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ABSTRACT

Fine-tuning is a crucial process for adapting large language models (LLMs) to
diverse applications. In certain scenarios, like multi-tenant serving, a large num-
ber of LLMs finetuned from the same base model are deployed to meet complex
requirements for users. Recent works explore delta-compression approaches to
quantize and compress the delta weights between the customized LLM and the
corresponding base model. However, they exhibit inadequate performance at
high compression ratios due to their empirical nature. In this work, we introduce
DELTAMIX, an adaptive mixed-precision delta-compression framework designed
to minimize quantization error in the singular value decomposition (SVD) space
without imposing additional assumptions. DELTAMIX provides a theoretical justi-
fication for the necessity of mixed-precision compression and presents a practical
quantization solution that involves solving a 0/1 linear integer programming prob-
lem alongside a reconstruction target correction method. Experimental results
across multiple models and benchmarks illustrate that DELTAMIX consistently
outperforms all baseline methods. Notably, on tasks such as AIME2024 and GQA,
DELTAMIX exceeds the performance of the best baseline, Delta-CoMe, by 22.3%
and 6.1% for 7B parameter models, respectively.

1 INTRODUCTION

Large language models (LLMs) have shown breakthrough performance on various knowledge-
intensive (Grattafior1 et al., 2024} [Team| 2024} |Jiang et al., 2023)) and complex reasoning tasks
(DeepSeek-All 2025} |Grattafiori et al.l [2024). Enhancing deployment efficiency is crucial for
facilitating LLM applications on edge devices and in cloud environments (Yao et al.,2024). In
multi-tenant serving scenarios, multiple users fine-tune the same base model using their customized
datasets (Wei et al., [2024; Yu et al.| 2023)), resulting in a variety of customized models that share a
common foundation. These models, derived from the same base LLM (e.g., Qwen2.5 (Team) 2024)
or LLaMA (Grattafior1 et al., [2024))), need to be deployed concurrently to address simultaneous
user requests. Conventional LLM compression approaches (Frantar et al.| [2022} [Lin et al., [2024)
focus on quantizing and compressing the full model parameters. While effective at low compression
ratios, these methods struggle to maintain model performance at high compression ratios, resulting in
significant storage and computational overhead when deploying multiple customized LLMs.

In contrast to full model compression, delta-compression (Yao et al., [2024; Liu et al., 2024} |Ping
et al.| 2024) decomposes a customized LLM into two components: the base model and the delta
weights, which encapsulate the differences between the customized model and its corresponding base
model. This approach emphasizes the compression of delta weights. Consequently, in multi-tenant
environments, a single base model can be deployed alongside multiple sets of compressed delta
parameters. Delta-compression achieves significantly higher compression rates than full model
compression, thereby substantially reducing overall deployment costs. Researchers have explored
effective approaches for delta-compression. Ryu et al.[(2023)) proposes a 1-bit quantization approach,
termed BitDelta, to reduce the size of delta weights. |Liu et al.| (2024) leverages the low-rank
characteristics of delta weights to improve storage efficiency through low-rank approximation. Delta-
CoMe (Ping et al.| [2024)) introduces a mixed-precision delta-compression technique based on singular
value decomposition (SVD), allocating higher-bit representations to singular vectors associated with
larger singular values. Although these existing approaches demonstrate promising performance at
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Figure 1: An overview of DELTAMIX. The quantization error of the i-th row of V comprise two
components: a “scaling” term (®) and a “difference” term (®). The “scaling” term is fixed, while the
“difference” term is related to the mixed-precision quantization scheme (®). DELTAMIX identifies the
optimal quantization scheme within the constraints of the bit budget (@) to effectively balance these
two components, thereby minimizing the total quantization error of V (®). Note that the "difference"
term for various bit-widths (@) is pre-computed using a calibration dataset and remains fixed during
the optimization process.

high compression ratios, they lack rigorous mathematical foundations, which can lead to suboptimal
performance, especially in challenging compression scenarios.

In this work, we propose DELTAMIX, a high-performance mixed-precision delta-compression frame-
work grounded in a solid theoretical foundation. DELTAMIX implements delta-compression within
the SVD space, formulating the quantization objective as the minimization of layer-wise quantization
error. By pursuing this objective, DELTAMIX establishes a mathematically sound mixed-precision
compression strategy that accommodates flexible, user-defined compression ratios. This strategy
derives the mixed-precision quantization scheme through the solution of a 0/1 linear integer pro-
gramming problem and ensures optimization consistency throughout the quantization process via
a reconstruction target correction method. Unlike |Ping et al.[(2024), which empirically posits
that singular vectors corresponding to larger singular values are more significant and, therefore,
necessitate higher-bit representations, DELTAMIX prioritizes the minimization of quantization error.
It formulates all subsequent strategies based exclusively on this principle, eschewing reliance on sin-
gular values for assessing importance. This distinction is vital, as prior research has demonstrated that
the significance attributed to singular values may not correlate with the performance of LLMs (Hsu
et al.,[2022} [Wang et al.| |[2025)).

We conduct extensive experiments on reasoning, math, code, and multimodal tasks across eight
aligned LLMs to demonstrate the effectiveness of DELTAMIX. The results show that DELTAMIX
achieves state-of-the-art performance among delta-compression methods, particularly in challenging
scenarios where the norm of AW is large. Notably, on the reasoning task AIME2024, DELTAMIX
surpasses the leading baseline, Delta-CoMe, by 22.3% on the 7B model and 26.9% on the 14B model.
Furthermore, DELTAMIX can achieve more than 6x GPU memory and disk storage savings, enabling
the deployment of multiple models within constrained resource environments.

2 RELATED WORK

Quantization Strategies for LLMs Quantization reduces the bit-precision of model parameters to
lower GPU cost and accelerate inference. Current strategies for LLM quantization can be broadly
categorized into quantization-aware training (QAT) and post-training quantization (PTQ). QAT
simulates quantization operations during training and uses backpropagation to correct quantization
errors (Zhou et al.| 2018; [Esser et al., [2020; |Liu et al., [2023b}; |Wang et al., [2023). In contrast, PTQ
quantizes a pre-trained model without further training, typically calibrating the quantized weights
with a modest calibration dataset (Dettmers et al., [2022; |[Frantar et al., 2022} [Lin et al., [2024; [Lee
et al.,|2024)). Given the high computational cost associated with training or fine-tuning large language
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models, PTQ has become a particularly prevalent approach for LLM quantization. In our work,
we leverage the GPTQ (Frantar et al. [2022) method within PTQ, focusing on mixed-precision
quantization of the singular vectors of the delta parameters.

Delta-Compression Delta-compression (Isik et al.,[2023; Ryu et al., 2023; [Liu et al., 2024; Ping
et al.,|2024)) aims to diminish the storage and inference costs associated with serving multiple models
by compressing delta parameters, which are the differences between the parameters of a fine-tuned
LLM and its corresponding base LLM. GPT-Zip (Isik et al.|[2023)) extends GPTQ to compress the delta
parameters into 2-bit, and then sparsify 95% of the quantized delta weights to further reduce storage
costs. DeltaZip (Yao et al., [2024)) extends the idea of structured pruning and delta-compression to
develop a multi-tenant serving system. However, both methods are still limited to compression ratios
of 2-bit and higher. [Liu et al.|(2024) introduces BitDelta, which compresses delta weight into 1-bit,
using a trainable high-precision scaling factor for each delta weight matrix. From this point onward,
the compression of delta parameters has entered the 1-bit era. In addition to these low-bit methods,
Ryu et al.|(2023) identifies the low-rank property of delta weights and achieves delta-compression
through low-rank approximation. Recently, Delta-CoMe (Ping et al.| 2024) leverages the benefits of
both low-rank and low-bit compression methods, proposing a mixed-precision delta-compression
method that uses varying bit-widths to represent different singular vectors of the delta weights.
However, the rationale behind their mixed-precision quantization is predicated on a questionable
hypothesis (Hsu et al.,[2022; |Wang et al.,|2025): that singular vectors associated with larger singular
values are inherently more important. This premise lacks a solid theoretical foundation, leading to a
mixed-precision strategy that is primarily empirical and, consequently, suboptimal. In this work, we
introduce DELTAMIX, which provides a mathematical proof of the necessity for mixed-precision in
SVD-based delta-compression methods, and derives a quantization approach that is firmly grounded
in mathematical theory.

3 METHOD

In this section, we introduce DELTAMIX,
an adaptive mixed-precision delta-compression
strategy for LLMs with mathematical support.

Algorithm 1 Algorithm for Quantization in DELTAMIX

Data: Delta parameter W, List of candidate quantiza-
tion bits (), predefined averaged bit-width Gj,

In Section[3.1] we begin with the minimization
of quantization error in the SVD space and de-
rive the detailed quantization process. We pro-
vide a mathematical proof demonstrating the
necessity of mixed-precision in this context. In
Section we introduce our mixed-precision
schedule in detail, which is built on the solution
of a 0/1 integer linear programming problem.
Algorithm|[I]shows the details of DELTAMIX.

3.1 QUANTIZATION ERROR DERIVATION

At a high level, DELTAMIX follows the struc-
ture of the classical post-training quantization

Calibration set X R R
Result: Quantized matrices V and U
U,X,V + SVD(W)
for bit b in () do

Vi <« SimQuant(V, b, X)
EY « CalcLoss(V, Vi, )
end
B < CalcStorage(Q)
S < SolveOpt(B, Gy, EY)
V + QuantParams(V, S, X)
U « RTC(U,V,V, X, X)
U «+ QuantParams(U, S, V, =, X)

return V, U; // Return results

method GPTQ, by performing quantization to minimize the reconstruction error. Given a delta
weight matrix W and the corresponding input X, the quantization objective of the GPTQ is to find a
quantized matrix W which minimizes the squared error:

~ 2 R 2
i WX—WXH — HWiX—WZ-XH ~S e, 1
argn‘}%’nH - ; - ;e (1)

Following previous work (Hassibi et al., 1993} Nagel et al., 2020)), the quantization error of the ith
row of W can be approximated with a second-order Taylor expansion e;:

1
e = §AWiHiAWZ.T )
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Here AW; = W; — Wi is the quantization difference of ith row, while the Hessian matrix H; =
2X X7 is independent and identical across different rows in W. By reusing H, GPTQ derives the

optimal quantized weights W row by row, allowing for parallel computation across multiple rows.

Instead of directly quantizing W, DELTAMIX performs quantization in the SVD space, by finding a
quantized matrix U and V which minimizes the squared error:

N N 2
arg min HUZVX - UEVXH 3)
u,v F

where W = UXV. Below, we introduce the detailed quantization process of DELTAMIX, which
first quantizes V, and then moves to U.

3.1.1 QUANTIZE V

In this section, we present a theoretical analysis that motivates the need for mixed-precision quantiza-
tion. Specifically, we find the quantized V with the row-by-row approach by minimizing the squared

error:
o2
arg min HUEVX - UEVXH ~Y ey
v S @
ey = %AVZ-H}’AV;T

Here AV; = V; — V; is the quantization difference of the i*" row, and HY = 252 - X X7 is the
Hessian matrix of the i*"" row of V (with derivation details in Appendix C.1). As ©2 is a scalar, we
can reformulate the Eq. (@) as follows:

1
ey = AVHYAVT = 2 AV XXTAVT )
2 ~—~
“scaling” “difference”

s

From Eq. (3)), it is evident that the error for i-th row of V comprises two components: a “scaling’
term %, which suggests that rows (singular vectors) with larger singular values has larger scaling
factor, and a “difference” term AV, X X TA‘/iT, derived from the quantization differences AV; and
limited sampling over a calibration set.

As illustrated in Figure |2} we present 2000
the results of the “scaling” and “dif- > o sealhaEm ot
ference” terms across different rows.
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quantization error elv’ which encom- Figure 2: (Left) The value of “scaling” term (Eq at
passes both terms, varies Signiﬁcant]y different row indices. (nght) The value of “difference” term
across different rows under a uniform ((Eq. [5) with different quantization bit-width at different row
bit-width for quantization. To mini- indices. We compute all results using Q_Proj at the last layer
mize the total error, it is ideal for the ~of Qwen2.5-Math-7B-Instruct.

quantization error of each row to be small. Given that the “scaling” term is fixed for each row, we can
only adjust the “difference” term by carefully allocating bit-widths. However, due to the constraints
of the total bit budget, we cannot allocate high bit-widths to all rows simultaneously. Therefore, we
propose a strategy of assigning varying bit-widths to different rows to reduce the overall quantization
error. Eq. (5) provides a theoretical foundation for the necessity of mixed-precision quantization
in SVD-based delta-compression. We discuss the detailed mixed-precision schedule in Section 3.2}
which allocates varying bit-widths to different rows, specifically the different singular vectors of U,
by formulating a (/1 integer linear programming problem.
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3.1.2 QuUANTIZE U

In this section, we analyze why mixed-precision quantization is not crucial for U. After quantizing
V to 'V, the quantization objective of U is:

argmjn [USVX - OSVX|~ ) el

(6)
fAU HUAU! = AUSVXXTVTETAUT

Here AU; = U; — U;, and the Hessian matrix of the i*" row of U is given by HY =
IXVXX TVTET(Wlth derivation details in Appendix [C.2). Upon comparing Eq. 5) and Egq.
(@) we observe that el does not incorporate the scaling term present in Eq. (6). Consequently, when
different rows are quantlzed using the same bit-width, there is no significant variation in error. This
uniformity arises from the fact that the Hessian matrices for different rows of U are identical. Thus,
unlike V, there is no necessity to employ mixed precision when quantizing different rows of U.

Therefore, DELTAMIX determines the mixed-precision quantization schedule based on V, and
then applies the same schedule to U for simplicity. Specifically, DELTAMIX quantizes U using a
column-wise mixed-precision schedule, where the 7*" column of U adopts the same bit-width as the

it" row of V as they correspond to the same singular value. Notably, DELTAMIX exhibits insensitivity
to column-wise precision schedules, since GPTQ compensates for quantization-induced errors in
the column direction by adjusting the unquantized weights during the quantization process. This
compensation, however, does not occur between different rows, as different rows are independently
quantized in GPTQ. This further underscores the importance of discussing row-wise mixed precision
strategies aimed at minimizing the quantization error of V. In Appendix we further demonstrate
experimentally that applying the same mixed-precision quantization strategy to both V and U yields
satisfactory performance.

Reconstruction Target Correction In Eq. @ we quantize U to reconstruct the target USVX,
which deviates from the initial target UX'V X . This deviation can negatively impact the performance
of the quantized model. A straightforward approach to address this issue is to directly replace
the reconstruction target with UX'V X; however, this would inhibit the application of GPTQ for
quantization. Therefore, we propose a method termed “Reconstruction Target Correction” (RTC)
to reduce the bias by transforming USVX in Eq. @ to UV X, where U is derived from the
following equation:

2

min HUEVX - UEVXH
o F @)

= U=UsVvXXTVTET(zvxxTVvTsT)-!

See Appendix [C.3|for detailed derivations. In summary, prior to quantizing U, we first update U to

U using Eq. H Subsequently, we perform quantization by minimizing [UXVX — USVX|2.

This approach aims to ensure that the reconstruction target closely approximates the original, without

compromising the application of GPTQ for quantization.

3.2 OPTIMIZATION PROBLEM MODELING

In this section, we formulate the optimal mixed-precision bit allocation problem as a 0/1 integer linear
programming model (see Eq. (§)). Given a user-specified compression target bit G5, a candidate set
of quantization bit-widths @ of size IVy, and an upper bound f,.x on the number of active bit-widths,
the proposed model minimizes the quantization error by automatically selecting an subset of active
bid-widths from @, subject to the constraints imposed by G} and fiax-

As shown in Eq. , the objective is to minimize the total quantization error, expressed as  _, E}’SlT .
Here, EY € R denotes the quantization error associated with different bit-widths for the i*"
row of V computed using predefined calibration data samples X,, in accordance with Eq. ().
Si € R“N * is a binary optimization variable indicating the selected bit-width for quantizing the
it" row of V and the corresponding i*" column of U. Note that our objective is limited to the
quantization error of V, with a detailed discussion provided in Sections[3.1.1]and [3.1.2]
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: VT .
min ; E'S; (Total quantization error)
s.t. Z SiB < Gp(hin + hout) (Bit budget constraint)
i (®)
sum(S;) =1 (One-hot vector constraint)
S;—f<0 (Bit-width selection constraint)
sum(f) < fiax (Bit-width number constraint)

The optimization problem has four constraints. (1) The “bit-budget constraint” ensures that the
quantized model achieves a target compression bit that does not exceed the predefined threshold Gj.
Here hiy, and hoy; represent the input and output dimension of W. B € R™o*1 represents the storage
required for quantizing a row of V and a column of U at different bit-widths, which is computed
as B = (Rin + hout) - Q. (2) The “one-hot vector constraint” requires that each row of V and the
corresponding column of U be quantized using exactly one bit-width. (3) The “bit-width selection
constraint” guarantees that only permissible bit-widths are utilized for quantization. The variable
f € R denotes the set of admissible bit-widths, where fj , = 1 indicates that the k*! bit-width
in Q is allowable. (4) The “bit-width number constraint” restricts the number of admissible bit-widths
to a maximum of fi.x.

The 0/1 integer linear programming optimization problem is then solved with the CVXPY (Diamond
& Boyd, 2016)) library and the SCIP (Mabher et al.,|2016) solver. We report the optimization solving
time in Appendix [E.3] which costs 29.4 minutes for Qwen2.5-Math-7B-Instruct. This overhead is
acceptable, as the model requires quantization only once. By solving Eq. (§)), we obtain an optimal
mixed-precision quantization scheme that minimizes the error while satisfying predefined bit budget
constraints. This allows us to derive task-specific mixed-precision quantization strategies which
balance the “scaling” and “difference” terms, leading to improved performance across various tasks.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Evaluation Tasks We evaluate our methods on four distinct tasks: reasoning, math, code generation,
and multi-modal. These tasks encompass a vast array of current directions based on fine-tuning with
open-source LLMs. Reasoning: We use the Math500 and AIME2024 datasets as the test set. Math:
We use the GSM8K (Cobbe et al.,|2021) and Math500 (Lightman et al., 2023)) datasets as the test
set. Code Generation: We use HumanEval (Chen et al.,[2021) and MBPP (Austin et al., 2021) as
the test set. Multi-Modal: We utilize the GQA (Hudson & Manning} [2019) and the image part of
ScienceQA (Lu et al.l 2022)) datasets. Please refer to Appendix for more details.

Models To ensure a comprehensive comparison, we evaluate both 7B and 13-14B models across the
four tasks with various backbones. See Table[7)in Appendix[D.I]for more details about the backbones
and aligned models used. During inference, we employ a greedy search strategy.

Baselines We compare DELTAMIX with three baselines: SVD-based low-rank compression (Ryu
et al.| [2023), BitDelta (Liu et al.l |[2024), and Delta-CoMe (Ping et al., 2024). All methods are
evaluated using NVIDIA L20 GPUs.

4.2 MAIN RESULTS

Tables [I]and 2] present the results of DELTAMIX on both the 7B and 13-14B models across four tasks,
in comparison to the baselines. Notably, DELTAMIX demonstrates superior overall performance on
both the 7B and 13-14B models, surpassing the best baseline, Delta-CoMe, by an average of 2.9%
and 2.2%, respectively.

When analyzing the various tasks, we observe that DELTAMIX exhibits more pronounced improve-
ments in challenging scenarios characterized by a significant performance gap between the baseline
methods and the aligned model. This is particularly evident in reasoning-intensive benchmarks, such
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Table 1: Comparison of DELTAMIX and baselines on various tasks across 7B-sized models. We
report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

Method o DeepSeek-R1-Distill-Qwen Qwen2.5-Math-Instruct Qwen2.5-Coder-Instruct Qwen2.5-VL-Instruct AVG
Math500 AIME2024 Math500 GSMSK Humaneval Mbpp GQA SQA

Backbone 1 70.6 16.7 70.6 84.8 72.0 80.7 - - -
Aligned 1 86.0 40.0 80.2 94.8 87.2 82.8 60.5 76.7 76.0
Low-Rank  1/16 72.2 13.3 59.6 70.3 84.1 86.2 0.0 0.0 48.2
BitDelta 1/16 1.4 0.0 71.2 84.0 83.5 83.9 0.0 0.3 40.5
Delta-CoMe  1/16  82.4(1.11) 30.0(3.30) 74.8(0.35)  94.5(0.00) 85.0(0.96)  82.7(0.17) 49.4(1.65) 76.5(0.26) 71.9
DELTAMIX 1/16  82.7(0.83) 36.7(3.35) 77.7(1.03)  94.6(0.51) 85.6(0.35)  83.1(0.25) 52.4(2.30) 79.4(0.83) 74.0

Table 2: Comparison of DELTAMIX and baselines on various tasks across 13-14B-sized models. We
report the results in the format “mean(std)” with three runs for Delta-CoMe and DELTAMIX.

Method o DeepSeek-R1-Distill-Qwen MetaMath Qwen2.5-Coder-Instruct LLAVA-V1.5 AVG
Math500 AIME2024 Math500 GSMSK Humaneval Mbpp GQA SQA

Backbone 1 76.4 33 1.8 4.3 78.7 84.7 - - -
Aligned 1 87.4 40.0 22.6 71.0 90.2 85.4 63.3 72.8 66.6
Low-Rank  1/16 57.2 6.7 15.8 64.0 86.6 88.6 57.0 71.4 559
BitDelta 1/16 82.8 233 22.4 65.8 89.0 86.5 61.2 73.0 63.0
Delta-CoMe  1/16  76.5(3.38) 24.5(6.93) 22.9(0.12) 70.2(0.56) 90.6(0.75)  86.5(0.70) 62.8(0.09) 72.3(0.20) 63.3
DELTAMIX 1/16  80.2(2.09) 31.1(3.81) 21.7(0.64)  71.2(0.26) 91.5(0.60)  86.9(0.12) 62.7(0.04) 72.1(0.18) 64.7

as AIME2024, as well as in multimodal tasks utilizing 7B backbones. For instance, DELTAMIX
surpasses the previous state-of-the-art model, Delta-CoMe, by 22.3% on the 7B model and by 26.9%
on the 14B model. Further analysis reveals that these models display larger norms for AW. Specifi-
cally, the median norm of DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-VL-Instruct is 6.5 and 10.3
times that of Qwen-Coder-Instruct-7B, with corresponding values of 26.13 and 41.45 compared to
4.02, respectively. In this context, baseline methods struggle to achieve optimal solutions due to their
empirical nature. In contrast, DELTAMIX directly optimizes quantization error from a mathematical
perspective, enabling it to fully leverage its strengths in demanding tasks. However, on tasks where
baselines already achieve near-lossless accuracy, such as MBPP and HumanEval on the 7B backbone,
DELTAMIX performs comparably to the best baseline. In these scenarios, the norm of AW is
relatively small and can be easily compressed, leading to a ceiling effect: AW can be quantized
almost losslessly by existing baselines, leaving little room for further improvement.

We also compare the quantization time cost of DELTAMIX and Delta-CoMe. Please refer to Appendix
[E-3|for more details. The results show that DELTAMIX (resp. Delta-CoMe) requires only 1.2 (resp.
0.4)hours for 7B models and 2.4 (resp. 0.8) hours for 14B models on a single GPU. Although
DELTAMIX is slower than Delta-CoMe, the time cost remains acceptable since the quantification
process needs to be performed only once.

4.3  ANALYSIS OF frax

In DELTAMIX, we set a hyperparameter termed Table 3: Performa}nce across different frax. WC
fmax to constrain the number of active bit- report the results in the format “mean(std)” with
widths during quantization. This section ex- three runs.

amines the performance of DELTAMIX under Method  f., DecpSeek-RI-Distill-Qwen-14B v
varying values of fi,.x. As shown in Table Math500 AIME2024
DELTAMIX consistently achieves better perfor-  Delta-CoMe - 76.5(3.38) 24.5(6.93) 50.5
mance than Delta-CoMe across all settings, in- 2 80.7(1.75) 33.3(3.35) 57.0
dicating that DELTAMIX is insensitive to the 3 79.9(1.53) 30.08.83) 55.0
hoi £ f In th . . t t DELTAMIX 4 80.2(2.09) 31.1(3.81) 55.7
choice of fiax. In the main experiment, we se 5 795099) 33.3(6.65) S64
fmax to 4 to be consistent with Delta-CoMe. 6  79.52.21) 33.3(3.35) 56.4

4.4  ABLATION OF RTC

We conducted experiments to assess Table 4: Ablation of RTC. We report the results in the format
the necessity of RTC, as detailed in “mean(std)” with three runs.

Table Overau’ RTC COHSiStently LLAVA-VL.5 DeepSeek-R1-Distill-Qwen-14B v/~
enhances our method, yielding an av- Goa SQa  MahS00  AIME2024

; . ¢ Delta-CoMe 62.8(0.09) 72.3(0.20) 76.5(3.38) 24.5(6.93) 59.0
erage performance improvement o DELTAMIX 62.7(0.04) 72.1(0.18)  $0.2(2.09) 31.1(3.81) 61.5

2.2%. The results indicate that mit- _DPFLTAMIX (WORTC) 62.8(0.02) 722(0.05) 782(0.28) 27.5(3.81) 60.2
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Figure 3: End-to-end decoding latency evaluation with varying numbers of deployed models using
Qwen2.5-7B variants. (Left) Decoding memory usage. (Middle) Prefill time. (Right) Generation
speed.

igating the deviation in the quantization loss of U enables DELTAMIX to retain more information
from AW. The importance of RTC is particularly pronounced in challenging tasks; for instance, it
improves performance by 13.1% on the AIME2024 task. This improvement can be attributed to the
more substantial quantization errors associated with quantizing V in these cases, thereby highlighting
the critical need for reconstruction target correction.

5 ANALYSES

5.1 INFERENCE SPEED AND MEMORY COST

Following the setup of |Liu et al.[(2024), we evaluate the end-to-end decoding latency of Qwen2.5-7B
variants using a single L20 GPU. As shown in Figure[3] we consider the setting where each deployed
model receives one distinct request simultaneously—e.g., 12 deployed models correspond to a batch
size of 12- with latency evaluation in three perspectives: (1) Memory Usage: This one measures
peak GPU memory usage during concurrent inference, accounting for both model parameters and
activation storage. (2) Prefill Time: This part focuses on the time the models take to process user-input
prompts. Each request contains 512 input tokens, and we report the time (in ms) the model takes
to handle them. (3) Generation Speed: This part evaluates how quickly the model generates output
tokens (tokens/s) for each request. Since the prefill time already measures prompt processing, each
request starts from the “[BOS]” token and generates 512 tokens sequentially.

As shown in Figure [3] (left), a single GPU can deploy only two aligned models simultaneously.
In contrast, it can support up to 8 and 12 models concurrently for Delta-CoMe and DELTAMIX,
respectively. This enhancement is attributable to the fact that, as the number of models increases,
both methods necessitate only the additional deployment of compressed delta weights, thereby
significantly reducing memory overhead. Notably, while Delta-CoMe exhausts GPU memory at 12
models, DELTAMIX does not. Our further analysis indicates that DELTAMIX typically employs fewer
ranks, namely allocates a greater number of singular vectors with a bid-width of 0, thereby enhancing
the GPU memory utilization efficiency.

For the end-to-end decoding latency illustrated in Figure [3| (middle, right), we find that Delta-CoMe
and DELTAMIX introduce overhead to Naive when the number of deployed model is small. However,
Delta-CoMe and DELTAMIX scale better and effectively translate the saved GPU memory into
improved decoding latency. In contrast, the Naive approach quickly encounters out-of-memory issues.
Furthermore, DELTAMIX exhibits a superior generation speed compared to Delta-CoMe at scale,
while the prefill times for both methods remain comparable. In Appendix [E.2] we conduct more
latency evaluation under varying arrival rates and request distributions following (Liu et al., 2024).

5.2 DELTA-COMPRESSION VS. DELTA-TUNING

Delta-compression decomposes the delta weights of a fully fine-tuned model into low-rank and
low-bit representations, thereby reducing storage and inference costs. Delta-tuning methods, such
as LoRA, are closely related to delta-compression but primarily aim to reduce the training costs
of LLMs while achieving performance comparable to that of full fine-tuning. However, in various
tasks—particularly more complex ones like code and math tasks—delta-tuning methods tend to
underperform full fine-tuning (Biderman et al.| 2024). This suggests that relying solely on delta-tuning
may be insufficient.

In this section, we train the DeepSeek-LLM-7B-Base (DeepSeek-Al,[2024) on math and code tasks



Under review as a conference paper at ICLR 2026

using both LoRA and full fine-tuning. We sub- Table 5: Performance comparison between Delta-
sequently apply DELTAMIX to the delta weights  Compression and LoRA. Aligned is full fine-tuned
of the fully fine-tuned model. Additional exper- model. For DELTAMIX, we report the results in
imental details can be found in Appendix the format “mean(std)” with three runs.

Table [3] presents a comparison of DELTAMIX Code Math
A . . ethod « AVG
with LoRA. The results indicate that DELTAMIX Humaneval — Mbpp  Math500  GSM8K
3 Backb 1 244 46.0 38 14.7 222
consistently outperforms LORA across all tasks. ~ Feoore | o o oy o2
Notably, DELTAMIX achieves an average score LoRA  Ul6 341 77 o4 09 355

of 40.8, which is close to the aligned model’s  pecamix 116 4330.6) 502082 1350.76) 56.10.82) 40.8
score of 42.0, representing a 14.9% improvement over LoRA.

5.3 ANALYZING QUANTIZATION ERROR

To better understand the difference between var- Taple 6: Average quantization error (x le2)
ious delta-compression methods, we compute Qwen2.5-Math-7B-Instruct model with Eq.
the quantization error on Qwen2.5-Math-7B- (M).“Low”, “Mid”, and “High” denote the first 9
Instruct model as defined in Equation (@). Since layers, layers 9 to 17, and the last 10 layers, respec-
outliers play a critical role in model compres- tively. “All” and “Out” denote the average error

sion (Dettmers et al., [2023; [Lin et al., [2024), we = 5.ross all activations and the average error of the
also report the average error for the top 1% of top 1% of activations.

activations with the largest absolute values in

. .. . Low Mid High
the aligned model, categorizing them as outliers. A ouw Al ow Al out
As different layers contribute differently to the
Low-Rank  1.82 3.67 150 284 21.12 1890.34

final output (Wu et al} 2024), we categorize  gyny, 508 281 061 108 2151 316258
the first 9 layers, layers 9 to 17, and the last 10 pejta-CoMe 076 1.79 075 133 7.54  470.82
layers as low, mid, and high groups, respectively, = DELTAMIX 0.66 146 066 1.12 681  426.20
and report the average error of each group. See

Table [TT]of Appendix [E.5|for more details.

As demonstrated in Table [6] DELTAMIX consistently exhibits lower overall quantization error
compared to all baseline methods, attributable to its inherent objective of minimizing quantization
error. In the mid layers, DELTAMIX shows a slightly higher error than BitDelta, with values of 0.66
versus 0.61 for all activations and 1.12 versus 1.08 for outlier activations, respectively. However, it is
important to note that since BitDelta is an empirical method, it cannot guarantee low quantization
error across all layers. For example, in the high layers, BitDelta exhibits significantly higher error
rates compared to DELTAMIX, with values of 21.51 versus 6.81 for all activations and 3162.58 versus
426.20 for outlier activations, respectively. These experiments further illustrate that DELTAMIX
effectively reduces quantization error, thereby preserving the information contained in the delta
weights as much as possible. In Appendix [E.4] we visualize the bit allocation results of DELTAMIX
across different weight types and layers using the Qwen2.5-Math-7B-Instruct model.

6 CONCLUSION

In this study, we present DELTAMIX, an adaptive mixed-precision delta-compression framework
aimed at minimizing quantization error in the SVD space without introducing additional assumptions.
DELTAMIX offers a theoretical proof of the necessity for mixed-precision delta-compression and
provides a practical quantization solution that involves solving a 0/1 linear integer programming
problem and employing a reconstruction target correction method. DELTAMIX outperforms all
baseline delta-compression methods across four distinct downstream tasks, including reasoning, math,
code, and multi-modal tasks, utilizing eight widely adopted aligned LLMs with backbone pre-trained
models, including Qwen2.5, Qwen2.5-Math, Qwen2.5-Coder, and LLaMA?2. Moreover, DELTAMIX
significantly reduces deployment costs by minimizing memory overhead and accelerating inference.
We believe that DELTAMIX provides considerable theoretical and practical value, particularly in
scenarios involving multi-tenant deployments.
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ETHICS STATEMENT

We propose an adaptive mixed-precision delta-compression framework designed to minimize quanti-
zation error in the singular value decomposition space. Our experiments rely exclusively on publicly
available datasets and models, without involving human subjects or sensitive data. We do not
anticipate any direct negative consequences arising from this approach.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we describe our experimental setup in Section {f.T] and provide addi-
tional details, including models, datasets, metrics, and GPUs, in Appendix @} Furthermore, our
implementation is publicly available at https://anonymous.4open.science/r/ICLR-Annoymous-CD59,
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A LIMITATION AND BROADER IMPACT

DELTAMIX significantly reduces hardware requirements and computational costs for serving multiple
finetuned models, thereby enabling smaller entities to deploy advanced large language models more
feasibly. Additionally, it lowers power consumption and reduces the carbon emissions associated
with LLM deployment. Despite DELTAMIX ’s demonstrated improvements over baseline methods in
reducing the performance gap between compressed and aligned models, it is important to note that
DELTAMIX remains a lossy compression method for certain tasks. We believe this is an important
consequence and encourage future research to further minimize this performance gap, particularly in
tasks where performance degradation is substantial.

B LLMsS USAGE

In this work, large language models (LLMs) were used solely as auxiliary tools for grammar correction
and text refinement.
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Table 7: Selected backbone and aligned models for the examined four tasks.

Task 7B Models 13-14B Models
Backbone Aligned Backbone Aligned
Math Qwen2.5-Math Qwen?2.5-Math-Instruct LLaMA2 MetaMath
Reasoning Qwen2.5-Math  DeepSeek-R1-Distill-Qwen Qwen2.5 DeepSeek-R1-Distill-Qwen
Coder Qwen2.5-Coder Qwen2.5-Coder-Instruct Qwen2.5-Coder Qwen2.5-Coder-Instruct
Multi-Modal Qwen2.5 Qwen2.5-VL-Instruct LLaMA2 LLAVA-V1.5

By setting the gradient of the loss to zero, DELTAMIX gets the corrected U as follow:

oL _ (UZVX - USVX)XTVTET =0
ou (12)

= U=UsVvXXTVIET(=vxxTVvTsT)-!

D EXPERIMENTS SETUP

D.1 MAIN EXPERIMENTS

We evaluate our methods across models in Table |/|on four distinct tasks: math, reasoning, code
generation, and multi-modal. These tasks encompass a vast array of current directions based on
fine-tuning with open-source LLMs.

o Math. We use the GSM8K (Cobbe et al.,2021)) and Math500 (Lightman et al.;,2023)) datasets as
the test set. We follow the prompt format of WizardMath (Luo et al 2025) and set the maximum
generation length to 1024. The evaluation metric is accuracy, determined by comparing the model-
generated solution to the ground truth.

o Reasoning. We use the Math500 and AIME2024 datasets as the test set. For the reasoning prompt
of AIME2024, we follow with (Naman Jain & et al.,|2024)). The maximum length of both tasks is set
to 8192. The evaluation metric is accuracy, determined by comparing the model-generated solution
to the ground truth.

o Code Generation. We use two widely used datasets as the test set: HumanEval (Chen et al.,[2021)
and MBPP (Austin et al.,|2021)). We follow the Magicoder (Wei et al.,[2024) evaluation framework
for HumanEval and adopt EvalPlus (Liu et al., 2023al) for MBPP. The evaluation metric is the pass
rate (pass@ 1), which measures whether the code generated in a single attempt successfully passes
the test cases.

e Multi-Modal. We utilize the GQA (Hudson & Manning, 2019) and the image part of Sci-
enceQA (Lu et al., [2022)) datasets, both commonly used for evaluating VLM performance, as our
test set. We adopt Imms-eval (Zhang et al., [2024) to evaluate both tasks. The evaluation metric is
accuracy, which measures whether the model selects the correct option.

To accelerate DELTAMIX’s quantization, we discard the last k£ ranks of V, where &k =
{ G (hin-hout)
(hin+hout)-bitmin
This strategy is motivated by the observation that larger singular values correspond to more important
singular vectors. Due to storage constraints, the last k singular vectors would be assigned 0-bit and

thus excluded from optimization.

J . Here, bit,;, denotes the smallest non-zero bit-width allowed in quantization.

D.2 DELTA-COMPRESSION VS. DELTA-TUNING

Specifically, we set the LORA rank to 128 and the scale factor to 128, training LoRA for all model
parameters for 3 epochs using a cosine schedule with a peak learning rate of 4e-5 and a warm-up ratio
of 0.1, using model deepseek-1lm-7b-base (DeepSeek-Al, [2024). We randomly sample 50k training
examples from MetaMathQA (Yu et al.,[2023) and Magicoder-Evol-Instruct (Wei et al., [2024) for the
math and code tasks, respectively. To ensure a fair comparison, we fine-tune all model parameters
using the same datasets as those used for LoRA training. We then apply DELTAMIX to both math
and code finetuned LLMs.
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E MORE EXPERIMENTS
E.1 ANALYZING THE DIFFERENT QUANTIZATION SCHEMES IN U

In this section, we investigate the ef-  apje 8: We evaluate the performance of various quantization
fect of applying different quantization  chemes applied to U on Qwen2.5-Math-7B-Instruct. Here,
schemes to U in order to assess the «y_pi denotes quantization of U at x-bit precision. The
necessity of mixed precision. Our «pg;tAMix-row” setting refers to applying the optimization
evaluation is conducted on Qwen2.5- 1o de] to determine the scheme and performing quantiza-
Math-7B-Instruct. The results show (jop, in 2 row-wise manner, whereas “DELTAMIX ” indicates
that there is no significant difference o ploying the same quantization scheme used for V, with

between DEETngIX %d olt:ler Iclluan' quantization carried out column by column.
tization methods for U. As shown " Maths00  GSMSKAVG

in Table[§] “x-bit” denotes quantiza-

. . . .. U(2bit), V(DELTAMIX) 1/16  76.8 93.6 85.2
tion of U with x-bit precision. The  ypiy v(DELTAMIX) 116 75.6 934 845
“DELTAMIX-row” setting applies the U(DELTAMIX-row),V(DELTAMIX) 1/16 75.2 93.6 84.4
optimization model to determine the ~_DELTAMIX 1716 752 93.9 84.6

scheme and performs quantization in

a row-wise manner, whereas “DELTAMIX” adopts the same quantization scheme as V and conducts
quantization column by column. The performance differences across schemes are minimal, with the
largest gap in average scores being only 0.95%, observed between the “DELTAMIX-row” setting and
the 2-bit quantization. These results suggest that the choice of quantization strategy for U has only a
limited impact on overall performance.

E.2 INFERENCE SPEED AND MEMORY COST

To demonstrate the impact of DELTAMIX on inference speed and memory cost, we implement a
simple Triton (Tillet et al.l 2019) kernel for DELTAMIX. We compare our kernel with naive aligned
models. Since there is no packing function of Delta-CoMe, we use our packing function and kernel
for the Delta-CoMe method.

Following the setup in|Yao et al.|(2024), we assess the end-to-end system performance under varying
arrival rates and request distributions. We consider two types of model popularity distribution: 1)
Uniform: all models are equally popular. 2) Skewed: model popularity follows a Zipf-« distribution.

We evaluate the performance when serving 32 yple 9: The Throughput and End-to-end system
model variants of Qwen2.5-7B. Requests are performance under varying arrival rates and re-

sent to the serving system at a variable Pois- quest distributions when serving 32 model variants
son arrival rate (A). To simplify, each request of Qwen2.5-7B.

consists of 512 tokens, with the model gener- Y =10

ating one token as its response. We run the Throughput(req/s) E2E(s) Throughput(reg/s) E2E(s)

simulations for 100 seconds across different ar- Zipf (@ = 1.5)

rival rates and model distributions, measuring  Naive 021 5242 0.18 198.48

. . Delta-CoMe 0.42 0.55 0.87 0.68

performance using two metrics: 1) end-to-end  pgiamix 0.42 0.52 0.87 0.62

latency averaged over all requests; 2) Through-  Uniform

put, number of requests processed per second.  Naive 0.07 253.93 0.08 481.42

AH . d d . 1 L 40 Delta-CoMe 0.42 0.81 0.86 1.44
experiments are conducted on a single DELTAMIX 0.42 0.79 0.86 117

GPU, with 28G of memory for storing models
and the remaining memory for inference.

As shown in the Table[0] DELTAMIX improves the throughput 6x and decreases end-to-end 100x
compared to the naive method, because rather than loading the whole full-precision parameters,
DELTAMIX quantizes the delta-parameters so that a GPU can load more delta-parameters and switch
them easily between CPU and GPU.

E.3 TIME FOR QUANTIZATION

In this section, we evaluate the quantization time of DELTAMIX and Delta-CoMe within a single
transformer block. The fundamental distinction between the two methods lies in their mixed-
precision quantization strategies for each linear layer. DELTAMIX determines the strategy by
minimizing quantization loss, formulated as a 0/1 integer linear programming problem. To clarify
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Table 10: Time cost (in seconds) for “Simulation”, “Optimization”, and “Quantization” for one
transformer block on the Qwen2.5-Math-7B-Instruct model, which consists of 28 blocks.

Simulation Optimization Quantization Total

Q_proj 0.0 3.6
K_proj 0.0 0.0 3.6
V_proj 0.0 3.6
Delta-CoMe 0_proj 0.0 0.0 51 50.5
Up_proj 0.0 00 4.5
Gate_proj 0.0 ) 4.5
Down_proj 0.0 0.0 25.6
Q_proj 4.7 0.5
K_proj 4.7 8.5 0.5
V_proj 4.7 0.5
DELTAMIX 0 b1 6.1 115 0.5 143.6
Up_proj 5.8 2.8
Gate_proj 5.8 205 2.8
Down_proj 30.2 22.5 11.0

the computational overhead, we decompose the quantization time into three components. The first
is “simulation time”, which reflects the cost of estimating quantization loss under different bit-
widths. The second is “optimization time”, incurred when solving the 0/1 integer linear programming
problem. The third is the “quantization time” itself, representing the cost of quantizing each linear
layer according to the selected strategy. The corresponding results for one transformer block of
Qwen?2.5-Math-7B-Instruct, which contains 28 blocks in total, are summarized in Table@} For Delta-
CoMe, both simulation and optimization times are zero because its mixed-precision quantization
strategy is predetermined and applied uniformly across all linear layers; consequently, the entire
forward pass is accounted for within the quantization time. In contrast, DELTAMIX incurs additional
simulation and optimization costs, which are higher for Up_proj, Gate_proj, and Down_proj due
to their larger row or column dimensions. Specifically, simulation time increases with the number
of columns, while optimization time grows with the number of rows. Notably, DELTAMIX ’s
quantization time is shorter than that of Delta-CoMe, since the forward pass is already included in its
simulation stage.

Overall, although DELTAMIX takes 3x more time than Delta-CoMe, it only requires 1.2 hours for
7B models and 2.4 hours for 14B models on a single L20 GPU, which is acceptable. In contrast to
Delta-CoMe’s degraded performance on the large norm of AW, DELTAMIX consistently achieves
comparable or better results across all scenarios.

E.4 ANALYZING THE BIT ALLOCATION RESULTS

We investigate the bit allocation results across different weight types and layers using the Qwen2.5-
Math-7B-Instruct model. Figure 4] shows the memory allocated for each bit-width. Overall, the
bit allocation results for different weight types and layers are different. The V_Proj, K_Proj and
O_proj in the self-attention layer exhibit a similar allocation trend. For the other four weight types,
the bit allocation results differ. For instance, Down_Proj allocates more 2-bit units at the beginning
compared to other weight types.

Delta-CoMe (Ping et al., [2024) empirically posits that singular vectors corresponding to larger
singular values are more significant and, therefore, necessitate higher-bit representations. We further
examine whether DELTAMIX adheres to this assumption, specifically by using singular values alone
to evaluate importance. We compute the Kendall rank correlation coefficient 7, between the bit
sequence and the singular value sequence for each W. The coefficient is a measure of rank correlation,
ranging from -1 to 1, reflecting the similarity of the orderings of the data when ranked by each of
the quantities. If the method strictly adhered to the assumption of using singular values alone for
importance assessment, singular vectors with larger singular values would always receive higher bit-
width, resulting in a consistent 7 = 1 across all W. However, for the DeepSeek-R1-Distill-Qwen-7B
model with DELTAMIX, we observe a 7 of 0.95 for the W of the key projection at layer 28. This
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Figure 4: GPU memory usage with quantization bits across layers of Qwen2.5-Math-7B-Instruct.

indicates that DELTAMIX goes beyond singular values, taking into account both the “scaling” term
and the “difference” term.

E.5 ANALYZING THE QUANTIZATION ERROR ACROSS WEIGHT TYPES AND LAYERS

Table 11: Average quantization error (X 1e2) accross different type of linears with Eq. .“Low”,
“Mid”, and “High” denote the first 9 layers, layers 9 to 17, and the last 10 layers, respectively. “All”
and “Out” denote the average error across all activations and the average error of the top 1% of

activations.

Param Q_proj Param K_proj

Layer Low Mid High Layer Low Mid High
Type All  Out All  Out All Out Type All Out All  Out Al Out
Low-Rank 026 032 054 076 1.33 1.64 Low-Rank 0.06 0.07 0.11 0.13 0.19 029
BitDelta 0.18 037 027 037 0.68 1.00 BitDelta 0.03 0.03 0.05 0.06 0.08 0.12
Delta-CoMe 0.13 0.14 032 041 081 0.91 Delta-CoMe 0.03 0.03 006 007 012 021
DELTAMIX 0.10 0.11 025 032 0.64 0.73 DELTAMIX 0.03 0.03 0.05 007 0.10 0.18
Param V_proj Param O_proj

Layer Low Mid High Layer Low Mid High
Type All Out All  Out All Out Type All Out All  Out All Out
Low-Rank 0.03 0.03 0.06 0.08 0.39 1.11 Low-Rank 023 040 0.70 154 852  69.00
BitDelta 0.01 0.01 0.03 0.03 0.18 0.69 BitDelta 0.10 0.14 028 046 1044 89598
Delta-CoMe 0.02 0.02 0.04 005 024 0.85 Delta-CoMe 0.08 0.13 032 047 3.53 17.02
DELTAMIX 0.02 0.02 004 0.05 021 0.67 DELTAMIX 0.07 0.12 030 045 318 2231
Param Up_proj Param Gate_proj

Layer Low Mid High Layer Low Mid High
Type All Out All Out All Out Type All Out All  Out All Out
Low-Rank 478 450 267 3.18 1370 14.95 Low-Rank 635 3.85 3.16 0.72 13.53 4.02
BitDelta 471 385 119 132 1330 11.61 BitDelta 9.01 447 1.60 0.65 1032 587
Delta-CoMe 210 2.08 1.60 190 7.67 9.37 Delta-CoMe 264 290 1.88 0.84 7.73 3.02
DELTAMIX 1.83 174 136 159 6.58 8.89 DELTAMIX 228 222 157 059 6.65 2.07
Param Down_proj Param Average

Layer Low Mid High Layer Low Mid High
Type All Out All Out All Out Type All Out Al Out Al Out
Low-Rank 1.05 552 328 494 11020 7470.34  Low-Rank 1.82 3.67 150 284 21.12 1890.34
BitDelta 121 235 0.87 145 11560 11735.05 BitDelta 218 281 061 108 21.51 3162.58
Delta-CoMe 033 1.86 1.05 157 32,66 185191 Delta-CoMe 076 1.79 0.75 133 7.54 47082
DELTAMIX 031 1.62 1.02 143 3030 1669.95 DELTAMIX 0.66 146 0.66 112 6.81 426.20
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