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a b s t r a c t

Subsampling is used to generate bagging ensembles that are accurate and robust to class-label noise. The
effect of using smaller bootstrap samples to train the base learners is to make the ensemble more
diverse. As a result, the classification margins tend to decrease. In spite of having small margins, these
ensembles can be robust to class-label noise. The validity of these observations is illustrated in a wide
range of synthetic and real-world classification tasks. In the problems investigated, subsampling
significantly outperforms standard bagging for different amounts of class-label noise. By contrast, the
effectiveness of subsampling in random forest is problem dependent. In these types of ensembles the
best overall accuracy is obtained when the random trees are built on bootstrap samples of the same size
as the original training data. Nevertheless, subsampling becomes more effective as the amount of class-
label noise increases.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The success of large margin classifiers [46,33,21,20] has pro-
mpted many researchers to posit that large margins are a key
feature in explaining the effectiveness of these methods. In the
context of ensembles, the margin is defined as the weighted sum of
votes for the correct class minus the weighted sum of votes for the
most voted class other than the correct one. The effectiveness of
boosting has been ascribed to the fact that it produces large margins
on the training data. The margins increase as the ensemble grows
because of boosting's progressive focus on instances that are
difficult to classify [43]. Nonetheless, several empirical studies put
in doubt the general validity of this view [9,35]. Furthermore, efforts
to directly optimize the margin (or the minimum margin) have met
with mixed results [40,41]. In contrast to boosting, bagging [7],
random forest [11] and class-switching [10,31] ensembles do not
tend to increase the classification margins. In this paper we show
that subsampling can be used to generate bagging ensembles that
are robust to class-label noise in spite of having small margins. By
contrast, the effectiveness of subsampling in random forest is
strongly problem dependent. Nevertheless, for both types of
ensembles, subsampling becomes more effective as the amount of
class-label noise increases.

As discussed in [53,18], class-label noise is generally more
harmful for classification accuracy than noise in the feature values.
Therefore, it is important to design classifiers that are robust to
errors in the class labels of the training instances. The

deterioration in performance caused by this type of noise is mainly
due to an increase of the variance of the classifiers [36,1,39].
Bagging is robust to class-label noise because it is a variance
reduction technique. As a result of its adaptive nature, boosting
reduces the classification bias as well as the variance [4,48].
However, the excessive emphasis on incorrectly labeled examples
makes standard boosting algorithms ill-suited for handling this
type of noise. Nonetheless, it is possible to design robust versions
of boosting to address this shortcoming [40,20].

A bagging ensemble is a collection of classifiers whose predictions
are combined by majority voting. Each of the classifiers in the
ensemble is built on a different bootstrap sample from the original
training data. In standard bagging, bootstrap samples of the same size
of the original training set are used to build the individual classifiers.
However, this prescription need not be optimal. Several empirical
studies have shown that the generalization capacity of bagging can
significantly improve when smaller bootstrap samples are used
[24,52,32]. Subsampling generally makes bagging more robust to label
noise [42]. The key to this improvement is how smaller sampling
ratios affect isolated instances. By an isolated instance we mean one
that is located in a region where the majority of neighboring instances
belong to a different class. Assume a sampling ratio such that the
bootstrap samples used to build the individual classifiers contain less
than 50% of the original training instances. This means that each
instance is present in less than half of the ensemble classifiers.
Therefore, the decision on the label of a given instance is dominated
by classifiers trained on bootstrap samples that do not contain that
particular instance [24,32]. If the instance in question is an isolated
one, it is likely to receive the class label of its neighbors (i.e. the local
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majority class). If the noise is uniform, most of the incorrectly labeled
instances are far from the classification boundaries. They can therefore
be viewed as isolated instances. In such cases, using smaller sampling
ratios reduces the influence of these isolated noisy instances. Conse-
quently, the ensemble becomes more robust.

In summary, this paper presents a comprehensive empirical
assessment of the accuracy and robustness of bagging and random
forest ensembles as a function of the bootstrap sampling ratio. This
study extends our previous work [42] including more datasets,
algorithms and experiments. In addition, we illustrate how small
margin ensembles can be resilient to class-label noise.

The paper is organized as follows: Section 2 reviews previous
work on label noise, focusing on classification ensembles. Section 3
is devoted to exploring the relation between margin and accuracy
for different bootstrap sampling ratios and noise levels. In Section 4
we present the results of an extensive empirical evaluation of the
performance of bagging and random forest ensembles built using
subsampling. The experiments are carried out in a wide range of
classification tasks with different amounts of class-label noise.
Finally, the conclusions of this investigation are summarized in
Section 5.

2. Related work

Poor data quality and contamination by noise are unavoidable
in many real-world classification problems [18,53]. This has a
strong potential to mislead the learning algorithms used for
automatic induction from these data. Two types of noise can be
present in these problems: class-label noise and polluted feature
values [18,53]. Class-label noise is the consequence of incorrect
manual labeling, missing information or failures in the data mea-
suring process. Feature noise is often the result of a faulty data
gathering process [18,53]. Class-label noise typically has a more
pronounced misleading effect than feature noise, except when
most of the feature values are corrupted [53]. Frénay and Verley-
sen [18] identify three types of label noise, characterized by
different statistical models: The Noisy Completely at Random
Model (NCAR), in which the probability of a class-label error is
independent of the values of the features, the actual class of the
instance and the noise rate. To simulate this type of noise the class
labels of randomly selected instances are changed to a different
class label, also at random. The second model is Noisy at Random
(NAR). Labelling errors in this model are assumed to occur with a
different probability for each class. NAR is useful to characterize
tasks in which some classes are more susceptible to mislabeling
than others. The third model is Noisy Not at Random (NNAR). In
this case, the probability of an error depends on the actual class
label and on the values of the features. This model should be used
when some regions of the feature space, such as boundaries or
sparse regions, are more prone to noise than others. Noise can be
handled in a preprocessing step (data cleansing) or during the
learning process, assuming that the algorithms used for induction
from the contaminated data are robust [18].

2.1. Data cleansing

To mitigate their harmful effects, noise and outliers can be
eliminated in a preprocessing step, before the selected learning
algorithm is applied. For instance, it is possible to use statistical
models or clustering-based methods to detect outliers. Patterns
and association rules can also be used in the cleansing process
[27]. An example of a pattern-based data cleansing algorithm is
described in [45,44]. In this method, local SVM's are used to
identify and remove instances that are suspected to be noise. For
each particular training instance, k-NN is applied to locate nearby

instances. A SVM is then trained on these instances to find the
optimal separating hyperplane in that neighborhood. If the label
predicted by this locally trained SVM does not coincide with the
actual label, the instance is identified as noisy and discarded. This
cleansing method has been tested on real and artificial datasets,
where it showed improvements over k-NN. In [51], noisy instances
are removed based on wrappers of different classification meth-
ods. In this study, the best results were obtained by removing or
cleaning instances based on the prediction of a SVM built with the
rest of the training data. Noisy instances are often included in the
set of support vectors by a SVM classifier. Based on this observa-
tion, Fefilatyev et al. [16] propose to manually remove support
vectors that are identified as noise by an expert. Then, a new SVM
is built on the cleansed dataset. This process is iterated until no
more support vectors are identified as noisy instances.

2.2. Robust learning algorithms

Another strategy to deal with noise is the design of robust
learning algorithms. For instance, pruning is used in decision trees
to reduce overfitting: the presence of noise tends to increase the
size of the decision trees induced from the contaminated training
data. Pruning is thus an effective way to improve the robustness of
decision trees [12,13]. Another robustifying strategy is to explicitly
incorporate in the learning algorithm the fact that the values of
the features and the class labels can be polluted by noise. This
strategy is adopted in the construction of Credal Decision Trees
[28]. These types of trees are grown using the Imprecise Info-Gain
Ratio (IIGR) as a splitting criterion. In this method the values of the
features and class labels are approximated using probabilities and
uncertainty measures.

It is also possible to adapt the algorithms used to build Support
Vector Machines to improve their robustness to class-label noise.
For instance, in [47] the hinge loss is replaced by a related loss
function that takes into account the amount of noise in the data.
With this loss function the optimization problem becomes non-
convex. Heuristic optimization methods are then used to search
for the global minimum of this non-convex problem. Promising
results were obtained by this robust SVM in problems with
asymmetric class noise (NAR model). A drawback of this method
is that it is necessary to estimate the amount of noise in the data.
Another robust version of SVM, called P-SVM (Probabilistic SVM) is
proposed in [37] to classify magnetic resonance medical images.
The P-SVM takes as inputs not only class labels but also class
probability estimates. These probabilities are used to estimate the
confidence on the labeling of each instance. The lower the
confidence on the label, the lower the weight of that instance in
the learning process. A practical limitation of this method is that
one needs both qualitative (class labels) and quantitative (class
posterior probabilities) information on the classes.

The problem of induction from noisy data has also been
extensively addressed in the area of ensemble learning. In [2],
Ali and Pazzani analyze the behavior of multiple classifier systems
in the presence class-label noise. They observed that the improve-
ments of the ensemble with respect to a single learner are
generally smaller when the training data are contaminated with
class-label noise. However, the reduction is not uniform and
depends on the type of ensemble used.

Noise is not always harmful. In fact, noise injection is a
powerful regularization mechanism that has the potential of
improving the generalization capacity and robustness of predic-
tion systems. In particular, randomization is used to build diverse
ensembles that have good generalization capacity [4,38,10,15,11,
34,36,31,29,17,30,49]. Furthermore, randomized ensembles, such
as bagging and random forests, have been shown to be robust
classifiers. By contrast, adaptive ensembles, such as boosting, are
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Fig. 1. Scatter plots of the posterior probability of class 2 versus the fraction of ensemble class 2 votes for each instance in the evaluation set. Results are given for Threenorm
without noise (left column) and with 20% noise (right column). The plots correspond to bagging ensembles with sampling ratios: 100% (first row), 20% (second row) and 5%
(third row). The results for boosting are presented in the forth row.
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very sensitive to class-label noise [15,4,38,34,36]. The differences
between these two types of ensembles can be explained by how
errors are handled during the training phase: in bagging and
random forest, the randomness injected during the construction of
the ensemble is not correlated with the noise. For this reason, the
influence of the different instances is equalized during training
process [23]. By contrast, boosting increases the weights of
misclassified instances irrespective of whether they are correctly
labeled or not. The emphasis on correctly labeled instances that

are difficult to classify is beneficial, because it reduces the
classification bias. However, the focus on outliers tends to mislead
the learning process. The adaptivity that makes boosting such a
powerful learner also renders it overly susceptible to noise.

There are many proposals to improve the robustness of boost-
ing to class-label noise. In most of these variants the weight
update rule is modified to reduce boosting's sensitivity to noise. A
successful strategy is to use less aggressive weight updates. In
standard boosting the weight updates are exponential. Using

fraction of the votes for class two

pr
ob

ab
ili

ty
 o

f c
la

ss
 tw

o

100% bootstrap sampling(RF)−Bayes, without noise

class

class2
class1

error

Bayes(O) = 10.7
RF(O)= 19.3

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

fraction of the votes for class two

pr
ob

ab
ili

ty
 o

f c
la

ss
 tw

o

100% bootstrap sampling(RF)−Bayes, 20% noise

class

class2
class1
noise in class2
noise in class1

error

Bayes(O) = 10.7
RF(O)= 21.3
Bayes(N) = 26.0
RF(N) = 32.0

fraction of the votes for class two

pr
ob

ab
ili

ty
 o

f c
la

ss
 tw

o

20% bootstrap sampling(RF)−Bayes, without noise

class

class2
class1

error

Bayes(O) = 10.7
RF(O)= 18.3

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

fraction of the votes for class two

pr
ob

ab
ili

ty
 o

f c
la

ss
 tw

o

20% bootstrap sampling(RF)−Bayes, 20% noise

class

class2
class1
noise in class2
noise in class1

error

Bayes(O) = 10.7
RF(O)= 21.3
Bayes(N) = 26.0
RF(N) = 32.0

0.0 0.2 0.4 0.6 0.8 1.0

fraction of the votes for class two

pr
ob

ab
ili

ty
 o

f c
la

ss
 tw

o

5% bootstrap sampling(RF)−Bayes, without noise

class

class2
class1

error

Bayes(O) = 10.7
RF(O)= 24.3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

fraction of the votes for class two

pr
ob

ab
ili

ty
 o

f c
la

ss
 tw

o

5% bootstrap sampling(RF)−Bayes, 20% noise

class

class2
class1
noise in class2
noise in class1

error

Bayes(O) = 10.7
RF(O)= 23.7
Bayes(N) = 26.0
RF(N) = 33.7

Fig. 2. Scatter plots of the posterior probability of class 2 versus the fraction of ensemble class 2 votes for each instance in the evaluation set. Results are given for Threenorm
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slower updating scheme moderates the emphasis on misclassified
instances. This is generally advantageous because some of this
misclassified instances could be outliers [22]. In BrownBoost [19]
misclassified instances with small negative margins are assigned

higher weights, as in Adaboost. By contrast, instances whose
margin is negative and above a specified threshold receive lower
weights. The rationale behind this weight updating strategy is that
instances in regions with a large class overlap tend to have low
margins. By emphasizing these instances it is possible to model
the classification boundary in more detail. Large negative margins
correspond to isolated instances, which are far from the classifica-
tion boundary. These instances are likely to be outliers and should
therefore be discarded. In [34], Brownboost is shown to be more
robust than Adaboost in a limited experimental setting (5 datasets
for 20% class-label noise). Another way of avoiding excessive
emphasis on misclassified instances is to discard instances whose
weight is above a threshold [25]. The value of the threshold can be
determined using a validation set. This algorithm is shown to be
more robust than standard Adaboost in 8 datasets with low-
medium class-label noise (up to 10%). None of these studies
[34,25] compares the results of robust boosting ensembles with
bagging. Finally, it is possible to combine bagging and boosting
strategies to improve the accuracy and robustness of the resulting
ensembles [48,26]. However, as far as we are aware, the effective-
ness of these hybrid ensembles have not been systematically
evaluated in experiments with class-label noise.

In [1] the authors propose to use credal decision trees to
improve bagging's resilience to label noise. The results obtained
with these types of ensembles in the low to medium noise regime
(0–10% class-label noise) are comparable to bagging of C4.5 trees.
For higher noise levels (20–30%) bagging of credal trees is more
accurate than bagging of C4.5 trees.

Subsampling can also be used to design robust bootstrap ensem-
bles. The individual classifiers of a bagging ensemble are built by
applying the same base learning algorithm to different m-out-of-n
bootstrap samples from the original training data. In standard bagging
the number of instances in the bootstrap sample, m, is equal to the
number of instances in the original training data, n (i.e. m¼n). This
choice ofm need not be optimal. As an illustration, the performance of
bagged nearest neighbors is comparable to the nearest neighbor
algorithm itself [7]. However, if each bootstrap sample contains on
average less than 50% distinct instances from the training set, the
accuracy of bagged nearest neighbors can actually improve. In fact, if
the sampling ratio tends to 0 as the training set size tends to 1, the
performance of bagged nearest neighbor tends to the Bayes (optimal)
error [24]. Another study [52] shows that subbagging with low
sampling ratios generally improves the accuracy of bagging when
stable classifiers are combined. The optimal subsampling ratio can be
effectively determined using out-of-bag data [32]. Subsampling has
also been shown to improve the robustness of bagging to class-label
noise in some classification problems [42]. In the current paper, which
is an extension of this work, we present the results of a comprehensive
empirical study that provide further evidence of such improvement.

A comparison of the effectiveness of these different methods
cannot be done on the basis of published results. For instance, the
SVM's described [47,37] are tested in very specific cases:
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Table 1
Characteristics of the classification problems and testing method.

Dataset Instances Test Attrib. Classes

Australian 690 230 14 2
Balance 625 198 4 3
Breast W. 699 233 9 2
Diabetes 768 256 8 2
German 1000 333 20 2
Heart 270 92 13 2
Hepatitis 155 51 19 2
Horse-Colic 368 122 21 2
Ionosphere 351 117 34 2
Iris 150 50 4 3
Labor 57 38 16 2
Liver 345 115 6 2
Lung Cancer 32 10 56 3
Magic 19,020 6340 11 2
New-thyroid 215 143 5 3
Ringnorm 300 2000 20 2
Segment 2310 1540 19 7
Sonar 208 699 60 2
Threenorm 300 2000 20 2
Tic-tac-toe 958 319 9 2
Twonorm 300 5000 20 2
Vehicle 846 564 18 4
Votes 435 145 16 2
Waveform 300 5000 21 3
Wine 178 59 13 3

Table 2
Relative error change for bagging and random forest for the different levels of noise and sampling ratios. The reference value corresponds to standard bagging in the
noiseless case (marked in boldface as 1.0070.00 in the table).

Noise 10 20 40 60 80 100

Bag 0 1.3871.43 1.0670.41 0.9870.16 0.9670.08 0.9870.08 1.0070.00
5 1.4171.58 1.1170.64 1.0570.27 1.0870.25 1.1070.23 1.1870.25

10 1.4571.70 1.1970.92 1.1370.43 1.1870.44 1.2870.47 1.3870.57
20 1.5571.98 1.4271.51 1.4471.16 1.6071.10 1.7271.13 1.8371.19

RF 0 1.7772.85 1.4972.24 1.2171.44 1.0670.91 0.9770.58 0.9470.42
5 1.7572.62 1.4872.08 1.2371.31 1.1370.91 1.0570.68 1.0170.55

10 1.7772.56 1.4871.98 1.2771.36 1.2071.03 1.1570.82 1.1670.76
20 1.8172.43 1.6272.03 1.5171.55 1.4871.36 1.5171.31 1.5371.26
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asymmetric noise [47] or data in which class probabilities are
available [37]. An extensive empirical comparison of the different
robust learning methods would be of great interest in the field. In
terms of computational effort, ensembles of decision trees can be

built faster than SVMs, at least in principle. Depending on the
characteristics of the problem, the time complexity of SVM's is
between quadratic and cubic in the number of training instances
[6]. Decision trees are faster to build: their time complexity is log-

Iterations(Classifiers)

E
rr

or

Subsampling Rates
10
20
40
60
80
100

Iterations(Classifiers)

E
rr

or

Subsampling Rates
10
20
40
60
80
100

Iterations(Classifiers)

E
rr

or

Subsampling Rates
10
20
40
60
80
100

0.12

0.14

0.16

0.18

0.20

0.12

0.14

0.16

0.18

0.20

0.12

0.14

0.16

0.18

0.20

0.12

0.14

0.16

0.18

0.20

Iterations(Classifiers)

E
rr

or

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Subsampling Rates
10
20
40
60
80
100

Fig. 4. Average test error of bagging in the Australian dataset: Noiseless setting (top left); 5% (top tight), 10% (bottom left) and 20% (bottom right) noise rates. The different
curves in each plot correspond to different sampling ratios.

Table 3
Relative error change averaged over all datasets for bagging and random forest for the different levels of noise. The reference values are the test errors bagging and random
forest noiseless case (marked in boldface in the first and fifth rows of the table).

Noise 10 20 40 60 80 100

Bag 0 1.0070.00 1.0070.00 1.00 70.00 1.0070.00 1.0070.00 1.0070.00
5 1.0170.09 1.0370.14 1.0670.14 1.1270.19 1.1270.20 1.1870.25

10 1.0370.11 1.0770.22 1.1370.30 1.2270.38 1.3070.45 1.3870.57
20 1.0870.13 1.2370.44 1.4370.95 1.6671.02 1.7571.12 1.8371.19

RF 0 1.0070.00 1.00 70.00 1.00 70.00 1.00 70.00 1.00 70.00 1.00 70.00
5 1.0570.18 1.0270.08 1.0570.08 1.0970.16 1.0870.11 1.0670.11

10 1.0970.30 1.0670.18 1.0970.16 1.1470.15 1.1870.18 1.2170.26
20 1.1870.51 1.2270.39 1.3570.37 1.4470.39 1.5570.49 1.5970.53
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linear in the number of training instances and linear in the
number of attributes [50]. The time needed to combine the
individual decisions increases linearly with the number of base
learners in the ensemble.

3. Subsampling in ensembles for noisy classification problems

In this section we explore how subsampling affects the classi-
fication margins in ensembles. The goal is to understand the
relation between ensemble diversity, margins and robustness.
We first present the results of a set of experiments that illustrate
the effect of subsampling on the classification margin. Then we
analyze how subsampling can act as a regularization mechanism
that reduces the influence of mislabeled data.

3.1. Subsampling and margins

To understand how classification margins are affected by sus-
bsampling we have carried out a series of experiments in the

classification problems Threenorm, Twonorm and Ringnorm [9]. These
are synthetic datasets for which the optimum Bayes decisions are
known. Bagging ensembles and random forests of 500 trees were
trained using different bootstrap sampling ratios: 100%, which is the
standard prescription, 20% and 5%. Ensembles trained on a noiseless
set are used as a baseline. The bagging and random forest ensembles
were built on the same training sets, which consist of 300 instances.
The boosting ensembles were built on different sets of the same size.
Additional ensembles were then built on copies of these sets
contaminated with 20% label noise. The noise was simulated using
the NCAR model. Bagging and random forest ensembles were tested
using the out-of-bag error [8]. The out-of-bag data of a particular
classifier consists of those instances which are not included in the
bootstrap sample used to build that classifier. Since they are not used
for training, they can be employed as independent test data. Thus, to
compute the out-of-bag error, each instance in the training set is
classified using only the votes of those predictors whose training sets
do not include that particular instance. Besides providing a good
estimate of the generalization capacity, the out-of-bag method allows
us to analyze how the injected noise is handled by the ensemble: the
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Fig. 5. Average test error of bagging in the Threenorm dataset: Noiseless setting (top left); 5% (top tight), 10% (bottom left) and 20% (bottom right) noise rates. The different
curves in each plot correspond to different sampling ratios.
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same instances, including those whose class labels have been altered,
are used both for training and for testing. To allow comparisons across
ensembles, the performance of boosting was evaluated on the
training data used to build the bagging and random forest ensembles.

Scatter plots of the posterior probability of class 2 versus the
fraction of class 2 votes for the instances in the evaluation set are
given in Figs. 1 and 2. The results displayed correspond to
experiments with the different ensembles, sampling ratios and
class-label noise levels. In bagging and random forest, the fraction
of class 2 votes for a particular instance is estimated using the
classifiers for which that instance was in the out-of-bag set (i.e. the
set of instances not used to train that particular classifier). For
boosting, all the classifiers in the ensemble were used. Fig. 1
presents the scatter plots for an execution of Threenorm. Similar
results are obtained in the other datasets. The plots included in
this figure display (by rows) the results for standard bagging (100%
sampling ratio), bagging using 20% sampling, 5% sampling and
boosting. The results for a noiseless training set are presented in
the first column. The results for a training set with 20% injected

label noise are presented in the second column. Fig. 2 shows
the corresponding plots for random forest. In all plots the class 1
(class 2) instances are marked as empty circles (triangles). The
instances whose class has been changed into class 1 (class 2) are
marked as filled circles (triangles). The lines shown in the plots
define the decision boundaries for the Bayes classifier (horizontal
line) and the ensemble (vertical line). In addition, the errors for
the ensembles and the Bayes classifier are displayed on the right
bottom corner of the plots. For the problems with injected label
noise, error values considering noise (N) and without noise (O) are
given. The Bayes classifier and the ensembles agree in the
classification of instances located in the upper right and bottom
left quadrants. The ensemble and the Bayes predictions are
different for the remaining instances.

Several noteworthy features are revealed in these plots. In the
noiseless problem (left column), the Bayes classifier assigns fairly
high margins to most instances. The classification margins of
bagging ensembles are lower than those of the Bayes classifier.
Furthermore, they become smaller as the sampling ratio decreases.
However, bagging ensembles with sampling ratios of 20% (second
row) are more accurate than standard bagging, with 100% sam-
pling (first row), in spite of the fact that the margins are smaller.
The accuracy obtained with a sampling ratio of 5% is comparable
to standard bagging. This is contrary to the view that accuracy
should improve with increasing margin. A possible explanation of
this behavior is that different bootstrap samples have fewer
common instances as the sampling ratio decreases. In conse-
quence, the base classifiers become more diverse. This increased
diversity initially leads to accuracy improvements. However, if the
sampling ratio is reduced beyond a threshold, the individual
classifiers become inaccurate. The error reduction that results
from the aggregation of their decisions in the ensemble is not
sufficient to compensate the lack of accuracy of the base learners.
As a result, the fraction of instances with small and negative
margins increases (see 5% sampling, third row, left plot).

A similar behavior is observed when label noise is present in
the training set (right column): the classification margins are now
smaller in all cases, relative to the noiseless situation. The test
error (second row, right column) initially improves with decreas-
ing sampling rates. However, if the sampling ratio is too low the
performance of the ensemble eventually deteriorates. A similar
behavior has been reported in class-switching ensembles [31].

The behavior for boosting (last row) is somewhat different.
Because of its adaptive nature, boosting produces larger margins
than bagging. While this is effective in the noiseless setting, it can

Table 4
Records for statistically significant wins/draws/losses for bagging with subsampling
for different sampling ratios with respect to standard bagging (100 % sampling
ratio).

Noise (%) 10% 20% 40% 60% 80%

0 9/5/11 15/3/7 13/8/4 13/12/0 1/23/1
5 11/6/8 17/2/6 16/6/3 14/11/0 7/18/0

10 15/5/5 19/2/4 17/7/1 13/12/0 7/18/0
20 20/2/3 21/1/3 18/6/1 14/11/0 9/16/0

Table 5
Records for statistically significant wins/draws/losses for random forest with
subsampling for different sampling ratios with respect to standard random forest
(100 % sampling ratio).

Noise (%) 10% 20% 40% 60% 80%

0 1/1/23 1/3/21 2/14/9 5/12/8 3/19/3
5 0/5/20 1/6/18 2/14/9 1/19/5 1/22/2
10 3/4/18 3/9/13 3/16/6 4/19/2 3/21/1
20 8/6/11 11/5/9 9/10/6 6/16/3 3/19/3
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Fig. 6. Comparison of bagging with different sampling ratios using the Nemenyi test, for datasets without noise (top left) and with 5% (top right), 10% (bottom left) and 20%
(bottom right) noise rates. Horizontal lines connect sampling ratios whose average ranks are not significantly different (p-value o0:05).
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Fig. 7. Comparison of random forest with different sampling ratios using the Nemenyi test, for datasets without noise (top left) and with 5% (top right), 10% (bottom left) and
20% (bottom right) noise rates. Horizontal lines connect sampling ratios whose average ranks are not significantly different (p-value o0:05).

Table 6
Bagging average test error I.

Dataset Noise (%) Bootstrap sampling ratio

10% 20% 40% 60% 80% 100%

Australian 0 13.571.9 13.0 7 1.9 12.8 7 1.6n 12.9 7 2.0 13.571.9 13.772.2
5 13.871.9 13.371.9 13.472.0 12.872.0n 13.972.0 13.772.0

10 13.671.9 13.572.2n 13.571.9n 14.171.7 14.272.0 14.672.2
20 13.972.1n 14.771.8 15.872.3 16.872.6 17.472.5 18.272.6

Balance 0 10.270.9n 11.471.7 13.871.4 16.071.9 17.471.8 18.372.1
5 11.071.1n 11.971.3 14.771.2 17.171.6 18.371.4 19.872.0

10 11.271.2n 12.971.5 16.371.6 17.971.4 19.271.9 20.372.1
20 12.871.1n 14.971.6 18.571.8 20.971.8 23.673.0 25.173.2

Breast W. 0 4.171.3 3.771.1n 3.871.0 3.971.1 4.171.0 4.371.1
5 3.771.0 3.571.0n 3.771.0 4.271.3 4.771.2 5.071.6

10 3.571.2n 3.671.0 3.771.2 4.471.2 5.371.5 6.171.7
20 3.571.0n 4.271.3 5.171.4 6.471.7 8.072.1 9.272.2

Diabetes 0 23.772.2n 23.872.1 24.172.6 23.871.9 24.672.3 24.472.3
5 23.772.4n 24.271.9 24.272.3 24.272.1 24.872.2 25.272.3

10 23.472.2n 24.272.4 24.672.1 25.172.5 25.872.0 25.972.3
20 24.572.3n 24.972.3 26.872.4 27.172.9 27.773.0 28.572.5

German 0 25:071:8 24.271.6 23.972.0n 23.971.8n 24.071.8 24.371.8
5 25.471.6 24.171.8n 24.371.9 24.271.7 24.571.9 25.171.8

10 25.571.6 24.671.8n 24.671.8n 25.472.1 25.872.0 26.072.3
20 26.571.8 25.871.9n 26.472.1 27.672.5 28.072.5 28.572.1

Heart 0 17.073.5n 17.173.7 18.774.4 19.073.7 19.373.8 19.973.4
5 17.474.0n 18.674.2 18.874.0 19.374.3 20.473.7 21.874.6

10 18.173.9n 19.174.6 19.573.7 21.574.0 21.274.4 22.374.1
20 20.373.8n 22.174.7 22.474.7 24.374.4 24.375.1 25.974.3

Hepatitis 0 21.270.4 19.772.0n 19.871.9 20.772.7 21.574.0 22.273.3
5 20.172.5 19.872.0n 20.872.6 21.372.9 22.273.6 23.374.1

10 20.072.6 19.871.8n 21.173.1 22.473.7 23.574.4 25.074.8
20 20.273.6n 20.272.6n 24.974.2 25.874.4 27.975.6 31.475.2

Horse-Colic 0 25:272:1 19:970:9 16.170.4n 16.170.5n 17:270:7 16.470.9
5 25:872:4 21:872:2 17:872:1 17.172.1 17.171.8 17.072.5n

10 26:472:5 23:372:9 19.472.8 18.572.9n 18.573.2n 18.672.8
20 27:573:8 25:873:9 22.473.5 22.473.8 21.373.6n 21.973.8

Ionosphere 0 9:672:8 6.871.9n 7.572.2 7.272.1 7.772.5 8.072.4
5 9.172.5 7.272.3n 7.672.3 8.672.9 8.572.6 8.472.5

10 9.672.2 7.472.3n 7.972.6 8.172.7 9.172.7 9.672.8
20 10.373.1 9.873.2n 10.173.0 11.273.5 12.773.4 13.073.7

Iris 0 12:374:6 4.572.6n 5.272.7 5.372.4 5.272.8 5.372.4
5 8.676.0 5.173.2n 5.372.8 5.372.5 7.473.3 7.973.7

10 4.676.8n 4.773.4 5.372.6 6.473.4 8.974.0 10.675.0
20 5.073.1n 6.173.5 7.074.6 10.875.1 13.475.4 16.076.2
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be disruptive in noisy problems. In particular, when 20% class-
label noise is injected boosting has the worst accuracy.

The results for random forest (shown in Fig. 2) are qualitatively
similar to those of bagging. However, the margins in random forest
ensemble are typically smaller than in bagging or boosting. This is
a consequence of the higher diversity provided by the random
trees that make up the ensemble. From the experiments per-
formed in this study the best overall results are achieved by
random forests built with the standard 100% sampling ratio. The
larger initial diversity of random forest implies that there is less
room for improvement as the sampling ratio decreases. The
variability introduced by subsampling could in fact be detrimental
to the accuracy of the ensemble. Therefore, subsampling is in
general not as effective in random forest as it is in bagging. The
validity of this qualitative analysis is confirmed by the empirical
evidence presented in the section on experiments.

3.2. Subsampling as a regularization mechanism

Another way to understand how the sampling ratio can
influence the performance of bagging ensembles is to consider

the average number of distinct instances in each bootstrap sample.
The dependence of this value with the sampling ratio is displayed
in Fig. 3. In standard bagging (100% sampling ratio) each bootstrap
sample contains on average 63.2% different instances from the
original training data [8]. The remaining 36.8% are repeated
instances. As the sampling ratio becomes smaller, the number of
distinct instances in each bootstrap sample decreases. Eventually,
only one instance is sampled for a sampling ratio of 1=N, where N
is the size of the training set. The classifier built on such a sample
would predict the class label of the single instance in the sample.
Hence, the ensemble decision would be the majority class in the
training data, irrespective of the values of the features. On the
other extreme, bootstrap samples obtained with high sampling
ratios contain most of the training instances. In such cases most
base learners are very similar; the diversity arises only from
having different repeated examples in different bootstrap samples.
Ensembles built using these extreme values of the sampling ratio
will not in general have good generalization. The optimal perfor-
mance is generally obtained at intermediate values of the sam-
pling ratio [32]. Furthermore, the optimal sampling ratio need not
coincide with the standard prescription (100%).

Table 7
Bagging average test error II.

Dataset Noise (%) Bootstrap sampling ratio

10% 20% 40% 60% 80% 100%

Labor 0 16.278.8 14.778.5 13.379.8 11.877.6n 13.675.1 12.076.4
5 16:0710:2 13.378.8 14:278:8 12.478.5 11.877.0 10.475.6n

10 14.277.2 11.876.3n 17.6714.6 15.876.9 17.8710.3 16.079.4
20 18.978.3 17.379.0n 17.878.3 18.479.6 22.9710.4 20.0710.0

Liver 0 28.674.0 27.473.4n 27.573.7 27.873.4 28.773.6 29.973.6
5 29.073.5 28.573.8n 28.574.3n 29.574.3 30.173.9 30.773.9

10 29.974.0 29.173.4 29.074.0n 30.473.8 31.073.3 31.473.7
20 32.474.3 31.974.5n 32.374.4 32.974.3 34.374.1 34.874.3

Lung Cancer 0 42.078.9n 53:5710:2 42.0711.2n 45.5711.1 45.5711.8 45.0712.9
5 44.078.5n 53:0710:8 49.0711.5 47.5712.2 46.5711.5 49.5712.7

10 42.079.1n 50:5710:4 47.0711.7 45.5712.0 49.0711.9 49.0711.8
20 49.579.0 53.5711.1 48.0712.0 43.5712.8n 55.0712.2 54.0713.7

Magic 0 13:070:4 12:570:4 12.370.3 12.370.4 12.270.4n 12.270.4n

5 13:170:4 12:770:4 12.570.4 12.370.3n 12.470.4 12.570.3
10 13.070.4 12.870.3 12.770.4n 12.770.4n 12.970.3 12.970.4
20 13.470.4 13.270.4n 13.370.4 13.670.4 13.870.4 14.270.4

new-thyroid 0 5.473.0 6.472.9 6.973.2 5.273.2n 5.673.1 5.772.7
5 6.572.5 4.571.8n 5.372.7 6.773.0 5.072.0 8.372.8

10 6.373.8 5.472.8 5.272.5 5.072.3n 6.773.5 7.973.6
20 5.273.1 5.172.7n 5.872.5 10.174.4 11.073.6 10.675.4

Ringnorm 0 12:171:1 8.171.1 7.671.3n 8.271.8 8.671.7 8.871.9
5 11:471:7 7.971.3 7.471.3n 8.071.7 8.471.6 9.171.8

10 11:371:9 7.871.5 7.571.5n 8.471.6 8.771.6 9.571.9
20 11.572.1 8.671.5n 9.171.9 9.771.9 10.171.7 11.271.9

Segment 0 3:471:4 3:071:2 2.671.7 2.3 71.5 2.2 71.0 2.170.9n

5 3.271.5 3.171.3n 3.4 71.9 3.871.9 3.670.7 3.871.1
10 3.271.2 3.171.3n 4.271.1 4.671.7 5.271.2 6.671.3
20 3.572.1 3.271.5n 4.071.6 5.771.5 7.271.4 7.471.5

Sonar 0 22:574:4 23:674:3 23:074:6 21.574.9n 22.074.7 21.074.9
5 24:774:2 24:075:3 23:274:2 21.374.5n 22.474.6 22.775.3

10 24:874:6 22:775:1 23:975:2 21.774.8n 24.175.4 21.875.0
20 25.675.1 25.775.5 26:875:8 25.275.4n 26.375.9 26.276.0

Threenorm 0 18.771.2 17.671.3n 17.771.4 18.071.7 18.871.6 18.971.8
5 19.571.3 18.171.6n 18.471.4 19.271.8 19.071.6 19.171.5

10 19.171.5 18.671.3n 19.171.5 19.871.5 19.371.8 21.171.7
20 21.771.9 21.571.9 21.471.8n 22.371.9 22.971.9 22.872.0

Tic-tac-toe 0 15:472:0 5:172:0 2:270:9 2.070.9 1.970.8n 1.970.7 n

5 16:972:5 7:672:3 3.571.3 3.171.2n 3.371.2 3.671.4
10 18:072:3 10:472:1 5.471.7 5.171.6n 5.471.6 5.671.6
20 20:872:6 16:372:7 13.072.4 12.272.1n 12.272.1n 12.772.7
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An interesting regime corresponds to sampling ratios smaller
than 69.3% (see Fig. 3). For values below this threshold, fewer than
50% of the original training instances are included in each boot-
strap sample. This means that each instance is present in less than
half of the classifiers of the ensemble. In this regime, the class label
given by the ensemble for each training instance is strongly
influenced by the class label of nearby instances. In consequence,
subsampling has the potential to increase the diversity of the
classifiers in the ensemble. Higher diversity results in more
variability in the votes and therefore in lower margins. We
conjecture that using sampling ratios in this regime is an effective
strategy to handle class-label noise in classification ensembles.

4. Experimental evaluation

In this section we present the results of an empirical investiga-
tion of the performance of bootstrapping ensembles in the pre-
sence of label noise. The experiments are designed to assess how
different sampling ratios affect the robustness of such ensembles.
A total of 25 datasets from the UCI repository [3] and other sources
[9] are used. They include synthetic data (Ringnorm, Twonorm,
Threenorm and Tic-tac-toe) and classification problems from dif-
ferent application domains. The characteristics of the datasets are
summarized in Table 1. They have been selected to cover a wide
spectrum: there are problems with high and low numbers of
attributes (e.g. Sonar and Balance, respectively), with small and
large number of instances (e.g. Magic04 and Lung Cancer, respec-
tively), and with different numbers of classes.

The protocol used in the experiments is similar for all datasets. The
only difference is in the generation of the training and test sets. For
the synthetic datasets (Threenorm, Ringnorm and Twonorm) we
generate a training set of 300 instances and a test set of 2000
instances. For the remaining datasets, 2/3 of the available data are
used for training and 1/3 for testing. Stratified sampling is used to
guarantee that the class distributions in the training and test sets are
similar to the complete dataset. For each problem and realization of
the training and test sets, the following steps are carried out:

1. Label noise is injected in the training set with different rates: 0%
(no noise), 5%, 10% and 20%. In each case the class label of the
randomly selected training instances is changed to a different class,
also at random. This corresponds to the Noisy Completely At
Random noise (NCAR) model [18]. Uniform noise was used to
avoid making specific assumptions about the structure of
the noise.

2. For each contaminated training set, six bagging ensembles com-
posed of 500 unpruned CART (Classification And Regression Tree)
trees [12] were built. The bootstrap sampling ratios used are as
follows: 10%, 20%, 40%, 60%, 80% and 100% (standard bagging). The
CART trees were grown until pure class nodes were obtained. No
pruning was applied to the fully grown decision trees. Random
forest ensembles were built on the same training sets using the
different sampling ratios. Random forest is a bagging ensemble
composed of random trees. In random trees the splits at the inner
nodes of the tree are selected from those that involve only a subset
of randomly selected features. The size of these subsets was set to
the square root of the number of features for each dataset [5].

3. The generalization performance of all ensembles is gauged
using the error on the test set. To obtain comparable results
across all the ensembles considered no noise was injected in
the test set.

The test errors reported in the tables are averages over the 100
realizations of the training and test sets.

4.1. Results

To give an overall view of the results, we have computed the
averages of the test error changes in the 25 problems investigated,
for each noise level, sampling strategy and ensemble method
(bagging and random forest). The results are presented in Table 2
as the relative error change, using standard bagging in the noise-
less setting as the reference value. This reference value is marked
in boldface in the table. Values below 1 indicate that, on average,
the corresponding method outperforms standard bagging in the
noiseless setting. Values above 1 signal a higher average test error.

Table 8
Bagging average test error III.

Dataset Noise (%) Bootstrap sampling ratio

10% 20% 40% 60% 80% 100%

Twonorm 0 4.971.1 4.670.8n 5.171.0 5.270.7 6.371.5 6.671.4
5 4.470.7n 5.171.1 5.571.1 6.271.9 6.271.0 7.172.0

10 5.070.8 4.870.6n 5.970.7 6.671.2 6.871.0 7.371.3
20 6.070.5n 7.271.8 7.371.8 7.871.1 8.470.6 9.171.7

Vehicle 0 26:072:5 25:572:3 25:572:1 25.272.0 25.771.0 25.171.1
5 30:172:4 28:272:2 27.672.0 27.471.3 27.271.6 26.571.5

10 31:872:3 28.472.2 27.972.0 27.571.8 28.171.7 28.571.2
20 32:372:6 29:972:7 28.772.5 29.072.2 29.572.0 29.871.7

Votes 0 4.471.6 4.071.6n 4.071.5n 4.571.6 4.771.9 5.071.5
5 4.471.4 4.371.5n 4.471.8 4.571.5 5.171.7 5.972.1

10 4.571.5n 4.771.5 4.871.8 5.771.8 6.772.3 7.372.0
20 4.871.7n 5.871.9 7.872.9 9.572.9 11.273.1 12.973.7

Waveform 0 17.572.5n 17.9 72.4 17.872.0 18.871.4 19.071.0 20.171.2
5 17.072.6n 17.372.0 17.771.9 19.171.6 19.371.6 19.571.5

10 17.572.2n 17.872.2 19.571.6 20.871.7 21.271.7 21.971.8
20 18.172.7n 19.572.6 19.372.0 22.071.5 22.271.8 22.871.7

Wine 0 7:674:5 4.572.5 5:274:4 4.472.4 3.973.3n 5.173.1
5 6:273:9 3.472.4n 5.272.9 4.973.0 4.772.9 6.173.6

10 5.973.3 3.572.2n 4.072.3 4.373.4 5.874.2 7.374.1
20 5.673.4 4.272.4n 5.973.9 7.073.1 8.773.4 10.574.3
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In addition, the average error changes with respect to the
noiseless setting for each ensemble type are shown in Table 3. The
reference values are highlighted in boldface. These results serve to
analyze how the accuracy of ensembles built with the different
sampling ratios is affected by class-label noise. The average test
error changes for the individual datasets are presented in the
appendix: Tables 6–8 for bagging and Tables 9–11 for random
forest ensembles.

An analysis of the results presented in Table 3 reveals that the loss
of accuracy with respect to the noiseless setting is very different for
different sampling ratios. For standard bagging with 20% noise
injected, the average error increase with respect to the noiseless case
is 83%. This large increase should be expected, given the high level of
noise injected. By contrast, if a 10% sampling ratio is used, the average
error increase is only 1.0%, 3.0% and 8.0% for the 5%, 10% and 20% label
noise rates, respectively. An interesting observation is that these error
increments are significantly lower than the corresponding levels of
the noise that has been injected. Using lower sampling ratios in
bagging tends to increase the variability of the base classifiers. This
larger ensemble diversity generally translates into more robust

classification. The remarkable robustness to class-label noise of these
ensembles is illustrated in greater detail by the results presented
in Tables 6–8 in the appendix. In some cases, there is even an
improvement in the classification accuracy when noise is injected.
For instance,the best overall accuracy of bagging in Breast with 20%
noise is achieved using a 10% sampling ratio: the test error goes from
4.1% when no noise is injected to 3.5% when the training data has 20%
noise. By contrast, when standard bagging is used, the test error
increases almost 5 percentage points (from 4.3% with no noise to 9.2%
with 20% noise).

For random forest ensembles, a similar, albeit less marked effect, is
observed in Table 3: the deterioration with the level of noise injected
is more pronounced for larger sampling ratios (18% increment with a
10% sampling ratio and 59% with a 100% sampling ratio). However,
the baseline accuracy of random forest ensembles at low sampling
ratios is rather poor: in the noiseless setting, the average error rate of
random forest with a 10% sampling ratio is 77% larger than standard
bagging (see Table 2). One of the reasons why subsampling is not as
effective is that random forests are typically more diverse than
bagging ensembles. This diversity makes standard random forest

Table 9
Random forest test error I.

Dataset Noise (%) Bootstrap sampling ratio

10% 20% 40% 60% 80% 100%

Australian 0 13:371:3 6:570:6 4.970.5 4.770.5n 4.970.6 5.170.8
5 14:474:7 7:872:2 5.771.4 5.471.1 5.270.7n 5.470.8

10 16:675:2 9:473:5 6:571:8 6.071.3 5.771.0n 6.171.1
20 21:576:5 13:574:8 9:672:5 8:972:0 8.772.0 8.371.5

Balance 0 16:972:0 15.471.8 14.571.9 14.371.6 14.071.5n 15.071.8
5 16.172.2 15.272.0 14.672.0n 14.871.8 15.471.9 16.172.1

10 15.272.5 14.671.9n 15.772.2 16.272.1 17.172.2 17.672.4
20 15.272.2n 16.072.1 17.572.6 19.172.4 19.872.3 20.372.9

Breast W. 0 3:571:0 3:371:0 3.271.0 3.171.0 3.070.9n 3.071.0n

5 3.471.1 3.370.9 3.271.0 3.271.0 3.270.9 3.171.0n

10 3.271.1n 3.471.1 3.771.3 3.871.2 3.871.1 3.871.1
20 3.771.2n 4.271.4 5.071.5 6.171.9 5.871.5 6.671.7

Diabetes 0 25:872:3 24:772:7 24.472.3 24.372.3 24.272.2 23.972.2n

5 25.072.7 24.772.7 24.672.3 24.672.2 24.272.3n 24.472.2
10 25.272.2 24.672.5n 24.772.3 25.172.1 25.072.3 24.772.1
20 25.472.5 25.372.5n 26.572.5 27.273.0 27.072.7 27.472.9

German 0 29:670:4 28:470:7 27:071:0 25:871:3 25:371:4 24.971.3n

5 29:270:7 27:971:0 26:771:1 26:071:2 25.371.4 24.971.5n

10 28:670:9 27:571:3 25.871.3 25.671.6 25.571.7n 25.571.5n

20 28:071:3 27.271.6 26.671.6 26.471.6n 27.072.2 26.871.9

Heart 0 20:973:4 19:673:9 17.573.1 17.473.4 17.273.5n 17.573.2
5 19:873:1 18.273.3 17.673.3n 18:773:7 18.473.3 17.773.4

10 19.573.7 18.873.7 18.574.2n 19.173.4 19.873.7 18.973.8
20 19.774.3n 20.374.7 21.573.5 22.074.2 22.473.9 22.874.9

Hepatitis 0 20:571:1 17:972:6 14:973:0 13:773:4 13.173.3 12.773.6n

5 19:672:2 15:773:1 13:973:3 13.073.3 13.073.7 12.573.7n

10 17:773:5 15:773:7 13.973.8 13.973.6 13.273.4n 13.573.9
20 16.374.2 15.574.0 15.874.2 15.274.4n 16.174.4 16.573.8

Horse-Colic 0 30:271:7 27:671:6 26:571:8 26:571:9 26:271:8 25.371.8n

5 31:073:1 27:672:7 26:372:2 25:873:0 25:872:9 24.872.9n

10 31:273:4 28:373:6 27:173:0 25.773.6 25.873.3 25.673.3n

20 31:274:1 29:873:8 28:173:6 27.474.3 27.273.9 26.573.7

Ionosphere 0 12:672:4 7:871:9 6.672.0 6:871:9 6.271.9 6.171.8n

5 10:373:0 7:872:3 7.272.2 7.272.3 6.872.0n 7.172.3
10 10:772:9 8.172.2 7.472.3n 7.572.3 7.672.2 8.372.7
20 11.173.1 9.572.4n 9.673.1 9.772.6 10.873.2 10.672.7

Iris 0 4.472.5n 4.672.2 4.471.9n 4.772.5 5.072.6 4.872.4
5 6.274.9 4.973.1n 5.572.8 5.072.7 5.372.9 5.472.9

10 7.675.5 6.874.5 5.673.5n 5.772.8 5.773.0 6.573.9
20 8.274.8 7.875.0n 8.975.0 8.975.3 10.675.1 11.875.4
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more robust to noise (see rightmost column of Table 2). Using lower
sampling ratios is not as effective in increasing the diversity of the
random trees. Therefore, subsampling does not lead to systematic
accuracy improvements in random forest ensembles.

Finally, from the analysis of the results displayed in Table 2 one
concludes that the best overall performance in the noiseless setting is
achieved using standard random forests (0.94). The difference with
standard bagging is 6 percentage points on average. However, the
difference between standard random forest and bagging using 60%
sampling ratio is only of two percentage points (values 0.96 and 0.94
in Table 2). As the noise level increases the best overall accuracy
corresponds to bagging using 20–40% sampling ratios (1.42 and 1.44
in the Table 2 for a 20% noise rate).

4.2. Accuracy as a function of ensemble size

The error curves displayed in Figs. 4 and 5 trace the depen-
dence of the average test error of bagging on the number of
classifiers in the ensemble. The classification problems used to

illustrate this dependence are Australian (Fig. 4) and Threenorm
(Fig. 5). The curves displayed correspond to different sampling
ratios and noise levels: noiseless setting (top left plot), 5% (top
right plot), 10% (bottom left plot) and 20% (bottom right plot) noise
rates. The qualitative features of these error curves are similar in
all the classification problems investigated.

When no noise is injected, the error curves for Australian converge
to their asymptotic (infinite ensemble) limit after approximately 50
trees. As more noise is injected larger sizes are required for conver-
gence. In this dataset the qualitative behavior of the error as a
function of ensemble size is similar for the different sampling ratios.
By contrast, in Threenorm (Fig. 5), the convergence of the ensemble
error curves is slower for smaller sampling ratios.

4.3. Statistical significance of the results

A record of the statistically significant differences in accuracy
with respect to the standard ensembles in the 25 classification
problems investigated is given in Tables 4 and 5 for bagging and

Table 10
Random forest test error II.

Dataset Noise (%) Bootstrap sampling ratio

10% 20% 40% 60% 80% 100%

Labor 0 12:073:7 12:773:2 11.772.8 11.172.9 9.072.8 8.972.2n

5 12:773:8 12:573:3 13.573.6 12.574.8 12.473.8 11.073.3n

10 12.774.2n 12.874.5 14.574.1 14.874.0 15.674.5 15.774.2
20 13.075.8n 13.575.3 15.575.1 15.774.8 16.474.7 16.474.5

Liver 0 36:872:0 33:572:2 29:773:0 28:172:9 27.573.2 27.173.2n

5 35:173:2 32:773:0 29:973:2 29.273.5 28.873.6 28.574.0n

10 33:672:9 31.473.9 30.874.2 30.473.6 30.373.7n 30.673.4
20 33.973.8 33.274.2n 33.774.4 34.374.7 33.574.4 34.474.6

Lung Cancer 0 57:979:1 53:8711:7 48.2712.9 43.0713.1n 46.8713.2 48.4714.6
5 60:777:4 55:8711:7 49.2713.0 49.3712.3 47.6713.7 47.4712.6n

10 61:879:3 55:9711:7 54.2712.9 50.2715.7n 51.2713.5 51.8712.7
20 61:8710:9 58:7712:1 55.4711.5 54.7713.0 50.5713.3n 54.8714.2

Magic 0 14:470:4 13:670:4 12:970:3 12:670:4 12.470.3n 12.470.4n

5 13:570:4 13:270:4 12:870:4 12:770:4 12.570.3n 12.570.3n

10 13:370:4 13:070:4 12:970:4 12.870.4 12.770.4n 12.770.4n

20 13.670.4 13.570.4n 13.570.4n 13.670.4 13.770.4 13.870.4

New-thyroid 0 8:472:3 7:372:5 5.172.0 3.371.8 3.071.0 4.471.2
5 8:172:4 8:272:5 5.672.3 5.871.9 4.071.6 3.471.5

10 8:272:8 5:972:1 3.372.4 4.871.8 4.371.7 3.271.7
20 6.172.5n 6.273.0 7.272.8 8.072.5 8.472.7 8.572.6

Ringnorm 0 13:271:4 6:570:7 4.970.5 4.870.6n 4.870.6n 5.070.7
5 14:974:7 7:472:3 5.571.2 5.270.9n 5.270.9n 5.470.8

10 16:775:2 9:373:1 6.271.4 6.171.2 6.071.3n 6.171.4
20 21:475:7 14:374:8 9:772:4 8.672.3 8.571.7 8.271.8

Segment 0 5:970:9 4:470:9 3:570:5 2.970.6 2.770.7 2.670.6n

5 5:970:8 4:570:9 3.770.7 3.170.8n 3.170.7n 3.270.8
10 5:871:1 4.671.1 3.470.6 3.070.7n 3.470.7 4.170.7
20 5.770.7 4.970.8 4.070.9n 4.570.8 5.270.7 6.170.7

Sonar 0 31:174:8 24:674:9 21:574:6 19.674.5 18.374.6n 18.674.4
5 28:676:1 24:975:2 21:375:0 20.675.2 20.574.5 19.973.8n

10 28:776:5 24:475:0 21.274.5 20.774.5 20.975.2 20.674.5n

20 27:876:4 26:375:2 24.974.7 24.475.5 24.275.9 23.975.2n

Threenorm 0 18:270:9 16:970:9 16.070.9n 16:871:0 16.271.0 16.071.1n

5 22:373:2 19:371:9 18:471:2 17.271.1 17.271.1 16.971.0n

10 24:773:9 21:772:5 20:071:6 19:571:5 18.671.6n 19.071.5
20 30:674:5 26:373:2 23:472:0 22:972:2 22:372:0 21.671.7n

Tic-tac-toe 0 29:071:3 23:071:4 15:271:7 10:072:0 6:672:0 4.971.7n

5 26:971:9 21:571:9 14:071:9 10:172:3 7:772:0 6.371.9n

10 26:372:2 20:672:2 14:572:4 11:372:4 9:172:1 8.472.3n

20 25:272:5 21:372:7 16:872:6 14:972:5 14:372:4 13.672.4n
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random forest, respectively. In each cell of these tables the number
of times a given method wins, draws or looses against standard
bagging (Table 4) or standard random forest (Table 5) is displayed.
Paired t-tests with α¼ 0:05 are used to determine the significant
wins and losses. A draw is recorded if the differences between the
test errors are not statistically significant.

From the results presented in these tables one concludes that
subsampling is more effective at higher levels of label noise. For
instance, from Table 4, bagging using a 10% sampling ratio and 0%
noise significantly outperforms standard bagging in 9 datasets and
obtains lower accuracy in 11 datasets. When the noise rate is
increased to 20%, the situation reverses: there are 20 wins and
only 3 significant losses.

An analysis of the results for random forest in Table 5 leads to
similar conclusions. Subsampling becomes more effective also at
lower sampling ratios. The effect, however, is less salient than in
bagging. In the noiseless case random forest using 20% bootstrap
sampling outperforms the standard version in only one dataset
and losses in 21 datasets. When the noise rate is increased to 20%
the number of wins increases to 11 and the number of losses
decreases to 9. Random forests built using the standard prescrip-
tion (100% sampling ratio) have the best overall performance in
the problems investigated for all noise levels. However, as the
amount of class-label noise increases, subsampling becomes more
effective and is actually advantageous in some problems.

Finally, themethod proposed by Demšar in [14] is used to compare
the performance of the ensembles across the different datasets. The
comparison is made in terms of the average rank of each classifier in
the problems considered. For a given dataset, the rank of the different
ensembles is computed on the basis of the average test errors in
different realizations of the training and test sets. Fig. 6 present the
results of these tests for different noise levels and sampling ratios. A
Nemenyi test with p-value o0:05 is used to determine the statistical
significance of the differences between average ranks. The critical
distance above which these differences are considered significant is
shown for reference (CD¼1.5 for 6 methods, 25 dataset and p-value
o0:05). In this diagrams, if two methods are connected with a
horizontal solid line, the difference between their average ranks is not
statistically significant.

Fig. 6 displays the results of the Demšar test for bagging ensembles
in the noiseless setting (top left), and with 5% (top right), 10% (bottom
left) and 20% (bottom right) noise rates. In all cases, standard bagging
with 100% sampling ratio has the lowest average rank.When no noise
is injected the highest accuracy corresponds to bagging with 20%, 40%
and 60% sampling ratios. However, the differences with other
sampling ratios are not statistically significant. The improvements
over standard bagging for 20% and 40% sampling ratios are statisti-
cally significant in the problems with noise rates 5%, 10% and 20%. For
the 20% noise rate, bagging ensembles that use 10%, 20%, 40% and 60%
sampling ratios are significantly better than standard bagging (100%
sampling ratio).

The results of the Demšar test for random forest are displayed
in Fig. 7. Standard random forest (i.e. with 100% sampling ratio) is
the best method for the noiseless setting (top left plot) and for 5%
noise rate (top right plot). However, the differences with ensem-
bles built with 80%, 60% and 40% sampling ratios are not statisti-
cally significant. For these noise rates standard random forest
significantly outperform ensembles built using 20% and 10%
sampling ratios. When higher noise levels are injected (10%), the
best performance corresponds to random forest with 80% sam-
pling ratio. The improvements over ensembles built with 10% and
20% sampling ratios are statistically significant. For the highest
noise level (20%) the method with the highest average rank is
random forest with a 20% sampling ratio. However, in this case,
none of the differences between the average ranks of the different
ensembles are statistically significant.

5. Conclusion

In this paper we have analyzed the resilience to class-label
noise of bootstrap aggregation ensembles as a function of the size
of the bootstrap samples used to train the individual predictors.
The results of an extensive empirical evaluation show that bagging
composed of unpruned decision trees trained on bootstrap sam-
ples whose size is between 10% and 40% of the size of the original
training set are more resilient to label noise than standard bagging
(i.e. using a 100 % sampling ratio). For random forests subsampling

Table 11
Random forest test error III.

Dataset Noise (%) Bootstrap sampling ratio

10% 20% 40% 60% 80% 100%

Twonorm 0 3.370.3n 3.370.3n 3.370.3n 3.470.3 3.670.3 3.670.4
5 4:571:3 3.970.8n 3.970.5n 4.070.5 3.970.5n 4.070.4

10 5:972:0 4:871:2 4.470.7n 4.670.9 4.470.6n 4.570.6
20 9:574:4 7:472:7 6.371.4 6.071.2n 6.171.0 6.371.1

Vehicle 0 30:772:4 29:671:7 27.271.9 26.371.7 25.971.7n 26.171.6
5 30:973:0 29:072:0 27:372:0 26.171.8 26.272.1 25.672.5n

10 30:172:2 27:872:2 27:972:4 26.271.7 26.372.0 25.971.8n

20 30:572:2 29:672:4 28.272.2 27.072.5 27.471.8 26.972.6n

Votes 0 5:371:7 4:471:5 3.971.4 3.671.3n 3.671.4n 3.671.3n

5 5:471:7 4:471:5 4.071.4 3.971.4 3.771.5n 3.771.7n

10 5:771:6 5.071.7 4.571.5 4.171.5n 4.272.0 4.671.9
20 6.372.2 5.572.1n 5.972.2 6.272.3 6.572.6 6.772.5

Waveform 0 15:570:7 14.970.8 14.870.8 14.570.6n 14.670.6 14.670.6
5 15.370.9 15.170.9 14.971.1 15.070.8 14.870.8n 14.870.6n

10 15.170.6 14.870.5 14.870.8 14.970.8 14.670.9n 15.070.7
20 14.971.0n 15.070.6 15.370.8 15.470.7 15:471:0 14.970.7n

Wine 0 3:071:8 3:171:9 2:571:7 2.371.6 2.171.7 1.971.6n

5 4:873:3 3:672:7 2.772.0 2.972.2 2.872.1 2.472.0n

10 5:874:3 4.173.0 3.772.6 3.472.6 3.272.4n 3.472.6
20 7:074:4 5.873.6 5:973:5 5.173.1 5.373.5 5.073.0n
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is effective only in noisy domains (� 20% noise in the class labels)
and in specific classification tasks. In most problems, for low noise
levels the best results are obtained using high sampling ratios. In
fact, using the standard sampling ratio to build random forests is a
reasonable choice with a good overall performance in the pro-
blems investigated, especially in the absence of class-label noise.
However, in noisy tasks, it is worth to explore the possibility of
subsampling, because the optimal size of the bootstrap samples is
problem dependent.

Experiments in synthetic data have been used to illustrate that
the classification margins become smaller as the sampling ratio
decreases. This effect occurs both in the noiseless setting and
when class-label noise is injected. They provide empirical evi-
dence that using smaller bootstrap samples to build the individual
ensemble classifiers can lead to improvements in accuracy, espe-
cially in noisy domains. However, if the sampling ratio decreases
beyond a threshold the accuracy of the ensemble abruptly drops.
This abrupt deterioration of performance occurs at higher sam-
pling rates in random forests than in bagging. The reason is that
the margins are typically larger in bagging than in random forests.
Since lower sampling ratios tend to reduce the margin, the
potential improvements of subsampling for random forest are
realized only in problems with high levels of class-label noise.
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Appendix A

Tables 6–8 display the average test error (with the standard
deviation after the 7 sign) of bagging for the different sampling
ratios and noise rates considered. The results are presented in
three separate tables for the sake of clarity. In each row the lowest
error is highlighted with an asterisk (n). For each noise level and
dataset (i.e. for each row), values that are significantly better than
standard bagging (column 100%) are highlighted in boldface.
Results that are significantly worse than standard bagging are
underlined. The statistical significance of these differences is
determined using paired t-tests at a significance level α¼ 0:05.
The corresponding results for random forest ensembles are pre-
sented in Tables 9–11.
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