
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING DELTA COMPRESSION IN LLMS VIA SVD-
BASED QUANTIZATION ERROR MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning is a crucial process for adapting large language models (LLMs) to
diverse applications. In certain scenarios, like multi-tenant serving, a large num-
ber of LLMs finetuned from the same base model are deployed to meet complex
requirements for users. Recent works explore delta-compression approaches to
quantize and compress the delta weights between the customized LLM and the
corresponding base model. However, they exhibit inadequate performance at
high compression ratios due to their empirical nature. In this work, we introduce
DELTAMIX, an adaptive mixed-precision delta-compression framework designed
to minimize quantization error in the singular value decomposition (SVD) space
without imposing additional assumptions. DELTAMIX provides a theoretical justi-
fication for the necessity of mixed-precision compression and presents a practical
quantization solution that involves solving a 0/1 linear integer programming prob-
lem alongside a reconstruction target correction method. Experimental results
across multiple models and benchmarks illustrate that DELTAMIX consistently
outperforms all baseline methods. Notably, on tasks such as AIME2024 and GQA,
DELTAMIX exceeds the performance of the best baseline, Delta-CoMe, by 22.3%
and 6.1% for 7B parameter models, respectively.

1 INTRODUCTION

Large language models (LLMs) have shown breakthrough performance on various knowledge-
intensive (Grattafiori et al., 2024; Team, 2024; Jiang et al., 2023) and complex reasoning tasks
(DeepSeek-AI, 2025; Grattafiori et al., 2024). Enhancing deployment efficiency is crucial for
facilitating LLM applications on edge devices and in cloud environments (Yao et al., 2024). In
multi-tenant serving scenarios, multiple users fine-tune the same base model using their customized
datasets (Wei et al., 2024; Yu et al., 2023), resulting in a variety of customized models that share a
common foundation. These models, derived from the same base LLM (e.g., Qwen2.5 (Team, 2024)
or LLaMA (Grattafiori et al., 2024)), need to be deployed concurrently to address simultaneous
user requests. Conventional LLM compression approaches (Frantar et al., 2022; Lin et al., 2024)
focus on quantizing and compressing the full model parameters. While effective at low compression
ratios, these methods struggle to maintain model performance at high compression ratios, resulting in
significant storage and computational overhead when deploying multiple customized LLMs.

In contrast to full model compression, delta-compression (Yao et al., 2024; Liu et al., 2024; Ping
et al., 2024) decomposes a customized LLM into two components: the base model and the delta
weights, which encapsulate the differences between the customized model and its corresponding base
model. This approach emphasizes the compression of delta weights. Consequently, in multi-tenant
environments, a single base model can be deployed alongside multiple sets of compressed delta
parameters. Delta-compression achieves significantly higher compression rates than full model
compression, thereby substantially reducing overall deployment costs. Researchers have explored
effective approaches for delta-compression. Ryu et al. (2023) proposes a 1-bit quantization approach,
termed BitDelta, to reduce the size of delta weights. Liu et al. (2024) leverages the low-rank
characteristics of delta weights to improve storage efficiency through low-rank approximation. Delta-
CoMe (Ping et al., 2024) introduces a mixed-precision delta-compression technique based on singular
value decomposition (SVD), allocating higher-bit representations to singular vectors associated with
larger singular values. Although these existing approaches demonstrate promising performance at

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of DELTAMIX. The quantization error of the i-th row of V comprise two
components: a “scaling” term (➃) and a “difference” term (➂). The “scaling” term is fixed, while the
“difference” term is related to the mixed-precision quantization scheme (➀). DELTAMIX identifies the
optimal quantization scheme within the constraints of the bit budget (➀) to effectively balance these
two components, thereby minimizing the total quantization error of V (➄). Note that the "difference"
term for various bit-widths (➁) is pre-computed using a calibration dataset and remains fixed during
the optimization process.

high compression ratios, they lack rigorous mathematical foundations, which can lead to suboptimal
performance, especially in challenging compression scenarios.

In this work, we propose DELTAMIX, a high-performance mixed-precision delta-compression frame-
work grounded in a solid theoretical foundation. DELTAMIX implements delta-compression within
the SVD space, formulating the quantization objective as the minimization of layer-wise quantization
error. By pursuing this objective, DELTAMIX establishes a mathematically sound mixed-precision
compression strategy that accommodates flexible, user-defined compression ratios. This strategy
derives the mixed-precision quantization scheme through the solution of a 0/1 linear integer pro-
gramming problem and ensures optimization consistency throughout the quantization process via
a reconstruction target correction method. Unlike Ping et al. (2024), which empirically posits
that singular vectors corresponding to larger singular values are more significant and, therefore,
necessitate higher-bit representations, DELTAMIX prioritizes the minimization of quantization error.
It formulates all subsequent strategies based exclusively on this principle, eschewing reliance on sin-
gular values for assessing importance. This distinction is vital, as prior research has demonstrated that
the significance attributed to singular values may not correlate with the performance of LLMs (Hsu
et al., 2022; Wang et al., 2025).

We conduct extensive experiments on reasoning, math, code, and multimodal tasks across eight
aligned LLMs to demonstrate the effectiveness of DELTAMIX. The results show that DELTAMIX
achieves state-of-the-art performance among delta-compression methods, particularly in challenging
scenarios where the norm of ∆W is large. Notably, on the reasoning task AIME2024, DELTAMIX
surpasses the leading baseline, Delta-CoMe, by 22.3% on the 7B model and 26.9% on the 14B model.
Furthermore, DELTAMIX can achieve more than 6× GPU memory and disk storage savings, enabling
the deployment of multiple models within constrained resource environments.

2 RELATED WORK

Quantization Strategies for LLMs Quantization reduces the bit-precision of model parameters to
lower GPU cost and accelerate inference. Current strategies for LLM quantization can be broadly
categorized into quantization-aware training (QAT) and post-training quantization (PTQ). QAT
simulates quantization operations during training and uses backpropagation to correct quantization
errors (Zhou et al., 2018; Esser et al., 2020; Liu et al., 2023b; Wang et al., 2023). In contrast, PTQ
quantizes a pre-trained model without further training, typically calibrating the quantized weights
with a modest calibration dataset (Dettmers et al., 2022; Frantar et al., 2022; Lin et al., 2024; Lee
et al., 2024). Given the high computational cost associated with training or fine-tuning large language

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

models, PTQ has become a particularly prevalent approach for LLM quantization. In our work,
we leverage the GPTQ (Frantar et al., 2022) method within PTQ, focusing on mixed-precision
quantization of the singular vectors of the delta parameters.

Delta-Compression Delta-compression (Isik et al., 2023; Ryu et al., 2023; Liu et al., 2024; Ping
et al., 2024) aims to diminish the storage and inference costs associated with serving multiple models
by compressing delta parameters, which are the differences between the parameters of a fine-tuned
LLM and its corresponding base LLM. GPT-Zip (Isik et al., 2023) extends GPTQ to compress the delta
parameters into 2-bit, and then sparsify 95% of the quantized delta weights to further reduce storage
costs. DeltaZip (Yao et al., 2024) extends the idea of structured pruning and delta-compression to
develop a multi-tenant serving system. However, both methods are still limited to compression ratios
of 2-bit and higher. Liu et al. (2024) introduces BitDelta, which compresses delta weight into 1-bit,
using a trainable high-precision scaling factor for each delta weight matrix. From this point onward,
the compression of delta parameters has entered the 1-bit era. In addition to these low-bit methods,
Ryu et al. (2023) identifies the low-rank property of delta weights and achieves delta-compression
through low-rank approximation. Recently, Delta-CoMe (Ping et al., 2024) leverages the benefits of
both low-rank and low-bit compression methods, proposing a mixed-precision delta-compression
method that uses varying bit-widths to represent different singular vectors of the delta weights.
However, the rationale behind their mixed-precision quantization is predicated on a questionable
hypothesis (Hsu et al., 2022; Wang et al., 2025): that singular vectors associated with larger singular
values are inherently more important. This premise lacks a solid theoretical foundation, leading to a
mixed-precision strategy that is primarily empirical and, consequently, suboptimal. In this work, we
introduce DELTAMIX, which provides a mathematical proof of the necessity for mixed-precision in
SVD-based delta-compression methods, and derives a quantization approach that is firmly grounded
in mathematical theory.

3 METHOD

Algorithm 1 Algorithm for Quantization in DELTAMIX

Data: Delta parameter W, List of candidate quantiza-
tion bits Q, predefined averaged bit-width Gb,
Calibration set X

Result: Quantized matrices V̂ and Û
U,Σ,V← SVD(W)
for bit b in Q do

Vb ← SimQuant(V, b,X)
EV

b ← CalcLoss(V,Vb,Σ)
end
B ← CalcStorage(Q)
S ← SolveOpt(B,Gb,EV)

V̂← QuantParams(V,S, X)

Ũ← RTC(U, V̂,V,Σ, X)

Û← QuantParams(Ũ,S, V̂,Σ, X)

return V̂, Û; // Return results

In this section, we introduce DELTAMIX,
an adaptive mixed-precision delta-compression
strategy for LLMs with mathematical support.
In Section 3.1, we begin with the minimization
of quantization error in the SVD space and de-
rive the detailed quantization process. We pro-
vide a mathematical proof demonstrating the
necessity of mixed-precision in this context. In
Section 3.2, we introduce our mixed-precision
schedule in detail, which is built on the solution
of a 0/1 integer linear programming problem.
Algorithm 1 shows the details of DELTAMIX.

3.1 QUANTIZATION ERROR DERIVATION

At a high level, DELTAMIX follows the struc-
ture of the classical post-training quantization
method GPTQ, by performing quantization to minimize the reconstruction error. Given a delta
weight matrix W and the corresponding input X , the quantization objective of the GPTQ is to find a
quantized matrix Ŵ which minimizes the squared error:

argmin
Ŵ

∥∥∥WX − ŴX
∥∥∥2
F
=

∑
i

∥∥∥WiX − ŴiX
∥∥∥2
F
≈

∑
i

ei (1)

Following previous work (Hassibi et al., 1993; Nagel et al., 2020), the quantization error of the ith

row of W can be approximated with a second-order Taylor expansion ei:

ei =
1

2
∆WiHi∆WT

i (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here ∆Wi = Wi − Ŵi is the quantization difference of ith row, while the Hessian matrix Hi =
2XXT is independent and identical across different rows in W. By reusing H, GPTQ derives the
optimal quantized weights Ŵ row by row, allowing for parallel computation across multiple rows.

Instead of directly quantizing W, DELTAMIX performs quantization in the SVD space, by finding a
quantized matrix Û and V̂ which minimizes the squared error:

argmin
Û,V̂

∥∥∥UΣVX − ÛΣV̂X
∥∥∥2
F

(3)

where W = UΣV. Below, we introduce the detailed quantization process of DELTAMIX, which
first quantizes V, and then moves to U.

3.1.1 QUANTIZE V

In this section, we present a theoretical analysis that motivates the need for mixed-precision quantiza-
tion. Specifically, we find the quantized V̂ with the row-by-row approach by minimizing the squared
error:

argmin
V̂

∥∥∥UΣVX −UΣV̂X
∥∥∥2
F
≈

∑
i

eVi

eVi =
1

2
∆ViH

V
i ∆V T

i

(4)

Here ∆Vi = Vi − V̂i is the quantization difference of the ith row, and HV
i = 2Σ2

ii · XXT is the
Hessian matrix of the ith row of V (with derivation details in Appendix C.1). As Σ2

ii is a scalar, we
can reformulate the Eq. (4) as follows:

eVi =
1

2
∆ViH

V
i ∆V T

i = Σ2
ii︸︷︷︸

“scaling”

·∆ViXXT∆V T
i︸ ︷︷ ︸

“difference”

(5)

From Eq. (5), it is evident that the error for i-th row of V comprises two components: a “scaling”
term Σ2

ii, which suggests that rows (singular vectors) with larger singular values has larger scaling
factor, and a “difference” term ∆ViXXT∆V T

i , derived from the quantization differences ∆Vi and
limited sampling over a calibration set.

Figure 2: (Left) The value of “scaling” term (Eq. 5) at
different row indices. (Right) The value of “difference” term
((Eq. 5) with different quantization bit-width at different row
indices. We compute all results using Q_Proj at the last layer
of Qwen2.5-Math-7B-Instruct.

As illustrated in Figure 2, we present
the results of the “scaling” and “dif-
ference” terms across different rows.
The variation in the “difference” term
remains relatively minor when the
same bit-width is used to quantize dif-
ferent rows. In contrast, the “scaling”
term decreases sharply as the row in-
dex i increases. Consequently, the
quantization error eVi , which encom-
passes both terms, varies significantly
across different rows under a uniform
bit-width for quantization. To mini-
mize the total error, it is ideal for the
quantization error of each row to be small. Given that the “scaling” term is fixed for each row, we can
only adjust the “difference” term by carefully allocating bit-widths. However, due to the constraints
of the total bit budget, we cannot allocate high bit-widths to all rows simultaneously. Therefore, we
propose a strategy of assigning varying bit-widths to different rows to reduce the overall quantization
error. Eq. (5) provides a theoretical foundation for the necessity of mixed-precision quantization
in SVD-based delta-compression. We discuss the detailed mixed-precision schedule in Section 3.2,
which allocates varying bit-widths to different rows, specifically the different singular vectors of U,
by formulating a 0/1 integer linear programming problem.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.2 QUANTIZE U

In this section, we analyze why mixed-precision quantization is not crucial for U. After quantizing
V to V̂, the quantization objective of U is:

argmin
Û

∥UΣV̂X − ÛΣV̂X∥2F ≈
∑
i

eUi

eUi =
1

2
∆UiH

U
i ∆UT

i = ∆UiΣV̂XXT V̂TΣT∆UT
i

(6)

Here ∆Ui = Ui − Ûi, and the Hessian matrix of the ith row of U is given by HU
i =

2ΣV̂XXT V̂TΣT(with derivation details in Appendix C.2). Upon comparing Eq. (5) and Eq.
(6), we observe that eUi does not incorporate the scaling term present in Eq. (6). Consequently, when
different rows are quantized using the same bit-width, there is no significant variation in error. This
uniformity arises from the fact that the Hessian matrices for different rows of U are identical. Thus,
unlike V, there is no necessity to employ mixed precision when quantizing different rows of U.

Therefore, DELTAMIX determines the mixed-precision quantization schedule based on V, and
then applies the same schedule to U for simplicity. Specifically, DELTAMIX quantizes U using a
column-wise mixed-precision schedule, where the ith column of U adopts the same bit-width as the
ith row of V as they correspond to the same singular value. Notably, DELTAMIX exhibits insensitivity
to column-wise precision schedules, since GPTQ compensates for quantization-induced errors in
the column direction by adjusting the unquantized weights during the quantization process. This
compensation, however, does not occur between different rows, as different rows are independently
quantized in GPTQ. This further underscores the importance of discussing row-wise mixed precision
strategies aimed at minimizing the quantization error of V. In Appendix E.1, we further demonstrate
experimentally that applying the same mixed-precision quantization strategy to both V and U yields
satisfactory performance.

Reconstruction Target Correction In Eq. (6), we quantize U to reconstruct the target UΣV̂X ,
which deviates from the initial target UΣVX . This deviation can negatively impact the performance
of the quantized model. A straightforward approach to address this issue is to directly replace
the reconstruction target with UΣVX; however, this would inhibit the application of GPTQ for
quantization. Therefore, we propose a method termed “Reconstruction Target Correction” (RTC)
to reduce the bias by transforming UΣV̂X in Eq. (6) to ŨΣV̂X , where Ũ is derived from the
following equation:

min
Ũ

∥∥∥UΣVX − ŨΣV̂X
∥∥∥2
F

⇒ Ũ = UΣVXXT V̂TΣT(ΣV̂XXT V̂TΣT)−1

(7)

See Appendix C.3 for detailed derivations. In summary, prior to quantizing U, we first update U to
Ũ using Eq. (7). Subsequently, we perform quantization by minimizing ∥ŨΣV̂X − ÛΣV̂X∥2F .
This approach aims to ensure that the reconstruction target closely approximates the original, without
compromising the application of GPTQ for quantization.

3.2 OPTIMIZATION PROBLEM MODELING

In this section, we formulate the optimal mixed-precision bit allocation problem as a 0/1 integer linear
programming model (see Eq. (8)). Given a user-specified compression target bit Gb, a candidate set
of quantization bit-widths Q of size Nb, and an upper bound fmax on the number of active bit-widths,
the proposed model minimizes the quantization error by automatically selecting an subset of active
bid-widths from Q, subject to the constraints imposed by Gb and fmax.

As shown in Eq. (8), the objective is to minimize the total quantization error, expressed as
∑

i EV
i ST

i .
Here, EV

i ∈ R1×Nb denotes the quantization error associated with different bit-widths for the ith

row of V, computed using predefined calibration data samples Xn in accordance with Eq. (4).
Si ∈ R1×Nb is a binary optimization variable indicating the selected bit-width for quantizing the
ith row of V and the corresponding ith column of Ũ. Note that our objective is limited to the
quantization error of V, with a detailed discussion provided in Sections 3.1.1 and 3.1.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

min
S

∑
i

EV
i ST

i (Total quantization error)

s.t.
∑
i

SiB ≤ Gb(hin · hout) (Bit budget constraint)

sum(Si) = 1 (One-hot vector constraint)
Si − f ≤ 0 (Bit-width selection constraint)
sum(f) ≤ fmax (Bit-width number constraint)

(8)

The optimization problem has four constraints. (1) The “bit-budget constraint” ensures that the
quantized model achieves a target compression bit that does not exceed the predefined threshold Gb.
Here hin and hout represent the input and output dimension of W. B ∈ RNb×1 represents the storage
required for quantizing a row of V and a column of Ũ at different bit-widths, which is computed
as B = (hin + hout) ·Q. (2) The “one-hot vector constraint” requires that each row of V and the
corresponding column of Ũ be quantized using exactly one bit-width. (3) The “bit-width selection
constraint” guarantees that only permissible bit-widths are utilized for quantization. The variable
f ∈ R1×Nb denotes the set of admissible bit-widths, where f0,k = 1 indicates that the kth bit-width
in Q is allowable. (4) The “bit-width number constraint” restricts the number of admissible bit-widths
to a maximum of fmax.

The 0/1 integer linear programming optimization problem is then solved with the CVXPY (Diamond
& Boyd, 2016) library and the SCIP (Maher et al., 2016) solver. We report the optimization solving
time in Appendix E.3, which costs 29.4 minutes for Qwen2.5-Math-7B-Instruct. This overhead is
acceptable, as the model requires quantization only once. By solving Eq. (8), we obtain an optimal
mixed-precision quantization scheme that minimizes the error while satisfying predefined bit budget
constraints. This allows us to derive task-specific mixed-precision quantization strategies which
balance the “scaling” and “difference” terms, leading to improved performance across various tasks.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Evaluation Tasks We evaluate our methods on four distinct tasks: reasoning, math, code generation,
and multi-modal. These tasks encompass a vast array of current directions based on fine-tuning with
open-source LLMs. Reasoning: We use the Math500 and AIME2024 datasets as the test set. Math:
We use the GSM8K (Cobbe et al., 2021) and Math500 (Lightman et al., 2023) datasets as the test
set. Code Generation: We use HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) as
the test set. Multi-Modal: We utilize the GQA (Hudson & Manning, 2019) and the image part of
ScienceQA (Lu et al., 2022) datasets. Please refer to Appendix D.1 for more details.

Models To ensure a comprehensive comparison, we evaluate both 7B and 13-14B models across the
four tasks with various backbones. See Table 7 in Appendix D.1 for more details about the backbones
and aligned models used. During inference, we employ a greedy search strategy.

Baselines We compare DELTAMIX with three baselines: SVD-based low-rank compression (Ryu
et al., 2023), BitDelta (Liu et al., 2024), and Delta-CoMe (Ping et al., 2024). All methods are
evaluated using NVIDIA L20 GPUs.

4.2 MAIN RESULTS

Tables 1 and 2 present the results of DELTAMIX on both the 7B and 13-14B models across four tasks,
in comparison to the baselines. Notably, DELTAMIX demonstrates superior overall performance on
both the 7B and 13-14B models, surpassing the best baseline, Delta-CoMe, by an average of 2.9%
and 2.2%, respectively.

When analyzing the various tasks, we observe that DELTAMIX exhibits more pronounced improve-
ments in challenging scenarios characterized by a significant performance gap between the baseline
methods and the aligned model. This is particularly evident in reasoning-intensive benchmarks, such

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of DELTAMIX and baselines on various tasks across 7B-sized models. We
report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

Method α
DeepSeek-R1-Distill-Qwen Qwen2.5-Math-Instruct Qwen2.5-Coder-Instruct Qwen2.5-VL-Instruct AVG
Math500 AIME2024 Math500 GSM8K Humaneval Mbpp GQA SQA

Backbone 1 70.6 16.7 70.6 84.8 72.0 80.7 - - -
Aligned 1 86.0 40.0 80.2 94.8 87.2 82.8 60.5 76.7 76.0

Low-Rank 1/16 72.2 13.3 59.6 70.3 84.1 86.2 0.0 0.0 48.2
BitDelta 1/16 1.4 0.0 71.2 84.0 83.5 83.9 0.0 0.3 40.5

Delta-CoMe 1/16 82.4(1.11) 30.0(3.30) 74.8(0.35) 94.5(0.00) 85.0(0.96) 82.7(0.17) 49.4(1.65) 76.5(0.26) 71.9
DELTAMIX 1/16 82.7(0.83) 36.7(3.35) 77.7(1.03) 94.6(0.51) 85.6(0.35) 83.1(0.25) 52.4(2.30) 79.4(0.83) 74.0

Table 2: Comparison of DELTAMIX and baselines on various tasks across 13-14B-sized models. We
report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

Method α
DeepSeek-R1-Distill-Qwen MetaMath Qwen2.5-Coder-Instruct LLAVA-V1.5 AVG
Math500 AIME2024 Math500 GSM8K Humaneval Mbpp GQA SQA

Backbone 1 76.4 3.3 1.8 4.3 78.7 84.7 - - -
Aligned 1 87.4 40.0 22.6 71.0 90.2 85.4 63.3 72.8 66.6

Low-Rank 1/16 57.2 6.7 15.8 64.0 86.6 88.6 57.0 71.4 55.9
BitDelta 1/16 82.8 23.3 22.4 65.8 89.0 86.5 61.2 73.0 63.0

Delta-CoMe 1/16 76.5(3.38) 24.5(6.93) 22.9(0.12) 70.2(0.56) 90.6(0.75) 86.5(0.70) 62.8(0.09) 72.3(0.20) 63.3
DELTAMIX 1/16 80.2(2.09) 31.1(3.81) 21.7(0.64) 71.2(0.26) 91.5(0.60) 86.9(0.12) 62.7(0.04) 72.1(0.18) 64.7

as AIME2024, as well as in multimodal tasks utilizing 7B backbones. For instance, DELTAMIX
surpasses the previous state-of-the-art model, Delta-CoMe, by 22.3% on the 7B model and by 26.9%
on the 14B model. Further analysis reveals that these models display larger norms for ∆W. Specifi-
cally, the median norm of DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-VL-Instruct is 6.5 and 10.3
times that of Qwen-Coder-Instruct-7B, with corresponding values of 26.13 and 41.45 compared to
4.02, respectively. In this context, baseline methods struggle to achieve optimal solutions due to their
empirical nature. In contrast, DELTAMIX directly optimizes quantization error from a mathematical
perspective, enabling it to fully leverage its strengths in demanding tasks. However, on tasks where
baselines already achieve near-lossless accuracy, such as MBPP and HumanEval on the 7B backbone,
DELTAMIX performs comparably to the best baseline. In these scenarios, the norm of ∆W is
relatively small and can be easily compressed, leading to a ceiling effect: ∆W can be quantized
almost losslessly by existing baselines, leaving little room for further improvement.

We also compare the quantization time cost of DELTAMIX and Delta-CoMe. Please refer to Appendix
E.3 for more details. The results show that DELTAMIX (resp. Delta-CoMe) requires only 1.2 (resp.
0.4)hours for 7B models and 2.4 (resp. 0.8) hours for 14B models on a single GPU. Although
DELTAMIX is slower than Delta-CoMe, the time cost remains acceptable since the quantification
process needs to be performed only once.

4.3 ANALYSIS OF fmax

Table 3: Performance across different fmax. We
report the results in the format “mean(std)” with
three runs.

Method fmax
DeepSeek-R1-Distill-Qwen-14B AVG
Math500 AIME2024

Delta-CoMe - 76.5(3.38) 24.5(6.93) 50.5

DELTAMIX

2 80.7(1.75) 33.3(3.35) 57.0
3 79.9(1.53) 30.0(8.83) 55.0
4 80.2(2.09) 31.1(3.81) 55.7
5 79.5(0.99) 33.3(6.65) 56.4
6 79.5(2.21) 33.3(3.35) 56.4

In DELTAMIX, we set a hyperparameter termed
fmax to constrain the number of active bit-
widths during quantization. This section ex-
amines the performance of DELTAMIX under
varying values of fmax. As shown in Table 3,
DELTAMIX consistently achieves better perfor-
mance than Delta-CoMe across all settings, in-
dicating that DELTAMIX is insensitive to the
choice of fmax. In the main experiment, we set
fmax to 4 to be consistent with Delta-CoMe.

4.4 ABLATION OF RTC

Table 4: Ablation of RTC. We report the results in the format
“mean(std)” with three runs.

LLAVA-V1.5 DeepSeek-R1-Distill-Qwen-14B AVG
GQA SQA Math500 AIME2024

Delta-CoMe 62.8(0.09) 72.3(0.20) 76.5(3.38) 24.5(6.93) 59.0
DELTAMIX 62.7(0.04) 72.1(0.18) 80.2(2.09) 31.1(3.81) 61.5

DELTAMIX (W/O RTC) 62.8(0.02) 72.2(0.05) 78.2(0.28) 27.5(3.81) 60.2

We conducted experiments to assess
the necessity of RTC, as detailed in
Table 4. Overall, RTC consistently
enhances our method, yielding an av-
erage performance improvement of
2.2%. The results indicate that mit-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: End-to-end decoding latency evaluation with varying numbers of deployed models using
Qwen2.5-7B variants. (Left) Decoding memory usage. (Middle) Prefill time. (Right) Generation
speed.

igating the deviation in the quantization loss of U enables DELTAMIX to retain more information
from ∆W. The importance of RTC is particularly pronounced in challenging tasks; for instance, it
improves performance by 13.1% on the AIME2024 task. This improvement can be attributed to the
more substantial quantization errors associated with quantizing V in these cases, thereby highlighting
the critical need for reconstruction target correction.

5 ANALYSES

5.1 INFERENCE SPEED AND MEMORY COST

Following the setup of Liu et al. (2024), we evaluate the end-to-end decoding latency of Qwen2.5-7B
variants using a single L20 GPU. As shown in Figure 3, we consider the setting where each deployed
model receives one distinct request simultaneously—e.g., 12 deployed models correspond to a batch
size of 12- with latency evaluation in three perspectives: (1) Memory Usage: This one measures
peak GPU memory usage during concurrent inference, accounting for both model parameters and
activation storage. (2) Prefill Time: This part focuses on the time the models take to process user-input
prompts. Each request contains 512 input tokens, and we report the time (in ms) the model takes
to handle them. (3) Generation Speed: This part evaluates how quickly the model generates output
tokens (tokens/s) for each request. Since the prefill time already measures prompt processing, each
request starts from the “[BOS]” token and generates 512 tokens sequentially.

As shown in Figure 3 (left), a single GPU can deploy only two aligned models simultaneously.
In contrast, it can support up to 8 and 12 models concurrently for Delta-CoMe and DELTAMIX,
respectively. This enhancement is attributable to the fact that, as the number of models increases,
both methods necessitate only the additional deployment of compressed delta weights, thereby
significantly reducing memory overhead. Notably, while Delta-CoMe exhausts GPU memory at 12
models, DELTAMIX does not. Our further analysis indicates that DELTAMIX typically employs fewer
ranks, namely allocates a greater number of singular vectors with a bid-width of 0, thereby enhancing
the GPU memory utilization efficiency.

For the end-to-end decoding latency illustrated in Figure 3 (middle, right), we find that Delta-CoMe
and DELTAMIX introduce overhead to Naive when the number of deployed model is small. However,
Delta-CoMe and DELTAMIX scale better and effectively translate the saved GPU memory into
improved decoding latency. In contrast, the Naive approach quickly encounters out-of-memory issues.
Furthermore, DELTAMIX exhibits a superior generation speed compared to Delta-CoMe at scale,
while the prefill times for both methods remain comparable. In Appendix E.2, we conduct more
latency evaluation under varying arrival rates and request distributions following (Liu et al., 2024).

5.2 DELTA-COMPRESSION VS. DELTA-TUNING

Delta-compression decomposes the delta weights of a fully fine-tuned model into low-rank and
low-bit representations, thereby reducing storage and inference costs. Delta-tuning methods, such
as LoRA, are closely related to delta-compression but primarily aim to reduce the training costs
of LLMs while achieving performance comparable to that of full fine-tuning. However, in various
tasks—particularly more complex ones like code and math tasks—delta-tuning methods tend to
underperform full fine-tuning (Biderman et al., 2024). This suggests that relying solely on delta-tuning
may be insufficient.

In this section, we train the DeepSeek-LLM-7B-Base (DeepSeek-AI, 2024) on math and code tasks

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison between Delta-
Compression and LoRA. Aligned is full fine-tuned
model. For DELTAMIX, we report the results in
the format “mean(std)” with three runs.

Method α
Code Math AVG

Humaneval Mbpp Math500 GSM8K

Backbone 1 24.4 46.0 3.8 14.7 22.2
Aligned 1 46.3 48.9 14.6 58.3 42.0

LoRA 1/16 34.1 47.7 9.4 50.9 35.5

DELTAMIX 1/16 43.3(0.6) 50.2(0.82) 13.5(0.76) 56.1(0.82) 40.8

using both LoRA and full fine-tuning. We sub-
sequently apply DELTAMIX to the delta weights
of the fully fine-tuned model. Additional exper-
imental details can be found in Appendix D.2.
Table 5 presents a comparison of DELTAMIX
with LoRA. The results indicate that DELTAMIX
consistently outperforms LoRA across all tasks.
Notably, DELTAMIX achieves an average score
of 40.8, which is close to the aligned model’s
score of 42.0, representing a 14.9% improvement over LoRA.

5.3 ANALYZING QUANTIZATION ERROR

Table 6: Average quantization error (× 1e2)
on Qwen2.5-Math-7B-Instruct model with Eq.
(1).“Low”, “Mid”, and “High” denote the first 9
layers, layers 9 to 17, and the last 10 layers, respec-
tively. “All” and “Out” denote the average error
across all activations and the average error of the
top 1% of activations.

Low Mid High

All Out All Out All Out

Low-Rank 1.82 3.67 1.50 2.84 21.12 1890.34
BitDelta 2.18 2.81 0.61 1.08 21.51 3162.58
Delta-CoMe 0.76 1.79 0.75 1.33 7.54 470.82
DELTAMIX 0.66 1.46 0.66 1.12 6.81 426.20

To better understand the difference between var-
ious delta-compression methods, we compute
the quantization error on Qwen2.5-Math-7B-
Instruct model as defined in Equation (1). Since
outliers play a critical role in model compres-
sion (Dettmers et al., 2023; Lin et al., 2024), we
also report the average error for the top 1% of
activations with the largest absolute values in
the aligned model, categorizing them as outliers.
As different layers contribute differently to the
final output (Wu et al., 2024), we categorize
the first 9 layers, layers 9 to 17, and the last 10
layers as low, mid, and high groups, respectively,
and report the average error of each group. See
Table 11 of Appendix E.5 for more details.

As demonstrated in Table 6, DELTAMIX consistently exhibits lower overall quantization error
compared to all baseline methods, attributable to its inherent objective of minimizing quantization
error. In the mid layers, DELTAMIX shows a slightly higher error than BitDelta, with values of 0.66
versus 0.61 for all activations and 1.12 versus 1.08 for outlier activations, respectively. However, it is
important to note that since BitDelta is an empirical method, it cannot guarantee low quantization
error across all layers. For example, in the high layers, BitDelta exhibits significantly higher error
rates compared to DELTAMIX, with values of 21.51 versus 6.81 for all activations and 3162.58 versus
426.20 for outlier activations, respectively. These experiments further illustrate that DELTAMIX
effectively reduces quantization error, thereby preserving the information contained in the delta
weights as much as possible. In Appendix E.4, we visualize the bit allocation results of DELTAMIX
across different weight types and layers using the Qwen2.5-Math-7B-Instruct model.

6 CONCLUSION

In this study, we present DELTAMIX, an adaptive mixed-precision delta-compression framework
aimed at minimizing quantization error in the SVD space without introducing additional assumptions.
DELTAMIX offers a theoretical proof of the necessity for mixed-precision delta-compression and
provides a practical quantization solution that involves solving a 0/1 linear integer programming
problem and employing a reconstruction target correction method. DELTAMIX outperforms all
baseline delta-compression methods across four distinct downstream tasks, including reasoning, math,
code, and multi-modal tasks, utilizing eight widely adopted aligned LLMs with backbone pre-trained
models, including Qwen2.5, Qwen2.5-Math, Qwen2.5-Coder, and LLaMA2. Moreover, DELTAMIX
significantly reduces deployment costs by minimizing memory overhead and accelerating inference.
We believe that DELTAMIX provides considerable theoretical and practical value, particularly in
scenarios involving multi-tenant deployments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We propose an adaptive mixed-precision delta-compression framework designed to minimize quanti-
zation error in the singular value decomposition space. Our experiments rely exclusively on publicly
available datasets and models, without involving human subjects or sensitive data. We do not
anticipate any direct negative consequences arising from this approach.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we describe our experimental setup in Section 4.1 and provide addi-
tional details, including models, datasets, metrics, and GPUs, in Appendix D. Furthermore, our
implementation is publicly available at https://anonymous.4open.science/r/ICLR-Annoymous-CD59.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. Lora learns less and forgets less, 2024. URL https://arxiv.org/abs/
2405.09673.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024. URL https://github.com/deepseek-ai/DeepSeek-LLM.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression, 2023. URL https://arxiv.org/abs/
2306.03078.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

10

https://anonymous.4open.science/r/ICLR-Annoymous-CD59/
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2405.09673
https://arxiv.org/abs/2405.09673
https://arxiv.org/abs/2107.03374
https://github.com/deepseek-ai/DeepSeek-LLM
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2306.03078
https://arxiv.org/abs/2306.03078


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned step size quantization, 2020. URL https://arxiv.org/abs/1902.
08153.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and et al. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In IEEE
International Conference on Neural Networks, pp. 293–299 vol.1, 1993. doi: 10.1109/ICNN.1993.
298572.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization, 2022. URL https://arxiv.org/abs/
2207.00112.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning and
compositional question answering, 2019. URL https://arxiv.org/abs/1902.09506.

Berivan Isik, Hermann Kumbong, Wanyi Ning, Xiaozhe Yao, Sanmi Koyejo, and Ce Zhang. GPT-zip:
Deep compression of finetuned large language models. In Workshop on Efficient Systems for
Foundation Models @ ICML2023, 2023. URL https://openreview.net/forum?id=
hO0c2tG2xL.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
weight quantization for efficient fine-tuning and inference of large language models, 2024. URL
https://arxiv.org/abs/2306.02272.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

James Liu, Guangxuan Xiao, Kai Li, Jason D. Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta: Your
fine-tune may only be worth one bit, 2024. URL https://arxiv.org/abs/2402.10193.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models, 2023b. URL https://arxiv.org/abs/2305.17888.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

11

https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/1902.08153
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/1902.09506
https://openreview.net/forum?id=hO0c2tG2xL
https://openreview.net/forum?id=hO0c2tG2xL
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2306.02272
https://arxiv.org/abs/2402.10193
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2305.17888


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct, 2025. URL
https://arxiv.org/abs/2308.09583.

Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and
Felipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP optimization
suite. In Mathematical Software – ICMS 2016, pp. 301–307. Springer International Publishing,
2016. doi: 10.1007/978-3-319-42432-3_37.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Alex Gu Naman Jain, King Han and et al. Livecodebench: Holistic and contamination free evaluation
of large language models for code. arXiv preprint, 2024.

Bowen Ping, Shuo Wang, Hanqing Wang, Xu Han, Yuzhuang Xu, Yukun Yan, Yun Chen, Baobao
Chang, Zhiyuan Liu, and Maosong Sun. Delta-come: Training-free delta-compression with mixed-
precision for large language models, 2024. URL https://arxiv.org/abs/2406.08903.

Simo Ryu, Seunghyun Seo, and Jaejun Yoo. Efficient storage of fine-tuned models via low-rank
approximation of weight residuals, 2023. URL https://arxiv.org/abs/2305.18425.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models,
2023. URL https://arxiv.org/abs/2310.11453.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression, 2025. URL https://arxiv.org/
abs/2403.07378.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct, 2024. URL https://arxiv.org/abs/2312.02120.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts, 2024. URL https://arxiv.
org/abs/2404.13628.

Xiaozhe Yao, Qinghao Hu, and Ana Klimovic. Deltazip: Efficient serving of multiple full-model-
tuned llms, 2024. URL https://arxiv.org/abs/2312.05215.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on
the evaluation of large multimodal models, 2024. URL https://arxiv.org/abs/2407.
12772.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients, 2018. URL https:
//arxiv.org/abs/1606.06160.

12

https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2406.08903
https://arxiv.org/abs/2305.18425
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2310.11453
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2404.13628
https://arxiv.org/abs/2404.13628
https://arxiv.org/abs/2312.05215
https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LIMITATION AND BROADER IMPACT

DELTAMIX significantly reduces hardware requirements and computational costs for serving multiple
finetuned models, thereby enabling smaller entities to deploy advanced large language models more
feasibly. Additionally, it lowers power consumption and reduces the carbon emissions associated
with LLM deployment. Despite DELTAMIX ’s demonstrated improvements over baseline methods in
reducing the performance gap between compressed and aligned models, it is important to note that
DELTAMIX remains a lossy compression method for certain tasks. We believe this is an important
consequence and encourage future research to further minimize this performance gap, particularly in
tasks where performance degradation is substantial.

B LLMS USAGE

In this work, large language models (LLMs) were used solely as auxiliary tools for grammar correction
and text refinement.

C FORMULA DERIVATION

C.1 V HESSIAN MATRIX

d2
V̂

∥∥∥UΣVX −UΣV̂X
∥∥∥2
F

=2tr(UΣdV̂XXTdV̂TΣTUT)

=2tr(ΣTUTUΣdV̂XXTdV̂T)

=2(d vec(V̂ T ))T (ΣTΣ⊗XXT )(d vec(V̂ T ))

=2(d vecV̂ )T (ΣTΣ⊗XXT )(d vec(V̂ ))

⇒HV = 2ΣTΣ⊗XXT

⇒HV
i = 2Σ2

ii ·XXT

(9)

Here ⊗ denotes the Kronecker product.

C.2 U HESSIAN MATRIX

d2
Û

∥∥∥UΣV̂X − ÛΣV̂X
∥∥∥2
F

=dÛΣV̂XXT V̂TΣTdÛT

=XT V̂TΣTdÛTdÛΣV̂X

=(d vecÛ)TKrhout
(I⊗ΣV̂XXT V̂TΣT)Khoutr(d vecÛ)

=2(d vecÛ)T (I⊗ΣV̂XXT V̂TΣT)(d vecÛ)

⇒HU
i = HU = 2ΣV̂XXT V̂TΣT

(10)

Here Khoutr is the commutation matrix, and K−1
houtr

= Krhout
.

C.3 DETAILED DERIVATION PROCESS FOR NEW U

dŨ

∥∥∥UΣVX − ŨΣV̂X
∥∥∥2
F

=2tr(dŨΣV̂X(ŨΣV̂X −UΣVX)T )

=2tr(ΣV̂X(ŨΣV̂X −UΣVX)T dŨ)

⇒ ∂L
∂Ũ

= (ŨΣV̂X −UΣVX)XT V̂TΣT

(11)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: Selected backbone and aligned models for the examined four tasks.

Task 7B Models 13-14B Models

Backbone Aligned Backbone Aligned

Math Qwen2.5-Math Qwen2.5-Math-Instruct LLaMA2 MetaMath
Reasoning Qwen2.5-Math DeepSeek-R1-Distill-Qwen Qwen2.5 DeepSeek-R1-Distill-Qwen

Coder Qwen2.5-Coder Qwen2.5-Coder-Instruct Qwen2.5-Coder Qwen2.5-Coder-Instruct
Multi-Modal Qwen2.5 Qwen2.5-VL-Instruct LLaMA2 LLAVA-V1.5

By setting the gradient of the loss to zero, DELTAMIX gets the corrected Ũ as follow:

∂L
∂Ũ

= (ŨΣV̂X −UΣVX)XT V̂TΣT = 0

⇒ Ũ = UΣVXXT V̂TΣT(ΣV̂XXT V̂TΣT)−1

(12)

D EXPERIMENTS SETUP

D.1 MAIN EXPERIMENTS

We evaluate our methods across models in Table 7 on four distinct tasks: math, reasoning, code
generation, and multi-modal. These tasks encompass a vast array of current directions based on
fine-tuning with open-source LLMs.

• Math. We use the GSM8K (Cobbe et al., 2021) and Math500 (Lightman et al., 2023) datasets as
the test set. We follow the prompt format of WizardMath (Luo et al., 2025) and set the maximum
generation length to 1024. The evaluation metric is accuracy, determined by comparing the model-
generated solution to the ground truth.

• Reasoning. We use the Math500 and AIME2024 datasets as the test set. For the reasoning prompt
of AIME2024, we follow with (Naman Jain & et al., 2024). The maximum length of both tasks is set
to 8192. The evaluation metric is accuracy, determined by comparing the model-generated solution
to the ground truth.

• Code Generation. We use two widely used datasets as the test set: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021). We follow the Magicoder (Wei et al., 2024) evaluation framework
for HumanEval and adopt EvalPlus (Liu et al., 2023a) for MBPP. The evaluation metric is the pass
rate (pass@1), which measures whether the code generated in a single attempt successfully passes
the test cases.

• Multi-Modal. We utilize the GQA (Hudson & Manning, 2019) and the image part of Sci-
enceQA (Lu et al., 2022) datasets, both commonly used for evaluating VLM performance, as our
test set. We adopt lmms-eval (Zhang et al., 2024) to evaluate both tasks. The evaluation metric is
accuracy, which measures whether the model selects the correct option.

To accelerate DELTAMIX’s quantization, we discard the last k ranks of V, where k =⌊
Gb(hin·hout)

(hin+hout)·bitmin

⌋
. Here, bitmin denotes the smallest non-zero bit-width allowed in quantization.

This strategy is motivated by the observation that larger singular values correspond to more important
singular vectors. Due to storage constraints, the last k singular vectors would be assigned 0-bit and
thus excluded from optimization.

D.2 DELTA-COMPRESSION VS. DELTA-TUNING

Specifically, we set the LoRA rank to 128 and the scale factor to 128, training LoRA for all model
parameters for 3 epochs using a cosine schedule with a peak learning rate of 4e-5 and a warm-up ratio
of 0.1, using model deepseek-llm-7b-base (DeepSeek-AI, 2024). We randomly sample 50k training
examples from MetaMathQA (Yu et al., 2023) and Magicoder-Evol-Instruct (Wei et al., 2024) for the
math and code tasks, respectively. To ensure a fair comparison, we fine-tune all model parameters
using the same datasets as those used for LoRA training. We then apply DELTAMIX to both math
and code finetuned LLMs.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E MORE EXPERIMENTS

E.1 ANALYZING THE DIFFERENT QUANTIZATION SCHEMES IN U

Table 8: We evaluate the performance of various quantization
schemes applied to U on Qwen2.5-Math-7B-Instruct. Here,
“x-bit” denotes quantization of U at x-bit precision. The
“DELTAMIX-row” setting refers to applying the optimization
model to determine the scheme and performing quantiza-
tion in a row-wise manner, whereas “DELTAMIX ” indicates
employing the same quantization scheme used for V, with
quantization carried out column by column.

α Math500 GSM8K AVG

U(2bit),V(DELTAMIX) 1/16 76.8 93.6 85.2
U(3bit),V(DELTAMIX) 1/16 75.6 93.4 84.5
U(DELTAMIX-row),V(DELTAMIX) 1/16 75.2 93.6 84.4
DELTAMIX 1/16 75.2 93.9 84.6

In this section, we investigate the ef-
fect of applying different quantization
schemes to U in order to assess the
necessity of mixed precision. Our
evaluation is conducted on Qwen2.5-
Math-7B-Instruct. The results show
that there is no significant difference
between DELTAMIX and other quan-
tization methods for U. As shown
in Table 8, “x-bit” denotes quantiza-
tion of U with x-bit precision. The
“DELTAMIX-row” setting applies the
optimization model to determine the
scheme and performs quantization in
a row-wise manner, whereas “DELTAMIX” adopts the same quantization scheme as V and conducts
quantization column by column. The performance differences across schemes are minimal, with the
largest gap in average scores being only 0.95%, observed between the “DELTAMIX-row” setting and
the 2-bit quantization. These results suggest that the choice of quantization strategy for U has only a
limited impact on overall performance.

E.2 INFERENCE SPEED AND MEMORY COST

To demonstrate the impact of DELTAMIX on inference speed and memory cost, we implement a
simple Triton (Tillet et al., 2019) kernel for DELTAMIX. We compare our kernel with naive aligned
models. Since there is no packing function of Delta-CoMe, we use our packing function and kernel
for the Delta-CoMe method.

Following the setup in Yao et al. (2024), we assess the end-to-end system performance under varying
arrival rates and request distributions. We consider two types of model popularity distribution: 1)
Uniform: all models are equally popular. 2) Skewed: model popularity follows a Zipf-α distribution.

Table 9: The Throughput and End-to-end system
performance under varying arrival rates and re-
quest distributions when serving 32 model variants
of Qwen2.5-7B.

λ = 0.5 λ = 1.0

Throughput(req/s) E2E(s) Throughput(req/s) E2E(s)

Zipf (α = 1.5)

Naive 0.21 52.42 0.18 198.48
Delta-CoMe 0.42 0.55 0.87 0.68
DELTAMIX 0.42 0.52 0.87 0.62
Uniform

Naive 0.07 253.93 0.08 481.42
Delta-CoMe 0.42 0.81 0.86 1.44
DELTAMIX 0.42 0.79 0.86 1.17

We evaluate the performance when serving 32
model variants of Qwen2.5-7B. Requests are
sent to the serving system at a variable Pois-
son arrival rate (λ). To simplify, each request
consists of 512 tokens, with the model gener-
ating one token as its response. We run the
simulations for 100 seconds across different ar-
rival rates and model distributions, measuring
performance using two metrics: 1) end-to-end
latency averaged over all requests; 2) Through-
put, number of requests processed per second.
All experiments are conducted on a single L40
GPU, with 28G of memory for storing models
and the remaining memory for inference.

As shown in the Table 9, DELTAMIX improves the throughput 6x and decreases end-to-end 100x
compared to the naive method, because rather than loading the whole full-precision parameters,
DELTAMIX quantizes the delta-parameters so that a GPU can load more delta-parameters and switch
them easily between CPU and GPU.

E.3 TIME FOR QUANTIZATION

In this section, we evaluate the quantization time of DELTAMIX and Delta-CoMe within a single
transformer block. The fundamental distinction between the two methods lies in their mixed-
precision quantization strategies for each linear layer. DELTAMIX determines the strategy by
minimizing quantization loss, formulated as a 0/1 integer linear programming problem. To clarify

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 10: Time cost (in seconds) for “Simulation”, “Optimization”, and “Quantization” for one
transformer block on the Qwen2.5-Math-7B-Instruct model, which consists of 28 blocks.

Simulation Optimization Quantization Total

Delta-CoMe

Q_proj 0.0
0.0

3.6

50.5

K_proj 0.0 3.6
V_proj 0.0 3.6

O_proj 0.0 0.0 5.1

Up_proj 0.0 0.0 4.5
Gate_proj 0.0 4.5

Down_proj 0.0 0.0 25.6

DELTAMIX

Q_proj 4.7
8.5

0.5

143.6

K_proj 4.7 0.5
V_proj 4.7 0.5

O_proj 6.1 11.5 0.5

Up_proj 5.8 20.5 2.8
Gate_proj 5.8 2.8

Down_proj 30.2 22.5 11.0

the computational overhead, we decompose the quantization time into three components. The first
is “simulation time”, which reflects the cost of estimating quantization loss under different bit-
widths. The second is “optimization time”, incurred when solving the 0/1 integer linear programming
problem. The third is the “quantization time” itself, representing the cost of quantizing each linear
layer according to the selected strategy. The corresponding results for one transformer block of
Qwen2.5-Math-7B-Instruct, which contains 28 blocks in total, are summarized in Table 10. For Delta-
CoMe, both simulation and optimization times are zero because its mixed-precision quantization
strategy is predetermined and applied uniformly across all linear layers; consequently, the entire
forward pass is accounted for within the quantization time. In contrast, DELTAMIX incurs additional
simulation and optimization costs, which are higher for Up_proj, Gate_proj, and Down_proj due
to their larger row or column dimensions. Specifically, simulation time increases with the number
of columns, while optimization time grows with the number of rows. Notably, DELTAMIX ’s
quantization time is shorter than that of Delta-CoMe, since the forward pass is already included in its
simulation stage.

Overall, although DELTAMIX takes 3x more time than Delta-CoMe, it only requires 1.2 hours for
7B models and 2.4 hours for 14B models on a single L20 GPU, which is acceptable. In contrast to
Delta-CoMe’s degraded performance on the large norm of ∆W, DELTAMIX consistently achieves
comparable or better results across all scenarios.

E.4 ANALYZING THE BIT ALLOCATION RESULTS

We investigate the bit allocation results across different weight types and layers using the Qwen2.5-
Math-7B-Instruct model. Figure 4 shows the memory allocated for each bit-width. Overall, the
bit allocation results for different weight types and layers are different. The V_Proj, K_Proj and
O_proj in the self-attention layer exhibit a similar allocation trend. For the other four weight types,
the bit allocation results differ. For instance, Down_Proj allocates more 2-bit units at the beginning
compared to other weight types.

Delta-CoMe (Ping et al., 2024) empirically posits that singular vectors corresponding to larger
singular values are more significant and, therefore, necessitate higher-bit representations. We further
examine whether DELTAMIX adheres to this assumption, specifically by using singular values alone
to evaluate importance. We compute the Kendall rank correlation coefficient τ , between the bit
sequence and the singular value sequence for each W. The coefficient is a measure of rank correlation,
ranging from -1 to 1, reflecting the similarity of the orderings of the data when ranked by each of
the quantities. If the method strictly adhered to the assumption of using singular values alone for
importance assessment, singular vectors with larger singular values would always receive higher bit-
width, resulting in a consistent τ = 1 across all W. However, for the DeepSeek-R1-Distill-Qwen-7B
model with DELTAMIX, we observe a τ of 0.95 for the W of the key projection at layer 28. This

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 4: GPU memory usage with quantization bits across layers of Qwen2.5-Math-7B-Instruct.

indicates that DELTAMIX goes beyond singular values, taking into account both the “scaling” term
and the “difference” term.

E.5 ANALYZING THE QUANTIZATION ERROR ACROSS WEIGHT TYPES AND LAYERS

Table 11: Average quantization error (× 1e2) accross different type of linears with Eq. (1).“Low”,
“Mid”, and “High” denote the first 9 layers, layers 9 to 17, and the last 10 layers, respectively. “All”
and “Out” denote the average error across all activations and the average error of the top 1% of
activations.

Param Q_proj Param K_proj

Layer Low Mid High Layer Low Mid High

Type All Out All Out All Out Type All Out All Out All Out
Low-Rank 0.26 0.32 0.54 0.76 1.33 1.64 Low-Rank 0.06 0.07 0.11 0.13 0.19 0.29
BitDelta 0.18 0.37 0.27 0.37 0.68 1.00 BitDelta 0.03 0.03 0.05 0.06 0.08 0.12
Delta-CoMe 0.13 0.14 0.32 0.41 0.81 0.91 Delta-CoMe 0.03 0.03 0.06 0.07 0.12 0.21
DELTAMIX 0.10 0.11 0.25 0.32 0.64 0.73 DELTAMIX 0.03 0.03 0.05 0.07 0.10 0.18

Param V_proj Param O_proj

Layer Low Mid High Layer Low Mid High

Type All Out All Out All Out Type All Out All Out All Out
Low-Rank 0.03 0.03 0.06 0.08 0.39 1.11 Low-Rank 0.23 0.40 0.70 1.54 8.52 69.00
BitDelta 0.01 0.01 0.03 0.03 0.18 0.69 BitDelta 0.10 0.14 0.28 0.46 10.44 895.98
Delta-CoMe 0.02 0.02 0.04 0.05 0.24 0.85 Delta-CoMe 0.08 0.13 0.32 0.47 3.53 17.02
DELTAMIX 0.02 0.02 0.04 0.05 0.21 0.67 DELTAMIX 0.07 0.12 0.30 0.45 3.18 22.31
Param Up_proj Param Gate_proj

Layer Low Mid High Layer Low Mid High

Type All Out All Out All Out Type All Out All Out All Out
Low-Rank 4.78 4.50 2.67 3.18 13.70 14.95 Low-Rank 6.35 3.85 3.16 0.72 13.53 4.02
BitDelta 4.71 3.85 1.19 1.32 13.30 11.61 BitDelta 9.01 4.47 1.60 0.65 10.32 5.87
Delta-CoMe 2.10 2.08 1.60 1.90 7.67 9.37 Delta-CoMe 2.64 2.90 1.88 0.84 7.73 3.02
DELTAMIX 1.83 1.74 1.36 1.59 6.58 8.89 DELTAMIX 2.28 2.22 1.57 0.59 6.65 2.07
Param Down_proj Param Average

Layer Low Mid High Layer Low Mid High

Type All Out All Out All Out Type All Out All Out All Out
Low-Rank 1.05 5.52 3.28 4.94 110.20 7470.34 Low-Rank 1.82 3.67 1.50 2.84 21.12 1890.34
BitDelta 1.21 2.35 0.87 1.45 115.60 11735.05 BitDelta 2.18 2.81 0.61 1.08 21.51 3162.58
Delta-CoMe 0.33 1.86 1.05 1.57 32.66 1851.91 Delta-CoMe 0.76 1.79 0.75 1.33 7.54 470.82
DELTAMIX 0.31 1.62 1.02 1.43 30.30 1669.95 DELTAMIX 0.66 1.46 0.66 1.12 6.81 426.20

17


	Introduction
	Related Work
	Method
	Quantization Error Derivation
	Quantize V
	Quantize U

	Optimization Problem Modeling

	Experiments
	Experiment Setup
	Main Results
	Analysis of fmax
	Ablation of RTC

	Analyses
	Inference Speed and Memory Cost
	Delta-Compression vs. Delta-Tuning
	Analyzing Quantization Error

	Conclusion
	Limitation and Broader Impact
	LLMs Usage
	Formula Derivation
	V Hessian Matrix
	U Hessian Matrix
	Detailed Derivation Process for new U

	Experiments Setup
	Main Experiments
	Delta-Compression vs. Delta-Tuning

	More Experiments
	Analyzing the Different Quantization Schemes in U
	Inference Speed and Memory Cost
	Time For Quantization
	Analyzing the Bit Allocation Results
	Analyzing the Quantization Error Across Weight Types and Layers


