specific033

labeled examples), and robust, specifically the abil-034

ity to identify questions that cannot be answered035

based on existing KB.036

Traditional supervised models (e.g., (Ye et al.,037

2022; Shu et al., 2022; Gu et al., 2023)) and even038

recent LLM few-shot in-context learning (FS-ICL)039

architectures (Li et al., 2023; Nie et al., 2024) fall040

short in both aspects. Limited recent work has041

addressed these independently – in-domain meth- 042

ods for KBQA with unanswerability trained with 043

large labeled data (Patidar et al., 2023; Faldu et al., 044

2024), and FuSIC-KBQA for few-shot transfer as- 045

suming questions are answerable (Patidar et al., 046

2024). No existing work simultaneously addresses 047

both desiderata in a single KBQA system. 048

In response, we propose the novel task of few- 049

shot transfer learning for KBQA with unanswer- 050

ability. Specifically, the target domain may offer 051

only a few labeled examples of answerable and 052

unanswerable questions, while the source domain 053

has thousands of labeled examples, but containing 054

only answerable questions. 055

For KBQA transfer, FuSIC-KBQA uses a 056

retrieve-then-generate framework: retrieval of rel- 057

evant schema and KB snippets followed by an 058

LLM-based generation and a subsequent iterative 059

error guided repair. Specifically, multiple itera- 060

tions of execution-guided feedback are run until a 061

non-empty answer is obtained – this assumes that 062

all questions are answerable. For our task, we 063

first design FuSIC-KBQA-U, which, to address 064

Unanswerability, eschews the now-inappropriate 065

repair step, and modifies the LLM prompt to ac- 066

commodate unanswerable questions, along with 067

relevant in-context exemplars. Unlike in studies for 068

unanswerability in general QA (Slobodkin et al., 069

2023), this vanilla adaptation mostly generates in- 070

correct logical forms for unanswerable questions. 071

As a remedy, we design a novel solution: FUn- 072

FuSIC (Feedback for Unanswerability in FuSIC- 073

KBQA). The key idea is to modify iterative repair, 074

which earlier relied on a single strong verifier for 075

the logical form’s incorrectness, to rely on a suite 076

of strong and weak verifiers, where strong veri- 077

fiers identify certain errors, whereas weak verifiers 078

identify potential errors in the current logical form. 079

FUn-FuSIC’s verifiers consider both the logical 080

form and the answer. For answers, non-emptiness 081

check is now a weak verifier, given potentially 082

1

unanswerable questions. For logical forms, we use083

strong verifiers to identify obvious syntactic and084

semantic errors. We also propose a novel verifier:085

non-equivalence of the original question and the086

back-translation of the logical form. This is weak,087

due to potential errors in back-translation as well088

as in equivalence classification.089

Using such iterative weak verification based090

repair, FUn-FuSIC constructs a set of candidate091

logical forms. Simply selecting from this set092

the logical form with majority answer via self-093

consistency (Wang et al., 2023) breaks down in094

the face of unanswerability. We introduce self-095

consistency for unaswerability, which additionally096

checks the likelihood of the majority answer, empty097

or otherwise, to produce the final output.098

For evaluation in our novel task, we create two099

KBQA transfer datasets with unanswerable ques-100

tions in the target. Our experiments show that101

FUn-FuSIC comprehensively outperforms differ-102

ent types of SoTA models suitably adapted for this103

task, including LLM-based and more traditional104

models. We further find that iterative repair of105

logical forms using weak verifiers holds promise106

for KBQA in general. Using experiments over107

benchmark datasets for answerable-only few-shot108

KBQA transfer, we show that the restriction of109

FUn-FuSIC for the answerable setting improves110

upon the known SoTA on the task.111

In summary, our specific contributions are as fol-112

lows. (a) We propose the problem of few-shot trans-113

fer for KBQA with unanswerability. (b) We present114

FUn-FuSIC that uses iterative repair with error115

feedback from a diverse suite of weak verifiers. (c)116

We create new datasets for the proposed task, which117

we make public.1 (d) We show that FUn-FuSIC118

outperforms adaptation of SoTA KBQA models119

for our setting. (e) We also show that for standard120

answerable-only KBQA, FUn-FuSIC outperforms121

the corresponding SoTA model.122

2 Related Work123

In-domain KBQA using supervised models (Sax-124

ena et al., 2022; Zhang et al., 2022; Mitra et al.,125

2022; Wang et al., 2022; Das et al., 2022; Ye et al.,126

2022; Chen et al., 2021; Das et al., 2021; Shu et al.,127

2022; Gu et al., 2023) and using LLM few-shot128

approaches (Li et al., 2023; Nie et al., 2024; Shu129

and Yu, 2024) is well explored in literature. These130

1https://anonymous.4open.science/r/
FUn-FuSIC-1704

use high volumes of labeled data, either for training 131

or selecting the most relevant few shot exemplars. 132

For in-domain KBQA, unanswerability has re- 133

cently been studied (Patidar et al., 2023; Faldu 134

et al., 2024). Patidar et al. (2023) create the 135

GrailQAbility dataset with different categories of 136

unanswerability, and show the inadequacy of su- 137

perficial adaptations of answerable-only KBQA 138

models. RetinaQA (Faldu et al., 2024) is the SoTA 139

model for KBQA unaswerability. However, this 140

also requires large volumes of training data. 141

For KBQA transfer (Cao et al., 2022; Ravis- 142

hankar et al., 2022), low-resource was originally 143

not a focus. More recently, few-shot transfer for 144

KBQA has been addressed (Patidar et al., 2024). Its 145

FuSIC-KBQA model uses a retrieve-then-generate 146

framework with an LLM-based generation stage 147

with iterative error feedback based repair. How- 148

ever, this formulation assumes answerability of all 149

questions, as described in Section 1. 150

Simple LLM prompting techniques have been 151

used to address unanswerability outside of 152

KBQA (Slobodkin et al., 2023), but without any 153

notion of feedback or iterative repair. Other ap- 154

proaches (Shinn et al., 2023; Chen et al., 2023b) 155

use execution based refinement for program gener- 156

ation but without any notion of unanswerability. 157

The extensive recent work on program self- 158

repair using LLMs (Olausson et al., 2024) also 159

diverges strongly from our few-shot goal. It as- 160

sumes availability of unit tests for every test in- 161

stance. More importantly, as in the answerable 162

KBQA literature, it assumes that a valid program 163

exists for each specification. 164

To the best of our knowledge, ours is the first 165

work to apply iterative weak repair for KBQA, and 166

to use iterative repair for unanswerability. 167

3 Background & Problem Definition 168

A Knowledge Base (KB) G consists of a schema 169

and data. The schema consists of entity types (or 170

classes) T and binary relations R defined over 171

pairs of types. The data consists of entities E 172

as instances of types T , and triples or facts F ⊆ 173

E × R × E. Given a target KB Gt and a natu- 174

ral language question qt, the goal is to generate a 175

structured query or logical form lt (in a KB query 176

language, such as SPARQL), which when executed 177

over Gt returns an answer At (which is a set in 178

general). Target few-shots Dt containing tens of 179

labeled training examples of questions and logical 180

2

https://anonymous.4open.science/r/FUn-FuSIC-1704
https://anonymous.4open.science/r/FUn-FuSIC-1704

Figure 1: Feedback with Unanswerability (FUn) and self consistency for Unanswerability (scUn) for a question Q
when executed over different KBs with ≤ 4 iterations. Q is answerable for KB3, but unanswerable for KB1 (schema
incompleteness) and KB2 (data incompleteness). FUn iterations are shown using gray blocks, with Strong Verifiers
in red and Weak Verifiers in green. (V1: Syntax Error omitted for brevity) scUn is shown using the blue block.

forms. A related source domain has a source KB181

Gs (with its own types, relations, entities and facts),182

and a larger source training set Ds with thousands183

of labeled training examples.184

Following Patidar et al. (2023), a question q is185

answerable for a KB G if it has a corresponding186

logical form l which when executed over G returns187

a non-empty answer A. A question is unanswer-188

able, if it either (a) does not have a valid logical189

form for G (schema-level unanswerability), or (b)190

it has a valid logical form l for G, but l returns191

an empty answer upon execution on G (data-level192

unanswerability). Schema-level unanswerability193

arises due to missing types and relations, while194

missing entities and facts lead to data-level unan-195

swerability. More details are in Appendix A.1.3.196

In KBQA with unanswerability, given a question197

q, the model needs to output (a) a logical form l and198

a non-empty answer A for answerable q, (b) l = NK199

(No Knowledge) for schema-level unanswerable200

q, or (c) a valid logical form l and a = NA (No201

Answer) for data-level unanswerable q.202

We now define few-shot transfer learning for203

KBQA with unanswerability. A target question qt204

may be answerable or unanswerable due to miss-205

ing schema or data in the target KB Gt. Target206

few shot examples Dt contain both answerable207

and unanswerable questions of different categories. 208

However, most KBQA datasets contain only an- 209

swerable questions, we model the source training 210

data Ds as containing only answerable questions. 211

Now the unanswerability gap between the source 212

and the target also needs to be bridged. More de- 213

tails are in Appendix A.1. 214

4 Proposed Approach: FUn-FuSIC 215

Our proposed architecture FUn-FuSIC adapts 216

FuSIC-KBQA for unaswerability. The high-level 217

algorithm is described in Algo. 1. Preserving 218

the retrieve-then-generate framework, the retrieval 219

stage (line 2) performs KB retrieval for qt using a 220

set R of one or more supervised retrievers. Each 221

retriever Ri is source-trained and then target fine- 222

tuned. The retrieval output r of each Ri consists 223

of relevant schema elements (types and relations) 224

for qt, and data paths emanating from mentioned 225

entities in qt. The union of these, along with qt, is 226

fed to the generation stage, which uses prompting 227

with an LLM L to generate logical forms using the 228

target few shots Dt. More details of the retrieval 229

stage are in the Appendix (Sec. A.6). 230

FUn-FuSIC makes three modifications to the 231

FuSIC-KBQA architecture. First, the LLM genera- 232

tion instruction is modified to admit the possibility 233

3

Algorithm 1 FUn-FuSIC(q,Gt, Dt, R, V s, V w,L)
1: r = {}
2: for i = 1 to k do r = r

⋃
Ri(q,G

t)
3: l = PUn(L, I, q, r,Dt)
4: (e, l, A, L) = FUn(L, q, l, n, V s, V w, Gt)
5: if (e) return(l∗, A∗)
6: else return(scUn(q, L, t,L))

of unanswerability, and the few shots are modified234

to include examples of unanswerable questions.235

However, this simple approach is error-prone. So,236

we bias the instruction towards one type of error.237

Specifically, when uncertain about answerability of238

the question, Prompting for Unanswerability (PUn)239

(line 3) instructs L to generate a (possibly incor-240

rect) logical form instead of l = NK. The detailed241

prompt I is in the Appendix (Sec. A.8).242

We now come to the more significant modifi-243

cations. First, l(0) is iteratively repaired using244

feedback as before, but this step is adapted for245

unaswerability. This iterative repair, which we246

name Feedback for Unaswerability (FUn) (line 4),247

either confidently outputs a single logical form l248

(with corresponding answer A) (line 5) or generates249

a set L of candidate logical forms, which is further250

analyzed. For this, we introduce self-consistency251

for Unaswerability (scUn). scUn checks the like-252

lihood of the majority answer in L, empty or oth-253

erwise, to produce the final output. In the rest of254

this section, we describe FUn and then scUn. Fig. 1255

illustrates flow of FUn and scUn using examples.256

A real example of FUn execution is in Sec. A.13.257

Algorithm 2 FUn(q, l, n, V s, V w, G,L)
1: i = 0, k = 0, L = {}, F = ""
2: while ++ i ≤ n do
3: for j = 1 to k1 do
4: (e, f) = V s

j (l, q, G)
5: F = Append(F, f)
6: if (!e) break
7: end for
8: for j = 1 to k2 do
9: (e, f) = V w

j (l, q, G)
10: F = Append(F, f)
11: if (e) L = L

⋃
{l}; k ++

12: end for
13: l = Gen(L, I, q, F)
14: end while
15: if (k = k2) return(True, l,Exec(l, G), L)
16: else return(False, l, {}, L)

The FUn algorithm is described in Algo. 2 Start- 258

ing with the initial logical form l(0), FUn performs 259

at most n verify-and-repair iterations to create a 260

candidate set L of probable logical forms. The ex- 261

ample shows 3 FUn iterations for KB1 and KB2, 262

and 2 iterations for KB3. In the ith iteration, FUn 263

generates a new logical form l(i) by prompting L 264

using qt and feedback F received from checks in 265

all previous iterations (line 13). l(i) goes through 266

a sequence of verifications. FUn uses two sets of 267

verifiers. The strong verifiers V s are guaranteed 268

to be correct, while the weak verifiers V w are po- 269

tentially erroneous. The specific verifiers that we 270

use in this paper are defined later in the section. A 271

template-based feedback string f is appended to the 272

generation prompt for l(i+1) based on the specific 273

verifier that l(i) failed. If l(i) fails a strong verifier, 274

it is rejected (line 6). In the example, this happens 275

for all three KBs in iteration 1. If l(i) passes all 276

checks, strong and weak (line 15), FUn terminates 277

by outputting (l = l(i), A = A(i)), where A(i) is 278

the answer obtained by executing l(i). This happens 279

in iteration 3 for KB3. Otherwise, if l(i) passes at 280

least one weak verifier but not all, it is added to can- 281

didate logical form set L (line 11). This happens 282

for iterations 2, 3 and 4 for KB1 and KB2. 283

Logical form verifiers: FUn uses a suite veri- 284

fiers, categorized as strong (V s) and weak (V w). 285

These may be syntactic, semantic, or execution- 286

based, defined using simple rules or complex LLM 287

functions over l, q and G. Note that unlike unit 288

tests in program synthesis, the verifiers do not have 289

knowledge of the gold logical form, the gold an- 290

swer or answerability of the question. 291

We now briefly describe the specific verifiers 292

that we use for this paper. Additional details about 293

the verifiers are in the Appendix (Sec. A.8.1 and 294

Sec. A.2). Note however that FUn is a framework 295

that is equally capable of working with a wholly 296

different suite of verifiers. 297

(V1) Syntax Error: As in FuSIC-KBQA, this 298

verifier executes the logical form l over G and 299

checks for syntax error. This is a strong check: 300

a valid logical form cannot have syntax error. 301

(V2) KB Inconsistency: A logical form l may 302

be inconsistent with the schema of G. We iden- 303

tify semantic errors of different categories, such 304

as type-incompatibility and schema hallucinations, 305

implemented using rules over l and G. These are 306

also strong verifiers. 307

4

(V3) Question - Logical Form Disagreement:308

This verifier checks if l is semantically equivalent309

to the original natural language question q. In our310

example, LF3 for KB1 disagrees with Q. This is a311

weak verifier. First, q may not have any equivalent312

logical form for G due to intrinsic ambiguities. For313

example, q mentions a PERSON from a COUNTRY,314

when G has the relations born in and works in be-315

tween these types. Secondly, this is implemented316

as a probabilistic classifier that can err. We define317

equivalence check between l and q using a novel318

multi-stage LLM pipeline, involving naturalization319

of l to ln, back-translation of ln to natural language320

question qb and semantic equivalence check be-321

tween q and qb. More details are in Sec.A.2.322

(V4) Answer Inconsistency: This verifier ex-323

ecutes l over G to obtain an answer A and then324

checks its compatibility with q. This may fail for325

different reasons, such as (V4a) A containing an326

entity mentioned in q, (V4b) A being empty, and327

others. Note that V4a is a strong verifier while328

V4b is weak, since an empty answer is valid for329

unanswerable questions (as for LF3 for KB2), but330

invalid for answerable ones.331

Identifying Candidate Logical Forms: Unless332

some logical form passes all checks and is there-333

fore returned (Algo. 2 line 6), FUn constructs a334

candidate set L of logical forms that are potentially335

flawed but not certainly so. For our specific suite336

of weak verifiers, l(i) is added to L if it passes one337

of V4b (A is non-empty) as for LF3 for KB1, or338

V3 (li is equivalent to q), as for LF3 for KB2.339

Self Consistency for Unanswerability: If FUn340

fails to generate a single confident logical form at341

the end of n iterations, as for KB1 and KB2, we342

use scUn to decide if the best candidate l∗ ∈ L has343

sufficient confidence. If scUn detects sufficient con-344

fidence, as for KB2, it outputs (l = l∗, A = A∗),345

where A∗ is the answer obtained upon executing l∗346

and may be NA. If on the other hand, scUn decides347

insufficient confidence, as for KB1, it outputs (l =348

NK, A = NA). For identifying the consensus choice349

from L, one possibility is self-consistency (Wang350

et al., 2023; Chen et al., 2023a) i.e., obtaining the351

answer for each l ∈ L, and returning those with the352

most common answer. Self-consistency requires353

some answer to accumulate enough probability by354

aggregation over reasoning paths. However, for355

unanswerable questions, no single answer accu-356

mulates sufficient probability, and self-consistency357

returns some low probability answer. 358

To address this, scUn first identifies via execu- 359

tion the most popular non-empty answer A∗ among 360

logical forms in L, and decides using threshold t if 361

it has enough supporters in L (we use t = ⌊ |L|2 ⌋). 362

If so, scUn uses LLM prompting to select the most 363

appropriate supporting logical form l∗ ∈ L consid- 364

ering q, and outputs (l = l∗, A = A∗). 365

However, for KB1 in the example, the 3 logi- 366

cal forms among the candidates have 3 different 367

answers, and therefore (⌊ |L|2 ⌋ = 1) no consensus 368

emerges for non-empty answers. Then scUn con- 369

siders logical forms from L that agree on A = NA. 370

If there are multiple such candidates, scUn selects 371

the most suitable candidate l∗, again using LLM 372

prompting, and outputs (l = l∗, A = NA). If there 373

is no such candidate, scUn outputs (l = NK, A = 374

NA). For KB2 in the example, scUn selects LF3 – 375

the only logical form with empty answer. Further 376

details on scUn are in the Appendix (Sec. A.14). 377

5 Experiments 378

We now present experimental evaluation of FUn- 379

FuSIC. For few-shot KBQA transfer with unan- 380

swerability, we address the following research 381

questions. (R1) How does FUn-FuSIC compare 382

against SoTA models for KBQA, suitably adapted 383

for this setting? (R2) How does FUn-FuSIC per- 384

form across different categories of unanswerabil- 385

ity? (R3) How do the different components of 386

FUn-FuSIC contribute to its performance? In addi- 387

tion, for answerable KBQA few-shot transfer, we 388

ask: (R4) How does FUn-FuSIC compare against 389

SoTA KBQA models for this setting? 390

5.1 Experimental Setup 391

Datasets: For few-shot KBQA transfer, available 392

datasets have only answerable questions (Patidar 393

et al., 2024), while our task needs the target dataset 394

to contain unanswerable questions as well. So we 395

construct our own transfer datasets, augmenting 396

existing ones. GrailQAbility is the only available 397

KBQA dataset with unanswerable questions (Pati- 398

dar et al., 2023). This was carefully designed start- 399

ing from GrailQA (Gu et al., 2021), which has only 400

answerable questions, by systematically deleting 401

schema and data elements from the back-end KB 402

to introduce different categories of unanswerability 403

into the queries. We use this as one of our targets. 404

GraphQA (Su et al., 2016) is another popular 405

KBQA dataset. This has the same back-end KB 406

5

Model WebQSP → GrailQAbility WebQSP → GraphQAbility
Overall Answerable Unanswerable Overall Answerable Unanswerable

F1 EM-s F1 EM-s F1(L) F1(R) EM-s F1 EM-s F1 EM-s F1(L) F1(R) EM-s
RetinaQA 58.4 42.2 28.7 26.0 88.0 84.8 58.4 49.7 35.8 18.7 15.2 80.7 78.7 56.4
Pangu 54.5 43.8 31.23 29.6 83.8 80.4 58.0 53.4 33.0 30.3 26.4 76.5 74.8 39.6
FuSIC-KBQA-U 76.6 48.2 67.5 59.2 85.6 80.4 37.2 67.5 34.8 49.3 40.0 85.7 82.8 29.6
KB-Binder 43.7 33.0 19.5 16.5 67.9 66.5 49.5 44.3 36.1 27.5 21.6 61.0 61.0 50.7
FUn-FuSIC 76.6 60.2 67.1 61.2 85.1 80.0 59.2 70.0 53.8 50.7 42.8 89.2 86.5 64.8

Table 1: Performance of different models on two datasets for few-shot KBQA transfer with unanswerability.

(Freebase) as GrailQA. We create our second tar-407

get dataset using GraphQA, by replacing its KB408

with the modified KB in GrailQAbility. This in-409

troduces unanswerability into GraphQA questions410

and we label these appropriately as schema-level411

or data-level unanswerable. We name this dataset412

GraphQAbility. We create the two test sets by413

selecting 250 answerable and 250 unanswerable414

questions uniformly at random from their test sets.415

We create few shots by selecting 100 questions416

(50 answerable and 50 unanswerable) uniformly at417

random from the dev set and train set respectively.418

The source dataset needs only answerable ques-419

tions. WebQSP (Yih et al., 2016) is the third420

popular answerable KBQA dataset. We use We-421

bQSP as source and create the following two422

source→target pairs: WebQSP→GrailQAbility423

and WebQSP→GraphQAbility.424

WebQSP training set has 2,858 real user ques-425

tions, which are manually annotated with logical426

forms. This is quite different from GraphQA and427

GrailQA which contain algorithmically generated428

logical forms, verbalized by crowd-workers. Be-429

cause of this difference in nature of questions,430

these are challenging transfer datasets, beyond the431

unaswerability gap.432

Models for comparison: As few-shot transfer433

for KBQA with unanswerability is a novel task,434

there are no existing baselines. For in-domain435

KBQA with unanswerability, RetinaQA (Faldu436

et al., 2024) and Pangu (Gu et al., 2023). which has437

been adapted for unanswerable questions, are the438

two SoTA models. For these, we use the available439

code.2,3 More details are in Appendix A.10.440

FuSIC-KBQA is the SoTA model for few-441

transfer for KBQA with only answerable questions.442

Instead of retrieve-then-generate, KB-Binder (Li443

et al., 2023) follows a generate-then-ground ap-444

proach. It is the SoTA for in-domain few-shot445

KBQA, and overall, FuSIC-KBQA and KB-Binder446

2https://github.com/dair-iitd/RetinaQA
3https://github.com/dki-lab/Pangu

outperform all other supervised and LLM-equipped 447

KBQA models adapted for few-shot transfer (Pati- 448

dar et al., 2024). We use available code for KB- 449

Binder4, and our own implementation for FuSIC- 450

KBQA since source code is not available. To adapt 451

these two baselines for unanswerability, for fair 452

comparison, we modify their logical form gen- 453

eration prompt in the same fashion as PUn for 454

FUn-FuSIC. Additionally, for FuSIC-KBQA, we 455

remove execution-guided feedback (EGF) since it 456

fails for unanswerability. We denote this model 457

FuSIC-KBQA-U. Observe that FuSIC-KBQA-U 458

can also be seen as an ablation of FUn-FuSIC, with- 459

out FUn. More details about use of KB-Binder are 460

in the Appendix A.12. 461

We use L =gpt-4-0613 for all three models. 462

For a fair comparison, we provide all three LLM- 463

equipped models the same aggregated prompt limit 464

for a question. To achieve this, to FUn-FuSIC 465

we provide zero-shot generation and n = 4 FUn 466

iterations, to FuSIC-KBQA-U 5-shot generation, 467

and to KB-Binder 25-shot generation. 468

Though FUn-FuSIC and FuSIC-KBQA allow 469

flexible use of multiple supervised retrievers, for 470

meaningful comparison with RetinaQA, we adapt 471

RetinaQA as retriever for FUn-FuSIC and FuSIC- 472

KBQA-U. More details about KB-Binder and 473

FuSIC-KBQA’s generation is in Appendix A.12, 474

and details of FuSIC-KBQA’s retriever along com- 475

pute infrastructure are in Sec. A.9. 476

Evaluation Measures: Since our primary task is 477

generation of logical forms, our primary focus in 478

evaluation is on logical forms as well. For logical 479

form evaluation, the existing exact match measure 480

(EM) (Ye et al., 2022) works only for s-expression 481

as the language. Since FuSIC-KBQA-U and FUn- 482

FuSIC output logical forms in SPARQL, and Pangu, 483

RetinaQA and KB-Binder in s-expression, we pro- 484

pose a new measure that works for both languages. 485

This measure, EM-s, considers two logical forms 486

to be equivalent if these contain identical sets of 487

4https://github.com/ltl3A87/KB-BINDER

6

https://github.com/dair-iitd/RetinaQA
https://github.com/dki-lab/Pangu
https://github.com/ltl3A87/KB-BINDER

Model WebQSP → GrailQAbility WebQSP → GraphQAbility
Schema Level Data Level Schema Level Data Level

F1(L) F1(R) EM-s F1(L) F1(R) EM-s F1(L) F1(R) EM-s F1(L) F1(R) EM-s
RetinaQA 94.1 90.9 79.4 76.3 72.9 14.1 83.2 82.0 72.3 73.7 72.7 12.1
Pangu 91.1 87.9 87.9 69.6 65.9 00.0 77.3 74.4 74.4 73.3 72.7 00.0
FuSIC-U 85.4 80.6 30.9 86.0 80.0 49.4 86.6 82.6 19.0 83.3 83.3 51.5
KB-Binder 75.1 73.9 70.1 53.1 51.5 09.5 67.0 65.9 60.9 41.2 41.2 06.8
FUn-FuSIC 85.8 81.2 70.9 83.8 77.6 36.5 92.4 87.5 75.6 80.3 80.3 34.8

Table 2: Model performance for categories of unanswerable questions. FuSIC-U is short hand for FuSIC-KBQA-U.

relations and entities, and additionally return iden-488

tical answers upon execution. This is a necessary489

but not sufficient condition for logical form equiva-490

lence. So, we compared EM-s with EM in settings491

where both are applicable, and found > 98% agree-492

ment. More details are in the Appendix A.3.493

Since logical form evaluation is not completely494

accurate (logical forms different from the gold495

one may still be correct), following existing lit-496

erature (Patidar et al., 2023; Faldu et al., 2024),497

we also evaluate answers using regular F1 (F1(R)),498

also lenient F1 (F1(L)), which does not penalize499

the original answer for the complete KB.500

Answerable Unanswerable
F1 EM-s F1(L) F1(R) EM-s

FUn-FuSIC 57.0 46.0 92.0 90.0 62.0
scUn ⇒ sc 63.0 52.0 66.0 64.0 36.0
w/o syntax 57.0 46.0 92.0 90.0 62.0
w/o kb-inc 51.7 42.0 92.0 88.0 44.0

w/o q-lf 47.7 38.0 55.8 48.0 10.0
w/o ans-inc 55.0 44.0 92.0 90.0 62.0

Table 3: Ablation performance of FUn-FuSIC (remov-
ing individual components with replacement) on subset
of WebQSP → GraphQAbility. scUn ⇒ sc denotes
replacing scUn with self consistency. Other rows re-
move verifiers for syntax error (w/o syntax) (V1), KB
inconsistency (w/o kb-inc) (V2), question logical form
disagreement (w/o q-lf) (V3) and answer incompatibil-
ity (w/o ans-inc) (V4).

5.2 Unanswerability Setting501

We first address research question R1. Perfor-502

mances of the different models for the few-shot503

transfer setting with unanswerability are recorded504

in Tab. 1. Note that the Overall columns determine505

superiority of one model over another, while the506

Answerable and Unanswerable columns provide507

further drill-down for analysis.508

First, we observe that FUn-FuSIC significantly509

outperforms all baselines in terms of EM-s, and510

performs at par with FuSIC-KBQA-U and signifi-511

cantly better than all other models in F1. However,512

the other LLM-equipped models do not far surpass513

supervised models. In fact, all 4 models perform 514

almost at par for GraphQAbility, and KB-Binder 515

performs worse than the other 3 for GrailQAbil- 516

ity. This establishes usefulness of FUn+scUN 517

for few-shot transfer KBQA with unanswerabil- 518

ity. Secondly, each model trades off performance 519

differently between answerable and unanswerable 520

questions. RetinaQA, Pangu and also KB-Binder 521

fare better for unanswerable questions, while FUn- 522

FuSIC and FuSIC-KBQA-U fare better for answer- 523

able ones. However, FUn-FuSIC achieves the best 524

balance between the two. 525

We next briefly address research question R2. 526

Performance of different models for different cat- 527

egories of unanswerability are recorded in Tab. 2. 528

Models struggle to fare well across both data-level 529

and schema-level unanswerability. FuSIC-KBQA- 530

U performs the best for data-level while performing 531

poorly (in terms of EM-s) for schema-level. Con- 532

versely, RetinaQA performs well for schema-level, 533

but has poor data-level EM-s. FUn-FuSIC performs 534

poorer for data-level compared to schema-level but 535

achieves the best balance by far between the two 536

categories among all models. 537

We next address research question R3. Tab. 3 538

records performance for different ablations of FUn- 539

FuSIC. Note that this experiment is performed on 540

a subset of the test data (50 questions drawn ran- 541

domly from the each of the answerable and unan- 542

swerable categories). The biggest benefit, for both 543

answerable and unanswerable questions, comes 544

from Question - Logical Form Disagreement ver- 545

ifier. KB Inconsistency and Answer Incompati- 546

bility verifiers also make significant contributions 547

to the performance. This demonstrates the useful- 548

ness of weak verifiers. Replacing scUn with self- 549

consistency, as expected, leads to a drastic drop 550

in unanswerable performance (though this comes 551

with a benefit for answerable questions). 552

5.3 Answerable Setting 553

We now address research question R4 (answerable- 554

only KBQA). We use two datasets from existing 555

7

Model WebQSP → WebQSP →
GrailQA-Tech GraphQA-Pop

FuSIC-KBQA 70.8 52.3
FUn-FuSIC(sc) 73.6 67.0

FuSIC-KBQA-U 62.6 43.4
FUn-FuSIC(scUn) 71.2 65.0

Table 4: Performance using F1 of different models for
few-shot KBQA transfer with only answerable ques-
tions. The models in the top block have prior knowledge
of answerability, while those in the bottom block do not.

literature (Patidar et al., 2024), including the hard-556

est one (WebQSP → GraphQA-Pop).5 For consis-557

tency with existing literature, here all models use558

TIARA (Shu et al., 2022) as the retriever.559

This setting admits two sub-settings: (A) the560

models have knowledge that all questions are an-561

swerable, and (B) though all questions are answer-562

able, the models do not have this prior knowledge.563

Setting (A) has been studied for KBQA (Patidar564

et al., 2024), and FuSIC-KBQA is the established565

SoTA model, outperforming a host of supervised566

and LLM-based models adapted for the task. In this567

setting, FUn-FuSIC requires three simple modifica-568

tions. (i) PUn is replaced with prompt for answer-569

ability, (ii) In FUn, category of V4b (empty answer)570

changes from weak verifier to strong verifier, and571

(iii) scUn is replaced by self-consistency.572

The first two rows in Tab. 4 record performance573

for setting (A). FUn-FuSIC significantly outper-574

forms FuSIC-KBQA on both datasets, creating a575

new SoTA for this setting. This shows the use-576

fulness of iterative repair with a suite of strong577

and weak verifiers followed by self-consistency for578

KBQA transfer, even without unanswerability.579

In the realistic second setting (B) – not studied580

before – the models make predictions assuming581

unanswerability. Here, we evaluate FuSIC-KBQA-582

U and FUn-FuSIC as in Sec. 5.2. The bottom two583

rows of Tab. 4 record their performance. We see584

that FUn-FuSIC outperforms FuSIC-KBQA by a585

very large margin. This further establishes the use-586

fulness of scUn when guarantees about answerabil-587

ity are not available.588

5.4 Error Analysis589

For WebQSP → GraphQAbility, we analyzed ques-590

tions whose logical forms are judged incorrect (EM-591

s < 1). See results in Tab. 5. We found three main592

causes for generation errors. (1) Some questions593

are inherently ambiguous, admitting multiple valid594

5https://github.com/dair-iitd/FuSIC-KBQA/

EM-s < 1 46.2
Retr. Err. 23.4
Gen. Err. 22.8

l∗ = NK, l̂ ̸= NK 8.4
l∗ ̸= NK, l̂ = NK 4.6
l∗ ̸= NK, l̂ ̸=NK, l∗ ̸= l̂ 9.8

Table 5: FUn error analysis on WebQSP → GraphQA-
bility. l∗ & l̂ denote gold & generated logical forms.
Retrieval error means retrieval r is missing ≥ 1 KB
elements (class, relation, entity) necessary for l∗. Gen-
eration error implies l̂ ̸= l∗ despite correct retrieval.

logical forms l1 and l2 in the original complete KB, 595

though only one is recognized as the gold (l∗ = l1). 596

Deletion to introduce unanswerability eliminates 597

l1, so we update l∗ = NK, and the prediction l̂ = l2 598

is unfairly penalized. (2) l∗ = l1, l̂ = l2, where 599

l1 ̸= l2 while being semantically equivalent, but 600

are incorrectly judged non-equivalent by EM-s. (3) 601

FUn is genuinely unable to generate l∗ or any se- 602

mantic equivalent within its iteration limit. 603

We also estimated the accuracy of specific weak 604

verifiers by manual analysis of ∼100 instances 605

from test. Verifier V3 for Question - Logical Form 606

Disagreement has accuracy of 93.6% overall, with 607

its Query to Natural Language Back-translation 608

component having 90%. Verifier V4b for Empty 609

Answer has 67.8% (this is expected since ∼25% of 610

questions have (l∗ ̸= NK, A∗ = NA). 611

6 Conclusions 612

For real-world robust, low-resource KBQA, we 613

have proposed the novel task of few-shot transfer 614

learning with unanswerability. We have proposed 615

FUn-FuSIC that augments for unanswerability the 616

SoTA few-shot answerable-only KBQA transfer 617

model by (i) iterative repair using feedback from 618

a suite a strong and weak verifiers – including a 619

novel back-translation based verifier – to create a 620

set of candidate logical forms, and (ii) assessing 621

this candidate set to detect unanswerability (and 622

its category) and/or identify the best logical form 623

using self consistency adapted for unanswerability. 624

Using two newly created datasets for this novel 625

task, we show that FUn-FuSIC outperforms adapta- 626

tions of SoTA models for this setting, and also for 627

answerable few-shot transfer KBQA. Error analysis 628

suggests that performing well across categories of 629

unanswerability for few-shot transfer is still a chal- 630

lenge and should be a focus of further research. 631

8

https://github.com/dair-iitd/FuSIC-KBQA/

7 Limitations632

Since LLM inference involves randomness, ideally633

experiments should be repeated for multiple runs634

and results should report averages and error bars.635

Unfortunately, we were not able to do this due to636

the prohibitive cost of GPT-4, and our results are637

based on single runs.638

While GPT-4 is currently the best performing639

LLM, it is proprietary as well as expensive. Ide-640

ally, evaluation should involve open-source freely641

accessible LLMs as well. We expect performance642

of all LLM-based approaches to drop when GPT-4643

is replaced by an open LLM. Earlier research has644

shown that models using Mistral are still able to645

outperform fully supervised models for answerable646

few-shot transfer (Patidar et al., 2024). Whether647

this trend holds for the unanswerable setting is an648

open question. That said, following current trends,649

we expect the ability of open LLMs to steadily650

improve in the coming years.651

8 Risks652

At the highest level, our work reduces risk com-653

pared to existing KBQA systems, which when654

improperly adapted in a low-resource setting, in-655

correctly answer unanswerable questions, without656

admitting lack of knowledge. However, can in-657

correctly inferring unanswerability, citing lack of658

knowledge when the knowledge is in fact available,659

generate a new category of risk? While we cannot660

imagine such a risk at the present time, this may661

require more thought. In any case, KBQA models662

for unanswerability should strive to minimize this663

type of error, along with the other types.664

References665

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei666
Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 2022.667
Program transfer for answering complex questions668
over knowledge bases. In Proceedings of the 60th669
Annual Meeting of the Association for Computational670
Linguistics (Volume 1: Long Papers).671

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-672
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-673
ble and efficient framework for knowledge base ques-674
tion answering. In Proceedings of the 59th Annual675
Meeting of the Association for Computational Lin-676
guistics and the 11th International Joint Conference677
on Natural Language Processing: System Demon-678
strations.679

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-680
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles681

Sutton, Xuezhi Wang, and Denny Zhou. 2023a. Uni- 682
versal self-consistency for large language model gen- 683
eration. CoRR, abs/2311.17311. 684

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and 685
Denny Zhou. 2023b. Teaching large language mod- 686
els to self-debug. In The 61st Annual Meeting Of The 687
Association For Computational Linguistics. 688

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot 689
Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin 690
Jia, and Andrew Mccallum. 2022. Knowledge base 691
question answering by case-based reasoning over 692
subgraphs. In Proceedings of the 39th International 693
Conference on Machine Learning. 694

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God- 695
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros 696
Polymenakos, and Andrew McCallum. 2021. Case- 697
based reasoning for natural language queries over 698
knowledge bases. In Proceedings of the 2021 Con- 699
ference on Empirical Methods in Natural Language 700
Processing. 701

Prayushi Faldu, Indrajit Bhattacharya, and Mausam. 702
2024. RETINAQA : A knowledge base question an- 703
swering model robust to both answerable and unan- 704
swerable questions. In Proceedings of the 62nd An- 705
nual Meeting of the Association for Computational 706
Linguistics (Volume 1: Long Papers), Bangkok, Thai- 707
land. Association for Computational Linguistics. 708

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate, 709
discriminate: A proposal for grounding language 710
models to real-world environments. In Proceedings 711
of the 61st Annual Meeting of the Association for 712
Computational Linguistics (Volume 1: Long Papers), 713
pages 4928–4949, Toronto, Canada. Association for 714
Computational Linguistics. 715

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy 716
Liang, Xifeng Yan, and Yu Su. 2021. Beyond i.i.d.: 717
Three levels of generalization for question answering 718
on knowledge bases. In Proceedings of the Web 719
Conference 2021, WWW ’21. 720

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, 721
and Wenhu Chen. 2023. Few-shot in-context learning 722
on knowledge base question answering. In Proceed- 723
ings of the 61st Annual Meeting of the Association for 724
Computational Linguistics (Volume 1: Long Papers), 725
pages 6966–6980, Toronto, Canada. Association for 726
Computational Linguistics. 727

Sayantan Mitra, Roshni Ramnani, and Shubhashis Sen- 728
gupta. 2022. Constraint-based multi-hop question 729
answering with knowledge graph. In Proceedings of 730
the 2022 Conference of the North American Chap- 731
ter of the Association for Computational Linguistics: 732
Human Language Technologies: Industry Track. 733

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and 734
Xudong Liu. 2024. Code-style in-context learning 735
for knowledge-based question answering. Proceed- 736
ings of the AAAI Conference on Artificial Intelligence, 737
38(17):18833–18841. 738

9

https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.1609/aaai.v38i17.29848
https://doi.org/10.1609/aaai.v38i17.29848
https://doi.org/10.1609/aaai.v38i17.29848

Theo X. Olausson, Jeevana Priya Inala, Chenglong739
Wang, Jianfeng Gao, and Armando Solar-Lezama.740
2024. Is self-repair a silver bullet for code genera-741
tion? In The Twelfth International Conference on742
Learning Representations.743

Adam Paszke, Sam Gross, Francisco Massa, Adam744
Lerer, James Bradbury, Gregory Chanan, Trevor745
Killeen, Zeming Lin, Natalia Gimelshein, Luca746
Antiga, Alban Desmaison, Andreas Kopf, Edward747
Yang, Zachary DeVito, Martin Raison, Alykhan Te-748
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,749
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An750
imperative style, high-performance deep learning li-751
brary. In Advances in Neural Information Processing752
Systems, volume 32. Curran Associates, Inc.753

Mayur Patidar, Prayushi Faldu, Avinash Singh,754
Lovekesh Vig, Indrajit Bhattacharya, and Mausam755
. 2023. Do I have the knowledge to answer? inves-756
tigating answerability of knowledge base questions.757
In Proceedings of the 61st Annual Meeting of the758
Association for Computational Linguistics (Volume 1:759
Long Papers), pages 10341–10357, Toronto, Canada.760
Association for Computational Linguistics.761

Mayur Patidar, Riya Sawhney, Avinash Kumar Singh,762
Mausam Biswajit Chatterjee, and Indrajit Bhat-763
tacharya. 2024. Few-shot transfer learning for knowl-764
edge base question answering: Fusing supervised765
models with in-context learning. In Proceedings766
of the 62nd Annual Meeting of the Association for767
Computational Linguistics (Volume 1: Long Papers),768
Bangkok, Thailand. Association for Computational769
Linguistics.770

Srinivas Ravishankar, Dung Thai, Ibrahim Abdelaziz,771
Nandana Mihindukulasooriya, Tahira Naseem, Pavan772
Kapanipathi, Gaetano Rossiello, and Achille Fok-773
oue. 2022. A two-stage approach towards general-774
ization in knowledge base question answering. In775
Findings of the Association for Computational Lin-776
guistics: EMNLP 2022.777

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.778
2022. Sequence-to-sequence knowledge graph com-779
pletion and question answering. In Proceedings of780
the 60th Annual Meeting of the Association for Com-781
putational Linguistics (Volume 1: Long Papers).782

Noah Shinn, Federico Cassano, Ashwin Gopinath,783
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-784
flexion: language agents with verbal reinforcement785
learning. In Thirty-seventh Conference on Neural786
Information Processing Systems.787

Yiheng Shu and Zhiwei Yu. 2024. Distribution shifts are788
bottlenecks: Extensive evaluation for grounding lan-789
guage models to knowledge bases. In Proceedings of790
the 18th Conference of the European Chapter of the791
Association for Computational Linguistics: Student792
Research Workshop, pages 71–88, St. Julian’s, Malta.793
Association for Computational Linguistics.794

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson,795
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.796

TIARA: Multi-grained retrieval for robust question 797
answering over large knowledge base. In Proceed- 798
ings of the 2022 Conference on Empirical Methods 799
in Natural Language Processing. 800

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido 801
Dagan, and Shauli Ravfogel. 2023. The curious case 802
of hallucinatory (un)answerability: Finding truths in 803
the hidden states of over-confident large language 804
models. In Proceedings of the 2023 Conference on 805
Empirical Methods in Natural Language Processing, 806
pages 3607–3625. 807

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, 808
Izzeddin Gür, Zenghui Yan, and Xifeng Yan. 2016. 809
On generating characteristic-rich question sets for 810
QA evaluation. In Proceedings of the 2016 Con- 811
ference on Empirical Methods in Natural Language 812
Processing, pages 562–572, Austin, Texas. Associa- 813
tion for Computational Linguistics. 814

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. 815
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd- 816
hery, and Denny Zhou. 2023. Self-consistency 817
improves chain of thought reasoning in language 818
models. In The Eleventh International Conference 819
on Learning Representations, ICLR 2023, Kigali, 820
Rwanda, May 1-5, 2023. OpenReview.net. 821

Yu Wang, Vijay Srinivasan, and Hongxia Jin. 2022. A 822
new concept of knowledge based question answering 823
(KBQA) system for multi-hop reasoning. In Proceed- 824
ings of the 2022 Conference of the North American 825
Chapter of the Association for Computational Lin- 826
guistics: Human Language Technologies. 827

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 828
Chaumond, Clement Delangue, Anthony Moi, Pier- 829
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 830
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 831
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 832
Scao, Sylvain Gugger, Mariama Drame, Quentin 833
Lhoest, and Alexander M. Rush. 2020. Transform- 834
ers: State-of-the-art natural language processing. In 835
Proceedings of the 2020 Conference on Empirical 836
Methods in Natural Language Processing: System 837
Demonstrations, pages 38–45, Online. Association 838
for Computational Linguistics. 839

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, 840
and Caiming Xiong. 2022. RNG-KBQA: Genera- 841
tion augmented iterative ranking for knowledge base 842
question answering. In Proceedings of the 60th An- 843
nual Meeting of the Association for Computational 844
Linguistics (Volume 1: Long Papers). 845

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming- 846
Wei Chang, and Jina Suh. 2016. The value of se- 847
mantic parse labeling for knowledge base question 848
answering. In Proceedings of the 54th Annual Meet- 849
ing of the Association for Computational Linguistics 850
(Volume 2: Short Papers). 851

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie 852
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph 853

10

https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.576
https://doi.org/10.18653/v1/2023.acl-long.576
https://doi.org/10.18653/v1/2023.acl-long.576
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

retrieval enhanced model for multi-hop knowledge854
base question answering. In Proceedings of the 60th855
Annual Meeting of the Association for Computational856
Linguistics (Volume 1: Long Papers).857

A Appendix858

A.1 KBQA Problem Formulations859

We begin by defining the few-shot transfer learning860

setting for Knowledge Base Question Answering861

(KBQA) with unanswerability, and then present862

our solution for it.863

A.1.1 KBQA: Detailed Background864

A Knowledge Base G consists of a schema with865

data stored under it. The schema consists of entity866

types T and binary relations R defined over pairs of867

types. The data consists of entities E as instances868

of types T , and triples or facts F ⊆ E × R × E.869

We are given a target Knowledge Base Gt (con-870

sisting of entity types T t, relations Rt, entities Et871

and facts F t) and a natural language question qt,872

and the goal is to generate a structured query or873

a logical form lt, which when executed over Gt874

returns a non-empty answer At for the question qt.875

A.1.2 Few Shot Transfer Learning for KBQA876

In few-shot transfer learning, we are provided with877

target few-shots Dt containing tens of labeled train-878

ing examples of questions and logical forms in the879

target domain. In addition, we are given access to880

a related source domain. This has a source knowl-881

edge base Gs consisting of its own types T s, re-882

lations Rs, entities Es and facts F s, and a much883

larger source training set Ds containing thousands884

of labeled training examples of questions and cor-885

responding logical forms. The source and target886

tasks may differ significantly. First, the data and887

schema of the knowledge bases Gt and Gs and the888

domains they cover may be different. Secondly, the889

distributions of questions and logical forms defined890

over the KBs may be different in Dt and Ds.891

A.1.3 KBQA with Unanswerability892

A natural language question q is said to be answer-893

able for a Knowledge Base Gt if it has a corre-894

sponding logical form l which when executed over895

Gt returns a non-empty answer A. In contrast, a896

question q is unanswerable for Gt, if it either (a)897

does not have a corresponding logical form that898

is valid for Gt, or (b) it has a valid logical form l899

for Gt, but which on executing returns an empty900

answer. The first case indicates that Gt is missing901

some schema element necessary for capturing the902

semantics for q. The second case indicates that 903

the types T s, relations Rs is sufficient for q, but 904

Gt is missing some necessary data elements for 905

answering it. In the KBQA with unanswerability 906

task, given a question q, if it is answerable, the 907

model needs to output the corresponding logical 908

form l. and the non-empty answer A entailed by it, 909

and if it is unanswerable, the model either needs 910

to output NK (meaning No Knowledge) for the 911

logical form, or a valid logical form l with NA 912

(meaning No Answer) as the answer. 913

Different Types of Unanswerability: Unan- 914

swerable questions in KBQA can be categorized 915

into (a) Schema Level Unanswerability : the ques- 916

tion does not have a corresponding logical form that 917

is valid for the KB , (b) Data level unanswerability: 918

it has a valid logical form l for the KB, but which on 919

executing returns an empty answer. Schema level 920

unanswerable questions can further be categorized 921

into (1) Missing Class: The class/type required to 922

construct the logical form is not defined for the 923

KB, (2) Missing Relation: The relation required to 924

construct the logical form is not defined for the KB, 925

(3) Missing Topic Entity: The topic entity speci- 926

fied in the question is missing from the KB. Data 927

level unanswerable questions can be categorized 928

into (1) Missing entity: all classes and relations 929

required to construct the logical form are present 930

in the KB , but there exists no path from the topic 931

entity node to the answer node in the KB due to 932

missing intermediary entities (2) Missing Fact: all 933

classes, relations and entities required to answer 934

the question are present in the KB. However, the 935

(subject, relation, object) path is not connected in 936

the KB. 937

A.1.4 Few-shot Transfer Learning for KBQA 938

with Unanswerability 939

This setting is a generalization of few shot transfer 940

learning for KBQA, wherein we no longer assume 941

that the test question is answerable with respect to 942

the Knowledge Base Gt. The training set Ds con- 943

tains thousands of answerable questions along with 944

their corresponding logical form. The target few 945

shots Dt contain both answerable as well as unan- 946

swerable questions, along with their corresponding 947

logical forms, if they exist. 948

A.2 Error Checks 949

(V2) Semantic Error (KB Inconsistency): A 950

syntactically correct logical form l may still be in- 951

consistent with the schema of G. This is a likely 952

11

error even for SoTA LLMs since these are unfamil-953

iar with the specific KB G. Semantic errors have954

different categories, such as type-incompatibility,955

schema hallucinations. (V2a) Incompatibility in956

types: l contains a variable and a connecting rela-957

tion whose types are incompatible in G. This is958

the case for LF1 for all three KBs in the example.959

(V2b) Schema hallucinations: l contains schema960

elements (types, relations, entities) absent in G.961

(V2c) Type casting errors: Literals in l are not cor-962

rectly type cast for G, e.g. numeric literals as float963

for Freebase. All of these are certain checks, and964

are implemented using rules defined over l and965

G. The feedback mentions the type of error and966

the specifics, e.g., the hallucinated relation, or the967

incompatible type-relation pair.968

(V3) Question Logical form Disagreement:969

FUn performs equivalence check between l and970

q using a novel multi-stage LLM pipeline. (i) The971

variable names in l are first naturalized to ln consid-972

ering q and preserving semantics, e.g. by replacing973

’?x’ with ’?actor’. (ii) ln is back-translated into974

a natural language question qb. (iii) qb is finally975

checked for semantic equivalence with q. The first976

two steps are performed using zero-shot prompting,977

while the last is performed using few-shots con-978

structed using the target few-shots Dt. More de-979

tails about few-shot construction are in Sec. A.8.2.980

The feedback mentions lack of equivalence as the981

type of error.982

(V4) Answer Inconsistency: If the l is syntacti-983

cally and semantically correct, it is executed over984

G to obtain an answer a. a is then checked for985

compatibility with q. This may fail for different986

reasons. (V4a) a (which is a set in general) con-987

tains an entity also in l and therefore mentioned988

q, which is an aberration. (V4b) a is empty, as in989

LF3 for KB2 in the example. All of these checks990

are implemented using rules defined over l and G.991

Note that while the first two are certain checks, the992

last is not. An empty answer is valid for unanswer-993

able questions, as for LF3 for KB2, but invalid for994

answerable ones. As before, the feedback mentions995

the type of error and the specifics.996

A.3 EM-s: Automated check for equivalence997

of SPARQL programs998

As has been observed in (Patidar et al., 2023), an-999

swer evaluation by itself is not a robust measure for1000

evaluation of KBQA models when the dataset con-1001

tains unanswerability. Traditional KBQA models1002

that generate s-expressions can be evaluated using 1003

EM, which checks for logical form equivalence 1004

between two logical forms, since it is possible to 1005

compare equivalence between two s-expressions 1006

efficiently. However, FUn-FuSIC generates sparql 1007

queries instead. Directly comparing program equiv- 1008

alence between two sparql queries is an undecide- 1009

able problem 6. (Patidar et al., 2024) suggests a 1010

semi-automatic strategy for comparison of sparql 1011

queries. We propose a completely automatic metric 1012

for sparql equivalence check. Two sparql queries 1013

are equivalent by the EM-s check if (a) the relations 1014

occuring in the two queries are same. (b) the enti- 1015

ties occuring in the two queries are the same (c) the 1016

answer set obtained by executing the queries over 1017

the KB are the same. Note that the EM-s check is 1018

necessary, but not sufficient for two sparql queries 1019

to be equivalent. 1020

Since these are a necessary but not sufficient 1021

condition for logical form equivalence, we com- 1022

pared EM-s with EM, where both are applicable 1023

and found > 98% agreement. 1024

A.4 Performance across different categories 1025

of unanswerability 1026

We dive deeper into the different categories of unan- 1027

swerability, as explained in (Patidar et al., 2023). 1028

There exist 2 broad categories of unanswerability- 1029

schema level unanswerability(absence of knowl- 1030

edge in terms of KB ontology or entities required 1031

to construct the logical form) and data level unan- 1032

swerability(absence of facts or intermediate entities 1033

of the logical form path on the KB). 1034

We expect that (a) due to the poor ability of su- 1035

pervised models to generalize in transfer learning 1036

settings, RetinaQA will be struggle to generate cor- 1037

rect logical forms for data level unanswerable ques- 1038

tions (b) due to the strong generalization ability of 1039

FuSIC-KBQA, it should be able to perform well 1040

for data level unanswerable questions. However, 1041

since it is biased to return incorrect logical forms 1042

instead of abstaining from returning a logical form, 1043

it will perform poorly at identifying schema level 1044

unanswerable questions. (c) FUn-FuSIC should be 1045

able to maintain the performance of FuSIC-KBQA 1046

on data level unanswerable questions to a large ex- 1047

tent, while significantly improving the performance 1048

on schema level unanswerable questions. 1049

Based on performance on the WebQSP → 1050

GrailQAbility and WebQSP → GraphQAbility 1051

6https://users.dcc.uchile.cl/ cgutierr/papers/expPowS-
PARQL.pdf

12

datasets, we validate the that the trends are indeed1052

as expected.1053

A.5 Cost Analysis1054

FuSIC-KBQA, as well as the adapted versions of1055

FuSIC-KBQA, such as U-FuSIC and FUn-FuSIC1056

rerank the classes, relations and paths. The total1057

cost for reranking for one question is $0.16.1058

The cost for generation of logical form from a1059

prompt with 5 in-context examples is $0.16.1060

Thus, the approximate cost for inference of one1061

question by U-FuSIC is $0.32.1062

The cost for generation of logical form from a1063

prompt with 0 in-context examples is $0.04. The1064

cost of checking whether two natural language1065

questions are equivalent or not, using few-shot ex-1066

emplars and chain of thought prompting is also1067

$0.04.1068

The approximate cost of inference of one ques-1069

tion by FUn-FuSIC varies between $0.24 and $0.48.1070

The average cost over 50 randomly sampled ques-1071

tions from the test set is around $0.34.1072

Hence, the two models are comparable in terms1073

of cost.1074

A.6 FuSIC-KBQA Details1075

Our proposed approach FUn-FuSIC builds upon1076

the the base architecture of FuSIC-KBQA. FuSIC-1077

KBQA has a three step pipeline: (a) Supervised1078

Retrieval: a supervised retriever, trained on the1079

source domain and optionally fine-tuned on the1080

target domain is used to obtain the top-100 classes,1081

relations and paths that are relevant to the question1082

asked, (c) LLM Generation: We provide the top-101083

classes, top-10 relations and top-5 paths along with1084

few-shot exemplars to generate the sparql query.1085

A.7 FUn-FuSIC Prompts1086

Here we provide details of various prompts used1087

by FUn-FuSIC.1088

A.8 PUn prompt1089

The first prompt is for Prompting for Unanswer-1090

ability (PUn).1091

Header Prompt

Translate the following question
to sparql for Freebase based on
the candidate sparql, candidate
entities, candidate relations and
candidate entity types which are
separated by "|" respectively.
Please do not include any other
relations, entities and entity
types. Your final sparql can have
three scenarios: 1. When you
need to just pick from candidate
sparql. 2. When you need to
extend one of candidate sparql
using the candidate relations and
entity types. 3. When you will
generate a new sparql only using
the candidate entities, relations
and entity types. For entity
type check please use this relation
"type.object.type".D o not use
entity names in the query. Use
specified mids. If it is impossible
to construct a query using the
provided candidate relations or
types, return "NK". Make sure
that the original question can
be regenerated only using the
identified entity types, specific
entities and relations.

1092

13

NK exemplar

Question: the tv episode
segments spam fall under what
subject? Candidate entities:
spam m.04vbm Candidate paths:
SELECT DISTINCT ?xWHERE ?x0
ns:tv.tv_segment_performance.segment
ns:m.04vbm .?x0
ns:tv.tv_segment_performance.segment
?x .?x ns:type.object.type
ns:tv.tv_episode_segment .
| ... Candidate entity
types: tv.tv_series_episode|
tv.tv_episode_segment |
... Candidate relations:
tv.tv_series_episode.segments
(type:tv.tv_series_episode R
type:tv.tv_episode_segment)|
tv.tv_subject.tv_programs
(type:tv.tv_subject R
type:tv.tv_program)|... sparql:NK

1093

Question Prompt

Question: which school newspaper
deals with the same subject
as the onion? Candidate
entities: the onion m.0hpsvmv
Candidate paths: SELECT
DISTINCT ?xWHERE ns:m.0hpsvmv
ns:book.newspaper.circulation_areas
?x0 .?x0 ns:periodicals.newspapers
?x .?x ns:type.object.type
ns:book.newspaper . |...
Candidate entity types:
education.school_newspaper|
type:book.newspaper...
Candidate relations:
education.school_newspaper.school
(type:education.school_newspaper R
type:education.educational_institution)
| book.newspaper_issue.newspaper
(type:book.newspaper_issue R
type:book.newspaper)|... sparql:

1094

A.8.1 FUN prompt 1095

Syntax error(V1) Feedback

Correct the syntax of the following
sparql query. Return ONLY the
corrected sparql query without any
explanation sparql: SELECT ?x AND
?y ... Virtuoso error: word AND
not defined

1096

KB Inconsistency(V2) Feedback

The generated sparql has a
semantic issue warning: The
types of relations don’t match
for variable ?x in the query.
The assigned relation types by
[’computer.computer_emulator.computer’,
’type.object.type
computer.computer_peripheral’]
are [’computer.computer’,
’computer.computer_peripheral’].
These types are mutually
incompatible... Please generate
again a different executable
sparql using the same context and
constraints. DO NOT APOLOGIZE -
just return the best you can try.

1097

Question Logical form disagreement(V3)
feedback

The question that you answer
is NOT same as what you’ve been
asked for! You have answered the
question "Which opera productions
has Gino Marinuzzi conducted?" but
you were asked to answer "what
is the name of the premiere
opera production conducted by gino
marinuzzi?". Please generate again
a different executable sparql using
the relations, classes and entities
provided earlier. DO NOT APOLOGIZE
- just return the best you can try.

1098

The next three prompts fall under the answer 1099

incompatibility feedback 1100

14

Answer Inconsistency(V4b) feedback

The generated sparql gives an empty
answer when executed on freebase KG,
Please generate again a different
executable sparql using the same
context and constraints.

1101

Intermediate Node(V4a) feedback

The generated sparql returns
an intermediate type node when
executed on the freebase KG. Maybe
the answer node is an adjacent node
to what we currently query for.
Please generate again a different
executable sparql using the same
context and constraints.

1102

Answer Inconsistency(V4a) feedback

The logical form upon execution
returns International System of
Units, which is not answering
the question. Please reconstruct
the query using same context and
constraints.

1103

A.8.2 Prompt for Verifier V3 Question1104

Logical Form Agreement1105

The few shots provided for verifying question logi-1106

cal form agreement come from the few shots pro-1107

vided in the target domain Dt. We obtain positive1108

samples from the dataset Dt directly, using the1109

questions and gold logical forms. For obtaining1110

negative samples, we perform zero-shot FuSIC-1111

KBQA inference over the dataset Dt. Then we1112

consider those questions for which the predicted1113

logical form is different from the gold logical form.1114

Firstly, we perform back-translation to obtain1115

natural language question from the logical form1116

Naturalization of variable names(V3(i))

change the sparql query to
have variable names representative
of what objects they refer to.
transform the variable names in
this query. Do NOT change the prefix
headers and relation names

1117

Conversion of Logical Form into Natural
Language Question(V3(ii))

Convert this sparql query into a
natural language question. Make
the question as natural as possible.
SELECT DISTINCT ?unfinishedWork
WHERE { Le Moulin de Blute-Fin
ns:media.unfinished_work
?unfinishedWork . ?unfinishedWork
ns:type.object.type
ns:media.unfinished_work . }

1118

We use few-shot LLM prompting to obtain the 1119

explanation for why the question and logical form 1120

agree or disagree. These few-shots, for obtaining 1121

the explanation are dataset independent, and are 1122

manually written. 1123

Explanation Generation Prompt

Explain why the two questions are
different. Question we answer: who
all like to eat apple or mango?
Question originally asked: what
are the people who enjoy both
apple and mango? explanation: The
question we answer returns people.
The question originally asked also
returns people. The question we
answer finds those people who like
eating apple, those people who
like eating apple. The question
originally asked also finds those
people who like eating apple, those
people who like eating apple. The
question we answer uses logical
operator OR. However, the question
originally asked uses the logical
operator AND Hence, they are
different. [total 3 exemplars]
Question we answer: Which game
engines are successors to the
Unreal Engine? Question originally
asked: which video game engine’s
successor engine is unreal engine?
explanation:

1124

Some examples of few shots are provided below- 1125

15

Question Logical Form Sgreement
Check(V3(iii))

Question we answer: Who are
the cricket players who have
made exactly 31 stumps in one
day internationals? Question
originally asked: name the cricket
player who has 31 odi stumps.
explanation: The question we answer
returns cricket players. The
question originally asked also
returns cricket players. The
question we answer finds cricket
players who have made exactly 31
stumps in one day internationals.
The question originally asked
also finds cricket players who
have made 31 stumps in one day
internationals. Both questions
involve no mathematical or logical
operators. Hence, they are same.
Question we answer: Which game
engines are successors to the
Unreal Engine? Question originally
asked: which video game engine’s
successor engine is unreal engine?
explanation: The question we answer
returns game engines. The question
originally asked also returns game
engines. The question we answer
finds successors to the Unreal
Engine. The question originally
asked finds the predecessor of
the Unreal Engine. The reasoning
steps followed by the two questions
are different. Hence, they are
different. [total 6 exemplars]
Question we answer: Which cars
drive at a speed of 80? Question
originally asked: name the car
with driving speed at least 80?
explanation:

1126

A.8.3 Prompt in scUn for Logical Form1127

Selection1128

We store the back-translated natural language ques-1129

tions along with each predicted logical form. Here,1130

we prompt the LLM to select the closest back-1131

translated natural language question to the original1132

question.1133

Best Logical Form Selection Prompt

orig_nl_qn = which surf films has
sarah finn served as the casting
director? 1. pred_nl: Which surfing
films has Sarah Finn directed
the casting for? 2. pred_nl:
Which surfing films has Sarah Finn
been the casting director for?
of the 2 predicted nl questions,
which is closest to the original
nl question. Even if none is
very close, return the one that
is semantically closest? Please
explain your answer as well

1134

A.9 Supervised Models training details 1135

We use Hugging Face (Wolf et al., 2020), PyTorch 1136

(Paszke et al., 2019) for our experiments and use 1137

the Freebase setup specified on github 7 . We use 1138

NVIDIA A100 GPU with 40 GB GPU memory 1139

and 32 GB RAM. For training the discriminator 1140

module of RetinaQA, we require 2 GPUs. (1) For 1141

the answerable experiments, we use the supervised 1142

models as specified in (Patidar et al., 2024). (2) 1143

For the unanswerability experiments, we train all 1144

models from scratch. (a) We use RnG-KBQA en- 1145

tity linker 8 (BSD 3-Clause License) trained on 1146

the answerable subset of GrailQAbility for all our 1147

experiments. (b) We train the RnG-KBQA path 1148

retriever on answerable subset of WebQSP9 (BSD 1149

3-Clause License). The number of training epochs 1150

is determined by the performance of the model 1151

over the answerable questions in the dev set. (c) 1152

We train the TIARA schema retriever on the an- 1153

swerable subset of WebQSP 10 (MIT License) (d) 1154

We train the sketch generator and discriminator of 1155

RetinaQA on the answerable subset of WebQSP11. 1156

A.10 Supervised Models inference details 1157

We train all components on WebQSP, using the 1158

corresponding target domain’s dev set as a vali- 1159

dation set for early stopping. In the absence of 1160

unanswerable questions for training, both models 1161

use a threshold fine-tuned on a dev set to detect 1162

7https://github.com/dki-lab/Freebase-Setup
8https://github.com/salesforce/rng-

kbqa/tree/main/GrailQA/entity_linker
9https://github.com/salesforce/rng-

kbqa/blob/main/WebQSP/scripts/run_ranker.sh
10https://github.com/microsoft/KC/tree/main/papers/TIARA/src
11https://github.com/dair-iitd/RetinaQA

16

schema-level unanswerability. We again use the1163

target dev sets for this.1164

We use the dev set in RetinaQA, during discrim-1165

inator inference for (a) determining how to best1166

utilize the candidate paths. We might (i) not pro-1167

vide candidate paths (ii) provide candidate paths in1168

GrailQA format (iii) provide candidate paths in We-1169

bQSP format. We select the best alternative based1170

upon the performance of the model over the dev set.1171

For the WebQSP → GrailQAbility dataset, we ob-1172

serve (ii) works best, whereas for the WebQSP →1173

GraphQAbility dataset, we observe (i) works best.1174

(b) determining the threshold value. RetinaQA ap-1175

plies a threshold on the scores - for a question, if1176

the highest score candidate logical form has a score1177

less than the threshold, the question is labeled as1178

NK. We choose the optimal value of the threshold1179

to maximize the overall EM-s score over the dev1180

set.1181

A.11 Pangu Adaptation Details1182

Similar to RetinaQA, We train all components on1183

WebQSP, using the corresponding target domain’s1184

dev set as a validation set for early stopping. We1185

use 1 GPU for training. Same as RetinaQA, we use1186

the dev set to determine the threshold for schema-1187

level unanswerability. Pangu-T applies a threshold1188

on the scores - for a question, if the highest score1189

candidate logical form has a score less than the1190

threshold, the question is labeled as NK. We choose1191

the optimal value of the threshold to maximize the1192

overall EM-s score over the dev set.1193

A.12 KB-Binder and FuSIC-KBQA1194

Adaptation Details1195

For KB-Binder, we make use of publicly available1196

code 12 (MIT License). We use self-consistency1197

and majority voting with 6 examples, as in the ex-1198

periments in the paper. In the retrieval(-R) setting,1199

KB-Binder samples demonstration examples by1200

retrieving from the entire available training data.1201

We restrict its retrieval to our target training set1202

Dt with 25 examples. KB-Binder reports experi-1203

ments using code-davinci-002 as the LLM. For1204

consistency and fair comparison, we replace these1205

with gpt-4-0613 as in our approach. This model1206

generates logical forms in s-expression, which we1207

preserve.1208

For FuSIC-KBQA (Patidar et al., 2024), since1209

no code is available for this model, we use our1210

12https://github.com/ltl3A87/KB-BINDER

own implementation based on the description in 1211

the paper. For FuSIC-KBQA, and FUn-FuSIC we 1212

use temperature = 0. 1213

A.13 Real Example of FUn 1214

Question: Where all were the Olympics held be- 1215

fore 2024? 1216

Logical Form 1

?y{ ?x olympics.venue ?y
?y olympics.year ?z
FILTER(?z = 2024)}

1217

Feedback 1

Type: Logical Form Semantic Error
Description: ?y is assigned types [’venue’,
’olympics’] by relations [’olympics.venue’,
’olympics.year’]. These types are mutually
incompatible.

1218

Logical Form 2

?y{ ?x olympics.venue ?y
?x olympics.year ?z
FILTER(?z = 2024)}

1219

Feedback 2

Type: Natural Language Semantic Error
Description: The question originally asked
returns all places where the Olympics were
held before 2024. However, the question
we answer returns the places where the
Olympics were held in 2024.

1220

Logical Form 3

?y{ ?x olympics.venue ?y
?x olympics.year ?z
FILTER(?z < 2024)}

1221

Feedback 3

Status: Passes All Checks
Details: lf3 satisfies syntax, logical form
semantic, natural language semantic and ex-
ecution checks.

1222

17

https://github.com/ltl3A87/KB-BINDER

A.14 Algorithm for Self Consistency with1223

Unanswerability1224

The high level algorithm for self consistency with1225

Unanswerability (scUn) is described in Algo. 3.

Algorithm 3 ScUn(q, L, t,L)
1: (c, l, A) = assessConf(q, L, t,L)
2: if (c), return(l, A)
3: else , return(NK, NA)

1226
The high level algorithm for assessing con-1227

fidence in the set of candidate logical forms1228

(assessConf) is described in Algo. 4.

Algorithm 4 assessConf(q, L, t,L)
1: (c, Lp, Ap) = popAnsNE(L, t)
2: if (c) then
3: l = selectBestNE(q, Lp,L)
4: return(True, l, Ap)
5: end if
6: (c, Lp) = popAnsE(L, t)
7: if (c) then
8: l = selectBestE(q, Lp,L)
9: return(True, l, NA)

10: end if
11: return(False, NK, NA)

1229

18

	Introduction
	Related Work
	Background & Problem Definition
	Proposed Approach: FUn-FuSIC
	Experiments
	Experimental Setup
	Unanswerability Setting
	Answerable Setting
	Error Analysis

	Conclusions
	Limitations
	Risks
	Appendix
	KBQA Problem Formulations
	KBQA: Detailed Background
	Few Shot Transfer Learning for KBQA
	KBQA with Unanswerability
	Few-shot Transfer Learning for KBQA with Unanswerability

	Error Checks
	EM-s: Automated check for equivalence of SPARQL programs
	Performance across different categories of unanswerability
	Cost Analysis
	FuSIC-KBQA Details
	FUn-FuSIC Prompts
	PUn prompt
	FUN prompt
	Prompt for Verifier V3 Question Logical Form Agreement
	Prompt in scUn for Logical Form Selection

	Supervised Models training details
	Supervised Models inference details
	Pangu Adaptation Details
	KB-Binder and FuSIC-KBQA Adaptation Details
	Real Example of FUn
	Algorithm for Self Consistency with Unanswerability

