Iterative Repair with Weak Verifiers
for Few-shot Transfer in KBQA with Unanswerability

Anonymous ACL submission

Abstract

Real-world applications of KBQA require mod-
els to handle unanswerable questions with a
limited volume of in-domain labeled training
data. We propose the novel task of few-shot
transfer for KBQA with unanswerable ques-
tions and contribute two new datasets for perfor-
mance evaluation. We present FUn-FuSIC —a
novel solution for our task that extends FuSIC-
KBQA, the state-of-the-art few-shot transfer
model for answerable-only KBQA. We first
note that FuSIC-KBQA’s iterative repair makes
a strong assumption that all questions are an-
swerable. As a remedy, we propose Feedback
for Unanswerability (FUn), which uses itera-
tive repair using feedback from a suite of strong
and weak verifiers, and an adaptation of self-
consistency for unanswerabilty to better assess
the answerability of a question. Our experi-
ments show that FUn-FuSIC significantly out-
performs suitable adaptations of multiple LLM-
based and supervised SOTA models on our task,
while establishing a new SoTA for answerable
few-shot transfer as well.

1 Introduction

The semantic parsing formulation of the Knowl-
edge Base Question Answering (KBQA) task takes
as input a Knowledge Base (KB) and a natural
language question, and outputs a logical form (or
program) that produces the answer upon execution
over the KB. KBQA has important real-world ap-
plications, which can require systems to be low
resource (i.e., trained only with a few task-specific
labeled examples), and robust, specifically the abil-
ity to identify questions that cannot be answered
based on existing KB.

Traditional supervised models (e.g., (Ye et al.,
2022; Shu et al., 2022; Gu et al., 2023)) and even
recent LLM few-shot in-context learning (FS-ICL)
architectures (Li et al., 2023; Nie et al., 2024) fall
short in both aspects. Limited recent work has

addressed these independently — in-domain meth-
ods for KBQA with unanswerability trained with
large labeled data (Patidar et al., 2023; Faldu et al.,
2024), and FuSIC-KBQA for few-shot transfer as-
suming questions are answerable (Patidar et al.,
2024). No existing work simultaneously addresses
both desiderata in a single KBQA system.

In response, we propose the novel task of few-
shot transfer learning for KBQA with unanswer-
ability. Specifically, the target domain may offer
only a few labeled examples of answerable and
unanswerable questions, while the source domain
has thousands of labeled examples, but containing
only answerable questions.

For KBQA transfer, FuSIC-KBQA uses a
retrieve-then-generate framework: retrieval of rel-
evant schema and KB snippets followed by an
LLM-based generation and a subsequent iterative
error guided repair. Specifically, multiple itera-
tions of execution-guided feedback are run until a
non-empty answer is obtained — this assumes that
all questions are answerable. For our task, we
first design FuSIC-KBQA-U, which, to address
Unanswerability, eschews the now-inappropriate
repair step, and modifies the LLM prompt to ac-
commodate unanswerable questions, along with
relevant in-context exemplars. Unlike in studies for
unanswerability in general QA (Slobodkin et al.,
2023), this vanilla adaptation mostly generates in-
correct logical forms for unanswerable questions.

As a remedy, we design a novel solution: FUn-
FuSIC (Feedback for Unanswerability in FuSIC-
KBQA). The key idea is to modify iterative repair,
which earlier relied on a single strong verifier for
the logical form’s incorrectness, to rely on a suite
of strong and weak verifiers, where strong veri-
fiers identify certain errors, whereas weak verifiers
identify potential errors in the current logical form.

FUn-FuSIC’s verifiers consider both the logical
form and the answer. For answers, non-emptiness
check is now a weak verifier, given potentially

unanswerable questions. For logical forms, we use
strong verifiers to identify obvious syntactic and
semantic errors. We also propose a novel verifier:
non-equivalence of the original question and the
back-translation of the logical form. This is weak,
due to potential errors in back-translation as well
as in equivalence classification.

Using such iterative weak verification based
repair, FUn-FuSIC constructs a set of candidate
logical forms. Simply selecting from this set
the logical form with majority answer via self-
consistency (Wang et al., 2023) breaks down in
the face of unanswerability. We introduce self-
consistency for unaswerability, which additionally
checks the likelihood of the majority answer, empty
or otherwise, to produce the final output.

For evaluation in our novel task, we create two
KBQA transfer datasets with unanswerable ques-
tions in the target. Our experiments show that
FUn-FuSIC comprehensively outperforms differ-
ent types of SOTA models suitably adapted for this
task, including LLLM-based and more traditional
models. We further find that iterative repair of
logical forms using weak verifiers holds promise
for KBQA in general. Using experiments over
benchmark datasets for answerable-only few-shot
KBQA transfer, we show that the restriction of
FUn-FuSIC for the answerable setting improves
upon the known SoTA on the task.

In summary, our specific contributions are as fol-
lows. (a) We propose the problem of few-shot trans-
fer for KBQA with unanswerability. (b) We present
FUn-FuSIC that uses iterative repair with error
feedback from a diverse suite of weak verifiers. (c)
We create new datasets for the proposed task, which
we make public.1 (d) We show that FUn-FuSIC
outperforms adaptation of SOTA KBQA models
for our setting. (e) We also show that for standard
answerable-only KBQA, FUn-FuSIC outperforms
the corresponding SoTA model.

2 Related Work

In-domain KBQA using supervised models (Sax-
ena et al., 2022; Zhang et al., 2022; Mitra et al.,
2022; Wang et al., 2022; Das et al., 2022; Ye et al.,
2022; Chen et al., 2021; Das et al., 2021; Shu et al.,
2022; Gu et al., 2023) and using LLLM few-shot
approaches (Li et al., 2023; Nie et al., 2024; Shu
and Yu, 2024) is well explored in literature. These

lhttps ://anonymous. 4open.science/r/
FUn-FuSIC-1704

use high volumes of labeled data, either for training
or selecting the most relevant few shot exemplars.

For in-domain KBQA, unanswerability has re-
cently been studied (Patidar et al., 2023; Faldu
et al., 2024). Patidar et al. (2023) create the
GrailQAbility dataset with different categories of
unanswerability, and show the inadequacy of su-
perficial adaptations of answerable-only KBQA
models. RetinaQA (Faldu et al., 2024) is the SoTA
model for KBQA unaswerability. However, this
also requires large volumes of training data.

For KBQA transfer (Cao et al., 2022; Ravis-
hankar et al., 2022), low-resource was originally
not a focus. More recently, few-shot transfer for
KBQA has been addressed (Patidar et al., 2024). Its
FuSIC-KBQA model uses a retrieve-then-generate
framework with an LLM-based generation stage
with iterative error feedback based repair. How-
ever, this formulation assumes answerability of all
questions, as described in Section 1.

Simple LLM prompting techniques have been
used to address unanswerability outside of
KBQA (Slobodkin et al., 2023), but without any
notion of feedback or iterative repair. Other ap-
proaches (Shinn et al., 2023; Chen et al., 2023b)
use execution based refinement for program gener-
ation but without any notion of unanswerability.

The extensive recent work on program self-
repair using LLMs (Olausson et al., 2024) also
diverges strongly from our few-shot goal. It as-
sumes availability of unit tests for every test in-
stance. More importantly, as in the answerable
KBQA literature, it assumes that a valid program
exists for each specification.

To the best of our knowledge, ours is the first
work to apply iterative weak repair for KBQA, and
to use iterative repair for unanswerability.

3 Background & Problem Definition

A Knowledge Base (KB) G consists of a schema
and data. The schema consists of entity types (or
classes) T and binary relations R defined over
pairs of types. The data consists of entities F
as instances of types 7', and triples or facts F' C
E x R x E. Given a target KB G and a natu-
ral language question ¢', the goal is to generate a
structured query or logical form I* (in a KB query
language, such as SPARQL), which when executed
over G' returns an answer A’ (which is a set in
general). Target few-shots D' containing tens of
labeled training examples of questions and logical

https://anonymous.4open.science/r/FUn-FuSIC-1704
https://anonymous.4open.science/r/FUn-FuSIC-1704

.‘d_e_sig_n_er KB1 .d_e_sig_n_er illlis_tLa_tEL . KB2 .‘d_e_sig_n_er illu_s_h_a_tgr_ . KB3
Q. Which book was Q@ it @ @ier a7 @ Q<re ity @
illustra lgnl:laiz:?uentm BFGO‘gSii?r:ehr BEG dffi‘gc or BFGO-‘?f?i?Te_r illustrator g o
snuttO)=virter 3B by <)CC sl =vier 0B fwa By {)CC snut(=witer 0B fwd 5y <)CC
| Fun i=1 LF1: ?x{?x writer QB} LF1: ?x{?x writer QB} LF1: ?x{?x writer QB})
V2: KB INCONSISTENCY True True True
': i=2 LF2: {QB writer ?x} LF2: {QB writer ?x} LF2: {QB writer ?x} ™
V2: KB INCONSISTENCY False False False
V3: Q-LF DISAGREEMENT True True True
\\wn: ANS INCONSISTENCY False {Snuff} False {Snuff} False {Snuff})
4 i=3 LF3: {?x fwd_by QB} LF3: {QB illustrator ?x} LF3: {QB illustrator ?x} ™
V2: KB INCONSISTENCY False False False
V3: Q-LF DISAGREEMENT True False False
V4b: ANS INCONSISTENCY False {CC} True { } False {C&CF}
_ Return (LF3, {C&CF}) Y,
. i=4 LF4: {QB designer ?x} LF4: {QB designer ?x} N
V2: KB INCONSISTENCY False False
V3: Q-LF DISAGREEMENT True True
\V4b: ANS INCONSISTENCY False {BFG} False {BFG} Y,
scUn L={LF2, LF3, LF4} L={LF2, LF3, LF4}
Non-empty Ans - Best LF {LF2, LF3, LF4} No Consensus {LF2, LF4} No Consensus
_Empty Ans - Best LF {}: No Consensus; Return (NK, NA) {LF3} : Consensus; Return (LF3, NA} y,

Figure 1: Feedback with Unanswerability (FUn) and self consistency for Unanswerability (scUn) for a question
when executed over different KBs with < 4 iterations. () is answerable for KB3, but unanswerable for KB1 (schema
incompleteness) and KB2 (data incompleteness). FUn iterations are shown using gray blocks, with Strong Verifiers
in red and Weak Verifiers in green. (V1: Syntax Error omitted for brevity) scUn is shown using the blue block.

forms. A related source domain has a source KB
G* (with its own types, relations, entities and facts),
and a larger source training set D*® with thousands
of labeled training examples.

Following Patidar et al. (2023), a question g is
answerable for a KB G if it has a corresponding
logical form / which when executed over G returns
a non-empty answer A. A question is unanswer-
able, if it either (a) does not have a valid logical
form for G (schema-level unanswerability), or (b)
it has a valid logical form [for G, but [returns
an empty answer upon execution on GG (data-level
unanswerability). Schema-level unanswerability
arises due to missing types and relations, while
missing entities and facts lead to data-level unan-
swerability. More details are in Appendix A.1.3.

In KBQA with unanswerability, given a question
g, the model needs to output (a) a logical form / and
a non-empty answer A for answerable ¢, (b) [= NK
(No Knowledge) for schema-level unanswerable
q, or (c¢) a valid logical form [and a = NA (No
Answer) for data-level unanswerable q.

We now define few-shot transfer learning for
KBQA with unanswerability. A target question ¢
may be answerable or unanswerable due to miss-
ing schema or data in the target KB G*. Target
few shot examples D! contain both answerable

and unanswerable questions of different categories.
However, most KBQA datasets contain only an-
swerable questions, we model the source training
data D? as containing only answerable questions.
Now the unanswerability gap between the source
and the target also needs to be bridged. More de-
tails are in Appendix A.1.

4 Proposed Approach: FUn-FuSIC

Our proposed architecture FUn-FuSIC adapts
FuSIC-KBQA for unaswerability. The high-level
algorithm is described in Algo. 1. Preserving
the retrieve-then-generate framework, the retrieval
stage (line 2) performs KB retrieval for ¢’ using a
set R of one or more supervised retrievers. Each
retriever R; is source-trained and then target fine-
tuned. The retrieval output r of each R; consists
of relevant schema elements (types and relations)
for ¢', and data paths emanating from mentioned
entities in ¢'. The union of these, along with ¢!, is
fed to the generation stage, which uses prompting
with an LLM L to generate logical forms using the
target few shots D?. More details of the retrieval
stage are in the Appendix (Sec. A.6).

FUn-FuSIC makes three modifications to the
FuSIC-KBQA architecture. First, the LLM genera-
tion instruction is modified to admit the possibility

Algorithm 1 FUn-FuSIC(q, Gt, D', R, VS,V L)

1. r= {}

2. fori=1tokdor=r|JRi(q,G")

3: 1 =PUn(L, I,q,r, D)

4: (e,l,A,L) =FUn(L,q,1,n, V5, V¥ G
5

6

. if (e) return(l*, A*)
. else return(scUn(q, L,t, L))

of unanswerability, and the few shots are modified
to include examples of unanswerable questions.
However, this simple approach is error-prone. So,
we bias the instruction towards one type of error.
Specifically, when uncertain about answerability of
the question, Prompting for Unanswerability (PUn)
(line 3) instructs L to generate a (possibly incor-
rect) logical form instead of [= NK. The detailed
prompt I is in the Appendix (Sec. A.8).

We now come to the more significant modifi-
cations. First, [(9) is iteratively repaired using
feedback as before, but this step is adapted for
unaswerability. This iterative repair, which we
name Feedback for Unaswerability (FUn) (line 4),
either confidently outputs a single logical form !
(with corresponding answer A) (line 5) or generates
a set L of candidate logical forms, which is further
analyzed. For this, we introduce self-consistency
for Unaswerability (scUn). scUn checks the like-
lihood of the majority answer in L, empty or oth-
erwise, to produce the final output. In the rest of
this section, we describe FUn and then scUn. Fig. 1
illustrates flow of FUn and scUn using examples.
A real example of FUn execution is in Sec. A.13.

Algorithm 2 FUn(q,l,n,V* V¥ G, L)

1:i=0,k=0,L={},F=""
2: while + + 7 < n do

3: for j = 1to ky do

4 (evf) = V;'S(L(LG)

5: F = Append(F, f)

6: if (le) break

7: end for

8: for j = 1to ko do

0 (e,f) = V(1,q.G)
10: F = Append(F, f)
11: if(e) L=LU{I}; k++
12: end for

13: l=Gen(L,I,q,F)

14: end while

15: if (k = ko) return(True, [, Exec(l,G), L)
16: else return(False, [, {}, L)

The FUn algorithm is described in Algo. 2 Start-
ing with the initial logical form {(?), FUn performs
at most n verify-and-repair iterations to create a
candidate set L of probable logical forms. The ex-
ample shows 3 FUn iterations for KB1 and KB2,
and 2 iterations for KB3. In the i*" iteration, FUn
generates a new logical form 1) by prompting £
using ¢' and feedback F received from checks in
all previous iterations (line 13). 1) goes through
a sequence of verifications. FUn uses two sets of
verifiers. The strong verifiers V* are guaranteed
to be correct, while the weak verifiers V* are po-
tentially erroneous. The specific verifiers that we
use in this paper are defined later in the section. A
template-based feedback string f is appended to the
generation prompt for 1(+1) based on the specific
verifier that [(¥) failed. If [(¥) fails a strong verifier,
it is rejected (line 6). In the example, this happens
for all three KBs in iteration 1. If [(¥) passes all
checks, strong and weak (line 15), FUn terminates
by outputting (I = [V, A = A®), where A® is
the answer obtained by executing /(). This happens
in iteration 3 for KB3. Otherwise, if I(?) passes at
least one weak verifier but not all, it is added to can-
didate logical form set L (line 11). This happens
for iterations 2, 3 and 4 for KB1 and KB2.

Logical form verifiers: FUn uses a suite veri-
fiers, categorized as strong (V°) and weak (V).
These may be syntactic, semantic, or execution-
based, defined using simple rules or complex LLM
functions over [/, ¢ and G. Note that unlike unit
tests in program synthesis, the verifiers do not have
knowledge of the gold logical form, the gold an-
swer or answerability of the question.

We now briefly describe the specific verifiers
that we use for this paper. Additional details about
the verifiers are in the Appendix (Sec. A.8.1 and
Sec. A.2). Note however that FUn is a framework
that is equally capable of working with a wholly
different suite of verifiers.

(V1) Syntax Error: As in FuSIC-KBQA, this
verifier executes the logical form [over G and
checks for syntax error. This is a strong check:
a valid logical form cannot have syntax error.

(V2) KB Inconsistency: A logical form [may
be inconsistent with the schema of G. We iden-
tify semantic errors of different categories, such
as type-incompatibility and schema hallucinations,
implemented using rules over [and GG. These are
also strong verifiers.

(V3) Question - Logical Form Disagreement:
This verifier checks if [is semantically equivalent
to the original natural language question ¢. In our
example, LF3 for KB1 disagrees with Q. This is a
weak verifier. First, ¢ may not have any equivalent
logical form for GG due to intrinsic ambiguities. For
example, ¢ mentions a PERSON from a COUNTRY,
when G has the relations born in and works in be-
tween these types. Secondly, this is implemented
as a probabilistic classifier that can err. We define
equivalence check between [and ¢ using a novel
multi-stage LLLM pipeline, involving naturalization
of [to I, back-translation of /™ to natural language
question ¢” and semantic equivalence check be-
tween ¢ and ¢°. More details are in Sec.A.2.

(V4) Answer Inconsistency: This verifier ex-
ecutes [over (G to obtain an answer A and then
checks its compatibility with q. This may fail for
different reasons, such as (V4a) A containing an
entity mentioned in ¢, (V4b) A being empty, and
others. Note that V4a is a strong verifier while
V4b is weak, since an empty answer is valid for
unanswerable questions (as for LF3 for KB2), but
invalid for answerable ones.

Identifying Candidate Logical Forms: Unless
some logical form passes all checks and is there-
fore returned (Algo. 2 line 6), FUn constructs a
candidate set L of logical forms that are potentially
flawed but not certainly so. For our specific suite
of weak verifiers, [(*) is added to L if it passes one
of V4b (A is non-empty) as for LF3 for KB1, or
V3 (I is equivalent to q), as for LF3 for KB2.

Self Consistency for Unanswerability: If FUn
fails to generate a single confident logical form at
the end of n iterations, as for KB1 and KB2, we
use scUn to decide if the best candidate [* € L has
sufficient confidence. If scUn detects sufficient con-
fidence, as for KB2, it outputs (I = [*, A = A*),
where A* is the answer obtained upon executing [*
and may be NA. If on the other hand, scUn decides
insufficient confidence, as for KB1, it outputs (I =
NK, A = NA). For identifying the consensus choice
from L, one possibility is self-consistency (Wang
et al., 2023; Chen et al., 2023a) i.e., obtaining the
answer for each | € L, and returning those with the
most common answer. Self-consistency requires
some answer to accumulate enough probability by
aggregation over reasoning paths. However, for
unanswerable questions, no single answer accu-
mulates sufficient probability, and self-consistency

returns some low probability answer.

To address this, scUn first identifies via execu-
tion the most popular non-empty answer A* among
logical forms in L, and decides using threshold ¢ if
it has enough supporters in L (we use t = L%J).
If so, scUn uses LLM prompting to select the most
appropriate supporting logical form [* € L consid-
ering ¢, and outputs (I = [*, A = A%).

However, for KB1 in the example, the 3 logi-
cal forms among the candidates have 3 different
answers, and therefore (LI—?J = 1) no consensus
emerges for non-empty answers. Then scUn con-
siders logical forms from L that agree on A = NA.
If there are multiple such candidates, scUn selects
the most suitable candidate [*, again using LLM
prompting, and outputs (I = I*, A = NA). If there
is no such candidate, scUn outputs (I = NK, A =
NA). For KB2 in the example, scUn selects LF3 —
the only logical form with empty answer. Further
details on scUn are in the Appendix (Sec. A.14).

S Experiments

We now present experimental evaluation of FUn-
FuSIC. For few-shot KBQA transfer with unan-
swerability, we address the following research
questions. (R1) How does FUn-FuSIC compare
against SOTA models for KBQA, suitably adapted
for this setting? (R2) How does FUn-FuSIC per-
form across different categories of unanswerabil-
ity? (R3) How do the different components of
FUn-FuSIC contribute to its performance? In addi-
tion, for answerable KBQA few-shot transfer, we
ask: (R4) How does FUn-FuSIC compare against
SoTA KBQA models for this setting?

5.1 Experimental Setup

Datasets: For few-shot KBQA transfer, available
datasets have only answerable questions (Patidar
et al., 2024), while our task needs the target dataset
to contain unanswerable questions as well. So we
construct our own transfer datasets, augmenting
existing ones. GrailQAbility is the only available
KBQA dataset with unanswerable questions (Pati-
dar et al., 2023). This was carefully designed start-
ing from GrailQA (Gu et al., 2021), which has only
answerable questions, by systematically deleting
schema and data elements from the back-end KB
to introduce different categories of unanswerability
into the queries. We use this as one of our targets.

GraphQA (Su et al., 2016) is another popular
KBQA dataset. This has the same back-end KB

Model WebQSP — GrailQAbility WebQSP — GraphQAbility
Overall Answerable Unanswerable Overall Answerable Unanswerable

F1 EM-s F1 EM-s F1(L) F1(R) EM-s | F1 EM-s F1 EM-s FI(L) FI(R) EMs-s
RetinaQA 584 422 28.7 26.0 88.0 84.8 584 | 497 358 187 152 80.7 78.7 56.4
Pangu 545 438 3123 296 83.8 80.4 580 | 534 330 303 264 76.5 74.8 39.6
FuSIC-KBQA-U | 76.6 43.2 67.5 59.2 85.6 80.4 372 | 675 348 493 400 85.7 82.8 29.6
KB-Binder 437 33.0 19.5 16.5 67.9 66.5 495 | 443 361 275 216 61.0 61.0 50.7
FUn-FuSIC 76.6 60.2 67.1 61.2 85.1 80.0 59.2 [70.0 538 50.7 428 89.2 86.5 64.8

Table 1: Performance of different models on two datasets for few-shot KBQA transfer with unanswerability.

(Freebase) as GrailQA. We create our second tar-
get dataset using GraphQA, by replacing its KB
with the modified KB in GrailQAbility. This in-
troduces unanswerability into GraphQA questions
and we label these appropriately as schema-level
or data-level unanswerable. We name this dataset
GraphQAbility. We create the two test sets by
selecting 250 answerable and 250 unanswerable
questions uniformly at random from their test sets.
We create few shots by selecting 100 questions
(50 answerable and 50 unanswerable) uniformly at
random from the dev set and train set respectively.

The source dataset needs only answerable ques-
tions. WebQSP (Yih et al., 2016) is the third
popular answerable KBQA dataset. We use We-
bQSP as source and create the following two
source—rtarget pairs: WebQSP— GrailQAbility
and WebQSP— GraphQAbility.

WebQSP training set has 2,858 real user ques-
tions, which are manually annotated with logical
forms. This is quite different from GraphQA and
GrailQA which contain algorithmically generated
logical forms, verbalized by crowd-workers. Be-
cause of this difference in nature of questions,
these are challenging transfer datasets, beyond the
unaswerability gap.

Models for comparison: As few-shot transfer
for KBQA with unanswerability is a novel task,
there are no existing baselines. For in-domain
KBQA with unanswerability, RetinaQA (Faldu
etal., 2024) and Pangu (Gu et al., 2023). which has
been adapted for unanswerable questions, are the
two SoTA models. For these, we use the available
code.?3 More details are in Appendix A.10.
FuSIC-KBQA is the SoTA model for few-
transfer for KBQA with only answerable questions.
Instead of retrieve-then-generate, KB-Binder (Li
et al., 2023) follows a generate-then-ground ap-
proach. It is the SoTA for in-domain few-shot
KBQA, and overall, FuSIC-KBQA and KB-Binder

2https://github.com/dair—iitd/RetinaQA
Shttps://github.com/dki-1lab/Pangu

outperform all other supervised and LLM-equipped
KBQA models adapted for few-shot transfer (Pati-
dar et al., 2024). We use available code for KB-
Binder*, and our own implementation for FuSIC-
KBQA since source code is not available. To adapt
these two baselines for unanswerability, for fair
comparison, we modify their logical form gen-
eration prompt in the same fashion as PUn for
FUn-FuSIC. Additionally, for FuSIC-KBQA, we
remove execution-guided feedback (EGF) since it
fails for unanswerability. We denote this model
FuSIC-KBQA-U. Observe that FuSIC-KBQA-U
can also be seen as an ablation of FUn-FuSIC, with-
out FUn. More details about use of KB-Binder are
in the Appendix A.12.

We use £ =gpt-4-0613 for all three models.
For a fair comparison, we provide all three LLM-
equipped models the same aggregated prompt limit
for a question. To achieve this, to FUn-FuSIC
we provide zero-shot generation and n = 4 FUn
iterations, to FuSIC-KBQA-U 5-shot generation,
and to KB-Binder 25-shot generation.

Though FUn-FuSIC and FuSIC-KBQA allow
flexible use of multiple supervised retrievers, for
meaningful comparison with RetinaQA, we adapt
RetinaQA as retriever for FUn-FuSIC and FuSIC-
KBQA-U. More details about KB-Binder and
FuSIC-KBQA'’s generation is in Appendix A.12,
and details of FuSIC-KBQA'’s retriever along com-
pute infrastructure are in Sec. A.9.

Evaluation Measures: Since our primary task is
generation of logical forms, our primary focus in
evaluation is on logical forms as well. For logical
form evaluation, the existing exact match measure
(EM) (Ye et al., 2022) works only for s-expression
as the language. Since FuSIC-KBQA-U and FUn-
FuSIC output logical forms in SPARQL, and Pangu,
RetinaQA and KB-Binder in s-expression, we pro-
pose a new measure that works for both languages.
This measure, EM-s, considers two logical forms
to be equivalent if these contain identical sets of

*https://github.com/1t13A87/KB-BINDER

https://github.com/dair-iitd/RetinaQA
https://github.com/dki-lab/Pangu
https://github.com/ltl3A87/KB-BINDER

Model WebQSP — GrailQAbility WebQSP — GraphQAbility
Schema Level Data Level Schema Level Data Level

F1(L) F1(R) EM-s F1(L) F1(R) EM-s | F1(L) F1(R) EM-s F1(L) FI1(R) EMs-s
RetinaQA 94.1 90.9 79.4 76.3 72.9 14.1 83.2 82.0 72.3 73.7 72.7 12.1
Pangu 91.1 87.9 87.9 69.6 65.9 00.0 77.3 74.4 74.4 73.3 72.7 00.0
FuSIC-U 854 80.6 30.9 86.0 80.0 49.4 86.6 82.6 19.0 83.3 83.3 51.5
KB-Binder 75.1 73.9 70.1 53.1 51.5 09.5 67.0 65.9 60.9 41.2 41.2 06.8
FUn-FuSIC 85.8 81.2 70.9 83.8 77.6 36.5 92.4 87.5 75.6 80.3 80.3 34.8

Table 2: Model performance for categories of unanswerable questions. FuSIC-U is short hand for FuSIC-KBQA-U.

relations and entities, and additionally return iden-
tical answers upon execution. This is a necessary
but not sufficient condition for logical form equiva-
lence. So, we compared EM-s with EM in settings
where both are applicable, and found > 98% agree-
ment. More details are in the Appendix A.3.

Since logical form evaluation is not completely
accurate (logical forms different from the gold
one may still be correct), following existing lit-
erature (Patidar et al., 2023; Faldu et al., 2024),
we also evaluate answers using regular F1 (F1(R)),
also lenient F1 (F1(L)), which does not penalize
the original answer for the complete KB.

Answerable Unanswerable
F1 EM-s FI1(L) FI1(R) EM-s
FUn-FuSIC | 57.0 46.0 92.0 90.0 62.0
scUn=-sc | 63.0 52.0 66.0 64.0 36.0
w/osyntax | 57.0 46.0 92.0 90.0 62.0
w/o kb-inc | 51.7 42.0 92.0 88.0 44.0
w/o g-1f 47.7 38.0 55.8 48.0 10.0
w/o ans-inc | 55.0 44.0 92.0 90.0 62.0

Table 3: Ablation performance of FUn-FuSIC (remov-
ing individual components with replacement) on subset
of WebQSP — GraphQAbility. scUn = sc denotes
replacing scUn with self consistency. Other rows re-
move verifiers for syntax error (w/o syntax) (V1), KB
inconsistency (w/o kb-inc) (V2), question logical form
disagreement (w/o g-1f) (V3) and answer incompatibil-
ity (w/o ans-inc) (V4).

5.2 Unanswerability Setting

We first address research question R1. Perfor-
mances of the different models for the few-shot
transfer setting with unanswerability are recorded
in Tab. 1. Note that the Overall columns determine
superiority of one model over another, while the
Answerable and Unanswerable columns provide
further drill-down for analysis.

First, we observe that FUn-FuSIC significantly
outperforms all baselines in terms of EM-s, and
performs at par with FuSIC-KBQA-U and signifi-
cantly better than all other models in F1. However,
the other LLM-equipped models do not far surpass

supervised models. In fact, all 4 models perform
almost at par for GraphQAbility, and KB-Binder
performs worse than the other 3 for GrailQAbil-
ity. This establishes usefulness of FUn+scUN
for few-shot transfer KBQA with unanswerabil-
ity. Secondly, each model trades off performance
differently between answerable and unanswerable
questions. RetinaQA, Pangu and also KB-Binder
fare better for unanswerable questions, while FUn-
FuSIC and FuSIC-KBQA-U fare better for answer-
able ones. However, FUn-FuSIC achieves the best
balance between the two.

We next briefly address research question R2.
Performance of different models for different cat-
egories of unanswerability are recorded in Tab. 2.
Models struggle to fare well across both data-level
and schema-level unanswerability. FuSIC-KBQA-
U performs the best for data-level while performing
poorly (in terms of EM-s) for schema-level. Con-
versely, RetinaQA performs well for schema-level,
but has poor data-level EM-s. FUn-FuSIC performs
poorer for data-level compared to schema-level but
achieves the best balance by far between the two
categories among all models.

We next address research question R3. Tab. 3
records performance for different ablations of FUn-
FuSIC. Note that this experiment is performed on
a subset of the test data (50 questions drawn ran-
domly from the each of the answerable and unan-
swerable categories). The biggest benefit, for both
answerable and unanswerable questions, comes
from Question - Logical Form Disagreement ver-
ifier. KB Inconsistency and Answer Incompati-
bility verifiers also make significant contributions
to the performance. This demonstrates the useful-
ness of weak verifiers. Replacing scUn with self-
consistency, as expected, leads to a drastic drop
in unanswerable performance (though this comes
with a benefit for answerable questions).

5.3 Answerable Setting

We now address research question R4 (answerable-
only KBQA). We use two datasets from existing

Model WebQSP — WebQSP —
GrailQA-Tech | GraphQA-Pop
FuSIC-KBQA 70.8 52.3
FUn-FuSIC(sc) 73.6 67.0
FuSIC-KBQA-U 62.6 434
FUn-FuSIC(scUn) 71.2 65.0

Table 4: Performance using F1 of different models for
few-shot KBQA transfer with only answerable ques-
tions. The models in the top block have prior knowledge
of answerability, while those in the bottom block do not.

literature (Patidar et al., 2024), including the hard-
est one (WebQSP — GrathA—Pop).5 For consis-
tency with existing literature, here all models use
TIARA (Shu et al., 2022) as the retriever.

This setting admits two sub-settings: (A) the
models have knowledge that all questions are an-
swerable, and (B) though all questions are answer-
able, the models do not have this prior knowledge.

Setting (A) has been studied for KBQA (Patidar
et al., 2024), and FuSIC-KBQA is the established
SoTA model, outperforming a host of supervised
and LLM-based models adapted for the task. In this
setting, FUn-FuSIC requires three simple modifica-
tions. (i) PUn is replaced with prompt for answer-
ability, (ii) In FUn, category of V4b (empty answer)
changes from weak verifier to strong verifier, and
(iii) scUn is replaced by self-consistency.

The first two rows in Tab. 4 record performance
for setting (A). FUn-FuSIC significantly outper-
forms FuSIC-KBQA on both datasets, creating a
new SoTA for this setting. This shows the use-
fulness of iterative repair with a suite of strong
and weak verifiers followed by self-consistency for
KBOQA transfer, even without unanswerability.

In the realistic second setting (B) — not studied
before — the models make predictions assuming
unanswerability. Here, we evaluate FuSIC-KBQA-
U and FUn-FuSIC as in Sec. 5.2. The bottom two
rows of Tab. 4 record their performance. We see
that FUn-FuSIC outperforms FuSIC-KBQA by a
very large margin. This further establishes the use-
fulness of scUn when guarantees about answerabil-
ity are not available.

5.4 Error Analysis

For WebQSP — GraphQAbility, we analyzed ques-
tions whose logical forms are judged incorrect (EM-
s < 1). See results in Tab. 5. We found three main
causes for generation errors. (1) Some questions
are inherently ambiguous, admitting multiple valid

Shttps://github.com/dair-iitd/FuSIC-KBQA/

EM-=s < 1 462
Retr. Err. 23.4

Gen. Err. 22.8

I* =NK, [# NK 8.4

I* 4NK, [= NK 4.6

I ANK, T ANK, I £1 | 9.8

Table 5: FUn error analysis on WebQSP — GraphQA-
bility. I* & [denote gold & generated logical forms.
Retrieval error means retrieval r is missing > 1 KB
elements (class, relation, entity) necessary for [*. Gen-
eration error implies I = [* despite correct retrieval.

logical forms [and [in the original complete KB,
though only one is recognized as the gold (I* = [;).
Deletion to introduce unanswerability eliminates
l1, so we update [* = NK, and the prediction [= lo
is unfairly penalized. (2) I* = [, [= l9, where
l1 # lo while being semantically equivalent, but
are incorrectly judged non-equivalent by EM-s. (3)
FUn is genuinely unable to generate [* or any se-
mantic equivalent within its iteration limit.

We also estimated the accuracy of specific weak
verifiers by manual analysis of ~100 instances
from test. Verifier V3 for Question - Logical Form
Disagreement has accuracy of 93.6% overall, with
its Query to Natural Language Back-translation
component having 90%. Verifier V4b for Empty
Answer has 67.8% (this is expected since ~25% of
questions have (I* # NK, A* = NA).

6 Conclusions

For real-world robust, low-resource KBQA, we
have proposed the novel task of few-shot transfer
learning with unanswerability. We have proposed
FUn-FuSIC that augments for unanswerability the
SoTA few-shot answerable-only KBQA transfer
model by (i) iterative repair using feedback from
a suite a strong and weak verifiers — including a
novel back-translation based verifier — to create a
set of candidate logical forms, and (ii) assessing
this candidate set to detect unanswerability (and
its category) and/or identify the best logical form
using self consistency adapted for unanswerability.

Using two newly created datasets for this novel
task, we show that FUn-FuSIC outperforms adapta-
tions of SoTA models for this setting, and also for
answerable few-shot transfer KBQA. Error analysis
suggests that performing well across categories of
unanswerability for few-shot transfer is still a chal-
lenge and should be a focus of further research.

https://github.com/dair-iitd/FuSIC-KBQA/

7 Limitations

Since LLM inference involves randomness, ideally
experiments should be repeated for multiple runs
and results should report averages and error bars.
Unfortunately, we were not able to do this due to
the prohibitive cost of GPT-4, and our results are
based on single runs.

While GPT-4 is currently the best performing
LLM, it is proprietary as well as expensive. Ide-
ally, evaluation should involve open-source freely
accessible LLMs as well. We expect performance
of all LLM-based approaches to drop when GPT-4
is replaced by an open LLM. Earlier research has
shown that models using Mistral are still able to
outperform fully supervised models for answerable
few-shot transfer (Patidar et al., 2024). Whether
this trend holds for the unanswerable setting is an
open question. That said, following current trends,
we expect the ability of open LLMs to steadily
improve in the coming years.

8 Risks

At the highest level, our work reduces risk com-
pared to existing KBQA systems, which when
improperly adapted in a low-resource setting, in-
correctly answer unanswerable questions, without
admitting lack of knowledge. However, can in-
correctly inferring unanswerability, citing lack of
knowledge when the knowledge is in fact available,
generate a new category of risk? While we cannot
imagine such a risk at the present time, this may
require more thought. In any case, KBQA models
for unanswerability should strive to minimize this
type of error, along with the other types.

References

Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei
Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 2022.
Program transfer for answering complex questions
over knowledge bases. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-
ble and efficient framework for knowledge base ques-
tion answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles

Sutton, Xuezhi Wang, and Denny Zhou. 2023a. Uni-
versal self-consistency for large language model gen-
eration. CoRR, abs/2311.17311.

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. In The 61st Annual Meeting Of The
Association For Computational Linguistics.

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot
Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin
Jia, and Andrew Mccallum. 2022. Knowledge base
question answering by case-based reasoning over
subgraphs. In Proceedings of the 39th International
Conference on Machine Learning.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Prayushi Faldu, Indrajit Bhattacharya, and Mausam.
2024. RETINAQA : A knowledge base question an-
swering model robust to both answerable and unan-
swerable questions. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Bangkok, Thai-
land. Association for Computational Linguistics.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4928-4949, Toronto, Canada. Association for
Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond i.i.d.:
Three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, WWW ’21.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6966—6980, Toronto, Canada. Association for
Computational Linguistics.

Sayantan Mitra, Roshni Ramnani, and Shubhashis Sen-
gupta. 2022. Constraint-based multi-hop question
answering with knowledge graph. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: Industry Track.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning
for knowledge-based question answering. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
38(17):18833-18841.

https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.1609/aaai.v38i17.29848
https://doi.org/10.1609/aaai.v38i17.29848
https://doi.org/10.1609/aaai.v38i17.29848

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Mayur Patidar, Prayushi Faldu, Avinash Singh,
Lovekesh Vig, Indrajit Bhattacharya, and Mausam
. 2023. Do I have the knowledge to answer? inves-
tigating answerability of knowledge base questions.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 10341-10357, Toronto, Canada.
Association for Computational Linguistics.

Mayur Patidar, Riya Sawhney, Avinash Kumar Singh,
Mausam Biswajit Chatterjee, and Indrajit Bhat-
tacharya. 2024. Few-shot transfer learning for knowl-
edge base question answering: Fusing supervised
models with in-context learning. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Bangkok, Thailand. Association for Computational
Linguistics.

Srinivas Ravishankar, Dung Thai, Ibrahim Abdelaziz,
Nandana Mihindukulasooriya, Tahira Naseem, Pavan
Kapanipathi, Gaetano Rossiello, and Achille Fok-
oue. 2022. A two-stage approach towards general-
ization in knowledge base question answering. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yiheng Shu and Zhiwei Yu. 2024. Distribution shifts are
bottlenecks: Extensive evaluation for grounding lan-
guage models to knowledge bases. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 71-88, St. Julian’s, Malta.
Association for Computational Linguistics.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.

TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido
Dagan, and Shauli Ravfogel. 2023. The curious case
of hallucinatory (un)answerability: Finding truths in
the hidden states of over-confident large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3607-3625.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Giir, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
QA evaluation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 562-572, Austin, Texas. Associa-
tion for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yu Wang, Vijay Srinivasan, and Hongxia Jin. 2022. A
new concept of knowledge based question answering
(KBQA) system for multi-hop reasoning. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: Genera-
tion augmented iterative ranking for knowledge base
question answering. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers).

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph

https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.576
https://doi.org/10.18653/v1/2023.acl-long.576
https://doi.org/10.18653/v1/2023.acl-long.576
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

A Appendix

A.1 KBQA Problem Formulations

We begin by defining the few-shot transfer learning
setting for Knowledge Base Question Answering
(KBQA) with unanswerability, and then present
our solution for it.

A.1.1 KBQA: Detailed Background

A Knowledge Base (G consists of a schema with
data stored under it. The schema consists of entity
types 1" and binary relations R defined over pairs of
types. The data consists of entities F as instances
of types T, and triples or facts F' C E x R X .
We are given a target Knowledge Base G* (con-
sisting of entity types T", relations R!, entities E*
and facts F'') and a natural language question ¢',
and the goal is to generate a structured query or
a logical form [!, which when executed over G*
returns a non-empty answer A’ for the question ¢'.

A.1.2 Few Shot Transfer Learning for KBQA

In few-shot transfer learning, we are provided with
target few-shots D' containing tens of labeled train-
ing examples of questions and logical forms in the
target domain. In addition, we are given access to
a related source domain. This has a source knowl-
edge base G*° consisting of its own types T, re-
lations R?®, entities £° and facts F'*, and a much
larger source training set D® containing thousands
of labeled training examples of questions and cor-
responding logical forms. The source and target
tasks may differ significantly. First, the data and
schema of the knowledge bases G* and G* and the
domains they cover may be different. Secondly, the
distributions of questions and logical forms defined
over the KBs may be different in D? and D*.

A.1.3 KBQA with Unanswerability

A natural language question q is said to be answer-
able for a Knowledge Base G! if it has a corre-
sponding logical form [which when executed over
G returns a non-empty answer A. In contrast, a
question ¢ is unanswerable for G, if it either (a)
does not have a corresponding logical form that
is valid for G%, or (b) it has a valid logical form [
for G, but which on executing returns an empty
answer. The first case indicates that G* is missing
some schema element necessary for capturing the

11

semantics for q. The second case indicates that
the types 1%, relations R? is sufficient for ¢, but
G" is missing some necessary data elements for
answering it. In the KBQA with unanswerability
task, given a question g, if it is answerable, the
model needs to output the corresponding logical
form /. and the non-empty answer A entailed by it,
and if it is unanswerable, the model either needs
to output VK (meaning No Knowledge) for the
logical form, or a valid logical form [with N A
(meaning No Answer) as the answer.

Different Types of Unanswerability: =~ Unan-
swerable questions in KBQA can be categorized
into (a) Schema Level Unanswerability : the ques-
tion does not have a corresponding logical form that
is valid for the KB , (b) Data level unanswerability:
it has a valid logical form [for the KB, but which on
executing returns an empty answer. Schema level
unanswerable questions can further be categorized
into (1) Missing Class: The class/type required to
construct the logical form is not defined for the
KB, (2) Missing Relation: The relation required to
construct the logical form is not defined for the KB,
(3) Missing Topic Entity: The topic entity speci-
fied in the question is missing from the KB. Data
level unanswerable questions can be categorized
into (1) Missing entity: all classes and relations
required to construct the logical form are present
in the KB , but there exists no path from the topic
entity node to the answer node in the KB due to
missing intermediary entities (2) Missing Fact: all
classes, relations and entities required to answer
the question are present in the KB. However, the
(subject, relation, object) path is not connected in
the KB.

A.1.4 Few-shot Transfer Learning for KBQA
with Unanswerability

This setting is a generalization of few shot transfer
learning for KBQA, wherein we no longer assume
that the test question is answerable with respect to
the Knowledge Base G'. The training set D* con-
tains thousands of answerable questions along with
their corresponding logical form. The target few
shots D! contain both answerable as well as unan-
swerable questions, along with their corresponding
logical forms, if they exist.

A.2 Error Checks

(V2) Semantic Error (KB Inconsistency): A
syntactically correct logical form [may still be in-
consistent with the schema of GG. This is a likely

error even for SOTA LLMs since these are unfamil-
iar with the specific KB GG. Semantic errors have
different categories, such as type-incompatibility,
schema hallucinations. (V2a) Incompatibility in
types: [contains a variable and a connecting rela-
tion whose types are incompatible in G. This is
the case for LF1 for all three KBs in the example.
(V2b) Schema hallucinations: [contains schema
elements (types, relations, entities) absent in G.
(V2c¢) Type casting errors: Literals in [are not cor-
rectly type cast for G, e.g. numeric literals as float
for Freebase. All of these are certain checks, and
are implemented using rules defined over / and
G. The feedback mentions the type of error and
the specifics, e.g., the hallucinated relation, or the
incompatible type-relation pair.

(V3) Question Logical form Disagreement:
FUn performs equivalence check between [and
q using a novel multi-stage LLM pipeline. (i) The
variable names in [are first naturalized to [™ consid-
ering g and preserving semantics, e.g. by replacing
*?x’ with ’?actor’. (ii) [™ is back-translated into
a natural language question ¢°. (iii) ¢* is finally
checked for semantic equivalence with q. The first
two steps are performed using zero-shot prompting,
while the last is performed using few-shots con-
structed using the target few-shots D'. More de-
tails about few-shot construction are in Sec. A.8.2.
The feedback mentions lack of equivalence as the
type of error.

(V4) Answer Inconsistency: If the [is syntacti-
cally and semantically correct, it is executed over
G to obtain an answer a. a is then checked for
compatibility with ¢q. This may fail for different
reasons. (V4a) a (which is a set in general) con-
tains an entity also in [and therefore mentioned
@, which is an aberration. (V4b) a is empty, as in
LF3 for KB2 in the example. All of these checks
are implemented using rules defined over [and G.
Note that while the first two are certain checks, the
last is not. An empty answer is valid for unanswer-
able questions, as for LF3 for KB2, but invalid for
answerable ones. As before, the feedback mentions
the type of error and the specifics.

A.3 EM-s: Automated check for equivalence
of SPARQL programs

As has been observed in (Patidar et al., 2023), an-
swer evaluation by itself is not a robust measure for
evaluation of KBQA models when the dataset con-
tains unanswerability. Traditional KBQA models

12

that generate s-expressions can be evaluated using
EM, which checks for logical form equivalence
between two logical forms, since it is possible to
compare equivalence between two s-expressions
efficiently. However, FUn-FuSIC generates sparql
queries instead. Directly comparing program equiv-
alence between two sparql queries is an undecide-
able problem ©. (Patidar et al., 2024) suggests a
semi-automatic strategy for comparison of sparql
queries. We propose a completely automatic metric
for sparql equivalence check. Two sparql queries
are equivalent by the EM-s check if (a) the relations
occuring in the two queries are same. (b) the enti-
ties occuring in the two queries are the same (c) the
answer set obtained by executing the queries over
the KB are the same. Note that the EM-s check is
necessary, but not sufficient for two sparql queries
to be equivalent.

Since these are a necessary but not sufficient
condition for logical form equivalence, we com-
pared EM-s with EM, where both are applicable
and found > 98% agreement.

A.4 Performance across different categories
of unanswerability

We dive deeper into the different categories of unan-
swerability, as explained in (Patidar et al., 2023).
There exist 2 broad categories of unanswerability-
schema level unanswerability(absence of knowl-
edge in terms of KB ontology or entities required
to construct the logical form) and data level unan-
swerability(absence of facts or intermediate entities
of the logical form path on the KB).

We expect that (a) due to the poor ability of su-
pervised models to generalize in transfer learning
settings, RetinaQA will be struggle to generate cor-
rect logical forms for data level unanswerable ques-
tions (b) due to the strong generalization ability of
FuSIC-KBQA, it should be able to perform well
for data level unanswerable questions. However,
since it is biased to return incorrect logical forms
instead of abstaining from returning a logical form,
it will perform poorly at identifying schema level
unanswerable questions. (¢) FUn-FuSIC should be
able to maintain the performance of FuSIC-KBQA
on data level unanswerable questions to a large ex-
tent, while significantly improving the performance
on schema level unanswerable questions.

Based on performance on the WebQSP —
GrailQAbility and WebQSP — GraphQAbility

Shttps://users.dcc.uchile.cl/
PARQL.pdf

cgutierr/papers/expPowS-

datasets, we validate the that the trends are indeed
as expected.

A.5 Cost Analysis

FuSIC-KBQA, as well as the adapted versions of
FuSIC-KBQA, such as U-FuSIC and FUn-FuSIC
rerank the classes, relations and paths. The total
cost for reranking for one question is $0.16.

The cost for generation of logical form from a
prompt with 5 in-context examples is $0.16.

Thus, the approximate cost for inference of one
question by U-FuSIC is $0.32.

The cost for generation of logical form from a
prompt with 0 in-context examples is $0.04. The
cost of checking whether two natural language
questions are equivalent or not, using few-shot ex-
emplars and chain of thought prompting is also
$0.04.

The approximate cost of inference of one ques-
tion by FUn-FuSIC varies between $0.24 and $0.48.
The average cost over 50 randomly sampled ques-
tions from the test set is around $0.34.

Hence, the two models are comparable in terms
of cost.

A.6 FuSIC-KBQA Details

Our proposed approach FUn-FuSIC builds upon
the the base architecture of FuSIC-KBQA. FuSIC-
KBQA has a three step pipeline: (a) Supervised
Retrieval: a supervised retriever, trained on the
source domain and optionally fine-tuned on the
target domain is used to obtain the top-100 classes,
relations and paths that are relevant to the question
asked, (c) LLM Generation: We provide the top-10
classes, top-10 relations and top-5 paths along with
few-shot exemplars to generate the sparql query.

A.7 FUn-FuSIC Prompts

Here we provide details of various prompts used
by FUn-FuSIC.

A.8 PUn prompt

The first prompt is for Prompting for Unanswer-
ability (PUn).

13

Header Prompt

Translate the following question
to spargl for Freebase based on
the candidate sparql, candidate
entities, candidate relations and
candidate entity types which are
separated by "|" respectively.
Please do not include any other
relations, entities and entity
types. Your final sparql can have
three scenarios: 1. When you
need to just pick from candidate
sparql. 2. When you need to
extend one of candidate sparql
using the candidate relations and
entity types. 3. When you will
generate a new sparql only using
the candidate entities, relations
and entity types. For entity
type check please use this relation
"type.object.type”.D o not use
entity names in the query. Use
specified mids. If it is impossible
to construct a query using the
provided candidate relations or
types, return "“NK". Make sure
that the original question can
be regenerated only using the
identified entity types, specific
entities and relations.

NK exemplar A.8.1 FUN prompt

the
spam fall
subject? Candidate
spam m.@4vbm Candidate paths:
SELECT DISTINCT ?XWHERE 7x0
ns:tv.tv_segment_performance.segment
ns:m.@4vbm .7x0
ns:tv.tv_segment_performance.segment
?X X ns:type.object. type
ns:tv.tv_episode_segment .
| .. Candidate entity
types: tv.tv_series_episode]
tv.tv_episode_segment |
.. Candidate relations:
tv.tv_series_episode.segments

Question:
segments

tv episode
under what
entities:

(type:tv.tv_series_episode R
type:tv.tv_episode_segment) |
tv.tv_subject.tv_programs
(type:tv.tv_subject R

type:tv.tv_program)|... sparql:NK

Question Prompt

Question: which school newspaper
deals with the same subject
as the onion? Candidate
entities: the onion m.@hpsvmv
Candidate paths: SELECT
DISTINCT ?xWHERE ns:m.Qhpsvmv

ns:book.newspaper.circulation_areas
?7X0 .7?x@ ns:periodicals.newspapers

?X .?x ns:type.object. type
ns:book.newspaper . [...
Candidate entity types:
education.school_newspaper |
type:book.newspaper. ..

Candidate relations:

education.school_newspaper.school
(type:education.school_newspaper R
type:education.educational_institutio
| book . newspaper_issue.newspaper
(type:book.newspaper_issue R
type:book.newspaper)|... sparql:

14

Syntax error(V1) Feedback

Correct the syntax of the following
sparql query. Return ONLY the
corrected sparql query without any
explanation sparql: SELECT ?x AND
?y Virtuoso error: word AND
not defined

KB Inconsistency(V2) Feedback

The generated sparql a
semantic issue warning: The
types of relations don’t match
for wvariable ?x in the query.
The assigned relation types by
[’ computer.computer_emulator.computen
"type.object. type
computer.computer_peripheral’]

are [’ computer.computer’,
’computer.computer_peripheral’].
These types are mutually
incompatible... Please generate
again a different executable
sparqgl using the same context and
constraints. DO NOT APOLOGIZE
just return the best you can try.

has

Question Logical form disagreement(V3)
feedback

I r

The question that you answer
is NOT same as what you’ve been
asked for! You have answered the
question "Which opera productions
has Gino Marinuzzi conducted?” but
you were asked to answer "what
is the name of the premiere
opera production conducted by gino
marinuzzi?". Please generate again
a different executable sparql using
the relations, classes and entities
provided earlier. DO NOT APOLOGIZE
- just return the best you can try.

The next three prompts fall under the answer
incompatibility feedback

Answer Inconsistency(V4b) feedback

The generated sparqgl gives an empty
answer when executed on freebase KG,
Please generate again a different
executable sparql using the same
context and constraints.

7
\.

Intermediate Node(V4a) feedback

The generated sparql returns
an intermediate type node when
executed on the freebase KG. Maybe
the answer node is an adjacent node
to what we currently query for.
Please generate again a different
executable sparql using the same
context and constraints.

Answer Inconsistency(V4a) feedback

r
\.

The logical form upon execution
returns International System of
Units, which 1is not answering
the question. Please reconstruct
the query using same context and
constraints.

A.8.2 Prompt for Verifier V3 Question
Logical Form Agreement

The few shots provided for verifying question logi-
cal form agreement come from the few shots pro-
vided in the target domain D?. We obtain positive
samples from the dataset D' directly, using the
questions and gold logical forms. For obtaining
negative samples, we perform zero-shot FuSIC-
KBQA inference over the dataset D!. Then we
consider those questions for which the predicted
logical form is different from the gold logical form.

Firstly, we perform back-translation to obtain
natural language question from the logical form

Naturalization of variable names(V3(i))

change the sparql query to
have variable names representative
of what objects they refer to.
transform the variable names in

this query. Do NOT change the prefix
headers and relation names

15

Conversion of Logical Form into Natural

Language Question(V3(ii))

Convert this sparql query into a
natural 1language question. Make
the question as natural as possible.
SELECT DISTINCT ?unfinishedWork
WHERE { Le Moulin de Blute-Fin
ns:media.unfinished_work
?unfinishedWork ?2unfinishedWork
ns:type.object.type
ns:media.unfinished_work .

3

We use few-shot LLM prompting to obtain the
explanation for why the question and logical form
agree or disagree. These few-shots, for obtaining
the explanation are dataset independent, and are
manually written.

Explanation Generation Prompt

Explain why the two questions are
different. Question we answer: who
all 1like to eat apple or mango?

Question originally asked: what
are the people who enjoy both
apple and mango? explanation: The

question we answer returns people.
The question originally asked also
returns people. The question we
answer finds those people who like
eating apple, those people who
like eating apple. The question
originally asked also finds those
people who like eating apple, those
people who like eating apple. The
question we answer uses logical
operator OR. However, the question
originally asked uses the logical
operator AND Hence, they are
different. [total 3 exemplars]
Question we answer: Which game
engines are successors to the
Unreal Engine? Question originally
asked: which video game engine’s
successor engine is unreal engine?
explanation:

Some examples of few shots are provided below-

Question Logical Form Sgreement
Check(V3(iii))

Question we answer: Who are
the cricket players who have
made exactly 31 stumps 1in one
day internationals? Question

originally asked: name the cricket
player who has 31 odi stumps.
explanation: The question we answer

returns cricket players. The
question originally asked also
returns cricket players. The

question we answer finds cricket
players who have made exactly 31
stumps in one day internationals.
The question originally asked
also finds cricket players who
have made 31 stumps in one day
internationals. Both questions
involve no mathematical or logical
operators. Hence, they are same.
Question we answer: Which game
engines are successors to the
Unreal Engine? Question originally
asked: which video game engine’s
successor engine is unreal engine?
explanation: The question we answer
returns game engines. The question
originally asked also returns game
engines. The question we answer
finds successors to the Unreal
Engine. The question originally
asked finds the predecessor of
the Unreal Engine. The reasoning
steps followed by the two questions
are different. Hence, they are
different. [total 6 exemplars]
Question we answer: Which cars
drive at a speed of 80? Question
originally asked: name the «car
with driving speed at least 807?
explanation:

A.8.3 Prompt in scUn for Logical Form
Selection

We store the back-translated natural language ques-
tions along with each predicted logical form. Here,
we prompt the LLM to select the closest back-
translated natural language question to the original
question.

16

Best Logical Form Selection Prompt

orig_nl_gn = which surf films has
sarah finn served as the casting
director? 1. pred_nl: Which surfing
films has Sarah Finn directed
the casting for? 2. pred_nl:
Which surfing films has Sarah Finn
been the casting director for?
of the 2 predicted nl questions,
which is closest to the original
nl question. Even if none is
very close, return the one that
is semantically closest? Please
explain your answer as well

\. J

A.9 Supervised Models training details

We use Hugging Face (Wolf et al., 2020), PyTorch
(Paszke et al., 2019) for our experiments and use
the Freebase setup specified on github 7 . We use
NVIDIA A100 GPU with 40 GB GPU memory
and 32 GB RAM. For training the discriminator
module of RetinaQA, we require 2 GPUs. (1) For
the answerable experiments, we use the supervised
models as specified in (Patidar et al., 2024). (2)
For the unanswerability experiments, we train all
models from scratch. (a) We use RnG-KBQA en-
tity linker ® (BSD 3-Clause License) trained on
the answerable subset of GrailQAbility for all our
experiments. (b) We train the RnG-KBQA path
retriever on answerable subset of WebQSP? (BSD
3-Clause License). The number of training epochs
is determined by the performance of the model
over the answerable questions in the dev set. (c)
We train the TIARA schema retriever on the an-
swerable subset of WebQSP !© (MIT License) (d)
We train the sketch generator and discriminator of
RetinaQA on the answerable subset of WebQSP!!.

A.10 Supervised Models inference details

We train all components on WebQSP, using the
corresponding target domain’s dev set as a vali-
dation set for early stopping. In the absence of
unanswerable questions for training, both models
use a threshold fine-tuned on a dev set to detect

"https://github.com/dki-lab/Freebase-Setup

8https://github.com/salesforce/rng-
kbqga/tree/main/GrailQA/entity_linker

*https://github.com/salesforce/rng-
kbqga/blob/main/WebQSP/scripts/run_ranker.sh

"%https://github.com/microsoft/KC/tree/main/papers/TLARA/src

"https://github.com/dair-iitd/RetinaQA

schema-level unanswerability. We again use the
target dev sets for this.

We use the dev set in RetinaQA, during discrim-
inator inference for (a) determining how to best
utilize the candidate paths. We might (i) not pro-
vide candidate paths (ii) provide candidate paths in
GrailQA format (iii) provide candidate paths in We-
bQSP format. We select the best alternative based
upon the performance of the model over the dev set.
For the WebQSP — GrailQAbility dataset, we ob-
serve (i1) works best, whereas for the WebQSP —
GraphQADbility dataset, we observe (i) works best.
(b) determining the threshold value. RetinaQA ap-
plies a threshold on the scores - for a question, if
the highest score candidate logical form has a score
less than the threshold, the question is labeled as
NK. We choose the optimal value of the threshold
to maximize the overall EM-s score over the dev
set.

A.11 Pangu Adaptation Details

Similar to RetinaQA, We train all components on
WebQSP, using the corresponding target domain’s
dev set as a validation set for early stopping. We
use 1 GPU for training. Same as RetinaQA, we use
the dev set to determine the threshold for schema-
level unanswerability. Pangu-T applies a threshold
on the scores - for a question, if the highest score
candidate logical form has a score less than the
threshold, the question is labeled as NK. We choose
the optimal value of the threshold to maximize the
overall EM-s score over the dev set.

A.12 KB-Binder and FuSIC-KBQA
Adaptation Details

For KB-Binder, we make use of publicly available
code '2 (MIT License). We use self-consistency
and majority voting with 6 examples, as in the ex-
periments in the paper. In the retrieval(-R) setting,
KB-Binder samples demonstration examples by
retrieving from the entire available training data.
We restrict its retrieval to our target training set
Dy with 25 examples. KB-Binder reports experi-
ments using code-davinci-002 as the LLM. For
consistency and fair comparison, we replace these
with gpt-4-0613 as in our approach. This model
generates logical forms in s-expression, which we
preserve.

For FuSIC-KBQA (Patidar et al., 2024), since
no code is available for this model, we use our

Zhttps://github.com/1t13A87/KB-BINDER

17

own implementation based on the description in
the paper. For FuSIC-KBQA, and FUn-FuSIC we
use temperature = 0.

A.13 Real Example of FUn

Question: Where all were the Olympics held be-

=
o
=
o
)
o
o
=~
2

Logical Form 1

?y{ ?x olympics.venue ?y
?y olympics.year ?z
FILTER(?z = 2024)}

Feedback 1

Type: Logical Form Semantic Error
Description: ?y is assigned types ['venue’,
“olympics’] by relations [’olympics.venue’,
“olympics.year’]. These types are mutually
incompatible.

~

Logical Form 2

?y{ ?x olympics.venue ?y
?x olympics.year ?z
FILTER(?z = 2024)}

Feedback 2

Type: Natural Language Semantic Error
Description: The question originally asked
returns all places where the Olympics were
held before 2024. However, the question
we answer returns the places where the
Olympics were held in 2024.

| r

Logical Form 3

?y{ ?x olympics.venue ?y
?x olympics.year ?z
FILTER(?z < 2024)}

Feedback 3

Status: Passes All Checks

Details: 1f3 satisfies syntax, logical form
semantic, natural language semantic and ex-
ecution checks.

https://github.com/ltl3A87/KB-BINDER

A.14 Algorithm for Self Consistency with
Unanswerability

The high level algorithm for self consistency with
Unanswerability (scUn) is described in Algo. 3.

Algorithm 3 ScUn(q, L, t, L)
1: (¢,1, A) = assessConf(q, L,t, L)
2: if (¢), return(l, A)
3: else, return(NK, NA)

The high level algorithm for assessing con-
fidence in the set of candidate logical forms
(assessConf) is described in Algo. 4.

Algorithm 4 assessConf(q, L, t, L)

(¢, LP, AP) = popAnsNE(L, t)

if (¢) then
[= selectBestNE(q, LP, L)
return(True, [, AP)

end if

(¢, LP) = popAnsE(L, t)

if (c) then
[= selectBestE(q, LP, L)
return(True, [, NA)

end if

: return(False, NK, NA)

R e A A R e

—_
—_ o

18

	Introduction
	Related Work
	Background & Problem Definition
	Proposed Approach: FUn-FuSIC
	Experiments
	Experimental Setup
	Unanswerability Setting
	Answerable Setting
	Error Analysis

	Conclusions
	Limitations
	Risks
	Appendix
	KBQA Problem Formulations
	KBQA: Detailed Background
	Few Shot Transfer Learning for KBQA
	KBQA with Unanswerability
	Few-shot Transfer Learning for KBQA with Unanswerability

	Error Checks
	EM-s: Automated check for equivalence of SPARQL programs
	Performance across different categories of unanswerability
	Cost Analysis
	FuSIC-KBQA Details
	FUn-FuSIC Prompts
	PUn prompt
	FUN prompt
	Prompt for Verifier V3 Question Logical Form Agreement
	Prompt in scUn for Logical Form Selection

	Supervised Models training details
	Supervised Models inference details
	Pangu Adaptation Details
	KB-Binder and FuSIC-KBQA Adaptation Details
	Real Example of FUn
	Algorithm for Self Consistency with Unanswerability

