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Abstract
We present a hierarchical neuro-symbolic control framework that couples a classical symbolic plan-
ner with a transformer-based policy to address long-horizon decision-making under uncertainty. At
the high level, the planner assembles an interpretable sequence of operators that guarantees logi-
cal coherence with task constraints, while at the low level each operator is rendered as a sub-goal
token that conditions a decision transformer to generate fine-grained actions directly from raw ob-
servations. This bidirectional interface preserves the combinatorial efficiency and explainability of
symbolic reasoning without sacrificing the adaptability of deep sequence models, and it permits a
principled analysis that tracks how approximation errors from both planning and execution accumu-
late across the hierarchy. Empirical studies in stochastic grid-world domains demonstrate that the
proposed method consistently surpasses purely symbolic, purely neural,, and existing hierarchical
baselines in both success and efficiency, highlighting its robustness for sequential tasks.

1. Introduction

The integration of symbolic reasoning with data-driven control mechanisms has become increas-
ingly important in advancing the capabilities of autonomous agents. Symbolic planning, which
encodes logical and relational knowledge about tasks, excels in structuring long-term strategies and
providing interpretable solutions with formal performance guarantees. In contrast, data-driven or
neural network models demonstrate remarkable proficiency in learning flexible, reactive behaviors
from raw, high-dimensional input. However, existing neuro-symbolic frameworks only couple the
two paradigms in a limited or “shallow” manner, for example, using symbolic rules to initialize
a neural policy or interpreting the outputs of a trained network through symbolic post hoc analy-
sis. Such approaches fall short when a task demands logically consistent high-level planning and
low-level adaptation to uncertainty.

This paper introduces a hierarchical neuro-symbolic decision transformer that unifies high-
level symbolic planning with a transformer-based low-level policy. The foundation of the proposed
approach is a bidirectional interface that connects a discrete symbolic planner to a decision trans-
former, enabling the planner to establish a logically sound sequence of operators while allowing the
neural policy to refine these operators into reactive, fine-grained actions. By translating symbolic
operators into sub-goals for the decision transformer and, conversely, abstracting raw environment
states back into symbolic predicates, we preserve the interpretability and combinatorial efficiency of
symbolic reasoning without sacrificing the adaptability and representational breadth of deep neural
models. We outline the structural components of our approach, provide a rigorous analysis of how
approximate errors from the symbolic and neural layers accumulate, and empirically validate the
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method in grid-based environments with increasing complexity. Our results show that the hierarchi-
cal neuro-symbolic decision transformer substantially outperforms several baseline policies across
key measures such as success rate and sample efficiency, particularly when tasks demand multiple
steps, complex state transitions, and logical constraints.

1.1. Related Work

Symbolic Planning. Symbolic planning has long been a cornerstone of artificial intelligence (AI)
for tackling multi-step decision-making tasks (Konidaris et al., 2014). In this paradigm, problems
are formulated using abstract state representations, logical predicates, and operators encapsulated in
languages such as STRIPS (Fikes and Nilsson) and PDDL (Aeronautiques et al., 1998). Classical
planners then search for a sequence of operators to satisfy predefined goals. Despite theoretical
guarantees of completeness and optimality, purely symbolic systems struggle when confronted with
uncertain or high-dimensional environments, as they rely on hand-crafted abstractions and assume
deterministic transitions (Behnke, 2024).

Hierarchical Reinforcement Learning. Hierarchical reinforcement learning extends reinforce-
ment learning techniques by structuring policies into multiple levels of abstraction (Pateria et al.,
2021; Hutsebaut-Buysse et al., 2022). Early frameworks such as options (Sutton et al., 1999) and the
feudal paradigm (Dayan and Hinton, 1992) introduced the notion of temporally extended actions (or
sub-policies) for improving exploration and scalability in long-horizon tasks. Goal-conditioned re-
inforcement learning approaches further refine hierarchical reinforcement learning by conditioning
policies on sub-goals (Nasiriany et al., 2019). While these approaches reduce the search complex-
ity at the lower level, they do not incorporate symbolic knowledge, thus lacking explicit logical
constraints or interpretability.

Transformer-Based Reinforcement Learning. Motivated by the success of transformers in se-
quence modeling for natural language processing (Vaswani, 2017; Gillioz et al., 2020), researchers
have proposed transformer-based architectures for reinforcement learning and control (Chen et al.,
2021; Hong et al., 2021). Decision transformers, in particular, reinterpret reinforcement learning as
a conditional sequence modeling problem, in which trajectories are generated by predicting actions
given desired returns-to-go (Chen et al., 2021). These methods have demonstrated notable results in
various benchmark tasks, using large-scale pre-training paradigms. However, purely transformer-
based reinforcement learning approaches often rely on scalar performance objectives (e.g., returns)
for conditioning the policy, which may not capture the structural or relational aspects of complex
tasks (Paster et al., 2022).

Neuro-Symbolic Approaches. Neuro-symbolic AI attempts to bridge the gap between high-level
symbolic reasoning and low-level neural processing (Garcez and Lamb, 2023). Early work in this
area focused on the integration of logic-based knowledge into neural networks for improved inter-
pretability and knowledge transfer, exemplified by approaches to neural-symbolic rule extraction,
knowledge distillation, and hybrid reasoning (Zhou et al., 2003; West et al., 2021). More recent
advances have explored how to integrate symbolic constraints into end-to-end differentiable archi-
tectures, for instance by encoding logical rules as differentiable loss functions (Xu et al., 2018) or
combining neural perception with symbolic program synthesis (Li et al., 2023). However, many of
these methods are applied to static tasks such as classification or structured prediction, rather than
sequential decision-making under uncertainty.
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Hybrid Planning and Learning Frameworks. Several attempts have been made to unify sym-
bolic planning with learned policies in a hierarchical manner. One line of work uses classical plan-
ners to outline a high-level plan while a low-level controller handles continuous actions (Kaelbling
and Lozano-Pérez, 2011; Garrett et al., 2020). These systems handcraft or discretize “symbolic op-
erators” to reflect possible sub-goals in the real environment (Garrett et al., 2020). Although such
methods can inherit the interpretability of symbolic plans, they often lack the flexibility of data-
driven adaptation, as the mapping from symbolic operator to low-level action is usually static or
heuristically engineered. Another line of research uses symbolic planning for high-level structure
and relies on deep reinforcement learning for subtask policies (Lyu et al., 2019; Kokel et al., 2021).

Hierarchical Modeling and Model-based Reinforcement Learning. Our proposed framework
is also related to hierarchical modeling and control methods, which break tasks into sub-tasks
(Bafandeh et al., 2018). Model-based reinforcement learning similarly leverages explicit environ-
ment models to predict transitions and perform planning or policy refinement (Moerland et al., 2023;
Kidambi et al., 2020; Baheri et al., 2020). Although hierarchical and model-based methods capture
task structures and dynamics explicitly, they require accurate environment models or manually de-
fined hierarchies. In contrast, our hierarchical neuro-symbolic decision transformer learns adaptive
low-level controls guided by symbolic abstractions, thus benefiting from the strengths of both struc-
tured modeling and data-driven adaptability.

Rationale for Transformer-based Architecture. While RNN-based architectures and recent linear-
complexity models such as Mamba (Gu and Dao, 2023) offer computational advantages, we specifi-
cally choose transformers for our hierarchical neuro-symbolic framework for two key reasons. First,
the transformer’s parallel attention mechanism enables inference over the context window, allowing
the model to dynamically relate current states to past sub-goal transitions, a capability crucial for
bridging symbolic operators with low-level execution. Second, our sub-goal conditioning naturally
leverages the transformer’s ability to treat sub-goals as additional tokens that modulate attention
across the trajectory, whereas RNNs would require architectural modifications to achieve similar
conditioning effects.
Our Contributions. We make the following contributions:

• We propose a novel architecture that unifies symbolic planning with a transformer-based pol-
icy, thereby enabling high-level logical task decomposition alongside low-level control.

• We derive tight hierarchical regret and PAC sub-goal bounds that quantify how symbolic-
planning error, neural-execution error, and failure probability jointly affect overall perfor-
mance.

• Through numerical evaluations, we show that the proposed approach outperforms purely end-
to-end neural baselines, achieving higher success rates and improved sample efficiency in
tasks with long-horizon dependencies.

Paper Organization. The rest of this paper is organized as follows. Section 2 formalizes our
proposed hierarchical neuro-symbolic control framework, including the bidirectional mapping be-
tween symbolic planning and transformer-based execution. Section 3 establishes theoretical results
and Section 4 presents empirical evaluations on grid-based environments, followed by concluding
remarks.
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2. Preliminaries: Decision Transformers

The decision transformer reframes policy learning as a sequence modeling problem, where states,
actions, and (optionally) rewards are treated as tokens in an autoregressive prediction pipeline. Un-
like conventional reinforcement learning approaches, which seek to optimize a value function, the
decision transformer aims to imitate offline trajectories that demonstrate desired behaviors. This
makes it well-suited for offline or sub-goal-conditioned settings where trajectories can be segmented
according to higher-level operator structures.

Given a sequence of recent tokens—consisting of states {st}, actions {at}, and possibly reward
or return annotations {rt}—the decision transformer applies a decoder-only transformer stack to
predict the next action from the current context. The entire sequence is embedded into a common
dimensional space, augmented with positional encodings, and passed through multiple layers of
multi-head self-attention and feed-forward transformations. At each time step t, the decision trans-
former produces a distribution over actions ât = Tθ (τt), where τt captures the tokens for all steps
up to t. By training on offline trajectories that exhibit near-optimal or sub-task specific behavior, the
decision transformer is able to generalize these patterns to novel conditions. To direct the decision
transformer towards particular sub-tasks it is common to introduce an additional token represent-
ing the sub-goal. This sub-goal token is appended to the recent trajectory tokens that enables the
model to adapt its predicted action distribution to fulfill the specified local objective. A decision
transformer is typically trained offline on a dataset of state–action–reward tuples. If sub-goal labels
are available, either from human annotations or from automatically segmented trajectories—they
can be included as additional supervision, conditioning the decision transformer’s predictions on
the relevant context.

3. Methodology

We formalize our approach within a hybrid hierarchical framework that integrates symbolic plan-
ning at a high level with a transformer-based low-level controller, here instantiated as a decision
transformer. The overarching goal is to use the global logical consistency afforded by symbolic
planners while exploiting the representational and sequence-modeling capabilities of a large-scale
neural network for local control and refinement. We assume an underlying Markov decision process
(MDP) defined by the tuple (S,A, f, R), where S denotes the state space, A represents the action
space, f : S × A → S characterizes the system dynamics, and R : S × A → R defines the reward
function. To enable symbolic planning, we define a symbolic domain ⟨P,O⟩, where P is a finite
set of propositions (or predicates) representing high-level relational facts about the environment,
and O is a set of symbolic operators describing permissible high-level actions. We introduce an
abstraction mapϕ : S → 2P , which assigns to each low-level state s ∈ S the subset of propositions
that hold in s. Each operator o ∈ O is specified by its preconditions and effects, i.e., pre(o) ⊆ P
and eff(o) ⊆ P . The symbolic planner treats the environment as a discrete state-space search over
subsets of P . Given an initial state s0 and an associated initial symbolic state ϕ (s0) ⊆ P , as well
as a set of goal propositions G ⊆ P , the planner seeks a finite sequence of operators (o1, . . . , oK)
such that for each i, pre (oi) is satisfied by the current symbolic state and upon applying eff (oi), the
symbolic state transitions accordingly. Formally, the planner solves a combinatorial optimization
problem:
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Figure 1: Hierarchical Neuro-Symbolic Control Framework

min
(o1,...,oK)

K∑
i=1

c (oi) subject to pre (oi) ⊆ ϕi, ϕi+1 = ϕi ∪ eff (oi) , ϕK ⊇ G

where c (oi) is a cost function (frequently uniform) to select operator oi, and ϕi denotes the symbolic
state after applying o1, . . . , oi−1. This procedure yields a sequence of high-level actions, each of
which must be realized in the low-level environment as a continuous or fine-grained action sequence
in A∗. Figure 1 illustrates the overall idea of how the symbolic layer and the transformer-based
controller interface.

Our main contribution lies in the refinement of each symbolic operator into a low-level action
plan using a decision transformer. To bridge the gap between a symbolic operator oi and the corre-
sponding low-level actions, we employ a function ψ : O → G that maps operators to sub-goals in a
continuous (or otherwise fine-grained) sub-goal space G. For example, if oi means “Pick up object
A”, then ψ (oi) could encode the required end-effector pose of the agent or the specific location that
the agent must reach and grasp. Once the symbolic plan (o1, . . . , oK) is established, we begin the
execution of each operator oi by conditioning the decision transformer on the sub-goal gi = ψ (oi).
The decision transformer Tθ processes a context window of recent states, actions, rewards, and the
current sub-goal, producing a policy for the next low-level action. Concretely, if τt denotes the
trajectory tokens up to time t (including states s1, . . . , st, actions a1, . . . , at, and possibly rewards
or returns r1, . . . , rt), then the decision transformer predicts the subsequent action at+1 by:

at+1 = Tθ (τt, gi)
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The process repeats until the sub-goal is declared achieved (e.g., ϕ (st+∆) ⊇ eff (oi)), or until a
failure condition arises that necessitates re-planning at the symbolic level. This two-tier approach
thus interleaves symbolic operators, which encapsulate high-level task structure, and learned low-
level policies. The decision transformer is trained offline to maximize the probability of producing
successful trajectories that satisfy sub-goals. Given a dataset D =

{
τ (m)

}
of trajectories, where

each τ (m) is segmented according to sub-goals, the learning objective takes the form:

min
θ

Eτ∈D [− log pθ (at | s≤t, a≤t−1, g≤t)]

where g≤t may encode either a numeric return-to-go or a symbolic sub-goal. In practice, an agent
can also be fine-tuned online through reinforcement learning, continually refining θ to increase sub-
goal completion rates or maximize an externally provided reward signal.

4. Theoretical Results

Theorem 1 (Hierarchical Performance Bound) Let 0 < γ < 1 be the discount factor of the
underlying MDP, and let V∗ denote the optimal value function. Suppose the symbolic planner
produces a plan whose expected cost is at most ϵsym above the optimal symbolic cost. Assume further
that the decision transformer executes each operator oi so that, conditioned on oi, the expected
discounted cost satisfies

E
[
Ci | oi

]
≤ C∗

i + ϵexec,

where C∗
i is the optimal cost for realizing oi. Let ρ be an upper bound on the probability that the

low-level policy fails to accomplish oi, incurring an additional single-step cost bounded byB. Then
the hierarchical policy πhyb satisfies∥∥V πhyb − V∗∥∥

∞ ≤
ϵsym

1− γ
+

ϵexec

(1− γ)2
+

ρB

(1− γ)2
.

Proof [Sketch] Decompose the regret into (i) the planning gap introduced by the symbolic layer and
(ii) the execution deviation introduced by the decision transformer. The planning gap is amplified
by at most 1/(1 − γ) via the performance-difference lemma. Execution deviations accumulate
geometrically and contribute at most ϵexec/(1 − γ)2. Failure events occur with probability at most
ρ and are similarly expanded through the discounted horizon, yielding the stated bound. A full
derivation appears in Appendix B.

Theorem 2 (PAC Sub-goal Completion) Let the decision transformer be trained offline on N
i.i.d. trajectories such that each operator o ∈ O appears in at least m training segments. Assume
that the hypothesis class implemented by the transformer has VC-dimension d. Then for any δ ∈
(0, 1), with probability at least 1− δ over the training data the learned low-level policy satisfies

Pr
[
all K sub-goals succeed

]
≥ 1−

√
2d log

(
em
d

)
+ 2 log

(
4K
δ

)
m

.

Consequently, the failure probability decays as Õ
(√

d/N
)
.

Proof [Sketch] Model each operator execution as a binary classification of success vs. failure. A
union bound over the K operators combined with the standard VC generalization bound yields the
claimed inequality. Details are provided in Appendix C.
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Figure 2: Case Study 1- Single Key-Door
Environment

Figure 3: Case Study 2- Multi-Goal Key-
Door Environment

5. Numerical Results

We evaluate the proposed neuro-symbolic planning approach in grid-based environments through
two case studies. In the first case study, shown in Figure 2, the agent must handle a single key and
a single door before proceeding to a designated goal cell. This environment tests whether solutions
can effectively manage both key-door logic and non-trivial navigation costs under action noise. The
state representation consists of the agent’s grid location along with two Boolean variables indicating
key possession and door status. Due to the possibility of movement failure, purely reactive or short-
horizon methods risk becoming trapped behind the locked door or wandering without obtaining the
key. The second case study, illustrated in Figure 3, extends the problem to a multi-goal key-door
environment featuring multiple keys, multiple doors, and various items that must all be collected
before reaching an exit cell. This scenario introduces longer sub-task chains, such as retrieving Key1
to open Door1 in order to access Key2, and subsequently acquiring multiple items. To introduce
controlled stochasticity into the grid-world environments, we incorporate a parameter referred to as
the failure probability. At each timestep, when the agent attempts to execute a movement action
(e.g., move up, down, left, or right), there is a fail prob ∈ [0, 1] chance that this action will fail to
alter the agent’s position.1

Baseline Methods. We compare against seven baseline methods representing different architectural
paradigms:

• RNN-based Architectures: (1) LSTM Hierarchical Controller with 3 layers and 256 hidden
units, employing hierarchical goal decomposition; (2) GRU Sequential Controller with 2 lay-
ers and 128 hidden units for sequential state processing.

1. Concretely, if fail prob = 0.1, then 10% of the time the agent’s intended movement will not take effect, and the
agent will remain in its current cell. Actions other than movement (for example, picking up keys, opening doors) are
assumed to succeed deterministically in these experiments.
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Figure 4: Performance comparison across both environments and varying action failure probabili-
ties. Our method consistently achieves superior performance.

• Traditional Reinforcement Learning: (3) Deep Q-Network (DQN) with experience replay
buffer and target networks; (4) Hierarchical RL using the Options framework with 8 learned
sub-policies for temporal abstraction.

• Pure Transformer Approaches: (5) Pure Decision Transformer trained end-to-end without
symbolic guidance, representing state-of-the-art sequence modeling.

• Symbolic Planning: (6) BFS symbolic planner with hand-crafted low-level controllers, repre-
senting classical AI approaches.

• Our Method: (7) Hierarchical Neuro-Symbolic Decision Transformer combining symbolic
planning with transformer-based execution.

Each method is evaluated in three metrics: (1) Success Rate: percentage of episodes achieving the
goal; (2) Sample Efficiency: average number of steps required for successful episodes; (3) Average
Reward: mean cumulative reward incorporating success bonuses and step penalties. The results are
averaged over five random seeds.

Our evaluation demonstrates consistent superiority across multiple metrics and architectural
paradigms. Figure 4 presents the performance comparison in both environments and varying ac-
tion failure probabilities. Our method achieves superior performance in all evaluated conditions,
with the performance gap becoming increasingly pronounced as task complexity increases. In
the simple key-door environment, our hierarchical neuro-symbolic decision transformer achieves
82.0 ± 5.0% success rate at 0.1 action failure probability, slightly better than the symbolic planner
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Figure 5: Performance comparison categorized by architectural paradigm, highlighting the advan-
tages of the neuro-symbolic approach.

baseline (81.0± 4.0%). However, the critical advantage emerges in the complex multi-target envi-
ronment, where our method achieves a 62.0 ± 5.0% success rate compared to the best alternative
of 53.0 ± 4.0% (symbolic planner), representing a 17% relative improvement. The sample effi-
ciency analysis reveals that our approach maintains optimal efficiein both environments. In simple
scenarios, we require only 48 ± 8 steps compared to 45 ± 6 for symbolic planning. For complex
environments, our method requires 189± 8 steps versus 166± 6 for symbolic planning, indicating
efficient execution despite adaptive neural processing.

Figure 5 categorizes the baseline methods by architectural approach, revealing fundamental dif-
ferences in scalability and robustness. The results demonstrate clear hierarchical performance pat-
terns in architectural categories. One can see that neuro-symbolic approaches achieve the highest
performance across both environments (82% simple, 62% complex), validating our hybrid archi-
tectural design. Consistent performance across complexity levels indicates effective integration of
symbolic reasoning with neural adaptation.

The visualization of the heatmap in Figure 6 reveals patterns in algorithmic robustness in varying
environmental complexity and failure probabilities, with performance degradation exhibiting clear
stratification based on architectural design principles. The hierarchical neuro-symbolic decision
transformer demonstrates remarkable resilience, maintaining success rates above 0.56 even in the
most challenging scenario (complex environment with 30% failure probability), while purely neural
approaches such as DQN and Pure Decision Transformer exhibit catastrophic performance collapse
under identical conditions, achieving near-zero success rates. This underscores the fundamental
limitations of end-to-end neural architectures in handling compounded uncertainties arising from
both environmental complexity and stochastic action failures. The intermediate performance of hi-
erarchical reinforcement learning methods (Options framework and LSTM Hierarchical Controller)
suggests that structural inductive biases alone provide partial mitigation against uncertainty, but the
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integration of explicit symbolic reasoning capabilities appears essential for maintaining operational
viability in high-uncertainty domains.

Figure 6: Heatmap showing success rates for seven decision-making architectures across simple
and complex environments with varying action failure probabilities. Darker green indicates higher
performance, while red indicates poor performance. Neuro-symbolic approaches maintain robust
performance across all conditions, while pure neural methods show severe degradation in complex,
high-failure scenarios.

6. Conclusion

We presented a hierarchical neuro-symbolic control framework that unifies symbolic planning with
transformer-based policies, addressing long-horizon reasoning. Our approach uses a bidirectional
mapping between discrete symbolic representations and continuous sub-goals, thereby preserving
the formal guarantees of symbolic planning while benefiting from the flexibility of neural sequence
models. Empirical evaluations in grid-world environments demonstrate improved success rates and
efficiency over the purely end-to-end neural approach. Although our evaluation demonstrates clear
advantages, several limitations warrant acknowledgment. Grid-world environments represent a con-
strained domain compared to continuous control or real-world robotics applications. Future work
should explore scaling to higher-dimensional state spaces and continuous action domains to validate
the generalizability of our architectural insights.
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Appendix A. Detailed Environment Models for the Case Studies

This appendix provides a summary of the environment formulations for both the single-key (Case
Study 1) and multi-goal key–door (Case Study 2) problems.

A.1. Case Study 1: Single Key–Door Model

Environment Layout. We employ an 5×5 grid, with the agent starting at a designated cell, a single
locked door placed elsewhere, one corresponding key, and a goal location.

States S. A state s ∈ S is given by

(r, c, hasKey, doorOpen),

where (r, c) is the agent’s grid position, hasKey ∈ {False,True} indicates key possession, and
doorOpen ∈ {False,True} states whether the locked door is currently open.

Actions A. Five discrete actions:

{ 0, 1, 2, 3, 4},

where 0, 1, 2, 3 correspond to {up, right, down, left}, each subject to failure at rate fail prob,
and action 4 (pick/open) picks up the key if present, or opens the door if the agent is on the door
cell while possessing the key.

Transition Function f . Movement either succeeds (with probability 1− fail prob) or fails
(agent remains in place). If the agent attempts to move away from the door’s cell while doorOpen =
False, that movement is blocked. The pick/open action sets hasKey = True if the agent is on
the key cell, or doorOpen = True if the agent is on the door cell and already holds the key.

Reward Function R. We impose a small negative cost on each time step (i.e., −0.1) plus a
terminal bonus (i.e., +1) upon goal arrival if the agent has already opened the door. Net rewards
can thus be negative if the agent requires many steps.

Symbolic Abstraction. Define P = {At(r, c), HasKey, DoorOpen}. Operators O include
“Move(r, c→r′, c′),” “PickKey,” and “OpenDoor.” A BFS planner searches state sets like {At,HasKey,DoorOpen}
to yield a symbolic plan. The Hybrid approach refines each operator (“PickKey,” etc.) via a sub-
goal-based decision transformer, whereas the Pure approach tries to learn everything directly from
environment trajectories without symbolic operators.

A.2. Case Study 2: Multi-Goal Key–Door Model

Environment Layout. In the multi-goal domain, we introduce multiple keys (e.g., Key1, Key2) and
multiple locked doors, each door requiring its corresponding key, plus multiple collectible items that
must all be acquired before success. The exit cell (goal) can only be reached once all the items have
been collected. Movement again fails with probability fail prob.

States S. A state is

(r, c,hasK1, hasK2, door1Open, door2Open, item1Collected, item2Collected).

Stochastic blocking occurs if the agent attempts to leave a locked door cell while that door remains
shut.
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Actions A. The same five actions are used: up, right, down, left, and a pick/open action.
For each door d ∈ {door1, door2}, the agent must hold key k (hasK1 or hasK2) and stand on d’s
location, then use pick/open to set doorOpen = True. Likewise, items must be collected by
using pick/open on their positions.

Transition Function f . Movement fails with probability fail prob. If door1Open = False
(or similarly for door2), the agent cannot leave that door’s cell unless it opens the door first. Keys
and items are booleans hasK1,hasK2, item1Collected, item2Collected, toggled by pick/open
upon the matching cell.

Reward Function R. Each step costs a time penalty. The agent only receives a final success
reward after collecting all items and stepping onto the exit cell.

Symbolic Abstraction. We define:

P = {At(r, c),HasKey1,HasKey2,Door1Open,Door2Open,HasItem1,HasItem2}

Operators in O are “Move(r, c→r′, c′),” “PickKey1,” “OpenDoor2,” etc. The BFS planner explores
these discrete states, ensuring that keys and doors are manipulated in valid sequences (e.g., pick
Key2 before opening Door2).

Comparison of Methods. Hybrid: Symbolic BFS yields a valid operator sequence (e.g., pick
Key1 → open Door1 → pick Key2 → open Door2 → gather items → exit). Each operator is re-
fined via sub-goals for a decision transformer that handles local moves under fail prob. Pure:
A single end-to-end decision transformer aims to learn item and key acquisitions from raw demon-
strations (heading to the exit with random pick/open attempts).

Appendix B. Transformer Architecture Details

Here, we provide additional details on the decision transformer architecture employed in both case
studies. While the high-level symbolic planner generates a sequence of discrete sub-operators (e.g.,
PickKey1, OpenDoor1, Move(r, c→r′, c′), etc.), the lower-level control logic is realized via a
transformer that models state–action trajectories in an auto-regressive manner.

B.1. Model Input and Tokenization

The decision transformer receives a window of recent trajectory tokens:

τt =
(
st−h, at−h, . . . , st−1, at−1, st

)
,

where sk represents the environment state at step k, ak is the action taken, and h is the length of
the context window. In addition, we incorporate a sub-goal token gi to condition the Transformer
on the symbolic operator currently being refined (e.g., Move to cell (r′, c′), PickKey, etc.). Each
sub-goal gi is embedded in a similar way. Thus, an input sequence for the transformer at time t is:

(st−h, at−h, st−h+1, at−h+1, . . . , st−1, at−1, st︸ ︷︷ ︸
state-action tokens

, gi),

all of which are serialized, embedded, and appended with positional encodings.
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B.2. Transformer Layers and Heads

We use a standard decoder-only transformer stack, consisting of:

• L layers, each with multi-head self-attention, layer normalization, and a feed-forward block.

• Each layer employs H self-attention heads, each head attending over the h+ 1 tokens if one
counts sub-goal embeddings.

• A final linear output head produces the predicted action distribution over {up, down, left, right, pick/open}.

For the experiments reported in this paper, hyperparameter settings for the single-key scenario (Case
Study 1) include L = 3 layers, H = 4 attention heads, an embedding dimension of 128, and a
context window of h = 10. In the multi-goal setup (Case Study 2), we extend L to 5 layers and use
a larger context window h = 20.

B.3. Sub-goal Conditioning and Outputs

Once the self-attention layers integrate the sub-goal token gi with the recent states and actions, the
network outputs a prediction token that is decoded into the next action ât. Note that the environment
enforces a step penalty or partial reward each time-step, which is included in the tokenization if
desired (e.g., appending rt−1 to the state token). The main effect of this sub-goal conditioning is
to restrict the transformer’s exploration of the action space, encouraging actions consistent with the
operator PickKey1 or Move to cell (r′, c′).

B.4. Training Objective

We apply a sequence modeling objective to offline trajectories collected via random exploration.
Specifically, given a dataset D of transitions τ = {(sk, ak, sk+1, . . . )}, we segment the data by
sub-operators or sub-goals if in the Hybrid approach. In the Pure approach, we simply record all
transitions end-to-end. The training loss is:

min
θ

Eτ∈D
[
− log pθ

(
at

∣∣ s≤t, a≤t−1, g≤t

)]
,

where g≤t remains empty (Pure method) or corresponds to the symbolic operator (Hybrid method).
In inference, the decision transformer uses the same architecture to automatically predict ât from
the current context window.

B.5. Implementation Notes

The experiments described in this work employ an Adam optimizer with a learning rate of 1e − 3,
a batch size of 128 , and train for 20 epochs. Positional embeddings are added to each token,
and sub-goal tokens are likewise assigned an embedding that differs from the standard state/action
embeddings to let the model differentiate sub-goal context.
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Appendix C. Detailed Proof of Theorem 1

In this appendix, we provide a derivation of the hierarchical performance bound. The argument
proceeds in three stages: (i) decompose the regret into a planning component and an execution com-
ponent; (ii) bound each component separately; and (iii) combine the two bounds under discounted
evaluation.

Notation. Let M = (S,A, f, R, γ) be the discounted MDP. For any policy π, let V π(s) =
E
[∑

t≥0 γ
tR(st, at) | s0 = s, π

]
denote its value function and Cπ(s) = −V π(s) its expected

discounted cost. We focus on a fixed start state s0 and write V π = V π(s0) when the context is
clear.

The hierarchical policy πhyb operates on two time scales:

(a) A high-level planner selects a sequence of symbolic operators o1, o2, . . . using the abstraction
ϕ : S → 2P .

(b) A low-level executor (decision transformer) produces primitive actions that attempt to realize
each oi in order.

We denote by C∗ the optimal discounted cost of the MDP and by C∗
sym the optimal cost of any

symbolic plan executed perfectly. By assumption, the planner returns a plan of expected cost at
most C∗

sym + ϵsym.

Step 1: Planning-level deviation. Consider a hypothetical policy πplan that (i) executes the high-level
plan returned by the planner exactly and (ii) implements each operator with an optimal low-level
controller. Since the plan cost exceeds C∗

sym by at most ϵsym, the performance-difference lemma
implies

Cπplan ≤ C∗ +
ϵsym

1− γ
=⇒ V∗ − V πplan ≤

ϵsym

1− γ
. (A.1)

Step 2: Execution-level deviation. We now compare πplan with the actual hierarchical policy
πhyb. For each symbolic operator o, let ∆o be the random discounted cost gap incurred when πhyb

executes o versus the optimal low-level controller for o. By construction,

E[∆o] ≤ ϵexec, (A.2)

while a catastrophic failure (probability ρ) can add at most an instantaneous cost B at the failure
step. Because costs are discounted geometrically, an error that manifests k primitive steps after the
beginning of o contributes at most γkB to the total regret. Summing over all future steps multiplies
this penalty by 1/(1 − γ); applying a union bound over all future operators multiplies by another
1/(1− γ). Taking expectations yields the bound

V πplan − V πhyb ≤ ϵexec

(1− γ)2
+

ρB

(1− γ)2
. (A.3)

Step 3: Combining the bounds. Adding inequalities (A.1) and (A.3) and using the triangle in-
equality, we conclude that

V∗ − V πhyb ≤
ϵsym

1− γ
+

ϵexec

(1− γ)2
+

ρB

(1− γ)2
.

Since the same bound applies to V πhyb − V∗ (by the symmetry of the argument with non-negative
costs), we obtain the claimed ℓ∞-error bound, completing the proof.
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Remark. The (1−γ)−2 factor in the execution term is tight in the worst case errors can accumulate
at every primitive time step and are subsequently propagated through the contraction of the Bellman
operator. If operators are guaranteed to terminate within a bounded horizon H , the factor can be
reduced to 1−γH

(1−γ)2
.

Appendix D. Detailed Proof of Theorem 2

We provide a probably approximately correct (PAC) analysis for the sub-goal completion guarantee.
The argument follows the standard VC-theory recipe: (i) reduce sub-goal execution to a family of
binary classifiers; (ii) establish uniform convergence of empirical to true error via Sauer’s lemma;
and (iii) union-bound over the K symbolic operators.

D.1. Problem Setup and Notation

For each symbolic operator o ∈ O, let πθ be the parametric decision-transformer policy obtained
after offline training. When conditioned on o, policy execution terminates in success (Y = 1) if the
sub-goal specified by o is achieved within its allotted horizon and failure (Y = 0) otherwise. Thus,
we view πθ as inducing a classifier

hθ,o : (trajectory prefix) −→ {0, 1},

with error rate
L(hθ,o) := Pr

(X,Y )∼Do

[
hθ,o(X) ̸= Y

]
,

where Do is the (unknown) trajectory distribution conditioned on operator o.

Training sample. The offline dataset provides m i.i.d. trajectory segments (Xi, Yi)
m
i=1 for each

operator. Let

L̂(hθ,o) :=
1

m

m∑
i=1

1
{
hθ,o(Xi) ̸= Yi

}
be the empirical error.

D.2. Uniform Convergence via VC Theory

Let H denote the hypothesis class realized by the transformer when the operator token is fixed. By
assumption VC(H) = d <∞. Sauer’s lemma implies that for any ε > 0

Pr

[
sup
h∈H

∣∣L(h)− L̂(h)
∣∣ > ε

]
≤ 4

(
em
d

)d
e−2mε2 . (B.1)

Choosing

ε(m, δ′) :=

√
2d log

(
em
d

)
+ 2 log(4/δ′)

m
,

ensures the right-hand side of (B.1) is at most δ′. Hence, with probability at least 1 − δ′, every
classifier in H satisfies

L(h) ≤ L̂(h) + ε(m, δ′). (B.2)
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D.3. Bounding Sub-goal Failure Probability

During training, the optimizer minimizes empirical error; assume it returns hθ̂,o such that L̂(hθ̂,o) =
0 for all o (the argument extends to small non-zero empirical error). Plugging into (B.2) yields

L(hθ̂,o) ≤ ε(m, δ′).

Interpreting L(hθ̂,o) as the failure probability when executing o, a union bound over allK operators
gives

Pr
[
∃ o : operator o fails

]
≤ K ε

(
m, δ

K

)
=

√
2d log

(
em
d

)
+ 2 log

(
4K
δ

)
m

.

Taking complements recovers the statement of Theorem 2 with confidence 1− δ.

D.4. Sample-Complexity Discussion

Setting the right-hand side to α and solving for m shows that each operator requires

m = Θ
(d+ log(K/δ)

α2

)
examples to guarantee sub-goal success probability at least 1−α. Since the total dataset comprises
N=Km trajectory segments, the overall sample complexity scales as O

(
Kd/α2

)
up to logarithmic

factors, matching the order stated in the main text.

Tightness. The uniform-convergence bound is minimax-optimal for VC classes. If prior knowl-
edge indicates unequal difficulty across operators, a refined analysis using localized complexities or
Bernstein-style inequalities may yield sharper, data-dependent bounds.
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