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ABSTRACT

Fine-tuning is a crucial process for adapting large language models (LLMs) to
diverse applications. In certain scenarios, like multi-tenant serving, a large num-
ber of LLMs finetuned from the same base model are deployed to meet complex
requirements for users. Recent works explore delta-compression approaches to
quantize and compress the delta weights between the customized LLM and the
corresponding base model. However, they exhibit inadequate performance at
high compression ratios due to their empirical nature. In this work, we introduce
DELTAMIX, an adaptive mixed-precision delta-compression framework designed
to minimize quantization error in the singular value decomposition (SVD) space
without imposing additional assumptions. DELTAMIX provides a theoretical justi-
fication for the necessity of mixed-precision compression and presents a practical
quantization solution that involves solving a 0/1 linear integer programming prob-
lem alongside a reconstruction target correction method. Experimental results
across multiple models and benchmarks illustrate that DELTAMIX consistently
outperforms all baseline methods. Notably, on tasks such as AIME2024 and GQA,
DELTAMIX exceeds the performance of the best baseline, Delta-CoMe, by 22.3%
and 6.1% for 7B parameter models, respectively.

1 INTRODUCTION

Large language models (LLMs) have shown breakthrough performance on various knowledge-
intensive (Grattafior1 et al., 2024} [Team| 2024} |Jiang et al., 2023)) and complex reasoning tasks
(DeepSeek-All 2025} |Grattafiori et al.l [2024). Enhancing deployment efficiency is crucial for
facilitating LLM applications on edge devices and in cloud environments (Yao et al.,2024). In
multi-tenant serving scenarios, multiple users fine-tune the same base model using their customized
datasets (Wei et al., [2024; Yu et al.| 2023)), resulting in a variety of customized models that share a
common foundation. These models, derived from the same base LLM (e.g., Qwen2.5 (Team) 2024)
or LLaMA (Grattafior1 et al., [2024))), need to be deployed concurrently to address simultaneous
user requests. Conventional LLM compression approaches (Frantar et al.| [2022} [Lin et al., [2024)
focus on quantizing and compressing the full model parameters. While effective at low compression
ratios, these methods struggle to maintain model performance at high compression ratios, resulting in
significant storage and computational overhead when deploying multiple customized LLMs.

In contrast to full model compression, delta-compression (Yao et al., [2024; Liu et al., 2024} |Ping
et al.| 2024) decomposes a customized LLM into two components: the base model and the delta
weights, which encapsulate the differences between the customized model and its corresponding base
model. This approach emphasizes the compression of delta weights. Consequently, in multi-tenant
environments, a single base model can be deployed alongside multiple sets of compressed delta
parameters. Delta-compression achieves significantly higher compression rates than full model
compression, thereby substantially reducing overall deployment costs. Researchers have explored
effective approaches for delta-compression. Ryu et al.[(2023)) proposes a 1-bit quantization approach,
termed BitDelta, to reduce the size of delta weights. |Liu et al.| (2024) leverages the low-rank
characteristics of delta weights to improve storage efficiency through low-rank approximation. Delta-
CoMe (Ping et al.| [2024)) introduces a mixed-precision delta-compression technique based on singular
value decomposition (SVD), allocating higher-bit representations to singular vectors associated with
larger singular values. Although these existing approaches demonstrate promising performance at
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Figure 1: An overview of DELTAMIX. The quantization error of the i-th row of V comprise two
components: a “scaling” term (®) and a “difference” term (®). The “scaling” term is fixed, while the
“difference” term is related to the mixed-precision quantization scheme (®). DELTAMIX identifies the
optimal quantization scheme within the constraints of the bit budget (@) to effectively balance these
two components, thereby minimizing the total quantization error of V (®). Note that the "difference"
term for various bit-widths (@) is pre-computed using a calibration dataset and remains fixed during
the optimization process.

high compression ratios, they lack rigorous mathematical foundations, which can lead to suboptimal
performance, especially in challenging compression scenarios.

In this work, we propose DELTAMIX, a high-performance mixed-precision delta-compression frame-
work grounded in a solid theoretical foundation. DELTAMIX implements delta-compression within
the SVD space, formulating the quantization objective as the minimization of layer-wise quantization
error. By pursuing this objective, DELTAMIX establishes a mathematically sound mixed-precision
compression strategy that accommodates flexible, user-defined compression ratios. This strategy
derives the mixed-precision quantization scheme through the solution of a 0/1 linear integer pro-
gramming problem and ensures optimization consistency throughout the quantization process via
a reconstruction target correction method. Unlike |Ping et al.[(2024), which empirically posits
that singular vectors corresponding to larger singular values are more significant and, therefore,
necessitate higher-bit representations, DELTAMIX prioritizes the minimization of quantization error.
It formulates all subsequent strategies based exclusively on this principle, eschewing reliance on sin-
gular values for assessing importance. This distinction is vital, as prior research has demonstrated that
the significance attributed to singular values may not correlate with the performance of LLMs (Hsu
et al.,[2022} [Wang et al.| |[2025)).

We conduct extensive experiments on reasoning, math, code, and multimodal tasks across eight
aligned LLMs to demonstrate the effectiveness of DELTAMIX. The results show that DELTAMIX
achieves state-of-the-art performance among delta-compression methods, particularly in challenging
scenarios where the norm of AW is large. Notably, on the reasoning task AIME2024, DELTAMIX
surpasses the leading baseline, Delta-CoMe, by 22.3% on the 7B model and 26.9% on the 14B model.
Furthermore, DELTAMIX can achieve more than 6x GPU memory and disk storage savings, enabling
the deployment of multiple models within constrained resource environments.

2 RELATED WORK

Quantization Strategies for LLMs Quantization reduces the bit-precision of model parameters to
lower GPU cost and accelerate inference. Current strategies for LLM quantization can be broadly
categorized into quantization-aware training (QAT) and post-training quantization (PTQ). QAT
simulates quantization operations during training and uses backpropagation to correct quantization
errors (Zhou et al.| 2018; [Esser et al., [2020; |Liu et al., [2023b}; |Wang et al., [2023). In contrast, PTQ
quantizes a pre-trained model without further training, typically calibrating the quantized weights
with a modest calibration dataset (Dettmers et al., [2022; |[Frantar et al., 2022} [Lin et al., [2024; [Lee
et al.,|2024)). Given the high computational cost associated with training or fine-tuning large language



Under review as a conference paper at ICLR 2026

models, PTQ has become a particularly prevalent approach for LLM quantization. In our work,
we leverage the GPTQ (Frantar et al. [2022) method within PTQ, focusing on mixed-precision
quantization of the singular vectors of the delta parameters.

Delta-Compression Delta-compression (Isik et al.,[2023; Ryu et al., 2023; [Liu et al., 2024; Ping
et al.,|2024)) aims to diminish the storage and inference costs associated with serving multiple models
by compressing delta parameters, which are the differences between the parameters of a fine-tuned
LLM and its corresponding base LLM. GPT-Zip (Isik et al.|[2023)) extends GPTQ to compress the delta
parameters into 2-bit, and then sparsify 95% of the quantized delta weights to further reduce storage
costs. DeltaZip (Yao et al., [2024)) extends the idea of structured pruning and delta-compression to
develop a multi-tenant serving system. However, both methods are still limited to compression ratios
of 2-bit and higher. [Liu et al.|(2024) introduces BitDelta, which compresses delta weight into 1-bit,
using a trainable high-precision scaling factor for each delta weight matrix. From this point onward,
the compression of delta parameters has entered the 1-bit era. In addition to these low-bit methods,
Ryu et al.|(2023) identifies the low-rank property of delta weights and achieves delta-compression
through low-rank approximation. Recently, Delta-CoMe (Ping et al.| 2024) leverages the benefits of
both low-rank and low-bit compression methods, proposing a mixed-precision delta-compression
method that uses varying bit-widths to represent different singular vectors of the delta weights.
However, the rationale behind their mixed-precision quantization is predicated on a questionable
hypothesis (Hsu et al.,[2022; |Wang et al.,|2025): that singular vectors associated with larger singular
values are inherently more important. This premise lacks a solid theoretical foundation, leading to a
mixed-precision strategy that is primarily empirical and, consequently, suboptimal. In this work, we
introduce DELTAMIX, which provides a mathematical proof of the necessity for mixed-precision in
SVD-based delta-compression methods, and derives a quantization approach that is firmly grounded
in mathematical theory.

3 METHOD

In this section, we introduce DELTAMIX,
an adaptive mixed-precision delta-compression
strategy for LLMs with mathematical support.

Algorithm 1 Algorithm for Quantization in DELTAMIX

Data: Delta parameter W, List of candidate quantiza-
tion bits (), predefined averaged bit-width Gj,

In Section[3.1] we begin with the minimization
of quantization error in the SVD space and de-
rive the detailed quantization process. We pro-
vide a mathematical proof demonstrating the
necessity of mixed-precision in this context. In
Section we introduce our mixed-precision
schedule in detail, which is built on the solution
of a 0/1 integer linear programming problem.
Algorithm|[I]shows the details of DELTAMIX.

3.1 QUANTIZATION ERROR DERIVATION

At a high level, DELTAMIX follows the struc-
ture of the classical post-training quantization

Calibration set X R R
Result: Quantized matrices V and U
U,X,V + SVD(W)
for bit b in () do

Vi <« SimQuant(V, b, X)
EY « CalcLoss(V, Vi, )
end
B < CalcStorage(Q)
S < SolveOpt(B, Gy, EY)
V + QuantParams(V, S, X)
U « RTC(U,V,V, X, X)
U «+ QuantParams(U, S, V, =, X)

return V, U; // Return results

method GPTQ, by performing quantization to minimize the reconstruction error. Given a delta
weight matrix W and the corresponding input X, the quantization objective of the GPTQ is to find a
quantized matrix W which minimizes the squared error:

~ 2 R 2
i WX—WXH — HWiX—WZ-XH ~S e, 1
argn‘}%’nH - ; - ;e (1)

Following previous work (Hassibi et al., 1993} Nagel et al., 2020)), the quantization error of the ith
row of W can be approximated with a second-order Taylor expansion e;:

1
e = §AWiHiAWZ.T )
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Here AW; = W; — Wi is the quantization difference of ith row, while the Hessian matrix H; =
2X X7 is independent and identical across different rows in W. By reusing H, GPTQ derives the

optimal quantized weights W row by row, allowing for parallel computation across multiple rows.

Instead of directly quantizing W, DELTAMIX performs quantization in the SVD space, by finding a
quantized matrix U and V which minimizes the squared error:

N N 2
arg min HUZVX - UEVXH 3)
u,v F

where W = UXV. Below, we introduce the detailed quantization process of DELTAMIX, which
first quantizes V, and then moves to U.

3.1.1 QUANTIZE V

In this section, we present a theoretical analysis that motivates the need for mixed-precision quantiza-
tion. Specifically, we find the quantized V with the row-by-row approach by minimizing the squared

error:
o2
arg min HUEVX - UEVXH ~Y ey
v S @
ey = %AVZ-H}’AV;T

Here AV; = V; — V; is the quantization difference of the i*" row, and HY = 252 - X X7 is the
Hessian matrix of the i*"" row of V (with derivation details in Appendix C.1). As ©2 is a scalar, we
can reformulate the Eq. (@) as follows:

1
ey = AVHYAVT = 2 AV XXTAVT )
2 ~—~
“scaling” “difference”

s

From Eq. (3)), it is evident that the error for i-th row of V comprises two components: a “scaling’
term %, which suggests that rows (singular vectors) with larger singular values has larger scaling
factor, and a “difference” term AV, X X TA‘/iT, derived from the quantization differences AV; and
limited sampling over a calibration set.

As illustrated in Figure |2} we present 2000
the results of the “scaling” and “dif- > o sealhaEm ot
ference” terms across different rows.

1500 —— 8-bit "Difference" Term
The variation in the “difference” term 1250
1000

remains relatively minor when the

Value
Value

same bit-width is used to quantize dif- ., w0
ferent rows. In contrast, the “scaling” o o
term decreases sharply as the row in- o
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dex ¢ increases. Consequently, the Row Index Row Index

quantization error elv’ which encom- Figure 2: (Left) The value of “scaling” term (Eq at
passes both terms, varies Signiﬁcant]y different row indices. (nght) The value of “difference” term
across different rows under a uniform ((Eq. [5) with different quantization bit-width at different row
bit-width for quantization. To mini- indices. We compute all results using Q_Proj at the last layer
mize the total error, it is ideal for the ~of Qwen2.5-Math-7B-Instruct.

quantization error of each row to be small. Given that the “scaling” term is fixed for each row, we can
only adjust the “difference” term by carefully allocating bit-widths. However, due to the constraints
of the total bit budget, we cannot allocate high bit-widths to all rows simultaneously. Therefore, we
propose a strategy of assigning varying bit-widths to different rows to reduce the overall quantization
error. Eq. (5) provides a theoretical foundation for the necessity of mixed-precision quantization
in SVD-based delta-compression. We discuss the detailed mixed-precision schedule in Section 3.2}
which allocates varying bit-widths to different rows, specifically the different singular vectors of U,
by formulating a (/1 integer linear programming problem.
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3.1.2 QuUANTIZE U

In this section, we analyze why mixed-precision quantization is not crucial for U. After quantizing
V to 'V, the quantization objective of U is:

argmjn [USVX - OSVX|~ ) el

(6)
fAU HUAU! = AUSVXXTVTETAUT

Here AU; = U; — U;, and the Hessian matrix of the i*" row of U is given by HY =
IXVXX TVTET(Wlth derivation details in Appendix [C.2). Upon comparing Eq. 5) and Egq.
(@) we observe that el does not incorporate the scaling term present in Eq. (6). Consequently, when
different rows are quantlzed using the same bit-width, there is no significant variation in error. This
uniformity arises from the fact that the Hessian matrices for different rows of U are identical. Thus,
unlike V, there is no necessity to employ mixed precision when quantizing different rows of U.

Therefore, DELTAMIX determines the mixed-precision quantization schedule based on V, and
then applies the same schedule to U for simplicity. Specifically, DELTAMIX quantizes U using a
column-wise mixed-precision schedule, where the 7*" column of U adopts the same bit-width as the

it" row of V as they correspond to the same singular value. Notably, DELTAMIX exhibits insensitivity
to column-wise precision schedules, since GPTQ compensates for quantization-induced errors in
the column direction by adjusting the unquantized weights during the quantization process. This
compensation, however, does not occur between different rows, as different rows are independently
quantized in GPTQ. This further underscores the importance of discussing row-wise mixed precision
strategies aimed at minimizing the quantization error of V. In Appendix we further demonstrate
experimentally that applying the same mixed-precision quantization strategy to both V and U yields
satisfactory performance.

Reconstruction Target Correction. In Eq. @ we quantize U to reconstruct the target USVX,
which deviates from the initial target UX'V X . This deviation can negatively impact the performance
of the quantized model. A straightforward approach to address this issue is to directly replace
the reconstruction target with UX'V X; however, this would inhibit the application of GPTQ for
quantization. Therefore, we propose a method termed “Reconstruction Target Correction” (RTC)
to reduce the bias by transforming USVX in Eq. @ to UV X, where U is derived from the
following equation:

2

min HUEVX - UEVXH
o F @)

= U=UsVvXXTVTET(zvxxTVvTsT)-!

See Appendix [C.3|for detailed derivations. In summary, prior to quantizing U, we first update U to

U using Eq. H Subsequently, we perform quantization by minimizing [UXVX — USVX|2.

This approach aims to ensure that the reconstruction target closely approximates the original, without

compromising the application of GPTQ for quantization.

3.2 OPTIMIZATION PROBLEM MODELING

In this section, we formulate the optimal mixed-precision bit allocation problem as a 0/1 integer linear
programming model (see Eq. (§)). Given a user-specified compression target bit G5, a candidate set
of quantization bit-widths @ of size IVy, and an upper bound f,.x on the number of active bit-widths,
the proposed model minimizes the quantization error by automatically selecting an subset of active
bid-widths from @, subject to the constraints imposed by G} and fiax-

As shown in Eq. , the objective is to minimize the total quantization error, expressed as  _, E}’SlT .
Here, EY € R denotes the quantization error associated with different bit-widths for the i*"
row of V computed using predefined calibration data samples X,, in accordance with Eq. ().
Si € R“N * is a binary optimization variable indicating the selected bit-width for quantizing the
it" row of V and the corresponding i*" column of U. Note that our objective is limited to the
quantization error of V, with a detailed discussion provided in Sections[3.1.1]and [3.1.2]
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i EYST Total quantizati
Inslnz .S (Total quantization error)
s.t. Z SiB < Gp(hin - hout) (Bit budget constraint)
i (8)
sum(S;) =1 (One-hot vector constraint)
Si—f<0 (Bit-width selection constraint)
sum(f) < fiax (Bit-width number constraint)

The optimization problem has four constraints. (1) The “bit-budget constraint” ensures that the
quantized model achieves a target compression bit that does not exceed the predefined threshold Gy,
Here hj,, and hey represent the input and output dimension of W. B € R™>*1 represents the storage
required for quantizing a row of V and a column of U at different bit-widths, which is computed
as B = (hin + hout) - Q. (2) The “one-hot vector constraint” requires that each row of V and the
corresponding column of U be quantized using exactly one bit-width. (3) The “bit-width selection
constraint” guarantees that only permissible bit-widths are utilized for quantization. The variable
f € RY™No denotes the set of admissible bit-widths, where fj ;. = 1 indicates that the k*" bit-width
in @ is allowable. (4) The “bit-width number constraint” restricts the number of admissible bit-widths
to a maximum of fi ..

The 0/1 integer linear programming optimization problem is then solved with the CVXPY (Diamond
& Boyd, 2016) library and the SCIP (Mabher et al.,[2016) solver. We report the optimization solving
time in Appendix [E.4] which costs 29.4 minutes for Qwen2.5-Math-7B-Instruct. This overhead is
acceptable, as the model requires quantization only once. By solving Eq. (§)), we obtain an optimal
mixed-precision quantization scheme that minimizes the error while satisfying predefined bit budget
constraints. This allows us to derive task-specific mixed-precision quantization strategies which
balance the “scaling” and “difference” terms, leading to improved performance across various tasks.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Calibration Dataset. Following Delta-CoMe (Ping et al.| 2024), DELTAMIX randomly samples
128 examples, each containing 2048 tokens, from the C4 training set as the calibration dataset. This
configuration is consistently applied across all calibration-dependent methods.

Evaluation Tasks. We evaluate our methods on four distinct tasks: reasoning, math, code genera-
tion, and multi-modal. These tasks encompass a vast array of current directions based on fine-tuning
with open-source LLMs. Reasoning: We use the Math500 and AIME2024 datasets as the test set.
Math: We use the GSM8K (Cobbe et al.,[2021) and Math500 (Lightman et al., 2023) datasets as the
test set. Code Generation: We use HumanEval (Chen et al.,|2021) and MBPP (Austin et al., 2021)
as the test set. Multi-Modal: We utilize the GQA (Hudson & Manning, |2019) and the image part of
ScienceQA (Lu et al., 2022) datasets. Please refer to Appendixfor more details.

Models. To ensure a comprehensive comparison, we evaluate both 7B and 13-14B models across
the four tasks with various backbones. See Table [I0]in Appendix [D.T] for more details about the
backbones and aligned models used. During inference, we employ a greedy search strategy.

Baselines. We compare DELTAMIX with three baselines: SVD-based low-rank compression (Ryu
et al.l 2023)), BitDelta (Liu et al., [2024), Delta-CoMe (Ping et al., 2024) at compression ratio
1/a = 16. All methods are evaluated using NVIDIA L20 GPUs.

4.2 MAIN RESULTS

Tables[IT]and ] present the results of DELTAMIX on both the 7B and 13-14B models across four tasks,
in comparison to the baselines. Notably, DELTAMIX demonstrates superior overall performance on
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Table 1: Comparison of DELTAMIX and baselines on various tasks across 7B-sized models. We
report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

Method o DeepSeek-R1-Distill-Qwen Qwen2.5-Math-Instruct Qwen2.5-Coder-Instruct Qwen2.5-VL-Instruct AVG
Math500 AIME2024 Math500 GSMSK Humaneval Mbpp GQA SQA

Backbone 1 70.6 16.7 70.6 84.8 72.0 80.7 - - -
Aligned 1 86.0 40.0 80.2 94.8 87.2 82.8 60.5 76.7 76.0
Low-Rank  1/16 72.2 13.3 59.6 70.3 84.1 86.2 0.0 0.0 48.2
BitDelta 1/16 1.4 0.0 71.2 84.0 83.5 83.9 0.0 0.3 40.5
Delta-CoMe  1/16  82.4(1.11) 30.0(3.30) 74.8(0.35)  94.5(0.00) 85.0(0.96)  82.7(0.17) 49.4(1.65) 76.5(0.26) 71.9
DELTAMIX 1/16  82.7(0.83) 36.7(3.35) 77.7(1.03)  94.6(0.51) 85.6(0.35)  83.1(0.25) 52.4(2.30) 79.4(0.83) 74.0

Table 2: Comparison of DELTAMIX and baselines on various tasks across 13-14B-sized models. We
report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

Method o DeepSeek-R1-Distill-Qwen MetaMath Qwen?2.5-Coder-Instruct LLAVA-V1.5 AVG
Math500 AIME2024 Math500 GSMSK Humaneval Mbpp GQA SQA

Backbone 1 76.4 33 1.8 4.3 78.7 84.7 - - -
Aligned 1 87.4 40.0 22.6 71.0 90.2 85.4 63.3 72.8 66.6
Low-Rank  1/16 57.2 6.7 15.8 64.0 86.6 88.6 57.0 71.4 559
BitDelta 1/16 82.8 233 22.4 65.8 89.0 86.5 61.2 73.0 63.0
Delta-CoMe 1/16  76.5(3.38) 24.5(6.93) 22.9(0.12) 70.2(0.56) 90.6(0.75)  86.5(0.70) 62.8(0.09) 72.3(0.20) 63.3
DELTAMIX 1/16  80.2(2.09) 31.1(3.81) 21.7(0.64)  71.2(0.26) 91.5(0.60)  86.9(0.12) 62.7(0.04) 72.1(0.18) 64.7

both the 7B and 13-14B models, surpassing the best baseline, Delta-CoMe, by an average of 2.9%
and 2.2%, respectively.

When analyzing the various tasks, we observe that DELTAMIX exhibits more pronounced improve-
ments in challenging scenarios characterized by a significant performance gap between the baseline
methods and the aligned model. This is particularly evident in reasoning-intensive benchmarks, such
as AIME2024, as well as in multimodal tasks utilizing 7B backbones. For instance, DELTAMIX
surpasses the previous state-of-the-art model, Delta-CoMe, by 22.3% on the 7B model and by 26.9%
on the 14B model. Further analysis reveals that these models display larger norms for AW. Specifi-
cally, the median norm of DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-VL-Instruct is 6.5 and 10.3
times that of Qwen-Coder-Instruct-7B, with corresponding values of 26.13 and 41.45 compared to
4.02, respectively. In this context, baseline methods struggle to achieve optimal solutions due to their
empirical nature. In contrast, DELTAMIX directly optimizes quantization error from a mathematical
perspective, enabling it to fully leverage its strengths in demanding tasks. However, on tasks where
baselines already achieve near-lossless accuracy, such as MBPP and HumanEval on the 7B backbone,
DELTAMIX performs comparably to the best baseline. In these scenarios, the norm of AW is
relatively small and can be easily compressed, leading to a ceiling effect: AW can be quantized
almost losslessly by existing baselines, leaving little room for further improvement.

We also compare the quantization time cost of DELTAMIX and Delta-CoMe. Please refer to Appendix
[E-4]for more details. The results show that DELTAMIX (resp. Delta-CoMe) requires only 1.2 (resp.
0.4)hours for 7B models and 2.4 (resp. 0.8) hours for 14B models on a single GPU. Although
DELTAMIX is slower than Delta-CoMe, the time cost remains acceptable since the quantification
process needs to be performed only once.

4.3 COMPARE WITH BROADER BASELINES

To further validate the effectiveness of DELTAMIX, we introduced two additional baselines: SVD-
LLM (Wang et al., |2025) and the sparse-quant method, SpQR (Dettmers et al., 2023)), to compare
with DELTAMIX on the 7B-sized models. Considering that SpQR quantizes Zeros and Scales to save
space for storing some outliers in 32 bits, we divide SpQR into two baselines: 1) No quantization
of Zeros and Scales, but no outliers stored. 2) Using a two-step quantization method, storing some

Table 3: Comparison of DELTAMIX and boarder baselines on various tasks across 7B-sized models.
As the SpQR method integrates sparsity and quantization, we divide this method into two baselines,
one with and one without outliers.

DeepSeek-R1-Distill-Qwen  Qwen2.5-Math-Instruct ~ Qwen2.5-Coder-Instruct ~ Qwen2.5-VL-Instruct

Method AVG
MATH500  AIME2024  Math500 GSMBK Humaneval Mbpp GQA SQA

SVD-LLM 1/16 32.8 10.0 67.4 82.8 852 83.1 0.0 0.0 45.2

SpQR(No Outliers) 1/16 2.4 0.0 12.6 385 84.8 78.3 0.0 0.0 27.0

SpQR(0.01% Outliers)  1/16 45.0 10.0 712 89.2 85.4 82.3 0.0 0.0 48.0

DELTAMIX 1/16 82.7 36.7 71.7 94.6 85.6 83.1 524 79.4 74.0
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Table 4: The performance of DELTAMIX to
quantize Qwen2.5-Math-7B-Instruct with differ-
ent number of calibration data.

Table 5: The performance of DELTAMIX
to quantize Qwen2.5-Math-7B-Instruct using
calibration data drawn from C4 and Wiki-

Calibration Size Math500 GSMS8K Average text2.
16 76.4 94.5 85.5 Math500 GSM8K  Average
32 762 93.1 857 C4 77.6 94.8 86.2
64 76.8 94.3 85.6 .

Wikitext2  76.6 94.8 85.7
128 77.6 94.8 86.2 MetaMath 754 936 845
256 76.0 94.1 85.1 ctaMat : : :

outliers. The results in Table [3]indicate that DELTAMIX consistently outperforms all three baselines.
In particular, for Qwen2.5-VL-Instruct, except for DELTAMIX, all baselines have lost its multimodal
capability.

4.4 ABLATION OF CALIBRATION DATASET

Since DELTAMIX is a calibration-dependent method, to verify its robustness on calibration, we con-
ducted experiments with different sizes and domains of the calibration dataset to quantize Qwen2.5-
Math-7B-Instruct. For calibration on domains, each calibration set contains 128 randomly sampled
sequences of length 2048. Due to the insufficient number of sequences of this length in the Meta-
MathQA dataset, we concatenated multiple question—answer pairs in a few-shot format. To examine
the effect of dataset size on calibration, we varied the number of calibration samples from 16 to 256.
The results in Tables ] and [5|demonstrate that DELTAMIX performs well on all calibration setups,
confirming DELTAMIX ’s robustness.

4.5 ANALYSIS OF finax

In DELTAMIX, we set a hyperparameter termed ~Table 6: Performance across different fiax. We
fmax to constrain the number of active bit- Ieport the results in the format “mean(std)” with

widths during quantization. This section ex- three runs.

amines the performance of DELTAMIX under Method ., DeepSeck-R1-Distill-Qwen-14B v/«
varying values of fyax. As shown in Table [6] ( Math500 AIME2024
DELTAMIX consistently achieves better perfor-  Delta-CoMe -  76.5(3.38) 24.5(6.93) 50.5
mance than Delta-CoMe across all settings, in- 2 80.7(1.75) 33.3(3.35) 57.0
dicating that DELTAMIX is insensitive to the 3 799(1.53) 30.0(8.83) 55.0
hoi £ In th . . ¢ ¢ DELTAMIX 4 802209 31.1(3.81) 55.7
choice of fiax. In the main experiment, we se 5 79.5(099) 33.3(6.65) Se4
fmax to 4 to be consistent with Delta-CoMe. 6  79.52.21) 33.3(3.35) 56.4

4.6 ABLATION OF RTC

We conducted experiments to assess

the necessity of RTC, as deta}iled in Table 7: Performance ablation of RTC. We report the results
Table [7, Overall, RTC consistently i the format “mean(std)” with three runs.

enhances our method, yielding an av- LLAVA-VL.5 DeepSeck-RI-Distill-Qwen-14B 1/
erage performance improvement of GQA SQA Math500 AIME2024

2.2%. The results indicate that mit- Delta-CoMe 62.8(0.09) 72.3(0.20) 76.5(3.38) 24.5(6.93) 59.0
L N . DELTAMIX 62.7(0.04) 72.1(0.18)  80.2(2.09) 31.1(3.81) 61.5
1gating the deviation in the quantiza- DELTAMIX (W/O RTC)  62.8(0.02) 72.2(0.05) 78.2(0.28) 27.5(3.81) 60.2

tion loss of U enables DELTAMIX to
retain more information from AW. The importance of RTC is particularly pronounced in challenging
tasks; for instance, it improves performance by 13.1% on the AIME2024 task. This improvement can
be attributed to the more substantial quantization errors associated with quantizing V in these cases,
thereby highlighting the critical need for reconstruction target correction.

In Appendix [E.2] we evaluate the required time of RTC across four model sizes to demonstrate the
high efficiency of the RTC. The results show that, for a 14B model, RTC requires only 1.35s to
process a transformer block, accounting for merely 1.18% of the total quantization time. Please refer
to Appendix for more details.
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Figure 3: End-to-end decoding latency evaluation with varying numbers of deployed models using
Qwen2.5-7B variants. (Left) Decoding memory usage. (Middle) Prefill time. (Right) Generation
speed.

5 ANALYSES

5.1 INFERENCE SPEED AND MEMORY COST

Following the setup of |Liu et al.[(2024), we evaluate the end-to-end decoding latency of Qwen2.5-7B
variants using a single L20 GPU. As shown in Figure[3] we consider the setting where each deployed
model receives one distinct request simultaneously—e.g., 12 deployed models correspond to a batch
size of 12- with latency evaluation in three perspectives: (1) Memory Usage: This one measures
peak GPU memory usage during concurrent inference, accounting for both model parameters and
activation storage. (2) Prefill Time: This part focuses on the time the models take to process user-input
prompts. Each request contains 512 input tokens, and we report the time (in ms) the model takes
to handle them. (3) Generation Speed: This part evaluates how quickly the model generates output
tokens (tokens/s) for each request. Since the prefill time already measures prompt processing, each
request starts from the “[BOS]” token and generates 512 tokens sequentially.

As shown in Figure [3] (left), a single GPU can deploy only two aligned models simultaneously.
In contrast, it can support up to 8 and 12 models concurrently for Delta-CoMe and DELTAMIX,
respectively. This enhancement is attributable to the fact that, as the number of models increases,
both methods necessitate only the additional deployment of compressed delta weights, thereby
significantly reducing memory overhead. Notably, while Delta-CoMe exhausts GPU memory at 12
models, DELTAMIX does not. Our further analysis indicates that DELTAMIX typically employs fewer
ranks, namely allocates a greater number of singular vectors with a bid-width of 0, thereby enhancing
the GPU memory utilization efficiency.

For the end-to-end decoding latency illustrated in Figure 3] (middle, right), we find that Delta-CoMe
and DELTAMIX introduce overhead to Naive when the number of deployed model is small. However,
Delta-CoMe and DELTAMIX scale better and effectively translate the saved GPU memory into
improved decoding latency. In contrast, the Naive approach quickly encounters out-of-memory issues.
Furthermore, DELTAMIX exhibits a superior generation speed compared to Delta-CoMe at scale,
while the prefill times for both methods remain comparable. In Appendix [E.2] we conduct more
latency evaluation under varying arrival rates and request distributions following (Yao et al., [2024)).

5.2 DELTA-COMPRESSION VS. DELTA-TUNING

Delta-compression decomposes the delta weights of a fully fine-tuned model into low-rank and low-bit
representations, thereby reducing storage and inference costs. Delta-tuning methods, such as LoRA,
are closely related to delta-compression but primarily aim to reduce the training costs of LLMs while
achieving performance comparable to that of full fine-tuning. However, in various tasks—particularly

more complex ones like code and math Tuple 8: Performance comparison between Delta-
tasks—delta-tuning methods tend to underper- - compression and LoRA. Aligned is full fine-tuned
form full fine-tuning (Biderman et al.} 2024). ,ndel. For DELTAMIX, we report the results in
This suggests that relying solely on delta-tuning e format “mean(std)” with three runs.

may be insufficient. — N ot o o
. . . Humaneval Mbpp Math500 GSMSK

In this section, we train the DeepSeek-LLM- Backbone . i 50 s T s
7B-Base (DeepSeek-Al [2024) on math and Aligned ! 463 8.9 146 83 40
. . LoRA 1716 341 47.7 9.4 509 355

code tasks using both LoRA and full ﬁne—tumng. DELTAMIX 1716 43.3(0.6)  50.2(0.82) 13.5(0.76) 56.1(0.82) 408
DELTAMIX-LoRA  1/64  34.1 47.6 10.4 496 354

We subsequently apply DELTAMIX to the delta LTAMIXLORA - 1/64 341 g 104 ve B

weights of the fully fine-tuned model and LoRA.
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Additional experimental details can be found in Appendix [D.2} Table[§]presents a comparison of
DELTAMIX with LoRA. The results indicate that DELTAMIX consistently outperforms LoRA across
all tasks. DELTAMIX achieves an average score of 40.8, which is close to the aligned model’s score
of 42.0, representing a 14.9% improvement over LoRA.

Furthermore, applying DELTAMIX to LoRA can further improve the compression ratio without
sacrificing performance. Table [ shows that the average performance difference of LoRA before
and after compression is 0.01. Notably, Baselines like BitDelta and Delta-CoMe cannot apply to
LoRA. BitDelta directly quantizes AW to 1 bit without employing any low-rank approximation.
Consequently, it cannot effectively utilize the low-rank properties inherent in LoRA. For Delta-CoMe,
the empirically determined mixed-precision scheme is fixed and does not offer a clear method for
allocating mixed precision at other compression ratios. In contrast, DELTAMIX allows compression
of AW to arbitrary ratios, making it more flexible and practically advantageous.

5.3 ANALYZING QUANTIZATION ERROR

To better understand the difference between var- aple 9- Average quantization error (x le2)
ious delta-compression methods, we compute Qwen2.5-Math-7B-Instruct model with Eq.
the quantization error on Qwen2.5-Math-7B- (M).“Low”, “Mid”, and “High" denote the first 9
Instruct model as defined in Equation (@). Since layers, layers 9 to 17, and the last 10 layers, respec-
outliers play a critical role in model compres- tively. “All” and “Out” denote the average error

sion (Dettmers et al., [2023; [Lin et al., [2024), we  5.ross all activations and the average error of the
also report the average error for the top 1% of top 1% of activations.

activations with the largest absolute values in

. .. . Low Mid High
the aligned model, categorizing them as outliers. A o Al ow Al out
As different layers contribute differently to the e 18 36 150 a8 2 189034
. OW-Kkan . . . . . .
final output (Wu et al} 2024), we categorize  gipn,, 508 281 061 108 2151 316258

the first 9 layers, layers 9 to 17, and the last 10 pejta-CoMe 076 1.79 075 133 7.54 470.82
layers as 1OW, mid, and hlgh groups, respectively’ DELTAMIX 0.66 146 0.66 1.12 6.81 426.20
and report the average error of each group. See

Table 20| of Appendix [E.8|for more details.

As demonstrated in Table O] DELTAMIX consistently exhibits lower overall quantization error
compared to all baseline methods, attributable to its inherent objective of minimizing quantization
error. In the mid layers, DELTAMIX shows a slightly higher error than BitDelta, with values of 0.66
versus 0.61 for all activations and 1.12 versus 1.08 for outlier activations, respectively. However, it is
important to note that since BitDelta is an empirical method, it cannot guarantee low quantization
error across all layers. For example, in the high layers, BitDelta exhibits significantly higher error
rates compared to DELTAMIX, with values of 21.51 versus 6.81 for all activations and 3162.58 versus
426.20 for outlier activations, respectively. These experiments further illustrate that DELTAMIX
effectively reduces quantization error, thereby preserving the information contained in the delta
weights as much as possible. In Appendix [E.7] we visualize the bit allocation results of DELTAMIX
across different weight types and layers using the Qwen2.5-Math-7B-Instruct model.

6 CONCLUSION

In this study, we present DELTAMIX, an adaptive mixed-precision delta-compression framework
aimed at minimizing quantization error in the SVD space without introducing additional assumptions.
DELTAMIX offers a theoretical proof of the necessity for mixed-precision delta-compression and
provides a practical quantization solution that involves solving a 0/1 linear integer programming
problem and employing a reconstruction target correction method. DELTAMIX outperforms all
baseline delta-compression methods across four distinct downstream tasks, including reasoning, math,
code, and multi-modal tasks, utilizing eight widely adopted aligned LLMs with backbone pre-trained
models, including Qwen2.5, Qwen2.5-Math, Qwen2.5-Coder, and LLaMA?2. Moreover, DELTAMIX
significantly reduces deployment costs by minimizing memory overhead and accelerating inference.
We believe that DELTAMIX provides considerable theoretical and practical value, particularly in
scenarios involving multi-tenant deployments.

10
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ETHICS STATEMENT

We propose an adaptive mixed-precision delta-compression framework designed to minimize quanti-
zation error in the singular value decomposition space. Our experiments rely exclusively on publicly
available datasets and models, without involving human subjects or sensitive data. We do not
anticipate any direct negative consequences arising from this approach.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we describe our experimental setup in Section {f.T] and provide addi-
tional details, including models, datasets, metrics, and GPUs, in Appendix @} Furthermore, our
implementation is publicly available at https://anonymous.4open.science/r/ICLR-Annoymous-CD59,
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A LIMITATION AND BROADER IMPACT

DELTAMIX significantly reduces hardware requirements and computational costs for serving multiple
finetuned models, thereby enabling smaller entities to deploy advanced large language models more
feasibly. Additionally, it lowers power consumption and reduces the carbon emissions associated
with LLM deployment. Despite DELTAMIX ’s demonstrated improvements over baseline methods in
reducing the performance gap between compressed and aligned models, it is important to note that
DELTAMIX remains a lossy compression method for certain tasks. We believe this is an important
consequence and encourage future research to further minimize this performance gap, particularly in
tasks where performance degradation is substantial.

B LLMsS USAGE

In this work, large language models (LLMs) were used solely as auxiliary tools for grammar correction
and text refinement.
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Table 10: Selected backbone and aligned models for the examined four tasks.

Task 7B Models 13-14B Models
Backbone Aligned Backbone Aligned
Math Qwen2.5-Math Qwen?2.5-Math-Instruct LLaMA2 MetaMath
Reasoning Qwen2.5-Math  DeepSeek-R1-Distill-Qwen Qwen2.5 DeepSeek-R1-Distill-Qwen
Coder Qwen2.5-Coder Qwen2.5-Coder-Instruct Qwen2.5-Coder Qwen2.5-Coder-Instruct
Multi-Modal Qwen2.5 Qwen2.5-VL-Instruct LLaMA2 LLAVA-V1.5

By setting the gradient of the loss to zero, DELTAMIX gets the corrected U as follow:

oL _ (UZVX —-USVX)XTVTET =0
ou (12)

= U=UsVvXXTVTsT(=VvxxTVTxT)-!
D EXPERIMENTS SETUP

D.1 MAIN EXPERIMENTS

‘We evaluate our methods across models in Table @l on four distinct tasks: math, reasoning, code
generation, and multi-modal. These tasks encompass a vast array of current directions based on
fine-tuning with open-source LLMs.

o Math. We use the GSMS8K (Cobbe et al.l 2021} and Math500 (Lightman et al.,|2023) datasets as
the test set. We follow the prompt format of WizardMath (Luo et al.| 2025) and set the maximum
generation length to 1024. The evaluation metric is accuracy, determined by comparing the model-
generated solution to the ground truth.

e Reasoning. We use the Math500 and AIME2024 datasets as the test set. For the reasoning prompt
of AIME2024, we follow with (Naman Jain & et al.||2024). The maximum length of both tasks is set
to 8192. The evaluation metric is accuracy, determined by comparing the model-generated solution
to the ground truth.

o Code Generation. We use two widely used datasets as the test set: HumanEval (Chen et al.| [2021)
and MBPP (Austin et al.|[2021). We follow the Magicoder (Wei et al., [2024)) evaluation framework
for HumanEval and adopt EvalPlus (Liu et al.| 2023a) for MBPP. The evaluation metric is the pass
rate (pass@ 1), which measures whether the code generated in a single attempt successfully passes
the test cases.

o Multi-Modal. We utilize the GQA (Hudson & Manning, 2019) and the image part of Sci-
enceQA (Lu et al., [2022)) datasets, both commonly used for evaluating VLM performance, as our
test set. We adopt Imms-eval (Zhang et al., [2024) to evaluate both tasks. The evaluation metric is
accuracy, which measures whether the model selects the correct option.

To accelerate DELTAMIX’s quantization, we discard Table 11: The performance of applying
in DELTAMIX to Qwen2.5-Math-7B-Instruct

he last & ranks of V/ where k = | 5 O2funtion) | DL

the last 'k anks of V, where k (hin+hout)-bitmin with discard the last £% ranks.

Here, bit,,;, denotes the smallest non-zero bit-width Drop Ratio Math500 GSMSK _ Average Costing Time

allowed in quantization. Our acceleration scheme, 0 776 948 362 1290
which eliminates the singular components with the 8; ;zg gji :22 H;‘;
smallest singular values, sacrifices some performance (3 75.6 942 849 1.00h
in exchange for reduced computational costs. To ~ 04 758 %43 8.1 1.00h

. ) . 0.5 76.0 93.7 84.9 1.00h
validate this approach, we conducted experiments on o5 748 94.0 844  094h

Qwen2.5-Math-7B-Instruct by discarding between
0% and 60% of the trailing singular components. As shown in Table [TT] DELTAMIX performs
optimally at low drop ratios (0% and 20%), confirming that this technique is primarily aimed at
enhancing speed. As we discard more trailing singular components, performance declines; however,
this slight decrease can be exchanged for an improvement in speed.

D.2 DELTA-COMPRESSION VS. DELTA-TUNING

Specifically, we set the LoORA rank to 128 and the scale factor to 128, training LoRA for all model
parameters for 3 epochs using a cosine schedule with a peak learning rate of 4e-5 and a warm-up ratio
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of 0.1, using model deepseek-1lm-7b-base (DeepSeek-AlL[2024). We randomly sample 50k training
examples from MetaMathQA (Yu et al.,[2023) and Magicoder-Evol-Instruct (Wei et al., [2024) for the
math and code tasks, respectively. To ensure a fair comparison, we fine-tune all model parameters
using the same datasets as those used for LoRA training. We then apply DELTAMIX to both math
and code finetuned LLMs.

E MORE EXPERIMENTS
E.1 ANALYZING THE DIFFERENT QUANTIZATION SCHEMES IN U

In this section, we investigate the ef- Typle 12: We evaluate the performance of various quantiza-
fect of applying different quantization (jon schemes applied to U on Qwen2.5-Math-7B-Instruct.
schemes to U in order to assess the pyere “x_bit” denotes quantization of U at x-bit precision.
necessity of mixed precision. OUr The “DprTAMIX-row” setting refers to applying the opti-
evaluation is conducted on Qwen2.5- mization model to determine the scheme and performing
Math-7B-Instruct. The results show  gantization in a row-wise manner, whereas “DELTAMIX ”
that there is no significant difference  jpgjcates employing the same quantization scheme used for

between DELTAMIX and other quan- v/ with quantization carried out column by column.
tization methods for U. As shown  Mahs00 GSMBK AVG

in Table[I2] “x-bit” denotes quantiza-

: . ) > U(2bit),V(DELTAMIX) /16 7638 93.6 85.2
tion of U with x-bit precision. The  ypiy v(pELTAMIX) 1716 75.6 93.4 84.5
“DELTAMIX-row” setting applies the ~ U(DELTAMIx-row),V(DELTAMIX) 1/16 752 93.6 84.4
optimization model to determine the =~ _DELTAMIX 116 75.2 93.9 84.6

scheme and performs quantization in

a row-wise manner, whereas “DELTAMIX” adopts the same quantization scheme as V and conducts
quantization column by column. The performance differences across schemes are minimal, with the
largest gap in average scores being only 0.95%, observed between the “DELTAMIX-row” setting and
the 2-bit quantization. These results suggest that the choice of quantization strategy for U has only a
limited impact on overall performance.

E.2 INFERENCE SPEED AND MEMORY COST

To demonstrate the impact of DELTAMIX on inference speed and memory cost, we implement a
simple Triton (Tillet et al.l 2019) kernel for DELTAMIX. We compare our kernel with naive aligned
models. Since there is no packing function of Delta-CoMe, we use our packing function and kernel
for the Delta-CoMe method.

Following the setup in|Yao et al.[(2024), we assess the end-to-end system performance under varying
arrival rates and request distributions. We consider two types of model popularity distribution: 1)
Uniform: all models are equally popular. 2) Skewed: model popularity follows a Zipf-« distribution.

We evaluaFe the performance when serving 32 Taple 13: The Throughput and End-to-end sys-
model variants of Qwen2.5-7B. Requests are e performance under varying arrival rates and

sent to the serving system at a variable Pois-  reqyest distributions when serving 32 model vari-
son arrival rate (A). To simplify, each request ,¢c of Qwen2.5-7B.

consists of 512 tokens, with the model gener- Tos 310

ating one token as its response. We run the Throughput(req/s) E2E(s) Throughput(req/s) E2E(s)

simulations for 100 seconds across different ar- ~ Zipf (o = 1.5)

rival rates and model distributions, measuring = Naive 021 52.42 0.18 198.48

. . Delta-CoMe 0.42 0.55 0.87 0.68

performance using two metrics: 1) end-to-end  priamix 042 052 0.87 0.62

latency averaged over all requests; 2) Through-  Uniform

put, number of requests processed per second.  Naive 0.07 253.93 0.08 481.42

All . d d ingle 140 Delta-CoMe 0.42 0.81 0.86 1.44
experiments are conducted on a single DELTAMIX 0.42 079 0.86 117

GPU, with 28G of memory for storing models
and the remaining memory for inference.

As shown in the Table[I3] DELTAMIX improves the throughput 6x and decreases end-to-end 100x
compared to the naive method, because rather than loading the whole full-precision parameters,
DELTAMIX quantizes the delta-parameters so that a GPU can load more delta-parameters and switch
them easily between CPU and GPU.
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E.3 TIME REQUIRED FOR RTC

In this section, we evaluate the effi-

’ Table 14: The time (in seconds) consumed by applying RTC
ciency of the RTC method by mea-

and quantizing a transformer block to four different-sized

suring its time for processing a trans- models.
SQ;fmer block acgoss four models t(l)f Model RTC Total Time RTC (in percentage)
ifferent sizes and comparing 1t to the DeepSeek-R1-Distill-Qwen-1.5B  0.15  29.87 0.50%
corresponding proportion of the total ~ peepSeek-R1-Distill-Qwen-7B  1.35  99.25 1.36%
quantization time. As shown in the Ta-  DeepSeek-RI-Distill-Qwen-14B 135 114.88 1.18%
DeepSeek-R1-Distill-Llama-70B ~ 8.16  289.69 2.82%

ble[T4] RTC processes an entire trans-
former block for a 70B model in just 8.16s, accounting for only 2.82% of the total quantization
time. Referring to Table [7} RTC improves performance on the AIME2024 task by 13.1%. This
demonstrates that RTC can improve the performance of more difficult-to-quantize models in a short
time.

E.4 TIME FOR QUANTIZATION

Table 15: Time cost (in seconds) for “Simulation”, “Optimization”, and “Quantization” for one
transformer block on the Qwen2.5-Math-7B-Instruct model, which consists of 28 blocks.

Simulation Optimization Quantization Total

Q_proj 0.0 3.6
K_proj 0.0 0.0 3.6
V_proj 0.0 3.6
Delta-CoMe 0_proj 0.0 0.0 51 50.5
Up_proj 0.0 0.0 4.5
Gate_proj 0.0 ' 4.5
Down_proj 0.0 0.0 25.6
Q_proj 4.7 0.5
K_proj 4.7 8.5 0.5
V_proj 4.7 0.5
DELTAMIX 5 1o 6.1 115 05 143.6
Up_proj 5.8 2.8
Gate_proj 5.8 205 2.8
Down_proj 30.2 22.5 11.0

In this section, we evaluate the quantization time of DELTAMIX and Delta-CoMe within a single
transformer block. The fundamental distinction between the two methods lies in their mixed-precision
quantization strategies for each linear layer. DELTAMIX determines the strategy by minimizing
quantization loss, formulated as a 0/1 integer linear programming problem, but Delta-CoMe adopts
an empirical and fixed strategy for all linear layers.

To clarify the computational overhead, we decompose the quantization time into three components.
The first is “simulation time”, which reflects the cost of estimating quantization loss under different bit-
widths. The second is “optimization time”, incurred when solving the 0/1 integer linear programming
problem. The third is the “quantization time” itself, representing the cost of quantizing each linear
layer according to the selected strategy.

Required Time for Each Part. In Table we report the detailed results of different types of
linear layer for one transformer block in Qwen2.5-Math-7B-Instruct, which contains 28 blocks in
total. For Delta-CoMe, both simulation and optimization times are zero because its mixed-precision
quantization strategy is predetermined and applied uniformly across all linear layers; consequently,
the entire forward pass is accounted for within the quantization time. In contrast, DELTAMIX
incurs additional simulation and optimization costs, which are higher for Up_proj, Gate_proj, and
Down_proj due to their larger row or column dimensions. Specifically, simulation time increases
with the number of columns, while optimization time grows with the number of rows. Notably,
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DELTAMIX ’s quantization time is shorter than that of Delta-CoMe, since the forward pass is already
included in its simulation stage.

Overall, although DELTAMIX takes 3x more time than Delta-CoMe, it only requires 1.2 hours for
7B models and 2.4 hours for 14B models on a single L20 GPU, which is acceptable. In contrast to
Delta-CoMe’s degraded performance on the large norm of AW, DELTAMIX consistently achieves
comparable or better results across all scenarios.

Required Time under Various Numbers of Candidate Bit-widths. By quantizing Qwen2.5-

Math-7B-Instruct with different num-  yple 16: The required time for each part across various

bers of candidate bit-widths, we fur- nympers of candidate bit-widths to quantize Qwen2.5-Math-
ther analyze the time cost for each part 75 _1nstruct.

of the quantization. The results in Ta-
ble [I6] demonstrate that the “Quanti-

#Candidate Bit-widths ~ Simulation ~ Optimization ~Quantization Total Time

= X 3 2229 30.80 18.39 71.48
zation” remains nearly constant. For 4 26.05 35.01 21.42 82.48
Quantization, the parameters of any > 2841 39.68 19.78 87.87
; L 6 32.18 46.40 19.88 98.46

rank, the assigned bit width is fixed 7 37.46 55.14 20.71 11331
8 39.66 63.00 20.71 123.37

once the mixed-precision scheme is
determined; thus, varying the range of
candidate bit widths has a negligible effect. In contrast, the “Optimization” and “Simulation* are
directly affected by the number of available bit widths. The bit-width range determines the simulation
rounds and the size of the ILP solution space.

Optimization Time Scale with Layer Size. We measured the total time and memory needed to
solve the ILP for a single transformer block across four different-sized models. We also report
the GPU memory consumption (in

GB) and the hidden and intermedi- Table 17: The “Optimization” time, GPU memory usage (in
ate sizes corresponding to the size of  GB), and the hidden and intermediate size for four different-
the model. The results in Table 7 gjzed models when applying DELTAMIX.

demonStrate that ILP runtime iS pri_ Model Size Optimization Memory Usage Hidden (Intermediate) Size
marily determined by the hidden di-  DeepScck-RI-Distill-Qwen-1.5B  16.90 476 1536(8960)
. f . d d 11 1 DeepSeek-R1-Distill-Qwen-7B 59.38 12.62 3584(18944)
mension ol an individual in€ar layer.  peepseek-R1-Distill-Qwen-14B  71.87 16.23 5120(13824)
It should also be noted that, to satisfy ~_DecpSeckRI-Distill-Llama-708 _171.50 47.53 8192(28672)
9

open-source requirements, our experi-

ments employed a slower open-source solver (SCIP). In practice, the use of faster commercial ILP
solvers or a reduced set of candidate bit-widths can substantially accelerate ILP solving. Thus, the
reported optimization times should be interpreted as a lower bound for real-world deployments. Re-
garding memory usage, DELTAMIX quantizes a 70B model within a single L20 GPU with 47.53GB,
indicating that DELTAMIX is not resource-intensive and is therefore suitable for large-scale applica-
tions in resource-constrained environments or for parallel quantization of multiple models.

ILP Accelerate. We solve the ILP using open-source solvers in our paper. However, this process
can be accelerated by 6x times if we switch from SCIP to proprietary solvers such as COPT
[2023)) when handling ILP problems. Given that more than half of the quantization time
for DELTAMIX is dominated by the ILP-solving process, adopting such commercial solvers could
significantly enhance DELTAMIX’s efficiency in practice. Additionally, DELTAMIX can be further
optimized through other means, such as by limiting the number of candidate bitwidths (e.g., from 8
to 4).

E.5 PERFORMANCE UNDER DIFFERENT COMPRESSION RATIO

To show that DELTAMIX can apply to  Table 18: Performance of DELTAMIX under different com-
arbitrary compression ratios, we eval- pression ratios 1/cv.
uated DeepSeek-R1-Distill-Qwen-7B ,  DeepSeek-RI-Distill-Qwen Qwen2.5-Math-Instruct

Average
ffmd Qwen2.5—.Math—7.B—Instrulclt at Math500  AIME2024  Math500  GSMSK
four compression ratios, as shown —— 7 — 956 220
in Table [I8] The performance of ;6 858 33 774 5.1 729
DELTAMIX decreases as the compres- /16 832 333 71.6 94.8 722
1/32 76.8 26.7 73.4 91.6 67.1

sion ratio increases. This is expected,
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Table 19: The detailed storage overhead between DELTAMIX and Delta-CoMe.

DELTAMIX Delta-CoMe
Quantized Weights ~ Other Parameters ~ Total Storage  Quantized Weights ~ Other Parameters ~ Total Storage
Qwen2.5-Coder-7B-Instruct 0.81 0.06 0.87 0.81 0.06 0.87
Qwen2.5-VL-7B-Instruct 0.81 0.06 0.87 0.81 0.06 0.87
Qwen2.5-Math-7B-Instruct 0.81 0.06 0.87 0.81 0.06 0.87
DeepSeek-R1-Distill-Qwen-7B 0.81 0.05 0.86 0.81 0.06 0.87
MetaMath-13B-V1.0 1.51 0.09 1.60 1.51 0.12 1.63
Qwen2.5-Coder-14B-Instruct 1.63 0.11 1.74 1.63 0.12 1.75
DeepSeek-R1-Distill-Qwen-14B 163 0.10 1.73 1.63 0.12 1.75
llava-v1.5-13b 1.51 0.10 1.61 1.51 0.12 1.63

as a higher compression ratio indicates a reduced capacity of the quantized model to preserve in-
formation from the original model. Notably, baselines like BitDelta and Delta-CoMe cannot apply
to other compression ratios except « =1/16. BitDelta quantizes AW to a fixed 1 bit, resulting in a
constant compression ratio. For Delta-CoMe, the empirically determined mixed-precision scheme is
fixed and does not offer a clear method for allocating mixed precision at other compression ratios. In
contrast, DELTAMIX enables the compression of AW to arbitrary ratios, offering greater flexibility
and broader applicability.

E.6 BUDGET PARITY BETWEEN DELTAMIX AND DELTA-COME

To more accurately compare the storage overhead of DELTAMIX with the strongest baseline, Delta-
CoMe, and to demonstrate the fairness of the experiment, we compare the storage overhead of models
in our main experiments. We divide the total storage into two components: “Quantized Weights”
representing the storage used by quantized parameters, and “Other Parameters” include non-weight
parameters such as Scales (stored in 16 bits) and Zeros (stored according to their quantization bitwidth.
Table [T9]demonstrates that DELTAMIX exhibits lower storage overhead compared with Delta-CoMe.
This trend is further illustrated in Figure 3] where Delta-CoMe supports up to 8 models, whereas
DELTAMIX can deploy 12 simultaneously. These results clearly demonstrate the superior efficiency
of DELTAMIX.

E.7 ANALYZING THE BIT ALLOCATION RESULTS

We investigate the bit allocation results across different weight types and layers using the Qwen2.5-
Math-7B-Instruct model. Figure ] shows the memory allocated for each bit-width. Overall, the
bit allocation results for different weight types and layers are different. The V_Proj, K_Proj and
O_proj in the self-attention layer exhibit a similar allocation trend. For the other four weight types,
the bit allocation results differ. For instance, Down_Proj allocates more 2-bit units at the beginning
compared to other weight types.
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Layer Index Layer Index Layer Index Layer Index
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Figure 4: GPU memory usage with quantization bits across layers of Qwen2.5-Math-7B-Instruct.

& 12 16 § 12 16 20 24
Layer Index Layer Index

Delta-CoMe (Ping et al., [2024) empirically posits that singular vectors corresponding to larger
singular values are more significant and, therefore, necessitate higher-bit representations. We further
examine whether DELTAMIX adheres to this assumption, specifically by using singular values alone
to evaluate importance. We compute the Kendall rank correlation coefficient 7, between the bit
sequence and the singular value sequence for each W. The coefficient is a measure of rank correlation,
ranging from -1 to 1, reflecting the similarity of the orderings of the data when ranked by each of
the quantities. If the method strictly adhered to the assumption of using singular values alone for
importance assessment, singular vectors with larger singular values would always receive higher bit-
width, resulting in a consistent 7 = 1 across all W. However, for the DeepSeek-R1-Distill-Qwen-7B
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model with DELTAMIX, we observe a 7 of 0.95 for the W of the key projection at layer 28. This
indicates that DELTAMIX goes beyond singular values, taking into account both the “scaling” term

and the “difference” term.

E.8 ANALYZING THE QUANTIZATION ERROR ACROSS WEIGHT TYPES AND LAYERS

Table 20: Average quantization error (x le2) accross different type of linears with Eq. .“Low”,
“Mid”, and “High” denote the first 9 layers, layers 9 to 17, and the last 10 layers, respectively. “All”
and “Out” denote the average error across all activations and the average error of the top 1% of

activations.
Param Q_proj Param K_proj
Layer Low Mid High Layer Low Mid High
Type All Out All  Out All Out Type All Out All  Out All Out
Low-Rank 026 032 054 076 1.33 1.64 Low-Rank 0.06 0.07 0.11 0.13 0.19 029
BitDelta 0.18 0.37 027 0.37 0.68 1.00 BitDelta 0.03 0.03 0.05 0.06 0.08 0.12
Delta-CoMe 0.13 0.14 032 041 081 091 Delta-CoMe 0.03 0.03 006 0.07 012 021
DELTAMIX 0.10 0.1 025 0.32 0.64 0.73 DELTAMIX 0.03 0.03 0.05 0.07 0.10 0.18
Param V_proj Param O_proj
Layer Low Mid High Layer Low Mid High
Type All Out All  Out All Out Type All Out All  Out All Out
Low-Rank 0.03 0.03 0.06 0.08 0.39 1.11 Low-Rank 023 040 0.70 154 852  69.00
BitDelta 0.01 0.01 0.03 0.03 0.18 0.69 BitDelta 0.10 0.14 0.28 046 1044 89598
Delta-CoMe 0.02 0.02 0.04 005 024 0.85 Delta-CoMe 0.08 0.13 032 047 3.53 17.02
DELTAMIX 0.02 0.02 004 005 021 0.67 DELTAMIX 0.07 0.2 030 045 318 2231
Param Up_proj Param Gate_proj
Layer Low Mid High Layer Low Mid High
Type All Out All Out All Out Type All Out Al Out Al Out
Low-Rank 478 450 267 3.18 13.70 14.95 Low-Rank 635 3.85 3.16 072 1353 4.02
BitDelta 471 385 119 132 1330 11.61 BitDelta 9.01 447 1.60 065 1032 5.87
Delta-CoMe 2.10 208 1.60 190 7.67 9.37 Delta-CoMe 264 290 1.88 0.84 7.73  3.02
DELTAMIX 1.83 174 136 159 6.58 8.89 DELTAMIX 228 222 157 059 6.65 2.07
Param Down_proj Param Average
Layer Low Mid High Layer Low Mid High
Type All  Out All  Out All Out Type All Out All  Out All Out
Low-Rank 1.05 552 328 494 11020 747034  Low-Rank 1.82 3.67 150 284 21.12 1890.34
BitDelta 121 235 0.87 145 11560 11735.05 BitDelta 2.18 2.81 061 1.08 21.51 3162.58
Delta-CoMe 033 1.8 1.05 157 32,66 185191  Delta-CoMe 076 1.79 0.75 133 7.54 47082
DELTAMIX 031 1.62 1.02 143 3030 1669.95 DELTAMIX 0.66 146 066 112 6.81 426.20
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