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Abstract

Open-domain real-world entity recognition is001
essential yet challenging, involving identifying002
various entities in diverse environments. The003
lack of a suitable evaluation dataset has been004
a major obstacle in this field due to the vast005
number of entities and the extensive human ef-006
fort required for data curation. We introduce007
Entity6K, a comprehensive dataset for real-008
world entity recognition, featuring 5,700 enti-009
ties across 26 categories, each supported by 5010
human-verified images with annotations. En-011
tity6K offers a diverse range of entity names012
and categorizations, addressing a gap in exist-013
ing datasets. We conducted benchmarks with014
existing models on tasks like image captioning,015
object detection, zero-shot classification, and016
dense captioning to demonstrate Entity6K’s ef-017
fectiveness in evaluating models’ entity recog-018
nition capabilities. We believe Entity6K will019
be a valuable resource for advancing accurate020
entity recognition in open-domain settings.021

1 Introduction022

Recognizing entities from images is inherently dif-023

ficult due to several factors. First, the visual com-024

plexity and variability of real-world scenes pose025

challenges in accurately identifying and localizing026

entities of interest. Images can contain multiple en-027

tities, occlusions, variations in lighting conditions,028

and diverse object appearances, making it challeng-029

ing to discern and differentiate entities. Second,030

the task’s open-domain nature demands models031

that can generalize across a wide range of entities,032

including those not seen during training, requir-033

ing abstract representations of entity characteristics034

across different visual contexts.035

To address open-domain entity recognition in036

images, researchers have developed methods us-037

ing deep learning and transfer learning, leveraging038

large-scale pretrained models. However, the lack039

of a comprehensive evaluation dataset hinders the040

Figure 1: Comparison between Entity6K and existing
datasets, where existing datasets may only contain a
single large entity, ambiguous entity name, no bounding
box, or short/no captions. However, our dataset contains
entities in complex environments, with specific names,
and human-labeled bounding boxes and captions.

assessment of different models’ performance. Cre- 041

ating such a dataset is challenging due to the need 042

for a vast, diverse, and constantly updated list of 043

entities, as well as the significant manual effort re- 044

quired for data curation. Additionally, the absence 045

of standardized evaluation benchmarks impedes 046

progress and makes it difficult to compare different 047

approaches effectively. 048

Therefore, in this work, we introduce “En- 049

tity6K," a large open-domain dataset specifically 050

designed for the recognition of real-world entities. 051

Our contributions can be summarized as follows: 052

• We introduced Entity6K, a comprehensive and 053

diverse dataset containing 5,700 unique enti- 054

ties, providing a valuable resource for eval- 055

uating the entity recognition performance of 056

various models. 057

• Each entity in the dataset is associated with 058

five human-validated images and their corre- 059

sponding annotations, resulting in a total of 060

28,500 images. 061

• We carried out benchmarking to assess pre- 062

trained models on tasks like image captioning, 063
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object detection, zero-shot classification, and064

dense captioning, highlighting their capabili-065

ties in recognizing real-world entities.066

2 Related Work067

Open-domain Entity Recognition in image pro-068

cessing involves automatically identifying various069

entities like objects, people, and locations in im-070

ages. This task is challenging as it requires the sys-071

tem to work without domain-specific knowledge or072

predefined context. (Hu et al., 2023) introduced a073

task where a model links an image to a Wikipedia074

entity using a text query. However, this method075

depends on a text query to retrieve the entity name076

from Wikipedia.077

Zero-Shot Image Classification involves recog-078

nizing unseen image classes, as explored in studies079

by Lampert et al. (2014); Liu et al. (2019); Vinyals080

et al. (2016). Due to its complexity, the few-shot081

learning approach, which utilizes limited training082

data, has been examined in works by Snell et al.083

(2017); Finn et al. (2017); Rusu et al. (2018); Ye084

et al. (2018), focusing on developing effective mod-085

els for this scenario.086

Object Detection techniques, like Faster R-CNN087

(Ren et al., 2015) and YOLO (Redmon et al., 2015),088

identify and localize objects in images, providing089

bounding boxes and class labels. F-VLM (Kuo090

et al., 2022), an open-vocabulary method, used091

Frozen Vision and Language Models. GLIP (Li092

et al., 2021) merges object detection with phrase093

grounding for richer visual representations.Zhang094

et al. (2022b) combines localization and Vision-095

Language pretraining for improved detection and096

segmentation. More related work is in Appendix C.097

3 Entity6K Dataset098

In this section, we explain the collection and an-099

notation process of the Entity6K dataset. Detailed100

information is available in Appendix B101

3.1 Data Acquisition102

Entity List To address our problem, we began103

by compiling a diverse set of entity names, cov-104

ering a broad spectrum of real-world entities. We105

organized our selection into 26 distinct categories.106

Within each category, we used Wikipedia as a pri-107

mary source to identify specific entity names. Our108

goal is to evaluate the system’s ability to recognize109

precise entities accurately, so we focused on names110

Figure 2: Examples of the collected data in the En-
tity6K dataset, where each image is associated with the
entity region (bounding box) and the textual descrip-
tions, centering on the specific entity.

Table 1: Comparison with existing datasets, where HA
is short for Human Annotations.

Dataset Entity Categories HA

MSCOCO (Lin et al., 2014) 80 ✗ ✓
ObjectNet (Barbu et al., 2019) 313 ✗ ✗
SUN (Xiao et al., 2010) 397 ✗ ✗
Open Images (Kuznetsova et al., 2018) 600 ✗ ✓
NoCaps (Agrawal et al., 2019) 680 ✗ ✓
ImageNet (Russakovsky et al., 2014) 1,000 ✗ ✗
Entity6K (ours) 5,700 26 ✓

with a high level of specificity. For example, we 111

prefer names like “German Shepherd" or “Alaskan 112

Malamute" over general terms like “Dog." This 113

approach sets our dataset apart from existing ones. 114

Data Collection and Licenses After compiling 115

a thorough and varied list of unique entities, ensur- 116

ing there are no repetitions, the next step involves 117

acquiring images. We accomplish this by utilizing 118

the entity names as search queries on Flickr1. It’s 119

important to note that these images have been gen- 120

erously shared on Flickr by their respective creators 121

under licenses that include Creative Commons BY 122

2.0, Creative Commons BY-NC 2.0, Public Do- 123

main Mark, or Public Domain CC 1.0. These li- 124

censes all grant permission for unrestricted usage, 125

redistribution, and modification, specifically for 126

non-commercial purposes. 127

Fidelity Control The dataset contains 28,500 128

high-quality images from Flickr, reflecting the di- 129

versity and biases of that database. Initially, we 130

compiled 12,003 entity names across 26 categories, 131

collecting ten images per entity with approved li- 132

censes. Using Amazon Mechanical Turk2, we as- 133

sessed image quality through two steps: (1) Three 134

human judges verified the accuracy of each image 135

in representing its entity, deleting any mismatches. 136

(2) Entities with fewer than five accurate images 137

were removed. For entities with more than five 138

1https://www.flickr.com/photos/tags/dataset/
2https://www.mturk.com/
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accurate images, five were randomly selected for139

the final dataset. After this quality control, we re-140

tained 5,700 entities, resulting in a retention rate141

of approximately 47.5%. The detailed numbers142

of entities in each category before and after this143

process are shown in Table 6 in Appendix B.144

3.2 Human Annotation145

The dataset labeling process comprises two distinct146

stages with Amazon Mechanical Turk:147

Bounding Box Annotation In the initial phase,148

a single annotator is assigned to outline bounding149

boxes for each image. The annotator is given the150

corresponding entity name for the image and is151

responsible for marking the relevant region within152

that image. The objective is to establish a single153

bounding box for each image.154

Textual Description Annotation Following the155

completion of the initial bounding box marking156

phase by the first annotator, the second step in-157

volves five different annotators independently cre-158

ating textual descriptions for each image. These159

annotators are given the entity name associated160

with each image to assist them in crafting their161

text captions. It’s crucial to emphasize that all an-162

notators are expected to provide comprehensive163

and detailed textual descriptions, encompassing as164

much relevant information as possible. For exam-165

ple, annotators are encouraged to write descriptions166

such as “A cheerful boy, wearing a white helmet,167

is riding a vibrant green bicycle, while nearby, a168

young girl in a pink helmet is seated on a serene169

blue bicycle, sipping refreshing water" rather than170

simply stating “Two people riding bikes."171

3.3 Statistics of the Dataset172

In Figure 3 in Appendix B, we present the statistics173

of the collected Entity6K dataset. Furthermore, Ta-174

ble 1 compares our dataset with existing datasets,175

which shows that our dataset contains an order of176

magnitude more entities than the existing datasets.177

Additionally, the entities are categorized and come178

with verified human annotations, rendering the pro-179

posed dataset a valuable resource for real-world180

entity recognition evaluations.181

4 Experimental Settings182

4.1 Tasks183

We have chosen four tasks to construct our evalua-184

tion benchmark, which includes object detection,185

zero-shot image classification, image captioning, 186

and dense captioning. 187

4.2 Evaluation Metrics 188

According to different tasks, we select the corre- 189

sponding standard metrics as the evaluation metrics. 190

For object detection, we select Average Precision 191

(AP) as the evaluation metric. For zero-shot im- 192

age classification, we take the standard accuracy 193

as the evaluation metric. For image captioning, we 194

adopted the BLEU (Papineni et al., 2002), ROUGE 195

(Lin, 2004), Meteor (Banerjee and Lavie, 2005), 196

and BertScore (Zhang et al., 2020) as evaluation 197

metrics. For the dense captioning task, we take 198

mean Average Precision (mAP) as the evaluation 199

metric. Similar to object detection metric, dense 200

captioning measures an mAP across a range of 201

thresholds for both localization and description ac- 202

curacy, following (Johnson et al., 2015). For lo- 203

calization, it uses box IoU thresholds of .3, .4, .5, 204

.6, .7. For language description, a METEOR score 205

(Banerjee and Lavie, 2005) with thresholds of 0, 206

.05, .1, .15, .2, .25 is used. The mAP is averaged 207

by the APs across all pairwise of these two types 208

of thresholds. 209

4.3 Benchmark Models 210

For different tasks, we selected different baseline 211

models for the benchmark. Specifically, for ob- 212

ject detection, GLIP (Li et al., 2021), GRiT (Wu 213

et al., 2022), DINO (Zhang et al., 2022a), and 214

ViT-Adapter (Chen et al., 2022). For zero-shot 215

image classification, we select CLIP (Radford 216

et al., 2021), ALIGN (Jia et al., 2021), and GPT-4 217

(OpenAI, 2023). For image captioning, we select 218

BLIP (Li et al., 2022), OFA (Wang et al., 2022b), 219

GIT (Wang et al., 2022a), and GRIT (Nguyen et al., 220

2022) as baselines. For dense captioning, we adopt 221

FCLN (Johnson et al., 2015) and GRiT (Wu et al., 222

2022). Details about the baseline models can be 223

found in the Appendix. 224

4.4 Experimental Settings 225

In our evaluation of the performance of existing 226

models, we adhered to the instructions provided 227

by those models. Specifically, we utilized the pre- 228

trained weights directly without undergoing any 229

training or fine-tuning processes. 230
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Table 2: Averaged Object Detection results.

Method AP AP50 AP75

GLIP (Li et al., 2021) 8.90 12.54 0.04
DINO (Zhang et al., 2022a) 10.82 14.42 2.37
ViT-Adapter (Chen et al., 2022) 11.83 16.77 6.90
GRiT (Wu et al., 2022) 14.41 23.30 7.89

Table 3: Ave. Zero-shot Image Classification results.

Method Acc (%)

ALIGN (Jia et al., 2021) 34.66
CLIP-ViT-L (Radford et al., 2021) 54.10
CLIP-ViT-H (Radford et al., 2021) 57.01
GPT-4 (OpenAI, 2023) 69.25

Human 71.25

5 Experimental Results231

5.1 General Insights232

In this section, we provide comparison results and233

discussions on each task.234

Object Detection The Object Detection results235

are presented in Table 2. According to the findings,236

GRiT outperforms all other baselines across all237

metrics.238

Zero-shot Image Classification The Zero-shot239

Image Classification results are outlined in Table 2.240

CLIP outperforms ALIGN, and CLIP with the ViT-241

H vision encoder shows better performance than242

CLIP with the ViT-L vision encoder, suggesting243

that a larger vision encoder can learn more effective244

visual representations. However, GPT-4 achieved245

the best performance compared to all the baselines,246

demonstrating its superior ability to recognize real-247

world entities.248

Image Captioning As shown in Table 3, vari-249

ous models show different performances across250

evaluation metrics. BLIP surpasses others in251

ROUGE-1, BLEU, and METEOR, while OFA out-252

performs BLIP in ROUGE-2, ROUGE-L, SPICE,253

and BertScore metrics.254

Dense Captioning In Table 5, while GRiT out-255

performs FCLN, it’s noteworthy that the results of256

both models are relatively low, indicating signifi-257

cant room for improvement in this area.258

5.2 Detailed Results for Each Category259

The detailed results for each category on each task260

are listed in Appendix D. An important observa-261

tion across these results is that the prevalence of262

a category in our dataset does not directly corre-263

late to performance. For example, cars and birds264

comprise 2.3% and 12.4% of our dataset, respec-265

tively. However, in most results, the metrics for the266

Table 4: Averaged Image Captioning results.

Methods ROUGE-L ↑ BLEU ↑ METEOR ↑ SPICE ↑ BertScore ↑

GRIT (Nguyen et al., 2022) 0.01 0.01 0.20 0.13 77.85
GIT (Wang et al., 2022a) 9.92 0.40 4.37 1.27 81.34
BLIP (Li et al., 2022) 11.67 1.11 7.75 1.74 84.52
OFA (Wang et al., 2022b) 12.02 0.92 6.89 3.27 84.63

Table 5: Averaged Dense Captioning results.

Method mAP

FCLN (Johnson et al., 2016) 0.02
GRiTMAE (Wu et al., 2022) 2.12

Human 20.12

birds category are often lower than the cars cate- 267

gory. We assume this is due to each model being 268

pretrained on different datasets. Overall, by observ- 269

ing the category-wise performances of all models 270

for each task, we can conclude that none of the 271

models can generalize well to the complex scenes 272

and textual descriptions provided in our dataset, 273

highlighting the complexity and challenge of our 274

proposed dataset. 275

5.3 Human evaluation 276

To improve the model’s performance assessment, 277

we conducted human experiments for both the Zero- 278

shot Image Classification and Dense Captioning 279

tasks. We engaged three human judges from Ama- 280

zon Mechanical Turk, including two males and one 281

female. The results for each task were derived by 282

averaging the scores provided by all three human 283

judges and are detailed in Table 3 and Table 5. We 284

can see that GPT-4 has achieved performance lev- 285

els closely resembling human capabilities in the 286

Zero-shot Image Classification task. However, it’s 287

worth noting that in the Dense Captioning task, 288

both models’ results fall significantly below human 289

performance levels. This indicates a considerable 290

scope for improvement in this specific domain. 291

6 Conclusion 292

In this study, we investigated the open-domain 293

recognition capabilities of pretrained multimodal 294

models. To aid this investigation, we introduced 295

Entity6K, a large open-domain dataset designed for 296

real-world entity recognition. With 5,700 diverse 297

real-world entities across 26 distinct categories, this 298

dataset is versatile and applicable to various tasks. 299

We conducted evaluations of model performance 300

across four tasks: image captioning, object detec- 301

tion, zero-shot image classification, and dense cap- 302

tioning. Our goal with these evaluations is to offer a 303

valuable resource for assessing models’ proficiency 304

in recognizing open-domain real-world entities. 305
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Limitations306

Although our proposed dataset tackles the short-307

comings of current datasets, we foresee that there308

are still certain limitations that future research can309

potentially improve.310

• The dataset size has the potential to be ex-311

panded further. Although we initially com-312

piled a substantial list of entities, our fidelity313

control process led to the removal of over half314

of the entity names due to insufficient images.315

To address this issue, future endeavors could316

explore additional resources beyond the Flickr317

database we utilized, with the aim of augment-318

ing the dataset.319

• Achieving data balance remains a challenge.320

Despite our efforts to create a diverse dataset,321

imbalances between different categories may322

persist. Future efforts could focus on balanc-323

ing entities within each category while ex-324

panding the dataset. However, it’s important325

to note that certain categories, like species of326

mammals, may inherently have limited enti-327

ties, while others, such as celebrity names,328

could be significantly larger. This inherent329

nature might lead to persistent imbalances in330

the enlarged dataset.331

• Insufficient baseline options, particularly in332

the context of dense captioning, pose a chal-333

lenge. Currently, only two baselines with334

publicly available weights can be incorpo-335

rated into this benchmark. It is anticipated336

that future research endeavors could expand337

the available baseline options as new work338

emerges, providing a more comprehensive se-339

lection for evaluation.340

Data availability statement341

In this paper, we introduced Entity6K, a large open-342

domain evaluation dataset for real-world entity343

recognition. Entity6K contains 5,700 real-world344

entities with 26 main categories, where each entity345

is associated with five human-verified images and346

human annotations/captions. Our dataset will be347

made publicly available soon.348

Ethics Statement349

In this study, the dataset was sourced from publicly350

accessible databases. We conscientiously excluded351

any content from our dataset that could be consid- 352

ered ethically sensitive. To our understanding, and 353

with careful consideration, we do not anticipate any 354

detrimental applications arising from the findings 355

or methodologies presented in this research. 356

Broader Impact 357

In real-world applications, recognizing entities 358

from images is crucial, particularly in open-world 359

scenarios where the entities may not be pre-defined. 360

Recognizing this gap, we introduced the Entity6K 361

dataset to serve as an evaluation tool for open-world 362

entity recognition. Although Entity6K is a step 363

forward, future datasets could benefit from being 364

larger, despite the potential high costs associated 365

with scaling due to the complexity of real-world 366

entities. Moreover, future research could focus 367

on developing automated methods for quality ver- 368

ification of the collected images, which currently 369

require time-consuming human verification. 370
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A More Details about Baselines568

A.0.1 Object Detection569

GLIP For GLIP (Li et al., 2021), we use the570

GLIP-T model that uses the Tiny Swin-Tiny back-571

bone and pretrained on Object365 (Shao et al.,572

2019), GoldG (Li et al., 2021), Cap4M (Li et al.,573

2021), SBU (Ordonez et al., 2011), and Conceptual574

Captions (Sharma et al.). The backbone for the text575

encoder is the base BERT model.576

GRiT For GRiT (Wu et al., 2022), we use the577

base GRiT model pretrained with the 12-layer ViT578

initialized from the masked autoencoder (MAE),579

which was trained on ImageNet-1K. The text de-580

coder is a 6-layer transformer. The provided check-581

point is also pretrained jointly on object detection582

and dense captioning.583

DINO For DINO (Zhang et al., 2022a), we584

use the 24 epoch setting, DINO-4scale pretrained585

checkpoint. This pretrained model uses the586

ResNet50 as the backbone, where a 6-layer encoder587

and 6-layer decoder are used for the transformer588

network (Zhang et al., 2022a). The hidden dimen-589

sion size is 256.590

ViT-Adapter For ViT-Adapter (Chen et al.,591

2022), we use the large model. The ViT has 24592

layers with 16 heads and 303.3 million parameters.593

The adapter has 16 heads as well and 23.7 million594

parameters. The backbone used in this pretrained595

model is the BEiTv2 model (Peng et al., 2022).596

A.0.2 Zero-shot Image Classification597

CLIP-ViT-L The CLIP (Radford et al., 2021)598

model we utilize uses the large ViT transformer599

architecture as the image encoder and a masked600

self-attention transformer as the text encoder. We601

used clip-vit-large-patch14 in this setting.602

CLIP-ViT-H This CLIP (Radford et al., 2021)603

rendition uses the huge ViT as the backbone and604

was trained on the English subset of LAION-5B.605

We used CLIP-ViT-H-14-laion2B-s32B-b79K in606

this setting.607

ALIGN The ALIGN model (Jia et al., 2021) uses608

the EfficientNet (Tan and Le, 2019) as the vision609

encoder and the BERT model as the text encoder.610

We used ALIGN-base in this setting.611

GPT4 GPT-4 (OpenAI, 2023) is a large multi-612

modal model capable of processing image and text613

inputs and producing text outputs.614

A.0.3 Image Captioning 615

BLIP For BLIP (Li et al., 2022), we use 616

the “blip-image-captioning-large" pretrained check- 617

point, where ViT-Large is used as the vision trans- 618

former and the Bert-base model for the text trans- 619

former (Li et al., 2022). We use the phrase “a 620

picture of" as the prompt for the model, as seen in 621

(Li et al., 2022). 622

OFA For OFA (Wang et al., 2022b), we use 623

the “OFA-base" pretrained checkpoint, where 624

ResNet101 is used as the backbone (Wang et al., 625

2022b). This model has 180 million parameters, 626

a hidden size of 768, and an intermediate size of 627

3072. There are 12 heads, six encoder layers, and 628

six decoder layers. 629

GIT For GIT (Wang et al., 2022a), we use the 630

“git-base-coco" pretrained checkpoint, which con- 631

tains six layers for the transformer decoder with 12 632

attention heads. The hidden size is 768, and the 633

model has 347 million parameters. 634

GRIT For GRIT (Nguyen et al., 2022), we use 635

the checkpoint pretrained on four object detection 636

datasets (i.e., COCO, Visual Genome, Open Im- 637

ages, and Object365) (Nguyen et al., 2022). The 638

hidden size is set to 512, and the number of heads 639

to 8. The model has six layers for the object de- 640

tector, three layers for the grid feature network, 641

and three layers for the caption generator (Nguyen 642

et al., 2022). 643

A.0.4 Dense Captioning 644

FCLN (Johnson et al., 2015) FCLN uses a 13- 645

layer VGG-16 architecture as the backbone and an 646

RNN language model as the text decoder (Johnson 647

et al., 2015). The token and hidden layer size are 648

512. 649

GRiT-MAE (Wu et al., 2022) Similar to object 650

detection, we use the base GRiT model pretrained 651

with the 12-layer ViT initialized from the masked 652

autoencoder (MAE). The text decoder is also a 6- 653

layer transformer. Since the provided checkpoint 654

is jointly pretrained on object detection and dense 655

captioning, we use the same checkpoint for the two 656

tasks. 657

B More Details about the Entity6K 658

Dataset 659

B.1 Data Acquisition 660

Entity List Our initial step in addressing our 661

problem involves the compilation of a diverse ar- 662
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Figure 3: Statistics of the entities in each category.

ray of entity names, encompassing a wide range663

of real-world entities, including businesses, prod-664

ucts, and individuals. To accomplish this task,665

we’ve categorized our selection into 26 distinct666

categories. Within each of these categories, we667

employed Wikipedia as a valuable resource to iden-668

tify specific entity names. Our primary objective669

is to evaluate the system’s capacity to accurately670

recognize precise entities, so we prioritize names671

that exhibit a high level of specificity. For in-672

stance, we favor names like “German Shepherd" or673

“Alaskan Malamute" over more general terms such674

as “Dog." This unique approach differentiates our675

dataset from existing ones.676

Data Collection and Licenses After compiling677

a thorough and varied list of unique entities, ensur-678

ing there are no repetitions, the next step involves679

acquiring images. We accomplish this by utilizing680

the entity names as search queries on Flickr3. It’s681

important to note that these images have been gen-682

erously shared on Flickr by their respective creators683

under licenses that include Creative Commons BY684

2.0, Creative Commons BY-NC 2.0, Public Do-685

main Mark, or Public Domain CC 1.0. These li-686

censes all grant permission for unrestricted usage,687

redistribution, and modification, specifically for688

non-commercial purposes.689

Fidelity Control The dataset comprises 28,500690

high-quality images with significant diversity, all691

sourced from Flickr, thereby inheriting the biases692

in that database. Initially, we compiled 12,003 en-693

tity names across 26 categories. For each entity,694

we collected ten images from Flickr with approved695

3https://www.flickr.com/photos/tags/dataset/

licenses, saving the relevant metadata in a JSON 696

file, including original image URLs, authors, and 697

licenses. Subsequently, Amazon Mechanical Turk4 698

was employed to assess image quality through two 699

key steps: (1) Three human judges verified if the 700

saved image accurately corresponded to the entity; 701

any mismatches led to image deletion. (2) Fol- 702

lowing this verification, entities lacking five saved 703

images were removed from our list. For entities 704

with more than five images, five were randomly 705

sampled, forming our final dataset. After these 706

fidelity control measures, we retained 5,700 enti- 707

ties, resulting in a retention rate of approximately 708

47.5%. The detailed numbers of entities of each 709

category before and after the fidelity control step 710

are shown in Table 6. 711

B.2 Human Annotation 712

The dataset labeling process comprises two distinct 713

stages with Amazon Mechanical Turk: 714

Bounding Box Annotation In the initial phase, 715

a single annotator is assigned the task of outlining 716

bounding boxes for each image. The annotator 717

is provided with the corresponding entity name 718

for the image and is responsible for marking the 719

relevant region within that image. The goal is to 720

establish a single bounding box for each image. 721

Textual Description Annotation Following the 722

completion of the initial bounding box marking 723

phase by the first annotator, the second step in- 724

volves five different annotators independently cre- 725

ating textual descriptions for each image. These 726

annotators are given the entity name associated 727

4https://www.mturk.com/
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Figure 4: Examples of the collected data in the Entity6K dataset, where each image is associated with the entity
region (bounding box) and the textual descriptions, centering on the specific entity.

with each image to assist them in crafting their728

text captions. It’s crucial to emphasize that all an-729

notators are expected to provide comprehensive730

and detailed textual descriptions, encompassing as731

much relevant information as possible. For exam-732

ple, annotators are encouraged to write descriptions733

such as “A cheerful boy, wearing a white helmet,734

is riding a vibrant green bicycle, while nearby, a735

young girl in a pink helmet is seated on a serene736

blue bicycle, sipping refreshing water" rather than737

simply stating “Two people riding bikes."738

B.3 Statistics of the Dataset739

In Figure 3, we can observe the statistics of the740

gathered Entity6K dataset. Furthermore, Table 1741

presents a comparison with existing datasets. As742

depicted in Table 1, our dataset contains an order of743

magnitude more entities than the existing datasets.744

Additionally, the entities are categorized and come745

with verified human annotations, rendering the pro-746

posed dataset a valuable resource for real-world747

entity recognition evaluations.748

C More Related Work749

Open-domain Entity Recognition from images750

refers to the task of automatically identifying and751

extracting entities (objects, people, locations, etc.)752

from images without relying on any specific do-753

main or prior knowledge. There are few works in754

the open-domain entity recognition area. Hu et al.755

(2023) presented the task of open-domain visual756

entity recognition, where a model needs to link an757

image to a Wikipedia entity with respect to a text758

query. However, their work needs a text query to re-759

trieve the entity name in the Wikipedia entity name760

list. Chen et al. (2023) introduced INFOSEEK, a761

dataset for Visual Question Answering focused on762

informational queries. Qiu et al. (2024) proposed763

a new task for entity-centric visual question an-764

Table 6: More details for fidelity control, where “Initial
Entities" and “Final Entities" mean the number of enti-
ties before/after the fidelity control step, respectively.

Main category Initial Entities Final Entities

mammals 778 545
fish 1089 277
birds 739 705
reptiles 141 63
amphibians 211 162
landmark 500 158
food 483 181
electronics 432 103
crafts 490 214
fruit 361 194
vegetable 389 226
sports 694 172
household 120 102
games 198 62
toys 231 99
currency 157 45
celebrity 1515 1009
drink 300 31
healthcare 100 42
insect 369 206
plant 606 436
dessert 400 323
instruments 477 116
rock 217 79
cars 588 133
beauty 418 17

Summary 12,003 5,700
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swering to evaluate models’ ability to understand765

identified entities.766

Image Classification aims at recognizing the767

class of the given image from a pre-defined class768

list. Recently, the zero-shot (ZS) setting has also769

been studied, where the classes are unseen in the770

training data (Lampert et al., 2014; Liu et al., 2019;771

Vinyals et al., 2016). However, zero-shot seems to772

be a too complicated problem, and the few-shot set-773

ting has been considered, such as meta classifiers774

(Snell et al., 2017; Finn et al., 2017; Rusu et al.,775

2018; Ye et al., 2018).776

Object Detection algorithms, such as Faster R-777

CNN (Ren et al., 2015) or YOLO (Redmon et al.,778

2015), can be used to identify and localize objects779

within an image. These algorithms typically out-780

put bounding boxes around detected objects along781

with their corresponding class labels. Kuo et al.782

(2022) proposed F-VLM, an open-vocabulary ob-783

ject detection method built upon Frozen Vision784

and Language Models. Li et al. (2021) proposed785

a grounded language-image pretraining (GLIP)786

model for learning object-level, language-aware,787

and semantic-rich visual representations, which788

unified object detection and phrase grounding for789

pre-training. Zhang et al. (2022b) unified localiza-790

tion pre-training and Vision-Language Pre-training,791

which can be used for object detection and instance792

segmentation.793

Image Segmentation techniques can be em-794

ployed to partition an image into different regions795

or segments corresponding to different entities.796

This approach can provide more fine-grained en-797

tity recognition by precisely delineating the bound-798

aries of objects in an image. Kirillov et al. (2023)799

lifted image segmentation into the era of founda-800

tion models. The model is designed and trained to801

be promptable, so it can transfer zero-shot to new802

image distributions and tasks.803

D Detailed Results for Each Category804

We also provided the detailed results for each cate-805

gory on each task. Tables 9,10,11,12 show detailed806

image captioning results by OFA, BLIP, GRiT,807

and GIT, respectively. Tables 13,14,15,16 show808

detailed object detection results for GLIP, GRiT,809

DINO, and ViT-Adapter, respectively. Table 7810

shows the detailed Zero-shot Image Classification811

results, and Table 8 shows the detailed Dense Cap-812

tioning across 26 categories.813

Table 7: Comparison of accuracies for Zero-shot Im-
age Classification across 26 categories. CLIP-ViT-L:
CLIP-ViT-Large-patch14, CLIP-ViT-H: CLIP-ViT-H-
14-laion2B-s32B-b79K.

Category CLIP-ViT-L CLIP-ViT-H ALIGN

crafts 43.74 49.76 41.30
mammals 56.01 58.62 35.64
food 71.54 75.00 62.39
plant 50.51 52.16 22.87
birds 52.55 72.03 23.84
fish 31.07 37.50 16.55
sports 69.01 71.23 60.00
dessert 45.98 50.90 39.75
celebrity 80.86 71.92 38.32
amphibians 20.13 22.66 10.00
vegetable 42.21 43.63 31.08
insect 37.47 36.27 24.43
healthcare 49.76 54.63 56.10
games 58.00 62.00 40.67
cars 42.42 56.97 23.03
fruit 36.68 39.38 20.41
electronics 62.63 73.51 65.71
toys 35.32 40.76 38.68
rock 26.58 24.81 18.23
household 61.18 69.61 57.65
instruments 41.94 42.72 24.27
landmark 92.23 93.76 81.40
reptiles 41.90 42.22 23.17
drink 54.67 48.67 25.33
currency 65.78 62.22 36.44
beauty 81.18 92.94 89.41

Table 8: Comparison of mAP scores for Dense Caption-
ing across 26 categories.

Category FCLN GRiT_MAE

crafts 0.05 1.04
mammals 0.04 1.52
food 0.05 1.28
plant 0.02 3.04
birds 0.00 3.08
fish 0.01 1.76
sports 0.05 0.48
dessert 0.04 0.40
celebrity 0.01 2.64
amphibians 0.02 0.88
vegetable 0.00 3.00
insect 0.01 2.88
healthcare 0.02 1.92
games 0.04 0.64
cars 0.06 0.16
fruit 0.00 2.96
electronics 0.06 0.00
toys 0.03 1.50
rock 0.01 2.72
household 0.06 1.20
instruments 0.05 0.88
landmark 0.00 2.08
reptiles 0.06 0.32
drink 0.02 3.00
currency 0.00 2.80
beauty 0.04 1.52

11



Table 9: Comparison of Image Captioning results for each category for OFA.

Category ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ BLEU ↑ METEOR ↑ SPICE ↑ BertScore ↑

crafts 12.14 1.12 10.79 0.91 6.16 1.34 84.61
mammals 9.93 1.18 9.07 0.44 4.79 1.34 83.94
food 20.20 3.72 17.34 2.02 11.05 6.06 85.52
plant 12.78 1.48 11.04 0.91 6.85 5.05 84.47
birds 11.98 2.43 10.87 0.47 5.23 1.82 84.04
fish 11.54 1.75 10.61 0.85 5.94 1.19 84.66
sports 16.74 3.04 14.29 0.80 7.93 5.42 85.68
dessert 20.21 3.64 17.34 1.58 10.64 7.40 85.91
celebrity 11.10 1.10 9.72 0.76 5.20 1.33 84.10
amphibians 12.71 2.44 11.55 0.99 7.46 3.00 85.35
vegetable 13.15 1.69 11.76 1.16 6.76 3.32 85.12
insect 14.96 2.78 13.64 0.81 8.01 3.24 85.39
healthcare 11.85 0.94 10.50 0.98 5.68 1.05 85.13
games 17.31 2.22 14.63 0.96 7.85 6.42 85.35
cars 15.38 5.37 13.58 0.76 6.95 4.56 84.93
fruit 17.06 3.14 15.13 1.52 9.18 4.91 85.40
electronics 16.30 2.44 14.28 1.35 8.67 5.82 86.14
toys 17.32 3.37 14.62 1.56 9.43 6.18 85.67
rock 14.64 1.65 12.93 1.23 7.97 2.17 85.19
household 21.86 4.32 19.48 2.38 12.37 9.08 86.85
instruments 14.13 1.83 12.24 1.24 7.64 3.23 84.76
landmark 12.96 1.74 11.05 0.73 7.87 6.64 83.86
reptiles 11.63 2.14 10.67 0.65 5.96 1.03 84.43
drink 17.72 1.95 15.29 1.14 8.55 4.50 84.98
currency 18.47 3.71 15.65 1.44 8.05 4.37 84.34
beauty 14.04 2.26 12.66 1.11 7.72 1.88 84.89

Table 10: Comparison of Image Captioning results for each category for BLIP.

Category ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ BLEU ↑ METEOR ↑ SPICE ↑ BertScore ↑

crafts 15.67 1.20 12.98 1.34 9.40 3.79 85.46
mammals 10.58 0.23 9.28 0.76 5.44 0.60 84.62
food 15.64 0.19 12.58 1.37 8.49 1.64 83.95
plant 9.06 0.20 8.33 0.93 4.52 0.49 83.24
birds 11.84 0.33 10.50 0.98 7.11 0.31 84.10
fish 14.07 0.16 12.62 1.15 7.60 0.96 84.53
sports 18.91 1.53 14.67 0.97 10.27 5.42 86.30
dessert 14.40 0.27 11.87 1.08 7.84 1.51 84.17
celebrity 18.68 1.99 14.90 1.36 10.41 3.60 84.95
amphibians 10.95 0.39 10.13 1.16 7.67 0.67 85.09
vegetable 11.06 0.23 9.71 1.09 5.98 0.31 84.69
insect 10.91 0.61 9.98 1.00 6.47 0.37 84.34
healthcare 14.54 0.48 12.01 1.22 7.27 3.41 85.56
games 13.11 0.36 10.80 0.91 6.16 5.93 85.47
cars 14.16 1.49 10.51 0.74 7.48 0.75 84.13
fruit 11.99 0.59 10.60 1.24 6.97 0.42 84.32
electronics 13.18 0.38 11.61 1.22 7.97 0.93 85.34
toys 14.73 1.21 12.47 1.27 8.83 2.18 85.47
rock 13.16 0.11 11.48 1.20 6.75 3.44 84.44
household 13.70 0.67 11.66 1.46 8.36 1.12 85.47
instruments 16.10 1.77 13.25 1.57 10.47 3.22 85.32
landmark 13.92 0.79 11.52 0.95 6.20 1.21 84.36
reptiles 10.33 0.40 9.27 0.99 6.97 0.63 84.52
drink 17.81 0.14 13.19 1.13 9.24 2.07 84.81
currency 18.27 4.61 15.38 1.91 10.36 4.65 84.84
beauty 13.46 0.89 10.55 1.14 8.48 1.12 84.71
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Table 11: Comparison of Image Captioning results for each category for GRiT.

Category ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ BLEU ↑ METEOR ↑ SPICE ↑ BertScore ↑

crafts 0.24 0.00 0.24 0.03 0.28 0.14 78.44
mammals 0.05 0.00 0.05 0.00 0.19 0.11 77.77
food 0.26 0.00 0.26 0.03 0.25 0.05 77.80
plant 0.16 0.00 0.16 0.02 0.30 0.23 77.50
birds 0.12 0.00 0.12 0.01 0.15 0.11 77.52
fish 0.05 0.00 0.05 0.01 0.14 0.06 78.07
sports 0.20 0.00 0.20 0.02 0.32 0.17 78.14
dessert 0.19 0.00 0.19 0.02 0.19 0.12 78.01
celebrity 0.08 0.00 0.08 0.01 0.17 0.13 77.66
amphibians 0.04 0.00 0.04 0.01 0.13 0.07 78.45
vegetable 0.29 0.00 0.29 0.03 0.31 0.13 78.38
insect 0.06 0.00 0.05 0.01 0.14 0.08 77.84
healthcare 0.16 0.00 0.16 0.02 0.24 0.12 78.52
games 0.16 0.00 0.16 0.02 0.37 0.17 78.50
cars 0.09 0.00 0.09 0.01 0.16 0.04 77.40
fruit 0.18 0.00 0.18 0.02 0.23 0.14 77.98
electronics 0.09 0.00 0.09 0.01 0.21 0.12 78.60
toys 0.15 0.00 0.15 0.02 0.28 0.22 78.24
rock 0.05 0.00 0.05 0.01 0.19 0.10 78.14
household 0.20 0.00 0.20 0.02 0.21 0.21 78.69
instruments 0.03 0.00 0.03 0.00 0.13 0.08 78.28
landmark 0.09 0.00 0.09 0.01 0.12 0.17 78.05
reptiles 0.00 0.00 0.00 0.00 0.10 0.11 77.88
drink 0.15 0.00 0.15 0.02 0.28 0.04 78.33
currency 0.27 0.00 0.27 0.03 0.34 0.35 77.60
beauty 0.16 0.00 0.16 0.02 0.18 0.34 78.20

Table 12: Comparison of Image Captioning results for each category for GIT.

Category ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑ BLEU ↑ METEOR ↑ SPICE ↑ BertScore ↑

crafts 12.89 1.29 11.34 0.59 5.01 2.15 82.43
mammals 9.51 0.84 8.10 0.17 3.91 1.95 80.68
food 13.79 0.59 12.19 0.81 5.33 2.16 80.87
plant 8.21 0.34 7.19 0.41 3.30 0.56 80.42
birds 12.70 1.16 11.19 0.30 4.59 0.75 80.76
fish 12.17 0.75 10.97 0.50 4.83 0.49 81.41
sports 9.87 0.82 8.77 0.13 3.16 1.06 81.58
dessert 11.41 0.50 10.32 0.39 4.11 1.56 81.17
celebrity 11.73 1.92 10.18 0.34 4.18 0.55 81.39
amphibians 10.17 0.32 8.30 0.49 5.44 2.57 81.49
vegetable 10.40 0.52 8.69 0.51 4.39 1.68 81.76
insect 12.07 1.08 10.19 0.37 4.87 0.58 81.27
healthcare 9.37 0.82 8.34 0.32 3.70 2.41 82.05
games 10.20 0.64 8.92 0.24 3.44 0.43 80.24
cars 11.42 2.30 10.23 0.09 4.04 0.60 80.92
fruit 11.96 0.93 10.76 0.67 5.03 0.98 81.57
electronics 12.79 1.80 10.97 0.68 5.12 0.69 82.84
toys 11.23 1.20 9.83 0.39 4.23 1.31 82.37
rock 12.93 0.64 11.28 0.61 5.04 4.44 82.41
household 12.23 0.98 10.66 0.77 4.94 1.26 82.99
instruments 11.98 1.35 10.65 0.53 4.67 0.62 82.11
landmark 9.92 0.59 8.70 0.23 3.28 0.70 81.20
reptiles 11.49 0.56 8.61 0.32 5.31 2.06 80.87
drink 12.27 0.25 10.41 0.32 4.14 1.79 81.28
currency 14.77 3.41 13.52 0.40 5.20 0.36 81.78
beauty 12.67 1.56 10.70 0.47 5.02 0.97 82.39
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Table 13: Comparison of Object Detection results for
each category for GLIP.

Category AP AP50 AP75

crafts 16.59 7.54 0.01
mammals 9.61 1.69 0.05
food 0.00 13.16 0.04
plant 10.19 4.82 0.08
birds 1.25 0.00 0.05
fish 4.96 13.92 0.00
sports 18.85 14.61 0.07
dessert 0.00 20.39 0.06
celebrity 3.30 11.43 0.03
amphibians 11.62 29.76 0.03
vegetable 17.19 25.86 0.00
insect 0.00 21.98 0.08
healthcare 0.00 30.20 0.05
games 19.78 0.00 0.05
cars 10.87 5.15 0.00
fruit 9.25 4.44 0.01
electronics 19.65 32.99 0.04
toys 10.44 0.00 0.00
rock 5.41 19.56 0.06
household 0.00 11.46 0.09
instruments 18.43 0.00 0.05
landmark 1.75 14.77 0.08
reptiles 5.91 0.00 0.07
drink 17.51 8.95 0.00
currency 15.93 9.82 0.00
beauty 2.92 23.55 0.06

Table 14: Comparison of Object Detection results for
each category for GRiT.

Category AP AP50 AP75

crafts 7.85 16.18 3.01
mammals 5.93 13.90 1.43
food 13.96 25.67 6.25
plant 14.50 27.46 5.51
birds 2.75 6.92 0.66
fish 5.12 10.26 1.81
sports 20.69 33.80 10.76
dessert 36.19 49.91 23.93
celebrity 4.50 9.92 1.40
amphibians 5.13 11.27 0.51
vegetable 16.42 29.30 7.03
insect 5.16 12.12 1.19
healthcare 4.55 9.27 0.00
games 50.74 63.67 37.67
cars 16.95 31.36 6.06
fruit 25.77 37.41 16.99
electronics 29.95 43.74 17.66
toys 51.89 62.86 38.16
rock 20.27 32.41 9.62
household 50.55 65.88 35.29
instruments 41.67 55.34 29.51
landmark 44.16 58.09 29.94
reptiles 4.04 7.94 1.27
drink 4.40 11.33 2.00
currency 50.96 60.89 40.44
beauty 9.11 15.29 4.71

Table 15: Comparison of Object Detection results for
each category for DINO.

Category AP AP50 AP75

crafts 14.62 28.81 0.00
mammals 8.45 34.14 4.39
food 20.40 30.05 1.37
plant 0.00 21.92 3.39
birds 0.00 0.00 4.87
fish 9.51 29.97 5.22
sports 9.11 0.00 0.00
dessert 15.18 12.08 0.13
celebrity 24.92 19.48 1.39
amphibians 20.22 21.81 0.58
vegetable 4.74 18.28 0.92
insect 9.40 0.00 1.79
healthcare 0.00 4.53 0.00
games 0.00 7.49 5.89
cars 8.43 17.09 4.87
fruit 4.93 34.45 0.70
electronics 13.55 10.73 3.16
toys 0.00 0.00 1.62
rock 13.08 9.52 1.74
household 18.71 5.45 5.81
instruments 22.93 11.39 3.64
landmark 21.01 0.00 0.00
reptiles 10.19 4.41 3.32
drink 19.40 14.74 4.17
currency 10.20 20.11 2.65
beauty 2.33 18.46 0.00

Table 16: Comparison of Object Detection results for
each category for ViT-Adapter.

Category AP AP50 AP75

crafts 5.56 9.59 1.53
mammals 4.13 7.59 0.68
food 9.56 15.35 3.77
plant 9.58 16.22 2.94
birds 4.00 7.55 0.45
fish 5.24 9.66 0.82
sports 9.97 15.12 4.83
dessert 31.36 40.55 22.17
celebrity 2.03 3.58 0.48
amphibians 5.77 10.35 1.19
vegetable 10.52 17.40 3.65
insect 5.74 10.64 0.83
healthcare 4.37 6.73 2.01
games 27.11 32.62 21.60
cars 12.36 19.24 5.48
fruit 21.57 30.79 12.35
electronics 29.44 38.82 20.06
toys 32.90 41.50 24.30
rock 15.33 23.62 7.05
household 36.25 44.57 27.92
instruments 31.29 39.60 22.97
landmark 4.78 6.92 2.64
reptiles 2.63 4.76 0.49
drink 4.85 8.51 1.18
currency 41.35 46.53 36.17
beauty 3.95 6.02 1.87
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