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Abstract
Recently, graph neural networks have been gaining a lot of attention to simulate
dynamical systems due to their inductive nature leading to zero-shot generalizabil-
ity. Similarly, physics-informed inductive biases in deep-learning frameworks have
been shown to give superior performance in learning the dynamics of physical
systems. There is a growing volume of literature that attempts to combine these two
approaches. Here, we evaluate the performance of thirteen different graph neural
networks, namely, Hamiltonian and Lagrangian graph neural networks, graph
neural ODE, and their variants with explicit constraints and different architectures.
We briefly explain the theoretical formulation highlighting the similarities and
differences in the inductive biases and graph architecture of these systems. We
evaluate these models on spring, pendulum, gravitational, and 3D deformable solid
systems to compare the performance in terms of rollout error, conserved quantities
such as energy and momentum, and generalizability to unseen system sizes. Our
study demonstrates that GNNs with additional inductive biases, such as explicit
constraints and decoupling of kinetic and potential energies, exhibit significantly
enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot
generalizability to system sizes an order of magnitude larger than the training
system, thus providing a promising route to simulate large-scale realistic systems.

1 Introduction and Related Works
Understanding the time evolution or “dynamics” of physical systems is a long-standing problem of
interest with both fundamental and practical relevance in areas of physics, engineering, mathematics,
and biology [1, 2, 3, 4, 5, 6]. Traditionally, the dynamics of physical systems are expressed in
terms of differential equations with respect to their state variables, such as the position (x(t)) or
velocity (ẋ(t)) [1, 3]. Note that the state variables are actual observable quantities and define the
configurational state of a system at any point of time t. The differential equation is then solved with
the initial and boundary conditions to predict the future states of the system. While this conventional
approach is highly efficient and requires little data to predict the dynamics, in many cases the exact
differential equation may be unknown. Further, the formulation of the differential equations might
require the knowledge of abstract quantities such as the energy, or force distribution of the system,
which are not directly measurable in most cases [7].

To this extent, neural networks or MLPs present as efficient function approximators, that can learn
the dynamics directly from the state or trajectory [2, 8]. The learned dynamics can then be used to
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Figure 1: Comparison of physics-informed neural networks (NODE, HNN, and LNN) and their
graph-counterparts (GNODE, HGNN, LGNN) for 3-pendulum systems. The error bar represents the
95% confidence interval over 100 trajectories generated from random initial conditions. Further
details of the architectures, and the datasets are discussed in § 3 and § 4.1 respectively.

infer the future states of the system with different initial conditions. It has been shown recently that
the learning can be significantly enhanced if physics-based inductive biases are provided to these
MLPs [9, 10, 11, 12, 13]. Specifically, these biases allow the MLP to preserve the characteristics of
physical systems, such as energy and momentum conservation, and thus lead to a realistic realization
of a trajectory of the system [14, 9, 15]. The most popular choices for learning dynamics are the
neural ODE (NODE) [8, 16, 13],Lagrangian (LNNs) [9, 10, 17, 12], and Hamiltonian neural networks
(HNNs) [18, 14, 19, 20]. While NODE learns the differential equations as a parameterized neural
network [8], LNN and HNN learn the Lagrangian and Hamiltonian of the system, respectively, which
is then used to predict the forward trajectory through the physics-based equation. It is worth noting
that in all these cases, the training is purely based on the trajectory or state of the system [21].

One of the major disadvantages of these systems is that they are transductive in nature, that is, they
work only for the systems they are trained for. For instance, an LNN trained for a double pendulum can
be used to infer the dynamics of a double pendulum only and not any n-pendulum. This significantly
limits the application of LNN, HNN, and NODE to simple systems since for each system the training
trajectory needs to be generated and the model needs to be trained. It has been shown the transductivity
of MLPs could be addressed by incorporating an additional inductive bias in the structure by account-
ing for the topology of the system in the graph framework using a graph neural network (GNN) [22,
23, 7, 18, 12, 13]. GNNs, once trained has the capability to generalize to arbitrary system sizes.

It is worth noting that most of the studies on GNNs for dynamical systems use a purely data-driven
approach, where the GNNs are used to learn the position and velocity update directly from the data.
Recently, physics-informed GNNs have been used to simulate complex physical systems [23]. In
addition, since the GNNs are trained at the node and edge level, they can potentially learn more
efficiently from the same number of data points in comparison to their fully connected counterparts.
Figure 1 shows the energy and rollout error of NODE, LNN, and HNN with their graph-based
counterparts, namely, GNODE, LGNN, and HGNN (detailed structure discussed in Section 3) for
3-pendulum systems. We observe that the graph-based versions provide comparable or better
performance than their counterparts when trained on the same amount of data for the same number
of epochs. While this difference is not significant in NODE, in LGN and HGN, we observe that the
difference is more pronounced. In addition, as demonstrated later in this work (see Section 4.3.3), the
graph-versions have the additional advantage of inductivity to generalize to larger system sizes.

Despite the wide use of GNNs to model physical systems, there exist no work thus far that systemati-
cally benchmark their performance for learning and inferring the dynamics of physical systems. In
this work, we aim to address this gap by evaluating the role of different physics-based inductive biases
in GNNs for learning the dynamics of complex systems such as n-spring and pendulum systems,
gravitational bodies, and elastically deformable 3D solid. The major contributions of the present
work are as follows.
1. Topology-aware modeling. We benchmark thirteen different physics-informed GNNs that model

physical systems. By analyzing their energy, rollout, and momentum violation, we carefully
evaluate and benchmark their performance.

2. Physics-informed inductive bias. We analyze the nature of inductive bias provided for GNNs by
Lagrangian, Hamiltonian and Newtonian mechanics in learning the dynamics, although they, in
principle, are equivalent formulations.

3. Explicit constraints. We analyze the role of providing explicit constraints as an inductive bias on
the performance of different GNNs.

4. Decoupling potential and kinetic energies. We analyze the effect of exploiting the Hamiltonian
and Lagrangian structure, which allows decoupling of kinetic and potential energies in the
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Cartesian coordinates. Specifically, we evaluate how this decoupling, by modifying the graph
architecture, affect the performance of GNNs.

5. Zero-shot generalizability. Finally, we evaluate the ability of these GNNs to generalize to
arbitrary system sizes an order of magnitude larger than the systems they have been trained on.

2 Preliminaries on Learning Dynamical Systems
We consider a rigid body system comprising of n interacting particles. The configuration of this
system is represented as a set of Cartesian coordinates x(t) = (x1(t), x2(t), . . . , xn(t)). Since we
are using a graph neural network to model the physical interactions, it is natural to select the Cartesian
coordinates for the features such as position as velocity. While this may result in an increased
complexity in the form of the Hamiltonian or Lagrangian, it significantly simplifies the mass matrix
for particle-based systems by making it positive definite [10] and diagonal [10, 24].

2.1 ODE Formulation of Dynamics
Traditionally, the dynamics of a system can be expressed in terms of the D’Alembert’s principle as [3]

Mẍ � F(x, ẋ) = 0 (1)
where, in Cartesian coordinates, M is the constant mass matrix that is independent of the coordi-
nates [24], and F represents the dynamics of the system. Accordingly, the acceleration ẍ of the system
can be computed as: ẍ = M�1(F(x, ẋ)) (2)

In case of systems with constraints, for instance a pendulum system where the length between the
two bobs are maintained constant, Eq. 1 can be modified to feature the constraints explicitly [3, 4].

Mẍ � F(x) +A
T
� = 0 (3)

Here, the constraints of the system are given by A(x)ẋ = 0, where A(x) 2 Rk⇥D represents k

constraints associated with the D degrees of freedom (See App. A for details on why constraints are
expressed through this form). Thus, A represents the non-normalized basis of constraint forces given
by A = rx(�), where � is the matrix corresponding to the constraints of the system and � is the
Lagrange multiplier corresponding to the relative magnitude of the constraint forces.

To solve for �, the constraint equation can be differentiated with respect to time to obtain Aẍ+Ȧẋ = 0.
Substituting for ẍ from Eq. 3 and solving for �, we get:

� = (AM�1
A

T )�1(AM�1(F) + Ȧẋ) (4)
Accordingly, ẍ can be obtained as:

ẍ = M�1
⇣

F �A
T (AM�1

A
T )�1

⇣
AM�1(F) + Ȧẋ

⌘⌘
(5)

2.2 Lagrangian Dynamics
The standard form of Lagrange’s equation for a system with holonomic constraints is given by

d

dt
(rẋL)� (rxL) = 0 (6)

where the Lagrangian is L(x, ẋ, t) = T (x, ẋ, t) � V (x, t) with T (x, ẋ, t) and V (x, t) representing
the total kinetic energy of the system and the potential function from which generalized forces
can be derived, respectively. Accordingly, the dynamics of the system can be represented using
Euler-Lagrange (EL) equations as

ẍ = (rẋẋL)
�1 [rxL� (rẋxL) ẋ] (7)

Here, rẋẋ refers to @
2

@ẋ2 . In systems with constraints, the Lagrangian formulation can be modified to
include the explicit constraints [3]. Accordingly, the acceleration can be computed as

ẍ = rẋẋL
⇣
�rẋxLẋ �rxL�A

T (A(rẋẋL)
�1

A
T )�1

⇣
A(rẋẋL)

�1(�rẋxLẋ �rxL) + Ȧẋ
⌘⌘

(8)

In Cartesian coordinates, the Lagrangian simplifies to L(x, ẋ) = 1
2 ẋT Mẋ � V (x). Exploiting

the structure of Lagrangian by decoupling the kinetic and potential energies, and substituting this
expression in Eq. 8, we obtain M = rẋẋL as a constant matrix independent of coordinates, C =
rẋxL = 0, and F = rxV (x). Accordingly, the ẍ can be obtained as

ẍ = M�1
⇣
�rxV (x)�A

T (AM�1
A

T )�1
⇣
AM�1(�rxV (x)) + Ȧẋ

⌘⌘
(9)
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Figure 2: An overview of the various models being benchmarked and the relationship between them.
Here, “Decoupled” indicates the model variety where the kinetic and potential energies are decoupled
with the force being a function of only the position and the mass matrix being diagonal in nature.

2.3 Hamiltonian Dynamics
Hamiltonian equations of motion are given by

x = rpx
H, ṗx = �rxH (10)

where, px = rẋL = Mẋ represents the momentum of the system in Cartesian coordinates and
H(x, px) = ẋT px � L(x, ẋ) = T (ẋ) + V (x) represents the Hamiltonian of the system. The equation
can be simplified by assuming Z = [x; px] and J = [0, I;�I, 0] then the Hamiltonian equation can
be written as

rZH + JŻ = 0 (11)
Note that this coupled first order differential equations are equivalent to the Lagrangian Eq. 7.

In systems with constraints, the Hamiltonian equations of motion can be modified to feature the
constraints explicitly, similar to the Lagrangian and ODE formulations. Hamiltonian equations with
explicit constraints can be written as [24]

rZH + JŻ + (DZ )
T
� = 0 (12)

where, (DZ )T� represents the effect of constraints on both the equations. Here,  (Z) = (�; �̇)
and� = �(x) = 0 represent the constraints equation, which implies (Z) = 0. Thus, (DZ )Ż = 0.
Substituting for Ż and solving for � yields

� = �[(DZ )J(DZ )
T ]�1[(DZ )J(rH)] (13)

Substituting this value into the Eq. 12 and solving for Ż yields

Ż = J [rZH � (DZ )
T [(DZ )J(DZ )

T ]�1(DZ )JrZH] (14)

2.4 Physics-informed GNNs
Data-driven GNNs take a given configuration as input and predict the updated configuration [22].
Instead, physics-informed GNNs take the configuration (position and velocity) as input and predict
abstract quantities such as Lagrangian or Hamiltonian or force. These output values are then used
along with physics-based equations (as defined in § 2.1-2.3) to obtain the updated trajectory. Thus, in
physics-informed GNNs, the neural network essentially learns the function relating the position and
velocity to quantities such as force or energy, by training on trajectory.

3 Models Studied
In this section, we describe the models studied in this work. An overview of the models and the
relationship between them is presented in Fig. 2. Specifically, the full graph network [23] lies
at the root, i.e., the base GNN model. On this basic framework, we study the impact of physics-
based inductive biases in the form of Neural ODE, Lagrangian and Hamiltonian dynamics. Each of
these inductive biases is further refined through the injection of explicit constraints and “decoupled”
modeling of the potential and kinetic energies. We next explain each of these specific models. Note
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that the detailed architecture of the models are not discussed since they are available in the original
papers that introduced the works. Accordingly, we mention the names of the models used in this
study, and their major features.

• Full Graph Network (FGNN) [23]: FGNN is a message-passing GNN, wherein each node v (and
potentially edges as well) draws “messages” from its 1-hop neighbors (i.e., their representations in the
form of feature vectors), and passes these messages through a multi-layer perceptron (MLP) to construct
v’s own representation. An FGNN of ` layers, therefore, learns node representations that capture the
topology of the `-hop neighborhood around each node. FGNN attempts to directly predict the property
being modeled (such as acceleration) without exploiting any physics-informed inductive biases.

• FGNODE[18]: FGNODE refers to a neural ODE version of FGNN. In FGNODE, the particle
positions and velocities are given as the input to each node, while the difference in the position of
nodes is given as a feature to each edge. The node-level output of the model is the acceleration on
each node, which is then integrated to obtain the updated position and velocity using Eq. 2.

• GNODE: GNODE is equivalent to FGNODE with a minor modification in the architecture [13].
Specifically, we note that in particle-based systems in Cartesian coordinates, the kinetic and potential
energies can be decoupled with the force being a function of only the position and the mass matrix
being diagonal in nature [10, 17, 24, 13]. Thus, for GNODE, only the position of the particle is given
as a node input and not the velocity, which is then used to predict the node-level acceleration using
Eq. 2. Further details of this architecture is provided in App. C.

• CFGNODE and CGNODE: CFGNODE and CGNODE are FGNODE and GNODE with explicit
constraints [10] as given by Eq. 5, respectively.

• Lagrangian Graph Network (LGN) [9]: Here, the graph architecture, which is an FGNN, directly
predicts Lagrangian of the system. The acceleration is then predicted from the Lagrangian using
Euler-Lagrange equation (Eq. 8).

• LGNN: LGNN improves on LGN, where the kinetic and potential energies are decoupled [12].
Further, the potential energy is predicted using a GNN with the position as the node input and distance
between the nodes as the edge input. The diagonal nature of mass matrix in particle-based rigid
body systems in Cartesian coordinates is exploited to learn the parametric masses [9, 10, 17]. Further
details of this architecture is provided in App. D.

• CLGN and CLGNN: CLGN and CLGNN refers to LNN and LGNN with explicit constraints
respectively. Specifically, the acceleration is computed using Eq. 9 [12, 3, 10].

•HGN: HGN refers to Hamiltonian graph network, where the Hamiltonian of a system is predicted
using the full graph network [23, 18]. Further, the acceleration is computed using Eq. 11.

•HGNN: HGNN refers to Hamiltonian graph neural network, where the structure of the Hamiltonian of
a system is exploited to decouple it into potential and kinetic energies [12, 18, 14]. Further, the poten-
tial energy is predicted using the GNN and the diagonal mass matrix is trained as a learnable parameter.
The acceleration is then predicted using Eq. 11. Further details of HGNN is provided in App. E.

• CHGN and CHGNN: CHGN and CHGNN refer to HGN and HGNN with explicit constraints
respectively (Eq. 12-Eq. 14).

4 Benchmarking Evaluation
In this section, we conduct in-depth empirical analysis of the architectures discussed in § 3. To
evaluate the models, we consider four systems (see Fig. 3), namely, n-pendulums with n = (3, 4, 5),
n-springs where n = (3, 4, 5), 4-body gravitational system and an elastically deformable 3D solid
discretized as particles. All the simulations and training were carried out in the JAX environment [25,
26]. The graph architecture was developed using the jraph package [27]. The experiments were
conducted on a linux machine running Ubuntu 18.04 LTS with Intel Xeon processor and 128GB
RAM. All codes and data used in the benchmarking study are available at https://github.com/M3RG-
IITD/benchmarking_graph and https://doi.org/10.5281/zenodo.7015041, respectively.

4.1 Data Generation and Training
Data generation. The training data is generated by forward simulation using the known kinetic
and potential energies of the systems employing physics-based equations. The timestep used for the
forward simulation of the pendulum system is 10�5

s with the data collected every 1000 timesteps. For
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Figure 3: (From left to right) Visualizations of the systems considered, namely, 3-pendulum, 5-spring,
elastically deformable 3D solid, and 4-body gravitational system.

the spring system, the timestep is 10�3
s with the data collected every 100 timesteps. Integration of the

equations of motion is performed using the velocity-Verlet algorithm. In both systems, 100 datapoints
are collected from each trajectory and 100 such trajectories based on random initial conditions are
used to generate ground truth. This resulted in a total of 10,000 training datapoints for each system.
Further details of the experimental systems used for the data generation are provided in the App. B.

Trajectory prediction and training. Based on the predicted ẍ, the positions and velocities are
predicted using the velocity Verlet integration. The loss function is computed by using the predicted
and actual accelerations at timesteps 2, 3, . . . , T in a trajectory T, which is then back-propagated to
train the GNNs. Specifically, the loss function is as follows.

L =
1

n

 
nX

i=1

⇣
ẍ
T,t
i

�
⇣
ˆ̈xT,t
i

⌘⌘2
!

(15)

Here,
⇣
ˆ̈xT,t
i

⌘
is the predicted acceleration for the i

th particle in trajectory T at time t and ẍ
T,t
i

is
the true acceleration. T denotes a trajectory from T, the set of training trajectories. Note that the
accelerations are computed directly from the ground truth trajectory using the Verlet algorithm as:

ẍi(t) =
1

(�t)2
[xi(t+�t) + xi(t��t)� 2xi(t)] (16)

Since the integration of the equations of motion for the predicted trajectory is also performed using
the same algorithm as: xi(t+�t) = 2xi(t)� xi(t��t) + ẍi(�t)2, this method is equivalent to
training from trajectory (i.e, positions).

We use 10000 data points generated from 100 trajectories to train all the models. This dataset is
divided randomly in 75:25 ratio as training and validation set. All models were trained till the decrease
in loss saturates to less than 0.001 over 100 epochs. The model performance is evaluated on a test set
containing 100 forward trajectories of 1s in the case of pendulum and 10s in the case of spring. Note
that this trajectory is ⇡ 4-5 orders of magnitude larger than the training trajectories from which the
training data has been sampled. The dynamics of n-body system is known to be chaotic for n � 2.
Hence, all the results are averaged over trajectories generated from 100 different initial conditions.

The default hyper-parameter values are listed in App. G.4. In addition, we have performed extensive
hyper-parameter search to measure their effect on the architectures, the details of which are provided
in App. G.5.

4.2 Evaluation Metric

Following the work of [10], we evaluate performance by computing the relative error in three different
quantities as detailed below. (1) Rollout Error: Relative error in the trajectory, known as the rollout
error, is given by RE(t) = ||x̂(t)�x(t)||2

||x̂(t)||2+||x(t)||2 . (2) Energy violation: The error in energy violation is

given by EE(t) = ||Ĥ�H||2
(||Ĥ||2+||H||2)

. (3) Momentum conservation: The relative error in momentum

conservation is ME(t) = ||M̂�M||2
||M̂||2+||M||2

Note that all the variables with a hat, for example x̂, represent
the predicted values based on the trained model and the variables without hat, x, represent the ground
truth. To summarize the performance over a trajectory, following previous works [10], we use the
geometric mean of relative error of each of the quantities above since the error compounds with time.

4.3 Results on Pendulum and Spring systems
For springs and pendulums, the models are trained on 5-spring, and 3-pendulum systems. The
trained models are evaluated on unseen system sizes to evaluate their performance on zero-shot
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Figure 4: Geometric mean of rollout error and energy error for 3-, 4-, 5-spring and 3-,4-,5-pendulum
systems without constraints for LGNN, LGN, HGN, HGNN, GNODE, FGNODE and FGNN. The
error bar represents the 95% confidence interval over 100 trajectories generated from random initial
conditions.

Figure 5: Rollout error and energy error for 3-, 4-, 5-spring and 3-, 4-, 5-pendulum systems without
constraints with respect to time for LGNN, LGN, HGN, HGNN, GNODE, FGNODE and FGNN. The
curve represents the average over 100 trajectories generated from random initial conditions.

generalizability. To benchmark generalization ability to even larger unseen systems, we simulate 5-,
10-, 20-pendulum system and 5-, 20-, 50-spring systems. To compare the performance efficiently, we
group the systems without and with explicit constraints separately.

4.3.1 Trajectory error and energy conservation

Systems without explicit constraints. Figure 4 shows the geometric mean of rollout and energy
error of LGNN, LGN, HGN, HGNN, GNODE, FGNODE and FGNN for 3-, 4-, 5-spring and pendulum
systems. Fig. 5 shows the evolution of these errors with respect to time. Note that all the systems are
trained on 3-pendulum or 5-spring systems alone and performance is evaluated by forward simulation
on other systems. The error bar represents the 95% confidence interval obtained based on 100
trajectories generated from different initial conditions. First, we analyze the response on the spring
systems (see Fig. 4 top row). We observe that the HGNN exhibits minimum error. This is followed by
LGNN and HGN both of which comparable error but higher than that of HGNN. These systems are
followed by GNODE. Finally, FGNN exhibits the maximum error. This result is not surprising since
FGNN is not physics-informed and learns directly from data.

Now, we focus on the pendulum systems (see Fig. 4 bottom row). Interestingly, in this case, we
observe that HGN exhibits a slightly higher error. It is worth noting that the dynamics of spring
system is primarily governed by the internal interactions between the balls connected by the springs.
In contrast, in pendulum systems, the dynamics is primarily governed by the external gravitational
field and the connections simply serve as constraints. These results suggest that in systems, where
the dynamics is governed primarily by the internal interactions, the architecture of the graph plays a
major role with HGNN exhibiting the best performance for the spring systems. FGNN continues to
perform poorly in pendulum systems, particularly in energy violation.

In summary, two key observations emerge from these experiments. First, HGNN consistently provides
the lowest error across all setup, with it being more pronounced on spring systems, potentially due to
its first-order nature. Second, the decoupled architectures are consistently better (i.e., GNODE and
HGNN produces lower error than FGNODE and HGN respectively), which could be attributed to the
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Figure 6: Geometric mean of rollout error and energy error for 3-,4-,5-pendulum systems with
constraints for CLGNN, CLGN, CHGN, CHGNN, CGNODE, and CFGNODE. The error bar represents
the 95% confidence interval over 100 trajectories generated from random initial conditions.

Figure 7: Rollout error and energy error for 3-,4-,5-pendulum systems with constraints with respect
to time for CLGNN, CLGN, CHGN, CHGNN, CGNODE, and CFGNODE. The curve represents the
average over 100 trajectories generated from random initial conditions.

ability of GNNs to learn the parametric masses and potential energy functions, independently and
uniquely. This observation is consistent with previous works on MLPs where decoupling is found to
have significantly improved the performance of HNN and LNN [24, 10, 17].

Systems with explicit constraints. Figure 6 shows the performance of the constrained architectures
for pendulum systems. Figure 7 shows the time evolution of energy and rollout error. Note that in the
spring system there are no explicit constraints. Hence, these approaches will be equivalent to learning
without constraints in the spring systems as the constraints terms in the equations vanish. We observe
that the error in systems with explicit constraints are significantly lower than that without explicit
constraints. Similar behavior was observed for fully-connected architectures earlier [10].

We also observe that CLGN exhibits the maximum error on average, followed closely by CHGN.
The poor performance of CLGN is not surprising. In pendulum systems, the potential energy of the
system depends on the position of the bob. However, in LGN or HGN family of architectures, the
actual position of the particle is not given as an input to the graph, rather the edge distance is given as
an input. Thus, it is not possible for an LGN or HGN to learn the dynamics of the pendulum system.
To address this, we train CLGN and CHGN by giving the position of the bob explicitly as a node
input feature. However, despite providing this input, we observe that the final model obtained after
training has high loss in comparison to other models.

4.3.2 Momentum conservation

Figure 8: Momentum error for spring systems 3-, 4-, and
5- spring systems for LGNN, LGN, HGN, HGNN, GNODE,
FGNODE and FGNN. The curve represents the average over
100 trajectories generated from random initial conditions.

While most of the previous studies
have focused on energy and rollout
error, very few studies have analyzed
the momentum error in the trajectory
predicted by these systems. It should
be noted that conservation of momen-
tum is one of the fundamental laws
(as much as the energy conservation),
which physical systems are expected
to follow. While violation of energy
conservation results in spurious gen-
eration or dissipation of energy in the
system, violation of momentum con-
servation results in such effects in the
total force on a particle in the system. This, in turn, affects the force equilibrium of a system. Figure 8
shows the evolution of momentum error in FGNN, FGNODE, GNODE, HGN, HGNN, LGN and LGNN
for 3-, 4-, and 5-spring systems. Interestingly, we observe that LGNN exhibits least momentum error
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Figure 9: Geometric mean of rollout and energy error for zero-shot generalizability to unseen
system sizes for pendulum systems with FGNN, CLGN, CLGNN, CHGN, CHGNN, CGNODE, and
CFGNODE and spring systems with FGNN, LGN, LGNN, HGN, HGNN, GNODE, FGNODE. The
error bar represents the 95% confidence interval over 100 trajectories generated from random initial
conditions.

with a stable value over time. This suggests that the momentum error in the LGNN is saturated and
does not diverge over time. Although HGNN exhibits comparable errors, we observe that the value
increases with respect to time suggesting a potential divergence at long time scales. This is followed
by HGN, which exhibits a momentum error that ⇠ 4 orders of magnitude larger. While FGNODE
and GNODE exhibits comparable momentum error at smaller length scales of trajectory, FGNODE
diverges significantly faster that GNODE, leading to large unrealistic errors. The improved performed
of LGNN and HGNN could be attributed to the decoupling of kinetic and potential energies, and the
computation of the potential energy at the edge level, which enforces the momentum conservation
indirectly due to the translational symmetry. These results reaffirm that, in interacting systems, the
graph architecture and the nature of the inductive bias (NODE vs LNN vs HNN) play crucial roles in
governing the stability of the system.

4.3.3 Generalizability to unseen system sizes
Now, we analyze the ability of the GNNs to generalize to unseen system sizes. To this extent,
we evaluate the performance of the constrained systems for 5-, 10-, and 20-link pendulums and
unconstrained systems for 5-, 20-, and 50-link springs. Note that the constrained systems are
considered for the pendulum as they exhibit superior performance in comparison to the unconstrained
versions. Figure 9 shows the geometric mean of rollout and energy error for these systems. First,
we observe that all the graph-based systems exhibit zero-shot generalizability to systems that are
almost an order of magnitude larger than the training data with similar errors in both energy and
rollout. Further, we observe that the trend in the error for the systems for pendulum and spring
systems remain consistent with increasing system sizes. This suggests that there is no additional error
added to any of the models considered due to zero-shot generalization. This confirms the superiority
of physics-informed GNNs over the traditional MLPs to generate large-scale realistic systems after
learning on a significantly smaller system.

4.4 Gravitational and 3D solid systems
To test the performance of the models on more complex systems, we consider a 4-body gravitational
system and a 3D solid system (see Fig. 3). For gravitational system, a stable four body configuration
interacting with each other through the gravitational law and having initial velocities such that they
rotate with respect to a common centre is considered (see: App. B). Figure 10 shows the time
evolution of energy and rollout error for these systems. We observe that LGNN exhibits the lowest
error followed by HGNN. This is followed by LGN and GNODE which exhibits comparable errors.

Now, we evaluate the performance on the elastic deformation of a 3D solid cube. For this, a 5⇥ 5⇥ 5
solid cube, discretized into 125 particles, is used for simulating the ground truth in the peridynamics
framework. The system is compressed isotropically and then released to simulate the dynamics of the
solid, that is, the contraction and expansion in 3D as a function of time. Figure 10 shows the rollout
and momentum error for this system (see Fig. 16 for time evolution). Interestingly, we find that the
rollout and momentum error for all the models are comparable. This could be attributed to the nature
of deformation of the structure, which exhibits only small displacements within the elastic regime.
Note that this dynamics is much simpler and non-chaotic in nature. Thus, all the models are able to
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Figure 10: (left to right) Geometric mean of rollout error, energy error for 4-body gravitational system
for LGNN, LGN HGN, HGNN, GNODE, FGNODE and FGNN. Geometric mean of rollout error and
momentum error for rigid body system for HGN, HGNN, GNODE, FGNODE and FGNN. The error bar
represents the 95% confidence interval over 100 trajectories generated from random initial conditions.

learn and infer the dynamics with similar accuracy. It may be concluded from this experiment that for
dynamics that is not chaotic and relatively small in terms of magnitude, physics-informed GNNs may
not have any additional advantage over the data-driven ones.

5 Concluding Insights

In this work, we benchmark the performance of thirteen different physics-informed GNNs for
simulating interacting physical systems such as springs and pendulums. The key insights drawn from
our study are summarized below:

• Architecture matters: We show the nature of the inductive bias provided by the ODE, Hamil-
tonian and Lagrangian equations lead to different performances for the same graph architecture,
although these equations are, in-principle, equivalent [24]. Specifically, the ODE and Lagrangian
formulations result in a second-order differential equation, while the Hamiltonian formulation
results in a first-order differential equation.

• Physics-informed GNNs are better: All of the physics-informed GNNs exhibit better performance
than FGNN, that is learning purely from data except in the case of small displacements that are
non-chaotic in nature (elastic deformation of 3D solid). The inductive bias provided for learning
and inference by Lagrangian, Hamiltonian, and Newtonian mechanics to GNNs are clearly distinct,
although the formulations are equivalent in principle.

• Constraints help: Incorporating constraints explicitly as an inductive bias significantly simplifies
the learning (see Fig. 14) and enhances the performance of all the graph-based models.

• Kinetic and potential energies should be decoupled: We observe that exploiting the fact that
the kinetic and potential energies can be decoupled (in Cartesian coordinates) leads to improved
performance in all the models—GNODE better than FGNODE, HGNN better than HGN, and LGNN
better than LGN for most systems. This decoupling exhibits a significantly stronger enforcement of
the momentum conservation error. This could be attributed to the fact that, when the potential and
kinetic energies are decoupled, additional spurious cross-terms involving both x and ẋ may not be
learned by the model, which leads to lower error in the governing equation and the momentum error.

• Zero-shot generalizability: We show that all the graph-based models generalize to larger systems
with comparable error as the smaller systems. Thus, a graph-based simulator with low error in small
systems shall also exhibit similar error in significantly larger systems—thanks to their inductive bias.

• The LGN family is slow to train: Due to the double derivative present in the Lagrangian, the
LGN family exhibits highest training and inference times in comparison to other models (See
App. H). These slow running times do not provide any benefit on accuracy. Hence, GNODE and
HGN provide better efficiency-efficacy balance while making a GNN physics-informed.

Limitations and outlook. Our results clearly highlight the importance of constraints. Current
physics-informed GNNs require these constraints to be explicitly incorporated. An important future
direction of research would therefore be to learn the constraints directly from the trajectory. In
addition, incorporating deformations, contacts, and other realistic phenomena remains to be explored
in physics-informed graph architecture, although similar approaches have been employed in fully
connected MLPs [19, 28]. Finally, we observe that there is a 10-fold increase in error in the presence
of noise in the training data (see App. F.2). This behavior points towards the need to build architectures
that are more robust to noise.
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