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Abstract

Surface reconstruction has been seeing a lot of progress lately by utilizing Implicit
Neural Representations (INRs). Despite their success, INRs often introduce hard
to control inductive bias (i.e., the solution surface can exhibit unexplainable be-
haviours), have costly inference, and are slow to train. The goal of this work is to
show that replacing neural networks with simple grid functions, along with two
novel geometric priors achieve comparable results to INRs, with instant inference,
and improved training times. To that end we introduce VisCo Grids: a grid-based
surface reconstruction method incorporating Viscosity and Coarea priors. Intu-
itively, the Viscosity prior replaces the smoothness inductive bias of INRs, while
the Coarea favors a minimal area solution. Experimenting with VisCo Grids on a
standard reconstruction baseline provided comparable results to the best performing
INRs on this dataset.

1 Introduction

Figure 1: The VisCo prior (left) is incorporating viscosity
and Coarea; Middle and right shows ablations on each.

Reconstructing 3D surfaces from sparse
point clouds is a long standing prob-
lem in both computer vision and graph-
ics [7]. Methods tackling this prob-
lem aim to estimate 3D surfaces given
as input unordered point sets (point
clouds), with or without corresponding
normals. Surface representations can
be divided to two groups: parametric
and implicit. Parametric methods rep-
resents the surface using some para-
metric domain, while implicit methods
represent the surface as some level-set,
S =

{
p ∈ R3|f(p) = c

}
, of a volumet-

ric function f : R3 → R. While para-
metric methods can easily sample the sur-
face, implicit methods can readily adapt
to topological changes of the reconstructed surface. Parametric methods include, e.g., meshes and
spline surfaces, while implicit methods use, e.g., volumetric data structures such as voxel grids,
Radial Basis Functions (RBFs), or (recently) neural networks.

Implicit Neural Representation (INR) [29, 35, 13, 3, 16, 18, 4, 37] is categorized as an implicit method
using a neural networks to define the implicit function f . INRs build upon the inherit inductive
bias in neural networks and their optimization process to provide smooth yet flexible and expressive
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surface reconstructions. INRs have several disadvantages: First, the neural inductive bias is hard
to control, often introducing undesired or unexplained surface behaviours. In fact, a considerable
research effort is dedicated to fix/change/control this bias [45, 43, 27, 26]. Second, INRs have an
increased deployment cost, requiring many network evaluations for surface contouring, e.g., with
marching cube based methods [29, 35], or direct rendering [49, 31]. Lastly, although using high
optimized solvers, INRs are still slow to train.

The goal of this work it show that network-free grid-based implicit representations can achieve
INR-level reconstructions when incorporating suitable priors. To that end, we present VisCo Grids: a
grid-based surface reconstruction algorithm that incorporates well-defined geometric priors: Viscosity
and Coarea. In short, VisCo, see Figure 1, right. The viscosity loss, is replacing the Eikonal loss
[18, 43] used in INRs for optimizing Signed Distance Functions (SDF). The Eikonal loss posses
many bad minimal solution that are avoided in the INR setting due to the network’s inductive bias,
but are present in the grid parametrization, see e.g., Figure 1, middle. The viscosity loss, uses the
notion of vanishing viscosity to regularize the Eikonal loss and provide well defined smooth solution
that converges to the "correct" viscosity SDF solution. The viscosity loss provides smooth SDF
solution but do not punish excessive or "ghost" surface parts, see e.g., Figure 1 (right). Therefore,
a second useful prior is the coarea loss, directly controlling the surface’s area, and encourages it to
be smaller. The coarea loss is defined using a "squashing" function applied to the viscosity SDF
making it approximately an indicator function, and then integrates its gradient norm over the domain.
Integrating the gradient norm of a function is called the Total Variation loss [12, 27] and is measuring
the perimeter of indicator functions, which in our case approximates area(S). VisCo grids (as other
grid methods) have instant inference, and even with our current rather naive implementation are
faster to train than INRs. Considerable training time improvement are expected with a more efficient
implementation.

We tested VisCo Grids on a standard 3D reconstruction dataset, and achieved comparable accuracy to
the state-of-the-art INR methods. Through ablations, we demonstrate the properties and benefit in the
VisCo prior.

2 Related Work

3D Surface Reconstruction Classical approaches for surface reconstruction from point clouds
[7] are either parametric [2] or implicit with mostly linear function bases, e.g., grids or radial basis
functions [10, 24]. Recent works have developed methods for surface reconstruction using neural
networks, which consist of a non-linear function space, making these methods non-convex. Those
methods differ by how they choose to represent the 3D reconstruction. [20, 46, 21] employ a
parametric point of view. Such discretizations do not yield watertight reconstruction, and/or lack
topological detail. A more flexible solution is the Implicit Neural Representation (INR). INRs
based methods [35, 29, 3, 13, 18, 43, 27, 6] show great progress in leveraging the inductive bias
of MLPs to represent smooth surfaces, using additional losses and regularizers. For example, [27]
introduce a perturbed Dirichlet loss (i.e., norm of gradient) to push for a unique and regular occupancy
solution; [6] incorporates a Divergence loss (i.e., absolute value of the divergence of the gradient of
trained distance field) for encouraging the learned field to resemble a gradient field of a true distance
functions. Neural Spline [47] does not use neural networks directly, rather derive a kernel-based
formulation arising from infinitely-wide shallow networks. Shape As points (SAP) [37] represent the
surface using a differentiable Poisson solver and contouring process.

Grid-based representations Recent works suggested to reduce, completely or partially, the use of
neural networks in implicit representations and replacing it with a grid-based data structure. This
is due to the heavy computational resources required in optimizing and evaluating neural networks.
Plenoxels [1] propose a view-dependent sparse voxel model and show comparable results to NeRF
[31] and a speedup of two orders of magnitude. Neural Geometric Level of Detail [44] uses an
octree-based feature volume and a small MLP to represent SDF. [32] shows fast training of INR’s
using a small neural network augmented by a multiresolution hash table with trainable features.
Similar to DeepSDF [35], both work used 3D supervision for learning the SDF.
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3 Method

We consider the 3D euclidean space R3 with points p = (x, y, z) ∈ R3. We discretize the unit cube
C = [0, 1]3 with a 3D voxel grid G = {pI}, with nodes pI indexed by I = (i, j, k), i, j, k ∈ [n] =
{1, . . . , n}, i.e., pI = (xijk, yijk, zijk). We denote by h = n−1, and by N = n3 the total number of
nodes. We represent our reconstructed surface as a zero level of a scalar function f defined over the
cube C. f is defined by prescribing its values at the grid’s nodes fI ∈ R and trilinear interpolating in
each voxel. We will denote by f(p) the interpolated value at point p.

Given an input point cloud consisting of m points qk ∈ R3 with or without (unit norm) normals
nk ∈ R3, k ∈ [m], our goal is to compute f so that its zero level set approximates the unknown
surface, i.e.,

S = {p ∈ C | f(p) = 0} . (1)
Our approach to compute f is to minimize a loss function of the form

L = Ldata + Lprior (2)

where

Ldata =
λp

m

m∑
k=1

|f(qk)|2 +
λn

m

m∑
k=1

∥∇f(qk)− nk∥2 (3)

where ∥·∥ is the standard euclidean norm in R3, ∇f(p) ∈ R3 is the gradient of f sampled at point p.
Note that ∇f is defined in interior of voxels, which is generically where the input points qk resides.
Ldata is the standard data loss encouraging the zero level to pass through the input points qk, and its
normals (defined by gradients of f ) to coincide with input normals nk.

The prior, Lprior, is the main contribution of this work, where we combine two novel losses,

Lprior = λvLviscosity + λcLcoarea (4)

Intuitively, the viscosity loss optimizes for a smooth Signed Distance Function (SDF) solutions,
avoiding auxiliary bad minima of the Eikonal equation, while the coarea loss strives to minimize
the area of the zero level surface. Our loss has 4 hyper-parameters λp, λn, λv, λc. We provide more
details on these priors next.

3.1 Viscosity Loss

The goal of the viscosity loss is to make f approximate an SDF over C. Given boundary conditions
asking f to vanish on some closed compact surface S, the SDF solves the Eikonal equation PDE,
i.e., ∥∇f(p)∥ = 1, in a certain well defined sense (viscosity). This motivated some previous work to
directly optimize the Eikonal loss [18, 43]

Leikonal =

∫
C

(
∥∇f(p)∥ − 1

)2

dp (5)

Figure 2: Two global min-
imizers of the Eikonal loss
over a grid in 1D. Top solu-
tion is not an SDF.

Unfortunately, the Eikonal loss has many undesirable minima which
are not SDFs. Figure 2 shows a 1D example: both depicted solutions
(denoted f ) vanish at the input points q1, q2 (black points) and globally
minimize the Eikonal loss over the grid (grid points are shown in blue).
The INR works mentioned above use neural networks for representing
f which injects an inductive bias avoiding these bad minima, however
on grids, minimizing equation 5 cannot avoid these solutions. See,
e.g., middle column in Figure 1.

More classical Eikonal solvers do work with grids however use mostly
fast marching or sweeping methods [33, 41, 50, 11]. Namely, use a
special discretization of the Eikonal equation favoring the viscosity
solution of the Eikonal [40], and update node values according to
a moving front [41]. Since this discretization is up-wind (will only
propagate values in one direction) and requires choosing the maximal
among its solution, its success in adaptation to a loss is not clear.

We use a different approach to build a loss favoring SDF solutions over grids motivated by the
vanishing viscosity method [15]. Namely, adding to the Eikonal PDE a small perturbation of the
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Laplacian of f (denoted by ∆f ), i.e., ∥∇f(p)∥−1−ϵ∆f(p) = 0, makes the PDE semi-linear elliptic
[9], and hence with suitable boundary conditions it is uniquely solvable inside S with a smooth
solution, approaching the viscosity positive distance function to the boundary as ϵ → 0. Similarly,
for 1 − ∥∇f(p)∥ − ϵ∆f(p) = 0 the solution approaches the negative distance function inside the
domain. Motivated by the vanishing viscosity principle we suggest the following viscosity loss:

Lviscosity =

∫
C

(
(∥∇f(p)∥ − 1)sign(f(p))− ϵ∆f(p)

)2

dp (6)

We discretize this loss over the grid G by replacing the first order derivatives and second order
derivatives with symmetric finite differences, i.e.,

DxfI = Dxfi,j,k =
fi+1,j,k − fi−1,j,k

2h
, D2

xfI = D2
xfi,j,k =

fi+1,j,k − 2fi,j,k + fi−1,j,k

h2

and similarly for Dy and Dz . We use these discrete operators to approximate the gradient ∇̂f(pI) =

(DxfI , DyfI , DzfI) and Laplacian ∆̂f(pI) = D2
xfI +D2

yfI +D2
zfI . The discretized viscosity loss

now takes the form

L̂viscosity =
1

N

∑
I

(
(∥∇̂f(pI)∥ − 1)sign(f(pI))− ϵ∆̂f(pI)

)2

(7)

3.2 Coarea loss

The coarea loss is approximating the area of the zero level set, and therefore incorporating it in the
optimization pushes the reconstructed surface to be economic in area.

First, simiarly to [48] we use the centered Laplace CDF

Ψβ(s) =


1
2 exp

(
s
β

)
s ≤ 0

1− 1
2 exp

(
− s

β

)
s ≥ 0

(8)

to transform the SDF f to a smooth approximation of the indicator function:

χβ(p) = Ψβ(−f(p)) (9)

As β → 0, χβ converges to an indicator function leading to 1 inside S and 0 outside. The coarea loss
is defined as

Lcoarea =

∫
C
∥∇χβ(p)∥ dp (10)

To understand why this loss approximates the area of S we can use the coarea formula [39]:∫
C
∥∇χβ(p)∥ dp =

∫ ∞

−∞
area(χ−1

β (s))ds, (11)

where χ−1
β (s) = {p | χβ(p) = s} is the preimage of the value s. Since χx(p) ∈ [0, 1] the r.h.s. inte-

gral can be restricted to the interval [0, 1], and therefore the coarea loss averages the area of the level
sets of χβ . Next,

χ−1
β (s) = {p | Ψβ(−f(p)) = s} = {p | f(p) = −Ψβ−1(s)} = f−1(−Ψβ−1(s)),

Figure 3: Reconstruction
of a semisphere point cloud
(white dots) without (left)
and with (right) coarea loss.

which shows that the level set s ∈ (0, 1) of χβ is the level set
−Ψβ−1(s) of the SDF f . As β → 0, −Ψβ−1(s) → 0 for all
s ∈ (0, 1) (and uniformly in (ϵ, 1− ϵ) for fixed ϵ > 0). Therefore the
average of the level set area (i.e., the r.h.s. of equation 11) converges
to the area of f−1(0) = S. Figure 1 (right) shows how removing the
coarea loss introduces an extraneous zero level set, and hence results
in an undesired surface part. Figure 3 shows a comparison of a recon-
struction of semisphere with and without coarea. In the experiments
section we provide more ablation tests with the coarea and viscosity
losses.
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To discretize the coarea loss we let wI denote the centers of grid’s voxels, and note that ∇χβ(wI) =
Φβ(−f(wI))∇f(wI), where

Φβ(s) =
1

2β
exp

(
|s|
β

)
is the PDF of the Laplace distribution, and ∇f(wI) is computed as a linear combination of the voxel’s
corner values fI1 , . . . , fI8 , see more details in the Appendix. We end up with the discretized loss:

L̂coarea =
1

N

∑
I

Φβ(−f(wI)) ∥∇f(wI)∥ (12)

This loss is usually incorporated with a small hyper-parameter λc with the purpose of eliminating
redundant surface parts.

4 Experiments

In this section we extensively evaluate VisCo grids. First, we evaluate on two standard surface
reconstruction benchmarks [46, 22] (Sec. 4.1) against a large variety of state-of-the-art methods:
Poisson Surface Reconstruction [24], DGP [46], IGR [18], SIREN [43], FFN [45], NSP [47],
PHASE [27], GD [14], BPA [8], SPSR [25], RIMLS [34], SALD [5], IGR [19], OccNet [30],
DeepSDF [36], LIG [23], Points2Surf [17], DSE [38], IMLSNet [28] and ParseNet [42]. We then
perform an ablation study (Sec. 4.2), and conduct a detail examination of the main components of the
model, namely the viscosity and coarea losses. Finally, we discuss the model’s ability to reconstruct
sparse point clouds (Sec. 4.3) using scans from Stanford 3D Scanning Repository.

4.1 Surface reconstruction benchmarks

We next evaluated our model on two benchmarks: Surface Reconstruction Benchmark [46] and
Surface Reconstruction from Real-Scans [22]. Each containing challenging object with complex
shape and topology. Importantly, we use same hyper-paramenters for all meshes of all benchmarks
with no extensive hyper-parameter search.

Surface Reconstruction Benchmark This benchmark [46] consists of 5 noisy range scans, each
containing point cloud and normal data. We evaluate our method against current state of the art
methods on this benchmark: Deep Geometric Prior (DGP) [46], Implicit Geometric Regularization
(IGR) [18], SIREN [43], Fourier Feature Networks (FFN) [45], NSP [47] and PHASE [27]. We
additionally compare to the classical method of Poisson Surface Reconstruction [24]. Quantitative
results are summarized in Table 1. We report the Chamfer (dC) and Hausdorff (dH ) distances
between the reconstructed meshes and the ground-truth point clouds. Furthermore, we report their
corresponding one sided distances (d→H and d→C ) between the reconstructed meshes and the input
noisy point cloud. Representative qualitative results are shown in Figure 5. Note that we achieve
comparable results to the current state-of-the-art INR methods.

Surface Reconstruction from Real-Scans This benchmark [22] consists of 21 noisy range scans of
real objects. We evaluate our method against: GD [14], BPA [8], SPSR [25], RIMLS [34], SALD [5],
IGR [19], OccNet [30], DeepSDF [36], LIG [23], Points2Surf [17], DSE [38], IMLSNet [28] and
ParseNet [42]. Quantitative results are summarized in Table 2. We report Chamfer Distance (dC),
F-score, Normal Consistency Score (NCS) [30], and Neural Feature Similarity (NFS) [22] distances
between the reconstructed meshes and the ground-truth point clouds. Furthermore, we report the
one sided distances (d→H and d→C ) between the reconstructed meshes and the input noisy point cloud.
Representative qualitative results are shown in Figure 5. Note that we achieve 1-st to 3-rd place
across all categories, with top F-score.

4.2 Ablation study

We provide an ablation study of the main components of our model in Table 3 and Figure 6.
Specifically we compared with the following alternatives: i) Eikonal loss without the viscosity
term that prevents undesirable non-SDF solutions, i.e., ϵ = 0 in equation 6; ii) removing the coarea
loss enforcing minimal surface area, i.e., λc = 0; and iii) removing the normal loss, i.e., λn = 0. Note
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Figure 4: Qualitative results for surface reconstruction [46] compared to existing methods. Note how
VisCo Grids achieve comparable level of details when compared to other baselines.

Poisson DGP IGR SIREN FFN NSP PHASE Ours (30 mins) Ours (8 mins)

Anchor

dC 0.60 0.33 0.22 0.32 0.31 0.22 0.21 0.21 0.28
dH 14.89 8.82 4.71 8.19 4.49 4.65 4.29 3.00 5.69
d→
C 0.60 0.08 0.12 0.10 0.10 0.11 0.09 0.15 0.15

d→
H 14.89 2.79 1.32 2.43 0.10 1.11 1.23 1.07 1.15

Daratech

dC 0.44 0.20 0.25 0.21 0.34 0.21 0.18 0.26 0.25
dH 7.24 3.14 4.01 4.30 5.97 4.35 2.92 4.06 4.15
d→
C 0.44 0.04 0.08 0.09 0.10 0.08 0.08 0.14 0.13

d→
H 7.24 1.89 1.59 1.77 0.10 1.14 1.80 1.76 1.78

DC

dC 0.27 0.18 0.17 0.15 0.20 0.14 0.15 0.15 0.15
dH 3.10 4.31 2.22 2.18 2.87 1.35 2.52 2.22 2.23
d→
C 0.27 0.04 0.09 0.06 0.10 0.06 0.05 0.09 0.09

d→
H 3.10 2.53 2.61 2.76 0.12 2.75 2.78 2.76 2.78

Gargoyle

dC 0.26 0.21 0.16 0.17 0.22 0.16 0.16 0.17 0.17
dH 6.8 5.98 3.52 4.64 5.04 3.20 3.14 4.40 4.45
d→
C 0.26 0.06 0.06 0.08 0.09 0.08 0.07 0.11 0.11

d→
H 6.80 3.41 0.81 0.91 0.09 2.75 1.09 0.96 0.98

Lord Quas

dC 0.20 0.14 0.12 0.17 0.35 0.12 0.11 0.12 0.13
dH 4.61 3.67 1.17 0.82 3.90 0.69 0.96 1.06 1.14
d→
C 0.20 0.04 0.07 0.12 0.06 0.05 0.04 0.07 0.07

d→
H 4.61 2.03 0.98 0.76 0.06 0.62 0.96 0.64 0.68

Table 1: Surface reconstruction results on the benchmark of [46]. We show reconstruction results for
each model for our method at 256 grid resolution with 30 minute and 8 minute time budget. We also
show results from comparative methods. Bold numbers signify top performance. We report Chamfer
and Hausdorff distances using ground truth scans (dC , dH ) and input scans (d→C , d→H ). Note that
VisCo Grids achieve comparable results to SOTA INRs, and even matches it in terms of Chamfer
distance in 3 out of 5 meshes.

that without coarea and viscosity the reconstruction tends to have holes and discontinuities near the
surface boundaries. Only combination of all the components results in a good surface reconstruction.

Learning with viscosity. We further provide a more in depth discussion of the proposed viscosity
loss. Figure 7 compares reconstructions with different levels of the viscosity parameter, i.e., ϵ in
equation 6. As can be inspected from this figure, viscosity affects the smoothness of the reconstructed
surface. For a low viscosity parameter the zero level sets become noisy. This can be explained by
the viscosity eikonal loss (i.e., equation 6) becoming numerically too close to the eikonal loss in
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Figure 5: Qualitative results for surface reconstruction of real objects [22] compared to existing
methods. Note how VisCo Grids does not over-extend the surface in the bottom row example. The
competing methods meshes were provided by the benchmark organizers.

Prior Method dC (×10−2) ↓ F-score (%) ↑ NCS (×10−2) ↑ NFS (×10−2) ↑

Triangulation-based
GD [14] 31.72 87.51 88.86 82.20
BPA [8] 40.37 80.95 87.56 68.69

Smoothness
SPSR [25] 31.05 87.74 94.94 89.38
RIMLS [34] 32.80 87.05 91.97 85.19
Ours 32.11 (3rd) 88.52 (1st) 94.20 (3rd) 89.16 (2rd)

Modeling
SALD [5] 31.13 87.72 94.68 86.86
IGR [19] 32.70 87.18 95.99 89.10

Learning Semantics
OccNet [30] 232.71 17.11 80.96 39.70
DeepSDF [36] 263.92 19.83 77.95 40.95

Local Learning
LIG [23] 48.75 83.76 92.57 81.48
Points2Surf [17] 48.93 80.89 89.52 81.83

Hybird
DSE [38] 32.16 86.88 87.20 76.81
IMLSNet [28] 38.46 82.44 93.31 85.30
ParseNet [42] 149.96 38.92 81.51 45.67

Table 2: Surface reconstruction results on the 20 real-scanned benchmark [22] meshes. We report
Chamfer Distance (dC ), F-score, Normal Consistency Score (NCS) [30], and Neural Feature Similar-
ity (NFS) [22]. Methods are grouped according to surface geometry priors, as originally defined in
the benchmark. Our method achieves top F-score and 1-st to 3-rd place in all scores.

equation 5 and the solution deviates from the viscosity SDF solution. This leads to artifacts across the
surface, similar to the limit case (ϵ = 0) where only the eikonal loss is used, see the second column
from the left. For a high viscosity parameter, and as expected with the addition of a non-vanishing
Laplacian term, the surface becomes over-smoothed.

Learning with coarea. Similarly, we also provide an analysis of the proposed coarea loss. In
Figure 8 we show the effect of changing the parameter weight of the coarea loss, λc. As can be
observed in the figure, a low coarea weight leads to the presence of excessive surface area in the
reconstruction. In contrast, a high weight will strive to minimize the surface area. In a sense, the
coarea serves a surface tension parameter; stronger tension will ignore points, weaker tension will
overfit.
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Figure 6: Ablation for the main components of our method. Removing elements of our loss leads to
subpar reconstructions. We can observe these artifacts in the level sets shown in this figure. Removing
viscosity results in discontinuities in the final surface, while no coarea produces excess surface area.

Baseline w/o normals w/o viscosity w/o coarea

Anchor

dC 0.21 0.61 0.55 0.72
dH 3.00 7.82 10.83 10.24
d→
C 0.15 0.37 0.27 0.36

d→
H 1.07 7.84 1.44 9.68

Daratech

dC 0.26 0.24 0.24 0.23
dH 4.06 4.2 4.3 2.19
d→
C 0.14 0.13 0.12 0.13

d→
H 1.76 2.69 1.77 1.77

DC

dC 0.15 0.15 0.15 0.34
dH 2.22 2.24 2.24 6.58
d→
C 0.09 0.08 0.08 0.16

d→
H 2.76 2.76 2.79 2.82

Gargoyle

dC 0.17 0.58 0.47 0.59
dH 4.40 6.32 10.38 6.35
d→
C 0.11 0.07 0.26 0.38

d→
H 0.96 2.39 1.34 1.25

Lord Quas

dC 0.12 0.12 0.12 0.58
dH 1.06 1.38 1.04 6.05
d→
C 0.07 0.37 0.06 0.32

d→
H 0.64 0.69 0.64 3.73

Table 3: Ablations study. We show the contribution of each component of VisCo Grids. Baseline is
the full method. The remaining columns correspond to optimizing without normal loss, viscosity
loss and coarea loss, respectively. We show results for each mesh of the benchmark [46]. The results
justify the use of the different components in VisCo Grids.

Figure 7: Viscosity loss ablation. Setting a high viscosity loss parameter, ϵ, leads to oversmoothing.
In contrast, setting it too low leads to noise and discontinuities in the surfaces, similarly to removing
it by setting ϵ = 0.
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Figure 8: Coarea loss ablation. Coarea loss favors solution with low surface area. Here, note how
larger coarea weight tends to fill in the cavities and close the gaps in the shape. In contrast, very low
weight fails to drive the optimization procedure towards a solution with smaller surface area.

Figure 9: VisCo reconstructions from sparse point cloud inputs.

4.3 Reconstructing from sparse point clouds

We now evaluate our model ability to reconstruct surfaces in the challenging case of sparse input
point clouds. For this experiment we use point clouds from the Stanford 3D Scanning Repository
and downsample them at different levels: 1%, 10%, and 25%. In Figure 9 we visualize the VisCo
reconstructions. Note that VisCo can reconstruct the shapes even with sparse input. This provides a
further validation for the proposed geometrical priors.

5 Conclusions
We introduced VisCo Grids, a novel grid-based surface reconstruction approach that leverages two
novel geometrically motivated priors: viscosity and coarea. We advocate VisCo’s prior for grid
functions as an alternative to the implicit inductive bias of implicit neural representations for the task
of surface reconstruction. One important limitation of our method, shared by all grid methods, is
that its degrees of freedom, namely nodes’ location, are set a-priori. In contrast, using non-linear
function spaces, such as neural networks, allows a more flexible usage of the degrees of freedoms in
the model and can adjust to areas with more detail. Nevertheless, we still believe that grid functions
and direct priors, incorporated with modern computing power, are valuable add-ons to the surface
reconstruction toolbox, providing few clear benefits over neural networks, such as a well-understood
control over surface properties, instant inference time, and faster training.
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