

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING DELTA COMPRESSION IN LLMS VIA SVD-BASED QUANTIZATION ERROR MINIMIZATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Fine-tuning is a crucial process for adapting large language models (LLMs) to
013 diverse applications. In certain scenarios, like multi-tenant serving, a large number
014 of LLMs finetuned from the same base model are deployed to meet complex
015 requirements for users. Recent works explore delta-compression approaches to
016 quantize and compress the delta weights between the customized LLM and the
017 corresponding base model. However, they exhibit inadequate performance at
018 high compression ratios due to their empirical nature. In this work, we introduce
019 DELTAMIX, an adaptive mixed-precision delta-compression framework designed
020 to minimize quantization error in the singular value decomposition (SVD) space
021 without imposing additional assumptions. DELTAMIX provides a theoretical justi-
022 fication for the necessity of mixed-precision compression and presents a practical
023 quantization solution that involves solving a 0/1 linear integer programming prob-
024 lem alongside a reconstruction target correction method. Experimental results
025 across multiple models and benchmarks illustrate that DELTAMIX consistently
026 outperforms all baseline methods. Notably, on tasks such as AIME2024 and GQA,
027 DELTAMIX exceeds the performance of the best baseline, Delta-CoMe, by 22.3%
028 and 6.1% for 7B parameter models, respectively.

1 INTRODUCTION

031 Large language models (LLMs) have shown breakthrough performance on various knowledge-
032 intensive (Grattafiori et al., 2024; Team, 2024; Jiang et al., 2023) and complex reasoning tasks
033 (DeepSeek-AI, 2025; Grattafiori et al., 2024). Enhancing deployment efficiency is crucial for
034 facilitating LLM applications on edge devices and in cloud environments (Yao et al., 2024). In
035 multi-tenant serving scenarios, multiple users fine-tune the same base model using their customized
036 datasets (Wei et al., 2024; Yu et al., 2023), resulting in a variety of customized models that share a
037 common foundation. These models, derived from the same base LLM (e.g., Qwen2.5 (Team, 2024)
038 or LLaMA (Grattafiori et al., 2024)), need to be deployed concurrently to address simultaneous
039 user requests. Conventional LLM compression approaches (Frantar et al., 2022; Lin et al., 2024)
040 focus on quantizing and compressing the full model parameters. While effective at low compression
041 ratios, these methods struggle to maintain model performance at high compression ratios, resulting in
042 significant storage and computational overhead when deploying multiple customized LLMs.

043 In contrast to full model compression, delta-compression (Yao et al., 2024; Liu et al., 2024; Ping
044 et al., 2024) decomposes a customized LLM into two components: the base model and the delta
045 weights, which encapsulate the differences between the customized model and its corresponding base
046 model. This approach emphasizes the compression of delta weights. Consequently, in multi-tenant
047 environments, a single base model can be deployed alongside multiple sets of compressed delta
048 parameters. Delta-compression achieves significantly higher compression rates than full model
049 compression, thereby substantially reducing overall deployment costs. Researchers have explored
050 effective approaches for delta-compression. Ryu et al. (2023) proposes a 1-bit quantization approach,
051 termed BitDelta, to reduce the size of delta weights. Liu et al. (2024) leverages the low-rank
052 characteristics of delta weights to improve storage efficiency through low-rank approximation. Delta-
053 CoMe (Ping et al., 2024) introduces a mixed-precision delta-compression technique based on singular
value decomposition (SVD), allocating higher-bit representations to singular vectors associated with
larger singular values. Although these existing approaches demonstrate promising performance at

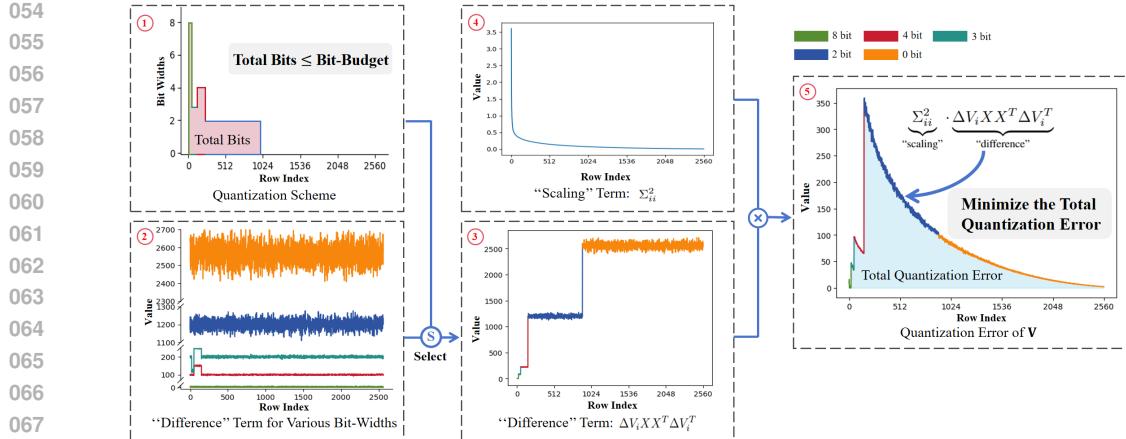


Figure 1: An overview of DELTAMIX. The quantization error of the i -th row of \mathbf{V} comprise two components: a “scaling” term (④) and a “difference” term (③). The “scaling” term is fixed, while the “difference” term is related to the mixed-precision quantization scheme (①). DELTAMIX identifies the optimal quantization scheme within the constraints of the bit budget (①) to effectively balance these two components, thereby minimizing the total quantization error of \mathbf{V} (⑤). Note that the “difference” term for various bit-widths (②) is pre-computed using a calibration dataset and remains fixed during the optimization process.

high compression ratios, they lack rigorous mathematical foundations, which can lead to suboptimal performance, especially in challenging compression scenarios.

In this work, we propose DELTAMIX, a high-performance mixed-precision delta-compression framework grounded in a solid theoretical foundation. DELTAMIX implements delta-compression within the SVD space, formulating the quantization objective as the minimization of layer-wise quantization error. By pursuing this objective, DELTAMIX establishes a mathematically sound mixed-precision compression strategy that accommodates flexible, user-defined compression ratios. This strategy derives **the mixed-precision quantization scheme** through the solution of a 0/1 linear integer programming problem and ensures optimization consistency throughout the quantization process via **a reconstruction target correction method**. Unlike Ping et al. (2024), which empirically posits that singular vectors corresponding to larger singular values are more significant and, therefore, necessitate higher-bit representations, DELTAMIX prioritizes the minimization of quantization error. It formulates all subsequent strategies based exclusively on this principle, eschewing reliance on singular values for assessing importance. This distinction is vital, as prior research has demonstrated that the significance attributed to singular values may not correlate with the performance of LLMs (Hsu et al., 2022; Wang et al., 2025).

We conduct extensive experiments on reasoning, math, code, and multimodal tasks across eight aligned LLMs to demonstrate the effectiveness of DELTAMIX. The results show that DELTAMIX achieves state-of-the-art performance among delta-compression methods, particularly in challenging scenarios where the norm of $\Delta\mathbf{W}$ is large. Notably, on the reasoning task AIME2024, DELTAMIX surpasses the leading baseline, Delta-CoMe, by 22.3% on the 7B model and 26.9% on the 14B model. Furthermore, DELTAMIX can achieve more than $6\times$ GPU memory and disk storage savings, enabling the deployment of multiple models within constrained resource environments.

2 RELATED WORK

Quantization Strategies for LLMs Quantization reduces the bit-precision of model parameters to lower GPU cost and accelerate inference. Current strategies for LLM quantization can be broadly categorized into quantization-aware training (QAT) and post-training quantization (PTQ). QAT simulates quantization operations during training and uses backpropagation to correct quantization errors (Zhou et al., 2018; Esser et al., 2020; Liu et al., 2023b; Wang et al., 2023). In contrast, PTQ quantizes a pre-trained model without further training, typically calibrating the quantized weights with a modest calibration dataset (Dettmers et al., 2022; Frantar et al., 2022; Lin et al., 2024; Lee et al., 2024). Given the high computational cost associated with training or fine-tuning large language

108 models, PTQ has become a particularly prevalent approach for LLM quantization. In our work,
 109 we leverage the GPTQ (Frantar et al., 2022) method within PTQ, focusing on mixed-precision
 110 quantization of the singular vectors of the delta parameters.
 111

112 **Delta-Compression** Delta-compression (Isik et al., 2023; Ryu et al., 2023; Liu et al., 2024; Ping
 113 et al., 2024) aims to diminish the storage and inference costs associated with serving multiple models
 114 by compressing delta parameters, which are the differences between the parameters of a fine-tuned
 115 LLM and its corresponding base LLM. GPT-Zip (Isik et al., 2023) extends GPTQ to compress the delta
 116 parameters into 2-bit, and then sparsify 95% of the quantized delta weights to further reduce storage
 117 costs. DeltaZip (Yao et al., 2024) extends the idea of structured pruning and delta-compression to
 118 develop a multi-tenant serving system. However, both methods are still limited to compression ratios
 119 of 2-bit and higher. Liu et al. (2024) introduces BitDelta, which compresses delta weight into 1-bit,
 120 using a trainable high-precision scaling factor for each delta weight matrix. From this point onward,
 121 the compression of delta parameters has entered the 1-bit era. In addition to these low-bit methods,
 122 Ryu et al. (2023) identifies the low-rank property of delta weights and achieves delta-compression
 123 through low-rank approximation. Recently, Delta-CoMe (Ping et al., 2024) leverages the benefits of
 124 both low-rank and low-bit compression methods, proposing a mixed-precision delta-compression
 125 method that uses varying bit-widths to represent different singular vectors of the delta weights.
 126 However, the rationale behind their mixed-precision quantization is predicated on a questionable
 127 hypothesis (Hsu et al., 2022; Wang et al., 2025): that singular vectors associated with larger singular
 128 values are inherently more important. This premise lacks a solid theoretical foundation, leading to a
 129 mixed-precision strategy that is primarily empirical and, consequently, suboptimal. In this work, we
 130 introduce DELTAMIX, which provides a mathematical proof of the necessity for mixed-precision in
 131 SVD-based delta-compression methods, and derives a quantization approach that is firmly grounded
 132 in mathematical theory.

3 METHOD

133 In this section, we introduce DELTAMIX,
 134 an adaptive mixed-precision delta-compression
 135 strategy for LLMs with mathematical support.
 136 In Section 3.1, we begin with the minimization
 137 of quantization error in the SVD space and de-
 138 rive the detailed quantization process. We pro-
 139 vide a mathematical proof demonstrating the
 140 necessity of mixed-precision in this context. In
 141 Section 3.2, we introduce our mixed-precision
 142 schedule in detail, which is built on the solution
 143 of a 0/1 integer linear programming problem.
 144 Algorithm 1 shows the details of DELTAMIX.
 145

3.1 QUANTIZATION ERROR DERIVATION

146 At a high level, DELTAMIX follows the struc-
 147 ture of the classical post-training quantization
 148 method GPTQ, by performing quantization to minimize the reconstruction error. Given a delta
 149 weight matrix \mathbf{W} and the corresponding input X , the quantization objective of the GPTQ is to find a
 150 quantized matrix $\hat{\mathbf{W}}$ which minimizes the squared error:
 151

$$152 \arg \min_{\hat{\mathbf{W}}} \left\| \mathbf{W}X - \hat{\mathbf{W}}X \right\|_F^2 = \sum_i \left\| W_i X - \hat{W}_i X \right\|_F^2 \approx \sum_i e_i \quad (1)$$

153 Following previous work (Hassibi et al., 1993; Nagel et al., 2020), the quantization error of the i^{th}
 154 row of \mathbf{W} can be approximated with a second-order Taylor expansion e_i :

$$155 e_i = \frac{1}{2} \Delta W_i \mathbf{H}_i \Delta W_i^T \quad (2)$$

162 Here $\Delta W_i = W_i - \hat{W}_i$ is the quantization difference of i^{th} row, while the Hessian matrix $\mathbf{H}_i = 2X X^T$ is independent and identical across different rows in \mathbf{W} . By reusing \mathbf{H} , GPTQ derives the
 163 optimal quantized weights $\hat{\mathbf{W}}$ row by row, allowing for parallel computation across multiple rows.
 164

165 Instead of directly quantizing \mathbf{W} , DELTAMIX performs quantization in the SVD space, by finding a
 166 quantized matrix $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$ which minimizes the squared error:
 167

$$\arg \min_{\hat{\mathbf{U}}, \hat{\mathbf{V}}} \left\| \mathbf{U} \Sigma \mathbf{V} X - \hat{\mathbf{U}} \Sigma \hat{\mathbf{V}} X \right\|_F^2 \quad (3)$$

172 where $\mathbf{W} = \mathbf{U} \Sigma \mathbf{V}$. Below, we introduce the detailed quantization process of DELTAMIX, which
 173 first quantizes \mathbf{V} , and then moves to \mathbf{U} .
 174

175 3.1.1 QUANTIZE \mathbf{V}

177 In this section, we present a theoretical analysis that motivates the need for mixed-precision quantiza-
 178 tion. Specifically, we find the quantized $\hat{\mathbf{V}}$ with the row-by-row approach by minimizing the squared
 179 error:

$$\begin{aligned} 180 \arg \min_{\hat{\mathbf{V}}} \left\| \mathbf{U} \Sigma \mathbf{V} X - \mathbf{U} \Sigma \hat{\mathbf{V}} X \right\|_F^2 &\approx \sum_i e_i^{\mathbf{V}} \\ 181 e_i^{\mathbf{V}} &= \frac{1}{2} \Delta V_i \mathbf{H}_i^{\mathbf{V}} \Delta V_i^T \end{aligned} \quad (4)$$

185 Here $\Delta V_i = V_i - \hat{V}_i$ is the quantization difference of the i^{th} row, and $\mathbf{H}_i^{\mathbf{V}} = 2\Sigma_{ii}^2 \cdot X X^T$ is the
 186 Hessian matrix of the i^{th} row of \mathbf{V} (with derivation details in Appendix C.1). As Σ_{ii}^2 is a scalar, we
 187 can reformulate the Eq. (4) as follows:
 188

$$189 e_i^{\mathbf{V}} = \frac{1}{2} \Delta V_i \mathbf{H}_i^{\mathbf{V}} \Delta V_i^T = \underbrace{\Sigma_{ii}^2}_{\text{"scaling"}} \cdot \underbrace{\Delta V_i X X^T \Delta V_i^T}_{\text{"difference"}} \quad (5)$$

192 From Eq. (5), it is evident that the error for i -th row of \mathbf{V} comprises two components: a “scaling”
 193 term Σ_{ii}^2 , which suggests that rows (singular vectors) with larger singular values has larger scaling
 194 factor, and a “difference” term $\Delta V_i X X^T \Delta V_i^T$, derived from the quantization differences ΔV_i and
 195 limited sampling over a calibration set.

196 As illustrated in Figure 2, we present
 197 the results of the “scaling” and “dif-
 198 ference” terms across different rows.
 199 The variation in the “difference” term
 200 remains relatively minor when the
 201 same bit-width is used to quantize
 202 different rows. In contrast, the “scaling”
 203 term decreases sharply as the row index
 204 i increases. Consequently, the
 205 quantization error $e_i^{\mathbf{V}}$, which encom-
 206 passes both terms, varies significantly
 207 across different rows under a uniform
 208 bit-width for quantization. To mini-
 209 mize the total error, it is ideal for the
 210

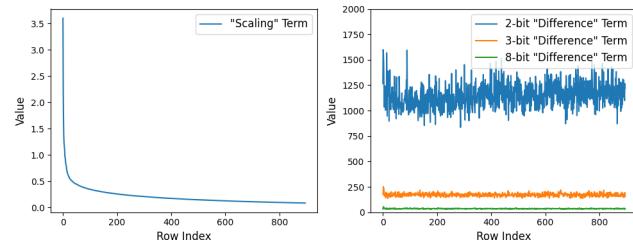


Figure 2: (Left) The value of “scaling” term (Eq. 5) at different row indices. (Right) The value of “difference” term (Eq. 5) with different quantization bit-width at different row indices. We compute all results using Q_Proj at the last layer of Qwen2.5-Math-7B-Instruct.

211 quantization error of each row to be small. Given that the “scaling” term is fixed for each row, we can
 212 only adjust the “difference” term by carefully allocating bit-widths. However, due to the constraints
 213 of the total bit budget, we cannot allocate high bit-widths to all rows simultaneously. Therefore, we
 214 propose a strategy of assigning varying bit-widths to different rows to reduce the overall quantization
 215 error. **Eq. (5) provides a theoretical foundation for the necessity of mixed-precision quantization**
in SVD-based delta-compression. We discuss the detailed mixed-precision schedule in Section 3.2,
 which allocates varying bit-widths to different rows, specifically the different singular vectors of \mathbf{U} ,
 by formulating a 0/1 integer linear programming problem.

216 3.1.2 QUANTIZE \mathbf{U}
217

218 In this section, we analyze why mixed-precision quantization is not crucial for \mathbf{U} . After quantizing
219 \mathbf{V} to $\hat{\mathbf{V}}$, the quantization objective of \mathbf{U} is:

$$220 \quad \arg \min_{\hat{\mathbf{U}}} \|\mathbf{U}\Sigma\hat{\mathbf{V}}X - \hat{\mathbf{U}}\Sigma\hat{\mathbf{V}}X\|_F^2 \approx \sum_i e_i^{\mathbf{U}} \quad (6)$$

$$221 \quad e_i^{\mathbf{U}} = \frac{1}{2} \Delta U_i \mathbf{H}_i^{\mathbf{U}} \Delta U_i^T = \Delta U_i \Sigma \hat{\mathbf{V}} X X^T \hat{\mathbf{V}}^T \Sigma^T \Delta U_i^T$$

$$222$$

$$223$$

$$224$$

225 Here $\Delta U_i = U_i - \hat{U}_i$, and the Hessian matrix of the i^{th} row of \mathbf{U} is given by $\mathbf{H}_i^{\mathbf{U}} =$
226 $2\Sigma\hat{\mathbf{V}}X X^T \hat{\mathbf{V}}^T \Sigma^T$ (with derivation details in Appendix C.2). Upon comparing Eq. (5) and Eq.
227 (6), we observe that $e_i^{\mathbf{U}}$ does not incorporate the scaling term present in Eq. (6). Consequently, when
228 different rows are quantized using the same bit-width, there is no significant variation in error. This
229 uniformity arises from the fact that the Hessian matrices for different rows of \mathbf{U} are identical. Thus,
230 unlike \mathbf{V} , there is no necessity to employ mixed precision when quantizing different rows of \mathbf{U} .

231 Therefore, DELTAMIX **determines the mixed-precision quantization schedule based on \mathbf{V}** , and
232 then applies the same schedule to \mathbf{U} for simplicity. Specifically, DELTAMIX quantizes \mathbf{U} using a
233 column-wise mixed-precision schedule, where the i^{th} column of \mathbf{U} adopts the same bit-width as the
234 i^{th} row of \mathbf{V} as they correspond to the same singular value. Notably, DELTAMIX exhibits insensitivity
235 to column-wise precision schedules, since GPTQ compensates for quantization-induced errors in
236 the column direction by adjusting the unquantized weights during the quantization process. This
237 compensation, however, does not occur between different rows, as different rows are independently
238 quantized in GPTQ. This further underscores the importance of discussing row-wise mixed precision
239 strategies aimed at minimizing the quantization error of \mathbf{V} . In Appendix E.1, we further demonstrate
240 experimentally that applying the same mixed-precision quantization strategy to both \mathbf{V} and \mathbf{U} yields
241 satisfactory performance.

242 **Reconstruction Target Correction.** In Eq. (6), we quantize \mathbf{U} to reconstruct the target $\mathbf{U}\Sigma\hat{\mathbf{V}}X$,
243 which deviates from the initial target $\mathbf{U}\Sigma\mathbf{V}X$. This deviation can negatively impact the performance
244 of the quantized model. A straightforward approach to address this issue is to directly replace
245 the reconstruction target with $\mathbf{U}\Sigma\mathbf{V}X$; however, this would inhibit the application of GPTQ for
246 quantization. Therefore, we propose a method termed “Reconstruction Target Correction” (RTC)
247 to reduce the bias by transforming $\mathbf{U}\Sigma\hat{\mathbf{V}}X$ in Eq. (6) to $\tilde{\mathbf{U}}\Sigma\hat{\mathbf{V}}X$, where $\tilde{\mathbf{U}}$ is derived from the
248 following equation:

$$249 \quad \min_{\tilde{\mathbf{U}}} \|\mathbf{U}\Sigma\mathbf{V}X - \tilde{\mathbf{U}}\Sigma\hat{\mathbf{V}}X\|_F^2 \quad (7)$$

$$250 \quad \Rightarrow \tilde{\mathbf{U}} = \mathbf{U}\Sigma\mathbf{V}X X^T \hat{\mathbf{V}}^T \Sigma^T (\Sigma \hat{\mathbf{V}} X X^T \hat{\mathbf{V}}^T \Sigma^T)^{-1}$$

$$251$$

$$252$$

253 See Appendix C.3 for detailed derivations. In summary, prior to quantizing \mathbf{U} , we first update \mathbf{U} to
254 $\tilde{\mathbf{U}}$ using Eq. (7). Subsequently, we perform quantization by minimizing $\|\tilde{\mathbf{U}}\Sigma\hat{\mathbf{V}}X - \hat{\mathbf{U}}\Sigma\hat{\mathbf{V}}X\|_F^2$.
255 This approach aims to ensure that the reconstruction target closely approximates the original, without
256 compromising the application of GPTQ for quantization.

257 3.2 OPTIMIZATION PROBLEM MODELING
258

259 In this section, we formulate the optimal mixed-precision bit allocation problem as a 0/1 integer linear
260 programming model (see Eq. (8)). Given a user-specified compression target bit G_b , a candidate set
261 of quantization bit-widths Q of size N_b , and an upper bound f_{\max} on the number of active bit-widths,
262 the proposed model minimizes the quantization error by automatically selecting an subset of active
263 bit-widths from Q , subject to the constraints imposed by G_b and f_{\max} .

264 As shown in Eq. (8), the objective is to minimize the total quantization error, expressed as $\sum_i \mathbb{E}_i^{\mathbf{V}} \mathcal{S}_i^T$.
265 Here, $\mathbb{E}_i^{\mathbf{V}} \in \mathbb{R}^{1 \times N_b}$ denotes the quantization error associated with different bit-widths for the i^{th}
266 row of \mathbf{V} , computed using predefined calibration data samples X_n in accordance with Eq. (4).
267 $\mathcal{S}_i \in \mathbb{R}^{1 \times N_b}$ is a binary optimization variable indicating the selected bit-width for quantizing the
268 i^{th} row of \mathbf{V} and the corresponding i^{th} column of $\tilde{\mathbf{U}}$. Note that our objective is limited to the
269 quantization error of \mathbf{V} , with a detailed discussion provided in Sections 3.1.1 and 3.1.2.

$$\begin{aligned}
270 \quad & \min_{\mathcal{S}} \sum_i \mathbb{E}_i^V \mathcal{S}_i^T && \text{(Total quantization error)} \\
271 \quad & \text{s.t. } \sum_i \mathcal{S}_i B \leq G_b(h_{\text{in}} \cdot h_{\text{out}}) && \text{(Bit budget constraint)} \\
272 \quad & \text{sum}(\mathcal{S}_i) = 1 && \text{(One-hot vector constraint)} \\
273 \quad & \mathcal{S}_i - f \leq 0 && \text{(Bit-width selection constraint)} \\
274 \quad & \text{sum}(f) \leq f_{\text{max}} && \text{(Bit-width number constraint)}
\end{aligned} \tag{8}$$

The optimization problem has four constraints. (1) The “bit-budget constraint” ensures that the quantized model achieves a target compression bit that does not exceed the predefined threshold G_b . Here h_{in} and h_{out} represent the input and output dimension of \mathbf{W} . $B \in \mathbb{R}^{N_b \times 1}$ represents the storage required for quantizing a row of \mathbf{V} and a column of $\tilde{\mathbf{U}}$ at different bit-widths, which is computed as $B = (h_{\text{in}} + h_{\text{out}}) \cdot Q$. (2) The “one-hot vector constraint” requires that each row of \mathbf{V} and the corresponding column of $\tilde{\mathbf{U}}$ be quantized using exactly one bit-width. (3) The “bit-width selection constraint” guarantees that only permissible bit-widths are utilized for quantization. The variable $f \in \mathbb{R}^{1 \times N_b}$ denotes the set of admissible bit-widths, where $f_{0,k} = 1$ indicates that the k^{th} bit-width in Q is allowable. (4) The “bit-width number constraint” restricts the number of admissible bit-widths to a maximum of f_{max} .

The 0/1 integer linear programming optimization problem is then solved with the CVXPY (Diamond & Boyd, 2016) library and the SCIP (Maher et al., 2016) solver. We report the optimization solving time in Appendix E.4, which costs 29.4 minutes for Qwen2.5-Math-7B-Instruct. This overhead is acceptable, as the model requires quantization only once. By solving Eq. (8), we obtain an optimal mixed-precision quantization scheme that minimizes the error while satisfying predefined bit budget constraints. This allows us to derive task-specific mixed-precision quantization strategies which balance the “scaling” and “difference” terms, leading to improved performance across various tasks.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Calibration Dataset. Following Delta-CoMe (Ping et al., 2024), DELTAMIX randomly samples 128 examples, each containing 2048 tokens, from the C4 training set as the calibration dataset. This configuration is consistently applied across all calibration-dependent methods.

Evaluation Tasks. We evaluate our methods on four distinct tasks: reasoning, math, code generation, and multi-modal. These tasks encompass a vast array of current directions based on fine-tuning with open-source LLMs. **Reasoning:** We use the Math500 and AIME2024 datasets as the test set. **Math:** We use the GSM8K (Cobbe et al., 2021) and Math500 (Lightman et al., 2023) datasets as the test set. **Code Generation:** We use HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) as the test set. **Multi-Modal:** We utilize the GQA (Hudson & Manning, 2019) and the image part of ScienceQA (Lu et al., 2022) datasets. Please refer to Appendix D.1 for more details.

Models. To ensure a comprehensive comparison, we evaluate both 7B and 13-14B models across the four tasks with various backbones. See Table 10 in Appendix D.1 for more details about the backbones and aligned models used. During inference, we employ a greedy search strategy.

Baselines. We compare DELTAMIX with three baselines: SVD-based low-rank compression (Ryu et al., 2023), BitDelta (Liu et al., 2024), Delta-CoMe (Ping et al., 2024) at compression ratio $1/\alpha = 16$. All methods are evaluated using NVIDIA L20 GPUs.

4.2 MAIN RESULTS

Tables 1 and 2 present the results of DELTAMIX on both the 7B and 13-14B models across four tasks, in comparison to the baselines. Notably, DELTAMIX demonstrates superior overall performance on

324 Table 1: Comparison of DELTAMIX and baselines on various tasks across 7B-sized models. We
 325 report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

326 Method	α	DeepSeek-R1-Distill-Qwen		Qwen2.5-Math-Instruct		Qwen2.5-Coder-Instruct		Qwen2.5-VL-Instruct		327 AVG
		328 Math500	AIME2024	329 Math500	GSM8K	330 Humaneval	Mbpp	331 GQA	SQA	
328 Backbone	1	70.6	16.7	329 70.6	84.8	330 72.0	80.7	331 -	-	-
328 Aligned	1	86.0	40.0	329 80.2	94.8	330 87.2	82.8	331 60.5	76.7	322 76.0
328 Low-Rank	1/16	72.2	13.3	329 59.6	70.3	330 84.1	331 86.2	0.0	0.0	48.2
328 BitDelta	1/16	1.4	0.0	329 71.2	84.0	330 83.5	83.9	331 0.0	0.3	40.5
328 Delta-CoMe	1/16	82.4(1.11)	30.0(3.30)	329 74.8(0.35)	94.5(0.00)	330 85.0(0.96)	82.7(0.17)	331 49.4(1.65)	76.5(0.26)	71.9
328 DELTAMIX	1/16	82.7(0.83)	36.7(3.35)	329 77.7(1.03)	94.6(0.51)	330 85.6(0.35)	83.1(0.25)	331 52.4(2.30)	79.4(0.83)	74.0

333 Table 2: Comparison of DELTAMIX and baselines on various tasks across 13-14B-sized models. We
 334 report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

335 Method	α	DeepSeek-R1-Distill-Qwen		MetaMath		Qwen2.5-Coder-Instruct		LLAVA-V1.5		336 AVG
		337 Math500	AIME2024	338 Math500	GSM8K	339 Humaneval	Mbpp	340 GQA	SQA	
337 Backbone	1	76.4	3.3	338 1.8	4.3	339 78.7	84.7	340 -	-	-
337 Aligned	1	87.4	40.0	338 22.6	71.0	339 90.2	85.4	340 63.3	72.8	322 66.6
337 Low-Rank	1/16	57.2	6.7	338 15.8	64.0	339 86.6	331 88.6	57.0	71.4	55.9
337 BitDelta	1/16	82.8	23.3	338 22.4	65.8	339 89.0	86.5	340 61.2	73.0	63.0
337 Delta-CoMe	1/16	76.5(3.38)	24.5(6.93)	338 22.9(0.12)	70.2(0.56)	339 90.6(0.75)	86.5(0.70)	340 62.8(0.09)	72.3(0.20)	63.3
337 DELTAMIX	1/16	80.2(2.09)	31.1(3.81)	338 21.7(0.64)	71.2(0.26)	339 91.5(0.60)	86.9(0.12)	340 62.7(0.04)	72.1(0.18)	64.7

341 both the 7B and 13-14B models, surpassing the best baseline, Delta-CoMe, by an average of 2.9%
 342 and 2.2%, respectively.

343 When analyzing the various tasks, we observe that DELTAMIX exhibits more pronounced improvements
 344 in challenging scenarios characterized by a significant performance gap between the baseline
 345 methods and the aligned model. This is particularly evident in reasoning-intensive benchmarks, such
 346 as AIME2024, as well as in multimodal tasks utilizing 7B backbones. For instance, DELTAMIX
 347 surpasses the previous state-of-the-art model, Delta-CoMe, by 22.3% on the 7B model and by 26.9%
 348 on the 14B model. Further analysis reveals that these models display larger norms for ΔW . Specifi-
 349 cally, the median norm of DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-VL-Instruct is 6.5 and 10.3
 350 times that of Qwen-Coder-Instruct-7B, with corresponding values of 26.13 and 41.45 compared to
 351 4.02, respectively. In this context, baseline methods struggle to achieve optimal solutions due to their
 352 empirical nature. In contrast, DELTAMIX directly optimizes quantization error from a mathematical
 353 perspective, enabling it to fully leverage its strengths in demanding tasks. However, on tasks where
 354 baselines already achieve near-lossless accuracy, such as MBPP and HumanEval on the 7B backbone,
 355 DELTAMIX performs comparably to the best baseline. In these scenarios, the norm of ΔW is
 356 relatively small and can be easily compressed, leading to a ceiling effect: ΔW can be quantized
 357 almost losslessly by existing baselines, leaving little room for further improvement.

358 We also compare the quantization time cost of DELTAMIX and Delta-CoMe. Please refer to Appendix
 359 E.4 for more details. The results show that DELTAMIX (resp. Delta-CoMe) requires only 1.2 (resp.
 360 0.4) hours for 7B models and 2.4 (resp. 0.8) hours for 14B models on a single GPU. Although
 361 DELTAMIX is slower than Delta-CoMe, the time cost remains acceptable since the quantification
 362 process needs to be performed only once.

364 4.3 COMPARE WITH BROADER BASELINES

366 To further validate the effectiveness of DELTAMIX, we introduced two additional baselines: SVD-
 367 LLM (Wang et al., 2025) and the sparse-quant method, SpQR (Dettmers et al., 2023), to compare
 368 with DELTAMIX on the 7B-sized models. Considering that SpQR quantizes Zeros and Scales to save
 369 space for storing some outliers in 32 bits, we divide SpQR into two baselines: 1) No quantization
 370 of Zeros and Scales, but no outliers stored. 2) Using a two-step quantization method, storing some

371 Table 3: Comparison of DELTAMIX and boarder baselines on various tasks across 7B-sized models.
 372 As the SpQR method integrates sparsity and quantization, we divide this method into two baselines,
 373 one with and one without outliers.

374 Method	α	DeepSeek-R1-Distill-Qwen		Qwen2.5-Math-Instruct		Qwen2.5-Coder-Instruct		Qwen2.5-VL-Instruct		375 AVG
		376 MATH500	AIME2024	377 Math500	GSM8K	378 Humaneval	Mbpp	379 GQA	SQA	
376 SVD-LLM	1/16	32.8	10.0	377 67.4	82.8	378 85.2	379 83.1	0.0	0.0	45.2
376 SpQR(No Outliers)	1/16	2.4	0.0	377 12.6	38.5	378 84.8	78.3	0.0	0.0	27.0
376 SpQR(0.01% Outliers)	1/16	45.0	10.0	377 71.2	89.2	378 85.4	82.3	0.0	0.0	48.0
376 DELTAMIX	1/16	82.7	36.7	377 77.7	94.6	378 85.6	83.1	52.4	79.4	74.0

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: The performance of DELTAMIX to quantize Qwen2.5-Math-7B-Instruct with different number of calibration data.

Calibration Size	Math500	GSM8K	Average
16	76.4	94.5	85.5
32	76.2	95.1	85.7
64	76.8	94.3	85.6
128	77.6	94.8	86.2
256	76.0	94.1	85.1

Table 5: The performance of DELTAMIX to quantize Qwen2.5-Math-7B-Instruct using calibration data drawn from C4 and Wiki-text2.

	Math500	GSM8K	Average
C4	77.6	94.8	86.2
WikiText2	76.6	94.8	85.7
MetaMath	75.4	93.6	84.5

outliers. The results in Table 3 indicate that DELTAMIX consistently outperforms all three baselines. In particular, for Qwen2.5-VL-Instruct, except for DELTAMIX, all baselines have lost its multimodal capability.

4.4 ABLATION OF CALIBRATION DATASET

Since DELTAMIX is a calibration-dependent method, to verify its robustness on calibration, we conducted experiments with different sizes and domains of the calibration dataset to quantize Qwen2.5-Math-7B-Instruct. For calibration on domains, each calibration set contains 128 randomly sampled sequences of length 2048. Due to the insufficient number of sequences of this length in the Meta-MathQA dataset, we concatenated multiple question–answer pairs in a few-shot format. To examine the effect of dataset size on calibration, we varied the number of calibration samples from 16 to 256. The results in Tables 4 and 5 demonstrate that DELTAMIX performs well on all calibration setups, confirming DELTAMIX’s robustness.

4.5 ANALYSIS OF f_{\max}

In DELTAMIX, we set a hyperparameter termed f_{\max} to constrain the number of active bit-widths during quantization. This section examines the performance of DELTAMIX under varying values of f_{\max} . As shown in Table 6, DELTAMIX consistently achieves better performance than Delta-CoMe across all settings, indicating that DELTAMIX is insensitive to the choice of f_{\max} . In the main experiment, we set f_{\max} to 4 to be consistent with Delta-CoMe.

4.6 ABLATION OF RTC

We conducted experiments to assess the necessity of RTC, as detailed in Table 7. Overall, RTC consistently enhances our method, yielding an average performance improvement of 2.2%. The results indicate that mitigating the deviation in the quantization loss of \mathbf{U} enables DELTAMIX to retain more information from $\Delta\mathbf{W}$. The importance of RTC is particularly pronounced in challenging tasks; for instance, it improves performance by 13.1% on the AIME2024 task. This improvement can be attributed to the more substantial quantization errors associated with quantizing \mathbf{V} in these cases, thereby highlighting the critical need for reconstruction target correction.

In Appendix E.2, we evaluate the required time of RTC across four model sizes to demonstrate the high efficiency of the RTC. The results show that, for a 14B model, RTC requires only 1.35s to process a transformer block, accounting for merely 1.18% of the total quantization time. Please refer to Appendix E.2 for more details.

Table 6: Performance across different f_{\max} . We report the results in the format “mean(std)” with three runs.

Method	f_{\max}	DeepSeek-R1-Distill-Qwen-14B		AVG
		Math500	AIME2024	
Delta-CoMe	-	76.5(3.38)	24.5(6.93)	50.5
	2	80.7(1.75)	33.3(3.35)	57.0
	3	79.9(1.53)	30.0(8.83)	55.0
	4	80.2(2.09)	31.1(3.81)	55.7
	5	79.5(0.99)	33.3(6.65)	56.4
	6	79.5(2.21)	33.3(3.35)	56.4

Table 7: Performance ablation of RTC. We report the results in the format “mean(std)” with three runs.

	LLAVA-V1.5		DeepSeek-R1-Distill-Qwen-14B		AVG
	GQA	SQA	Math500	AIME2024	
Delta-CoMe	62.8(0.09)	72.3(0.20)	76.5(3.38)	24.5(6.93)	59.0
DELTAMIX	62.7(0.04)	72.1(0.18)	80.2(2.09)	31.1(3.81)	61.5
DELTAMIX (W/O RTC)	62.8(0.02)	72.2(0.05)	78.2(0.28)	27.5(3.81)	60.2

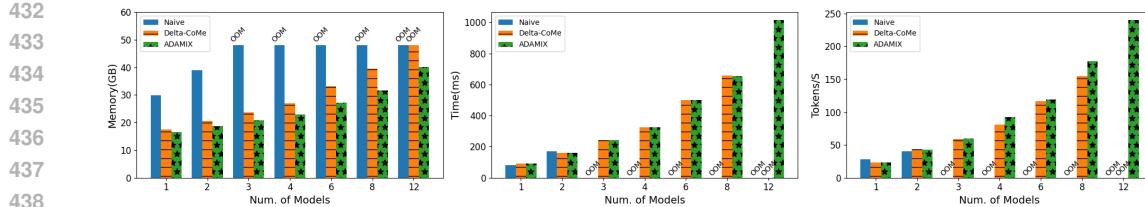


Figure 3: End-to-end decoding latency evaluation with varying numbers of deployed models using Qwen2.5-7B variants. (Left) Decoding memory usage. (Middle) Prefill time. (Right) Generation speed.

5 ANALYSES

5.1 INFERENCE SPEED AND MEMORY COST

Following the setup of Liu et al. (2024), we evaluate the end-to-end decoding latency of Qwen2.5-7B variants using a single L20 GPU. As shown in Figure 3, we consider the setting where each deployed model receives one distinct request simultaneously—e.g., 12 deployed models correspond to a batch size of 12—with latency evaluation in three perspectives: (1) Memory Usage: This one measures peak GPU memory usage during concurrent inference, accounting for both model parameters and activation storage. (2) Prefill Time: This part focuses on the time the models take to process user-input prompts. Each request contains 512 input tokens, and we report the time (in ms) the model takes to handle them. (3) Generation Speed: This part evaluates how quickly the model generates output tokens (tokens/s) for each request. Since the prefill time already measures prompt processing, each request starts from the “[BOS]” token and generates 512 tokens sequentially.

As shown in Figure 3 (left), a single GPU can deploy only two aligned models simultaneously. In contrast, it can support up to 8 and 12 models concurrently for Delta-CoMe and DELTAMIX, respectively. This enhancement is attributable to the fact that, as the number of models increases, both methods necessitate only the additional deployment of compressed delta weights, thereby significantly reducing memory overhead. Notably, while Delta-CoMe exhausts GPU memory at 12 models, DELTAMIX does not. Our further analysis indicates that DELTAMIX typically employs fewer ranks, namely allocates a greater number of singular vectors with a bid-width of 0, thereby enhancing the GPU memory utilization efficiency.

For the end-to-end decoding latency illustrated in Figure 3 (middle, right), we find that Delta-CoMe and DELTAMIX introduce overhead to Naive when the number of deployed model is small. However, Delta-CoMe and DELTAMIX scale better and effectively translate the saved GPU memory into improved decoding latency. In contrast, the Naive approach quickly encounters out-of-memory issues. Furthermore, DELTAMIX exhibits a superior generation speed compared to Delta-CoMe at scale, while the prefill times for both methods remain comparable. In Appendix E.2, we conduct more latency evaluation under varying arrival rates and request distributions following (Yao et al., 2024).

5.2 DELTA-COMPRESSION VS. DELTA-TUNING

Delta-compression decomposes the delta weights of a fully fine-tuned model into low-rank and low-bit representations, thereby reducing storage and inference costs. Delta-tuning methods, such as LoRA, are closely related to delta-compression but primarily aim to reduce the training costs of LLMs while achieving performance comparable to that of full fine-tuning. However, in various tasks—particularly more complex ones like code and math tasks—delta-tuning methods tend to underperform full fine-tuning (Biderman et al., 2024). This suggests that relying solely on delta-tuning may be insufficient.

In this section, we train the DeepSeek-LLM-7B-Base (DeepSeek-AI, 2024) on math and code tasks using both LoRA and full fine-tuning. We subsequently apply DELTAMIX to the delta weights of the fully fine-tuned model and LoRA.

Table 8: Performance comparison between Delta-Compression and LoRA. Aligned is full fine-tuned model. For DELTAMIX, we report the results in the format “mean(std)” with three runs.

Method	α	Code		Math		AVG
		Humaneval	Mb/s	Math500	GSM8K	
Backbone	1	24.4	46.0	3.8	14.7	22.2
Aligned	1	46.3	48.9	14.6	58.3	42.0
LoRA	1/16	34.1	47.7	9.4	50.9	35.5
DELTAMIX	1/16	43.3(0.6)	50.2(0.82)	13.5(0.76)	56.1(0.82)	40.8
DELTAMIX-LoRA	1/64	34.1	47.6	10.4	49.6	35.4
DELTAMIX	1/64	39.0	51.6	11.6	54.3	39.1

486 Additional experimental details can be found in Appendix D.2. Table 8 presents a comparison of
 487 DELTAMIX with LoRA. The results indicate that DELTAMIX consistently outperforms LoRA across
 488 all tasks. DELTAMIX achieves an average score of 40.8, which is close to the aligned model’s score
 489 of 42.0, representing a 14.9% improvement over LoRA.

490 Furthermore, applying DELTAMIX to LoRA can further improve the compression ratio without
 491 sacrificing performance. Table 8 shows that the average performance difference of LoRA before
 492 and after compression is 0.01. Notably, Baselines like BitDelta and Delta-CoMe cannot apply to
 493 LoRA. BitDelta directly quantizes ΔW to 1 bit without employing any low-rank approximation.
 494 Consequently, it cannot effectively utilize the low-rank properties inherent in LoRA. For Delta-CoMe,
 495 the empirically determined mixed-precision scheme is fixed and does not offer a clear method for
 496 allocating mixed precision at other compression ratios. In contrast, DELTAMIX allows compression
 497 of ΔW to arbitrary ratios, making it more flexible and practically advantageous.

5.3 ANALYZING QUANTIZATION ERROR

501 To better understand the difference between various delta-compression methods, we compute
 502 the quantization error on Qwen2.5-Math-7B-Instruct model as defined in Equation (1). Since
 503 outliers play a critical role in model compression (Dettmers et al., 2023; Lin et al., 2024), we
 504 also report the average error for the top 1% of
 505 activations with the largest absolute values in
 506 the aligned model, categorizing them as outliers.
 507 As different layers contribute differently to the
 508 final output (Wu et al., 2024), we categorize
 509 the first 9 layers, layers 9 to 17, and the last 10
 510 layers as low, mid, and high groups, respectively,
 511 and report the average error of each group. See
 512 Table 20 of Appendix E.8 for more details.

513 As demonstrated in Table 9, DELTAMIX consistently exhibits lower overall quantization error
 514 compared to all baseline methods, attributable to its inherent objective of minimizing quantization
 515 error. In the mid layers, DELTAMIX shows a slightly higher error than BitDelta, with values of 0.66
 516 versus 0.61 for all activations and 1.12 versus 1.08 for outlier activations, respectively. However, it is
 517 important to note that since BitDelta is an empirical method, it cannot guarantee low quantization
 518 error across all layers. For example, in the high layers, BitDelta exhibits significantly higher error
 519 rates compared to DELTAMIX, with values of 21.51 versus 6.81 for all activations and 3162.58 versus
 520 426.20 for outlier activations, respectively. These experiments further illustrate that DELTAMIX
 521 effectively reduces quantization error, thereby preserving the information contained in the delta
 522 weights as much as possible. In Appendix E.7, we visualize the bit allocation results of DELTAMIX
 523 across different weight types and layers using the Qwen2.5-Math-7B-Instruct model.

6 CONCLUSION

524 In this study, we present DELTAMIX, an adaptive mixed-precision delta-compression framework
 525 aimed at minimizing quantization error in the SVD space without introducing additional assumptions.
 526 DELTAMIX offers a theoretical proof of the necessity for mixed-precision delta-compression and
 527 provides a practical quantization solution that involves solving a 0/1 linear integer programming
 528 problem and employing a reconstruction target correction method. DELTAMIX outperforms all
 529 baseline delta-compression methods across four distinct downstream tasks, including reasoning, math,
 530 code, and multi-modal tasks, utilizing eight widely adopted aligned LLMs with backbone pre-trained
 531 models, including Qwen2.5, Qwen2.5-Math, Qwen2.5-Coder, and LLaMA2. Moreover, DELTAMIX
 532 significantly reduces deployment costs by minimizing memory overhead and accelerating inference.
 533 We believe that DELTAMIX provides considerable theoretical and practical value, particularly in
 534 scenarios involving multi-tenant deployments.

535 Table 9: Average quantization error ($\times 10^2$)
 536 on Qwen2.5-Math-7B-Instruct model with Eq.
 537 (1). “Low”, “Mid”, and “High” denote the first 9
 538 layers, layers 9 to 17, and the last 10 layers, respec-
 539 tively. “All” and “Out” denote the average error
 540 across all activations and the average error of the
 541 top 1% of activations.

	Low		Mid		High	
	All	Out	All	Out	All	Out
Low-Rank	1.82	3.67	1.50	2.84	21.12	1890.34
BitDelta	2.18	2.81	0.61	1.08	21.51	3162.58
Delta-CoMe	0.76	1.79	0.75	1.33	7.54	470.82
DELTAMIX	0.66	1.46	0.66	1.12	6.81	426.20

540
541 ETHICS STATEMENT542
543 We propose an adaptive mixed-precision delta-compression framework designed to minimize quanti-
544 zation error in the singular value decomposition space. Our experiments rely exclusively on publicly
545 available datasets and models, without involving human subjects or sensitive data. We do not
546 anticipate any direct negative consequences arising from this approach.547
548 REPRODUCIBILITY STATEMENT549
550 To facilitate reproducibility, we describe our experimental setup in Section 4.1 and provide addi-
551 tional details, including models, datasets, metrics, and GPUs, in Appendix D. Furthermore, our
552 implementation is publicly available at <https://anonymous.4open.science/r/ICLR-Annoymous-CD59>.553
554 REFERENCES555
556 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
557 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
558 language models, 2021. URL <https://arxiv.org/abs/2108.07732>.559
560 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
561 Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
562 Cunningham. Lora learns less and forgets less, 2024. URL <https://arxiv.org/abs/2405.09673>.563
564 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
565 plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
566 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
567 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
568 Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
569 Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
570 Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
571 Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
572 Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
573 Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
574 models trained on code, 2021. URL <https://arxiv.org/abs/2107.03374>.575
576 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
577 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
578 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
2021.579
580 DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. *arXiv preprint*
581 *arXiv:2401.02954*, 2024. URL <https://github.com/deepseek-ai/DeepSeek-LLM>.582
583 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL <https://arxiv.org/abs/2501.12948>.584
585 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
586 multiplication for transformers at scale. *Advances in Neural Information Processing Systems*, 35:
587 30318–30332, 2022.588
589 Tim Dettmers, Ruslan Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
590 boos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. Spqr: A sparse-quantized repre-
591 sentation for near-lossless llm weight compression, 2023. URL <https://arxiv.org/abs/2306.03078>.592
593 Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. *Journal of Machine Learning Research*, 17(83):1–5, 2016.

594 Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S. Modha. Learned step size quantization, 2020. URL <https://arxiv.org/abs/1902.08153>.

597 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
598 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

600 Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Optimizer (COPT) user
601 guide. <https://guide.coap.online/copt/en-doc>, 2023.

602 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and et al. The llama 3 herd
603 of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

605 B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In *IEEE
606 International Conference on Neural Networks*, pp. 293–299 vol.1, 1993. doi: 10.1109/ICNN.1993.
607 298572.

608 Yen-Chang Hsu, Ting Hua, Sungjen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
609 compression with weighted low-rank factorization, 2022. URL <https://arxiv.org/abs/2207.00112>.

611 Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning and
612 compositional question answering, 2019. URL <https://arxiv.org/abs/1902.09506>.

614 Berivan Isik, Hermann Kumbong, Wanyi Ning, Xiaozhe Yao, Sanmi Koyejo, and Ce Zhang. GPT-zip:
615 Deep compression of finetuned large language models. In *Workshop on Efficient Systems for
616 Foundation Models @ ICML2023*, 2023. URL <https://openreview.net/forum?id=h00c2tG2xL>.

618 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
619 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
620 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
621 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

623 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
624 weight quantization for efficient fine-tuning and inference of large language models, 2024. URL
625 <https://arxiv.org/abs/2306.02272>.

627 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
628 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint
629 arXiv:2305.20050*, 2023.

631 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
632 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
633 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
634 87–100, 2024.

635 James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta: Your
636 fine-tune may only be worth one bit, 2024. URL <https://arxiv.org/abs/2402.10193>.

637 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
638 chatGPT really correct? rigorous evaluation of large language models for code generation. In
639 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=1qvx610Cu7>.

641 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
642 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
643 training for large language models, 2023b. URL <https://arxiv.org/abs/2305.17888>.

645 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
646 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
647 science question answering. In *The 36th Conference on Neural Information Processing Systems
(NeurIPS)*, 2022.

648 Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
 649 Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
 650 mathematical reasoning for large language models via reinforced evol-instruct, 2025. URL
 651 <https://arxiv.org/abs/2308.09583>.

652 Stephen Maher, Matthias Miltenberger, João Pedro Pedrosa, Daniel Rehfeldt, Robert Schwarz, and
 653 Felipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP optimization
 654 suite. In *Mathematical Software – ICMS 2016*, pp. 301–307. Springer International Publishing,
 655 2016. doi: 10.1007/978-3-319-42432-3_37.

656 Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
 657 down? adaptive rounding for post-training quantization. In *International Conference on Machine
 658 Learning*, pp. 7197–7206. PMLR, 2020.

659 Alex Gu Naman Jain, King Han and et al. Livecodebench: Holistic and contamination free evaluation
 660 of large language models for code. *arXiv preprint*, 2024.

661 Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao
 662 Chang, Zhiyuan Liu, and Maosong Sun. Delta-come: Training-free delta-compression with mixed-
 663 precision for large language models, 2024. URL <https://arxiv.org/abs/2406.08903>.

664 Simo Ryu, Seunghyun Seo, and Jaejun Yoo. Efficient storage of fine-tuned models via low-rank
 665 approximation of weight residuals, 2023. URL <https://arxiv.org/abs/2305.18425>.

666 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

667 Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
 668 for tiled neural network computations. In *Proceedings of the 3rd ACM SIGPLAN International
 669 Workshop on Machine Learning and Programming Languages*, pp. 10–19, 2019.

670 Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
 671 Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models,
 672 2023. URL <https://arxiv.org/abs/2310.11453>.

673 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
 674 decomposition for large language model compression, 2025. URL <https://arxiv.org/abs/2403.07378>.

675 Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
 676 code generation with oss-instruct, 2024. URL <https://arxiv.org/abs/2312.02120>.

677 Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts, 2024. URL <https://arxiv.org/abs/2404.13628>.

678 Xiaozhe Yao, Qinghao Hu, and Ana Klimovic. Deltazip: Efficient serving of multiple full-model-
 679 tuned llms, 2024. URL <https://arxiv.org/abs/2312.05215>.

680 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
 681 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 682 large language models. *arXiv preprint arXiv:2309.12284*, 2023.

683 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 684 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on
 685 the evaluation of large multimodal models, 2024. URL <https://arxiv.org/abs/2407.12772>.

686 Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
 687 low bitwidth convolutional neural networks with low bitwidth gradients, 2018. URL <https://arxiv.org/abs/1606.06160>.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A LIMITATION AND BROADER IMPACT

704 DELTAMIX significantly reduces hardware requirements and computational costs for serving multiple
 705 finetuned models, thereby enabling smaller entities to deploy advanced large language models more
 706 feasibly. Additionally, it lowers power consumption and reduces the carbon emissions associated
 707 with LLM deployment. Despite DELTAMIX’s demonstrated improvements over baseline methods in
 708 reducing the performance gap between compressed and aligned models, it is important to note that
 709 DELTAMIX remains a lossy compression method for certain tasks. We believe this is an important
 710 consequence and encourage future research to further minimize this performance gap, particularly in
 711 tasks where performance degradation is substantial.

713 B LLMs USAGE

715 In this work, large language models (LLMs) were used solely as auxiliary tools for grammar correction
 716 and text refinement.

718 C FORMULA DERIVATION

721 C.1 V HESSIAN MATRIX

$$\begin{aligned}
 & d_{\hat{V}}^2 \left\| \mathbf{U} \Sigma \mathbf{V} X - \mathbf{U} \Sigma \hat{V} X \right\|_F^2 \\
 &= 2 \text{tr}(\mathbf{U} \Sigma d \hat{V} X X^T d \hat{V}^T \Sigma^T \mathbf{U}^T) \\
 &= 2 \text{tr}(\Sigma^T \mathbf{U}^T \mathbf{U} \Sigma d \hat{V} X X^T d \hat{V}^T) \\
 &= 2(d \text{ vec}(\hat{V}^T))^T (\Sigma^T \Sigma \otimes X X^T) (d \text{ vec}(\hat{V}^T)) \\
 &= 2(d \text{ vec}(\hat{V}))^T (\Sigma^T \Sigma \otimes X X^T) (d \text{ vec}(\hat{V})) \\
 &\Rightarrow \mathbf{H}^V = 2 \Sigma^T \Sigma \otimes X X^T \\
 &\Rightarrow \mathbf{H}_i^V = 2 \Sigma_{ii}^2 \cdot X X^T
 \end{aligned} \tag{9}$$

733 Here \otimes denotes the Kronecker product.

735 C.2 U HESSIAN MATRIX

$$\begin{aligned}
 & d_{\hat{U}}^2 \left\| \mathbf{U} \Sigma \hat{V} X - \hat{\mathbf{U}} \Sigma \hat{V} X \right\|_F^2 \\
 &= d \hat{\mathbf{U}} \Sigma \hat{V} X X^T \hat{V}^T \Sigma^T d \hat{\mathbf{U}}^T \\
 &= X^T \hat{V}^T \Sigma^T d \hat{\mathbf{U}}^T d \hat{\mathbf{U}} \Sigma \hat{V} X \\
 &= (d \text{ vec}(\hat{U}))^T \mathbf{K}_{\mathbf{h}_{\text{out}} \mathbf{r}} (\mathbf{I} \otimes \Sigma \hat{V} X X^T \hat{V}^T \Sigma^T) \mathbf{K}_{\mathbf{h}_{\text{out}} \mathbf{r}} (d \text{ vec}(\hat{U})) \\
 &= 2(d \text{ vec}(\hat{U}))^T (\mathbf{I} \otimes \Sigma \hat{V} X X^T \hat{V}^T \Sigma^T) (d \text{ vec}(\hat{U})) \\
 &\Rightarrow \mathbf{H}_i^U = \mathbf{H}^U = 2 \Sigma \hat{V} X X^T \hat{V}^T \Sigma^T
 \end{aligned} \tag{10}$$

746 Here $\mathbf{K}_{\mathbf{h}_{\text{out}} \mathbf{r}}$ is the commutation matrix, and $\mathbf{K}_{\mathbf{h}_{\text{out}} \mathbf{r}}^{-1} = \mathbf{K}_{\mathbf{r} \mathbf{h}_{\text{out}}}$.

748 C.3 DETAILED DERIVATION PROCESS FOR NEW U

$$\begin{aligned}
 & d_{\tilde{\mathbf{U}}} \left\| \mathbf{U} \Sigma \mathbf{V} X - \tilde{\mathbf{U}} \Sigma \hat{V} X \right\|_F^2 \\
 &= 2 \text{tr}(d \tilde{\mathbf{U}} \Sigma \hat{V} X (\tilde{\mathbf{U}} \Sigma \hat{V} X - \mathbf{U} \Sigma \mathbf{V} X)^T) \\
 &= 2 \text{tr}(\Sigma \hat{V} X (\tilde{\mathbf{U}} \Sigma \hat{V} X - \mathbf{U} \Sigma \mathbf{V} X)^T d \tilde{\mathbf{U}}) \\
 &\Rightarrow \frac{\partial \mathbb{L}}{\partial \tilde{\mathbf{U}}} = (\tilde{\mathbf{U}} \Sigma \hat{V} X - \mathbf{U} \Sigma \mathbf{V} X) X^T \hat{V}^T \Sigma^T
 \end{aligned} \tag{11}$$

756 Table 10: Selected backbone and aligned models for the examined four tasks.
757

758 Task	7B Models		13-14B Models	
	759 Backbone	760 Aligned	761 Backbone	762 Aligned
763 Math	764 Qwen2.5-Math	765 Qwen2.5-Math-Instruct	766 LLaMA2	767 MetaMath
768 Reasoning	769 Qwen2.5-Math	770 DeepSeek-R1-Distill-Qwen	771 Qwen2.5	772 DeepSeek-R1-Distill-Qwen
773 Coder	774 Qwen2.5-Coder	775 Qwen2.5-Coder-Instruct	776 Qwen2.5-Coder	777 Qwen2.5-Coder-Instruct
778 Multi-Modal	779 Qwen2.5	780 Qwen2.5-VL-Instruct	781 LLaMA2	782 LLAVA-V1.5

783 By setting the gradient of the loss to zero, DELTAMIX gets the corrected $\tilde{\mathbf{U}}$ as follow:

$$784 \frac{\partial \mathbb{L}}{\partial \tilde{\mathbf{U}}} = (\tilde{\mathbf{U}} \Sigma \hat{\mathbf{V}} X - \mathbf{U} \Sigma \mathbf{V} X) X^T \hat{\mathbf{V}}^T \Sigma^T = 0 \quad (12)$$

$$785 \Rightarrow \tilde{\mathbf{U}} = \mathbf{U} \Sigma \mathbf{V} X X^T \hat{\mathbf{V}}^T \Sigma^T (\Sigma \hat{\mathbf{V}} X X^T \hat{\mathbf{V}}^T \Sigma^T)^{-1}$$

786 D EXPERIMENTS SETUP

787 D.1 MAIN EXPERIMENTS

788 We evaluate our methods across models in Table 10 on four distinct tasks: math, reasoning, code
789 generation, and multi-modal. These tasks encompass a vast array of current directions based on
790 fine-tuning with open-source LLMs.

791 • **Math.** We use the GSM8K (Cobbe et al., 2021) and Math500 (Lightman et al., 2023) datasets as
792 the test set. We follow the prompt format of WizardMath (Luo et al., 2025) and set the maximum
793 generation length to 1024. The evaluation metric is accuracy, determined by comparing the model-
794 generated solution to the ground truth.

795 • **Reasoning.** We use the Math500 and AIME2024 datasets as the test set. For the reasoning prompt
796 of AIME2024, we follow with (Naman Jain & et al., 2024). The maximum length of both tasks is set
797 to 8192. The evaluation metric is accuracy, determined by comparing the model-generated solution
798 to the ground truth.

799 • **Code Generation.** We use two widely used datasets as the test set: HumanEval (Chen et al., 2021)
800 and MBPP (Austin et al., 2021). We follow the Magicoder (Wei et al., 2024) evaluation framework
801 for HumanEval and adopt EvalPlus (Liu et al., 2023a) for MBPP. The evaluation metric is the pass
802 rate (pass@1), which measures whether the code generated in a single attempt successfully passes
803 the test cases.

804 • **Multi-Modal.** We utilize the GQA (Hudson & Manning, 2019) and the image part of ScienceQA (Lu et al., 2022) datasets, both commonly used for evaluating VLM performance, as our
805 test set. We adopt lmms-eval (Zhang et al., 2024) to evaluate both tasks. The evaluation metric is
806 accuracy, which measures whether the model selects the correct option.

807 To accelerate DELTAMIX’s quantization, we discard
808 the last k ranks of \mathbf{V} , where $k = \left\lfloor \frac{G_b(h_{in} \cdot h_{out})}{(h_{in} + h_{out}) \cdot \text{bit}_{\min}} \right\rfloor$.

809 Here, bit_{\min} denotes the smallest non-zero bit-width
810 allowed in quantization. Our acceleration scheme,
811 which eliminates the singular components with the
812 smallest singular values, sacrifices some performance
813 in exchange for reduced computational costs. To
814 validate this approach, we conducted experiments on
815 Qwen2.5-Math-7B-Instruct by discarding between
816 0% and 60% of the trailing singular components. As shown in Table 11, DELTAMIX performs
817 optimally at low drop ratios (0% and 20%), confirming that this technique is primarily aimed at
818 enhancing speed. As we discard more trailing singular components, performance declines; however,
819 this slight decrease can be exchanged for an improvement in speed.

820 D.2 DELTA-COMPRESSION VS. DELTA-TUNING

821 Specifically, we set the LoRA rank to 128 and the scale factor to 128, training LoRA for all model
822 parameters for 3 epochs using a cosine schedule with a peak learning rate of 4e-5 and a warm-up ratio

823 Table 11: The performance of applying
824 DELTAMIX to Qwen2.5-Math-7B-Instruct
825 with discard the last $k\%$ ranks.

Drop Ratio	Math500	GSM8K	Average	Costing Time
0	77.6	94.8	86.2	1.29h
0.1	75.4	94.2	84.8	1.13h
0.2	78.6	94.4	86.5	1.13h
0.3	75.6	94.2	84.9	1.00h
0.4	75.8	94.3	85.1	1.00h
0.5	76.0	93.7	84.9	1.00h
0.6	74.8	94.0	84.4	0.94h

810 of 0.1, using model deepseek-llm-7b-base (DeepSeek-AI, 2024). We randomly sample 50k training
 811 examples from MetaMathQA (Yu et al., 2023) and Magicoder-Evol-Instruct (Wei et al., 2024) for the
 812 math and code tasks, respectively. To ensure a fair comparison, we fine-tune all model parameters
 813 using the same datasets as those used for LoRA training. We then apply DELTAMIX to both math
 814 and code finetuned LLMs.

816 E MORE EXPERIMENTS

818 E.1 ANALYZING THE DIFFERENT QUANTIZATION SCHEMES IN \mathbf{U}

820 In this section, we investigate the effect
 821 of applying different quantization
 822 schemes to \mathbf{U} in order to assess the
 823 necessity of mixed precision. Our
 824 evaluation is conducted on Qwen2.5-
 825 Math-7B-Instruct. The results show
 826 that there is no significant difference
 827 between DELTAMIX and other quanti-
 828 zation methods for \mathbf{U} . As shown
 829 in Table 12, “x-bit” denotes quantiza-
 830 tion of \mathbf{U} with x-bit precision. The
 831 “DELTAMIX-row” setting applies the
 832 optimization model to determine the
 833 scheme and performs quantization in
 834 a row-wise manner, whereas “DELTAMIX”
 835 adopts the same quantization scheme as \mathbf{V} and conducts
 836 quantization column by column. The performance differences across schemes are minimal, with the
 837 largest gap in average scores being only 0.95%, observed between the “DELTAMIX-row” setting and
 838 the 2-bit quantization. These results suggest that the choice of quantization strategy for \mathbf{U} has only a
 839 limited impact on overall performance.

840 E.2 INFERENCE SPEED AND MEMORY COST

841 To demonstrate the impact of DELTAMIX on inference speed and memory cost, we implement a
 842 simple Triton (Tillet et al., 2019) kernel for DELTAMIX. We compare our kernel with naive aligned
 843 models. Since there is no packing function of Delta-CoMe, we use our packing function and kernel
 844 for the Delta-CoMe method.

845 Following the setup in Yao et al. (2024), we assess the end-to-end system performance under varying
 846 arrival rates and request distributions. We consider two types of model popularity distribution: 1)
 847 Uniform: all models are equally popular. 2) Skewed: model popularity follows a Zipf- α distribution.
 848 We evaluate the performance when serving 32
 849 model variants of Qwen2.5-7B. Requests are
 850 sent to the serving system at a variable Pois-
 851 son arrival rate (λ). To simplify, each request
 852 consists of 512 tokens, with the model gener-
 853 ating one token as its response. We run the
 854 simulations for 100 seconds across different ar-
 855 rivial rates and model distributions, measuring
 856 performance using two metrics: 1) end-to-end
 857 latency averaged over all requests; 2) Through-
 858 put, number of requests processed per second.
 859 All experiments are conducted on a single L40
 860 GPU, with 28G of memory for storing models
 861 and the remaining memory for inference.

862 As shown in the Table 13, DELTAMIX improves the throughput 6x and decreases end-to-end 100x
 863 compared to the naive method, because rather than loading the whole full-precision parameters,
 864 DELTAMIX quantizes the delta-parameters so that a GPU can load more delta-parameters and switch
 865 them easily between CPU and GPU.

Table 12: We evaluate the performance of various quantiza-
 tion schemes applied to \mathbf{U} on Qwen2.5-Math-7B-Instruct.
 Here, “x-bit” denotes quantization of \mathbf{U} at x-bit precision.
 The “DELTAMIX-row” setting refers to applying the optimi-
 zation model to determine the scheme and performing
 quantization in a row-wise manner, whereas “DELTAMIX”
 indicates employing the same quantization scheme used for
 \mathbf{V} , with quantization carried out column by column.

	α	Math500	GSM8K	AVG
$\mathbf{U}(2\text{bit}), \mathbf{V}(\text{DELTAMIX})$	1/16	76.8	93.6	85.2
$\mathbf{U}(3\text{bit}), \mathbf{V}(\text{DELTAMIX})$	1/16	75.6	93.4	84.5
$\mathbf{U}(\text{DELTAMIX-row}), \mathbf{V}(\text{DELTAMIX})$	1/16	75.2	93.6	84.4
DELTAMIX	1/16	75.2	93.9	84.6

Table 13: The Throughput and End-to-end sys-
 tem performance under varying arrival rates and
 request distributions when serving 32 model vari-
 ants of Qwen2.5-7B.

	$\lambda = 0.5$		$\lambda = 1.0$	
	Throughput(req/s)	E2E(s)	Throughput(req/s)	E2E(s)
Zipf ($\alpha = 1.5$)				
Naive	0.21	52.42	0.18	198.48
Delta-CoMe	0.42	0.55	0.87	0.68
DELTAMIX	0.42	0.52	0.87	0.62
Uniform				
Naive	0.07	253.93	0.08	481.42
Delta-CoMe	0.42	0.81	0.86	1.44
DELTAMIX	0.42	0.79	0.86	1.17

864
865
866
867

E.3 TIME REQUIRED FOR RTC

In this section, we evaluate the efficiency of the RTC method by measuring its time for processing a transformer block across four models of different sizes and comparing it to the corresponding proportion of the total quantization time. As shown in the Table 14, RTC processes an entire transformer block for a 70B model in just 8.16s, accounting for only 2.82% of the total quantization time. Referring to Table 7, RTC improves performance on the AIME2024 task by 13.1%. This demonstrates that RTC can improve the performance of more difficult-to-quantize models in a short time.

E.4 TIME FOR QUANTIZATION

Table 15: Time cost (in seconds) for “Simulation”, “Optimization”, and “Quantization” for one transformer block on the Qwen2.5-Math-7B-Instruct model, which consists of 28 blocks.

		Simulation	Optimization	Quantization	Total
Delta-CoMe	Q_proj	0.0		3.6	
	K_proj	0.0	0.0	3.6	
	V_proj	0.0		3.6	
	O_proj	0.0	0.0	5.1	50.5
	Up_proj	0.0		4.5	
	Gate_proj	0.0	0.0	4.5	
	Down_proj	0.0	0.0	25.6	
DELTAMIX	Q_proj	4.7		0.5	
	K_proj	4.7	8.5	0.5	
	V_proj	4.7		0.5	
	O_proj	6.1	11.5	0.5	143.6
	Up_proj	5.8		2.8	
	Gate_proj	5.8	20.5	2.8	
	Down_proj	30.2	22.5	11.0	

In this section, we evaluate the quantization time of DELTAMIX and Delta-CoMe within a single transformer block. The fundamental distinction between the two methods lies in their mixed-precision quantization strategies for each linear layer. DELTAMIX determines the strategy by minimizing quantization loss, formulated as a 0/1 integer linear programming problem, but Delta-CoMe adopts an empirical and fixed strategy for all linear layers.

To clarify the computational overhead, we decompose the quantization time into three components. The first is “simulation time”, which reflects the cost of estimating quantization loss under different bit-widths. The second is “optimization time”, incurred when solving the 0/1 integer linear programming problem. The third is the “quantization time” itself, representing the cost of quantizing each linear layer according to the selected strategy.

Required Time for Each Part. In Table 15, we report the detailed results of different types of linear layer for one transformer block in Qwen2.5-Math-7B-Instruct, which contains 28 blocks in total. For Delta-CoMe, both simulation and optimization times are zero because its mixed-precision quantization strategy is predetermined and applied uniformly across all linear layers; consequently, the entire forward pass is accounted for within the quantization time. In contrast, DELTAMIX incurs additional simulation and optimization costs, which are higher for Up_proj, Gate_proj, and Down_proj due to their larger row or column dimensions. Specifically, simulation time increases with the number of columns, while optimization time grows with the number of rows. Notably,

Table 14: The time (in seconds) consumed by applying RTC and quantizing a transformer block to four different-sized models.

Model	RTC	Total Time	RTC (in percentage)
DeepSeek-R1-Distill-Qwen-1.5B	0.15	29.87	0.50%
DeepSeek-R1-Distill-Qwen-7B	1.35	99.25	1.36%
DeepSeek-R1-Distill-Qwen-14B	1.35	114.88	1.18%
DeepSeek-R1-Distill-Llama-70B	8.16	289.69	2.82%

918 DELTAMIX’s quantization time is shorter than that of Delta-CoMe, since the forward pass is already
 919 included in its simulation stage.
 920

921 Overall, although DELTAMIX takes 3x more time than Delta-CoMe, it only requires 1.2 hours for
 922 7B models and 2.4 hours for 14B models on a single L20 GPU, which is acceptable. In contrast to
 923 Delta-CoMe’s degraded performance on the large norm of ΔW , DELTAMIX consistently achieves
 924 comparable or better results across all scenarios.
 925

926 **Required Time under Various Numbers of Candidate Bit-widths.** By quantizing Qwen2.5-
 927 Math-7B-Instruct with different numbers of candidate bit-widths, we fur-
 928 ther analyze the time cost for each part of
 929 the quantization. The results in Ta-
 930 ble 16 demonstrate that the “Quant-
 931 ization” remains nearly constant. For
 932 Quantization, the parameters of any
 933 rank, the assigned bit width is fixed
 934 once the mixed-precision scheme is
 935 determined; thus, varying the range of
 936 candidate bit widths has a negligible effect. In contrast, the “Optimization” and “Simulation” are
 937 directly affected by the number of available bit widths. The bit-width range determines the simulation
 938 rounds and the size of the ILP solution space.
 939

940 **Optimization Time Scale with Layer Size.** We measured the total time and memory needed to
 941 solve the ILP for a single transformer block across four different-sized models. We also report
 942 the GPU memory consumption (in
 943 GB) and the hidden and interme-
 944 diate sizes corresponding to the size of
 945 the model. The results in Table 17
 946 demonstrate that ILP runtime is pri-
 947 marily determined by the hidden di-
 948 mension of an individual linear layer.
 949 It should also be noted that, to satisfy
 950 open-source requirements, our ex-
 951 periments employed a slower open-source solver (SCIP). In practice, the use of faster commercial ILP
 952 solvers or a reduced set of candidate bit-widths can substantially accelerate ILP solving. Thus, the
 953 reported optimization times should be interpreted as a lower bound for real-world deployments. Re-
 954 garding memory usage, DELTAMIX quantizes a 70B model within a single L20 GPU with 47.53GB,
 955 indicating that DELTAMIX is not resource-intensive and is therefore suitable for large-scale applica-
 956 tions in resource-constrained environments or for parallel quantization of multiple models.
 957

958 **ILP Accelerate.** We solve the ILP using open-source solvers in our paper. However, this process
 959 can be accelerated by 6x times if we switch from SCIP to proprietary solvers such as COPT (Ge
 960 et al., 2023) when handling ILP problems. Given that more than half of the quantization time
 961 for DELTAMIX is dominated by the ILP-solving process, adopting such commercial solvers could
 962 significantly enhance DELTAMIX’s efficiency in practice. Additionally, DELTAMIX can be further
 963 optimized through other means, such as by limiting the number of candidate bitwidths (e.g., from 8
 964 to 4).
 965

966 E.5 PERFORMANCE UNDER DIFFERENT COMPRESSION RATIO

967 To show that DELTAMIX can apply to
 968 arbitrary compression ratios, we eval-
 969 uated DeepSeek-R1-Distill-Qwen-7B
 970 and Qwen2.5-Math-7B-Instruct at
 971 four compression ratios, as shown
 972 in Table 18. The performance of
 973 DELTAMIX decreases as the compres-
 974 sion ratio increases. This is expected,
 975

Table 16: The required time for each part across various numbers of candidate bit-widths to quantize Qwen2.5-Math-7B-Instruct.

#Candidate Bit-widths	Simulation	Optimization	Quantization	Total Time
3	22.29	30.80	18.39	71.48
4	26.05	35.01	21.42	82.48
5	28.41	39.68	19.78	87.87
6	32.18	46.40	19.88	98.46
7	37.46	55.14	20.71	113.31
8	39.66	63.00	20.71	123.37

Table 17: The “Optimization” time, GPU memory usage (in GB), and the hidden and intermediate size for four different-sized models when applying DELTAMIX.

Model Size	Optimization	Memory Usage	Hidden (Intermediate) Size
DeepSeek-R1-Distill-Qwen-1.5B	16.90	4.76	1536(8960)
DeepSeek-R1-Distill-Qwen-7B	59.38	12.62	3584(18944)
DeepSeek-R1-Distill-Qwen-14B	71.87	16.23	5120(13824)
DeepSeek-R1-Distill-Llama-70B	171.80	47.53	8192(28672)

959 **Table 18: Performance of DELTAMIX under different com-
 960 pression ratios $1/\alpha$.**
 961

α	DeepSeek-R1-Distill-Qwen		Qwen2.5-Math-Instruct		Average
	Math500	AIME2024	Math500	GSM8K	
3/16	86.4	36.7	77.2	95.6	74.0
2/16	85.8	33.3	77.4	95.1	72.9
1/16	83.2	33.3	77.6	94.8	72.2
1/32	76.8	26.7	73.4	91.6	67.1

972 Table 19: The detailed storage overhead between DELTAMIX and Delta-CoMe.
973

	DELTAMIX			Delta-CoMe		
	Quantized Weights	Other Parameters	Total Storage	Quantized Weights	Other Parameters	Total Storage
Qwen2.5-Coder-7B-Instruct	0.81	0.06	0.87	0.81	0.06	0.87
Qwen2.5-VL-7B-Instruct	0.81	0.06	0.87	0.81	0.06	0.87
Qwen2.5-Math-7B-Instruct	0.81	0.06	0.87	0.81	0.06	0.87
DeepSeek-R1-Distill-Qwen-7B	0.81	0.05	0.86	0.81	0.06	0.87
MetaMath-13B-V1.0	1.51	0.09	1.60	1.51	0.12	1.63
Qwen2.5-Coder-14B-Instruct	1.63	0.11	1.74	1.63	0.12	1.75
DeepSeek-R1-Distill-Qwen-14B	1.63	0.10	1.73	1.63	0.12	1.75
llava-v1.5-13b	1.51	0.10	1.61	1.51	0.12	1.63

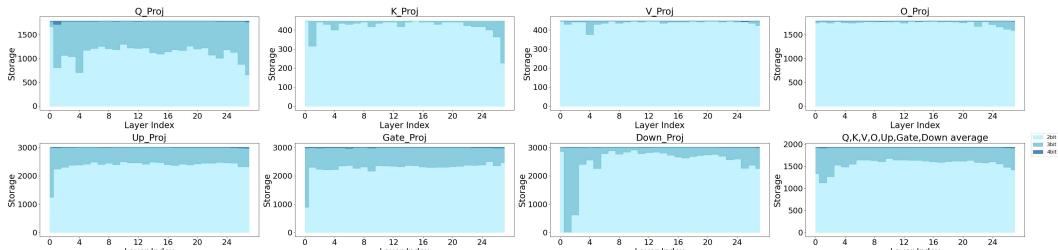
980
981 as a higher compression ratio indicates a reduced capacity of the quantized model to preserve in-
982 formation from the original model. Notably, baselines like BitDelta and Delta-CoMe cannot apply
983 to other compression ratios except $\alpha = 1/16$. BitDelta quantizes ΔW to a fixed 1 bit, resulting in a
984 constant compression ratio. For Delta-CoMe, the empirically determined mixed-precision scheme is
985 fixed and does not offer a clear method for allocating mixed precision at other compression ratios. In
986 contrast, DELTAMIX enables the compression of ΔW to arbitrary ratios, offering greater flexibility
987 and broader applicability.

988 E.6 BUDGET PARITY BETWEEN DELTAMIX AND DELTA-COME

989 To more accurately compare the storage overhead of DELTAMIX with the strongest baseline, Delta-
990 CoMe, and to demonstrate the fairness of the experiment, we compare the storage overhead of models
991 in our main experiments. We divide the total storage into two components: “Quantized Weights”
992 representing the storage used by quantized parameters, and “Other Parameters” include non-weight
993 parameters such as Scales (stored in 16 bits) and Zeros (stored according to their quantization bitwidth).
994 Table 19 demonstrates that DELTAMIX exhibits lower storage overhead compared with Delta-CoMe.
995 This trend is further illustrated in Figure 3, where Delta-CoMe supports up to 8 models, whereas
996 DELTAMIX can deploy 12 simultaneously. These results clearly demonstrate the superior efficiency
997 of DELTAMIX.
998

1000 E.7 ANALYZING THE BIT ALLOCATION RESULTS

1001 We investigate the bit allocation results across different weight types and layers using the Qwen2.5-
1002 Math-7B-Instruct model. Figure 4 shows the memory allocated for each bit-width. Overall, the
1003 bit allocation results for different weight types and layers are different. The V_Proj, K_Proj and
1004 O_Proj in the self-attention layer exhibit a similar allocation trend. For the other four weight types,
1005 the bit allocation results differ. For instance, Down_Proj allocates more 2-bit units at the beginning
1006 compared to other weight types.
1007

1016 Figure 4: GPU memory usage with quantization bits across layers of Qwen2.5-Math-7B-Instruct.
1017

1018 Delta-CoMe (Ping et al., 2024) empirically posits that singular vectors corresponding to larger
1019 singular values are more significant and, therefore, necessitate higher-bit representations. We further
1020 examine whether DELTAMIX adheres to this assumption, specifically by using singular values alone
1021 to evaluate importance. We compute the Kendall rank correlation coefficient τ , between the bit
1022 sequence and the singular value sequence for each W . The coefficient is a measure of rank correlation,
1023 ranging from -1 to 1, reflecting the similarity of the orderings of the data when ranked by each of
1024 the quantities. If the method strictly adhered to the assumption of using singular values alone for
1025 importance assessment, singular vectors with larger singular values would always receive higher bit-
width, resulting in a consistent $\tau = 1$ across all W . However, for the DeepSeek-R1-Distill-Qwen-7B

1026 model with DELTAMIX, we observe a τ of 0.95 for the \mathbf{W} of the key projection at layer 28. This
 1027 indicates that DELTAMIX goes beyond singular values, taking into account both the “scaling” term
 1028 and the “difference” term.

1030 E.8 ANALYZING THE QUANTIZATION ERROR ACROSS WEIGHT TYPES AND LAYERS

1032 Table 20: Average quantization error ($\times 10^2$) across different type of linears with Eq. (1). “Low”,
 1033 “Mid”, and “High” denote the first 9 layers, layers 9 to 17, and the last 10 layers, respectively. “All”
 1034 and “Out” denote the average error across all activations and the average error of the top 1% of
 1035 activations.

Param		Q_proj				Param		K_proj					
Layer		Low	Mid	High		Layer		Low	Mid	High			
Type	All	Out	All	Out	All	Out	Type	All	Out	All	Out	All	Out
Low-Rank	0.26	0.32	0.54	0.76	1.33	1.64	Low-Rank	0.06	0.07	0.11	0.13	0.19	0.29
BitDelta	0.18	0.37	0.27	0.37	0.68	1.00	BitDelta	0.03	0.03	0.05	0.06	0.08	0.12
Delta-CoMe	0.13	0.14	0.32	0.41	0.81	0.91	Delta-CoMe	0.03	0.03	0.06	0.07	0.12	0.21
DELTAMIX	0.10	0.11	0.25	0.32	0.64	0.73	DELTAMIX	0.03	0.03	0.05	0.07	0.10	0.18
Param		V_proj				Param		O_proj					
Layer		Low	Mid	High		Layer		Low	Mid	High			
Type	All	Out	All	Out	All	Out	Type	All	Out	All	Out	All	Out
Low-Rank	0.03	0.03	0.06	0.08	0.39	1.11	Low-Rank	0.23	0.40	0.70	1.54	8.52	69.00
BitDelta	0.01	0.01	0.03	0.03	0.18	0.69	BitDelta	0.10	0.14	0.28	0.46	10.44	895.98
Delta-CoMe	0.02	0.02	0.04	0.05	0.24	0.85	Delta-CoMe	0.08	0.13	0.32	0.47	3.53	17.02
DELTAMIX	0.02	0.02	0.04	0.05	0.21	0.67	DELTAMIX	0.07	0.12	0.30	0.45	3.18	22.31
Param		Up_proj				Param		Gate_proj					
Layer		Low	Mid	High		Layer		Low	Mid	High			
Type	All	Out	All	Out	All	Out	Type	All	Out	All	Out	All	Out
Low-Rank	4.78	4.50	2.67	3.18	13.70	14.95	Low-Rank	6.35	3.85	3.16	0.72	13.53	4.02
BitDelta	4.71	3.85	1.19	1.32	13.30	11.61	BitDelta	9.01	4.47	1.60	0.65	10.32	5.87
Delta-CoMe	2.10	2.08	1.60	1.90	7.67	9.37	Delta-CoMe	2.64	2.90	1.88	0.84	7.73	3.02
DELTAMIX	1.83	1.74	1.36	1.59	6.58	8.89	DELTAMIX	2.28	2.22	1.57	0.59	6.65	2.07
Param		Down_proj				Param		Average					
Layer		Low	Mid	High		Layer		Low	Mid	High			
Type	All	Out	All	Out	All	Out	Type	All	Out	All	Out	All	Out
Low-Rank	1.05	5.52	3.28	4.94	110.20	7470.34	Low-Rank	1.82	3.67	1.50	2.84	21.12	1890.34
BitDelta	1.21	2.35	0.87	1.45	115.60	11735.05	BitDelta	2.18	2.81	0.61	1.08	21.51	3162.58
Delta-CoMe	0.33	1.86	1.05	1.57	32.66	1851.91	Delta-CoMe	0.76	1.79	0.75	1.33	7.54	470.82
DELTAMIX	0.31	1.62	1.02	1.43	30.30	1669.95	DELTAMIX	0.66	1.46	0.66	1.12	6.81	426.20

1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079