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ABSTRACT

Few-Shot Learning (FSL) aims to learn a simple and effective bias on limited novel sam-
ples. Recently, many methods have been focused on re-training a randomly initialized
linear classifier to adapt it to the novel features extracted by a pre-trained feature ex-
tractor (called Linear-Probing-based methods). These methods typically assumed the
pre-trained feature extractor was robust enough, i.e., finetuning was not needed, and
hence the pre-trained feature extractor does not be adapted to the novel samples. How-
ever, the unadapted pre-trained feature extractor distorts the features of novel samples
because the robustness assumption may not hold, especially on the out-of-distribution
samples. To extract the undistorted features, we designed Linear-Probing-Finetuning
with Firth-Bias (LP-FT-FB) to yield an accurate bias on the limited samples for better
finetuning the pre-trained feature extractor, providing stronger transferring ability. In
LP-FT-FB, we further proposed inverse Firth Bias Reduction (i-FBR) to regularize the
over-parameterized feature extractor on which FBR does not work well. The proposed
i-FBR effectively alleviates the over-fitting problem of the feature extractor in the pro-
cess of finetuning and helps extract undistorted novel features. To show the effectiveness
of the designed LP-FT-FB, we conducted comprehensive experiments on the common-
ly used FSL datasets under different backbones for in-domain and cross-domain FSL
tasks. The experimental results show that the proposed FT-LP-FB outperforms the SO-
TA FSL methods. The code is available at https://github.com/whzyf951620/
LinearProbingFinetuningFirthBias.

1 INTRODUCTION

Few-shot Learning (FSL) has recently developed quickly in the limited data regime. FSL aims to learn a
suitable inductive bias on the given limited samples of novel classes. At the very start, the whole model
consisting of the feature extractor and the classifier is pre-trained on the samples of base classes, and then
is finetuned on the limited novel samples to obtain an inductive bias. The performance of the finetuned
model drops significantly due to the over-fitting problem of the pre-trained model. To address the over-
fitting problem, meta-learning-based methods such as Prototypical Networks Snell et al. (2017) and MAML
Finn et al. (2017) were proposed to learn the learning strategies for a suitable inductive bias. Then, Chen
et al. proposed Baseline++ Chen et al. (2019) to show that a simple Linear Probing (LP) strategy can also
get comparable performance to meta-learning-based methods. LP re-trained a linear classifier to adapt to
the novel samples without updating the whole model. Following Baseline++, many researchers studied
the LP-based FSL methods, such as S2M2 Mangla et al. (2020), RFS Tian et al. (2020), and EMD Zhang
et al. (2020), are proposed to obtain a more powerful fully-trained feature extractor. LP-based FSL methods
assumed that a pre-trained feature extractor is robust enough to novel samples Yang et al. (2021); Tian et al.
(2020) and hence does not need to be finetuned.
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Figure 1: The proposed LP-FT-FB. The flow is divided into Linear Probing and FineTuning in two gray lines
of dashes. (Left) At the linear probing stage, the parameters of the pre-trained feature extractor are frozen;
at the finetuning stage, the parameters of the feature extractor are changeable. In the Linear Probing box,
the RI means the linear classifier is randomly initialized. In the FineTuning box, the LP means the linear
classifier is fully re-trained on the novel samples. (Right) The FBR is used to get an unbiased estimation for
linear probing by encouraging the distribution of logits to be far away from the uniform distribution (U(a, b)
in the figure). The proposed i-FBR addressed the over-fitting problem of the finetuned feature extractor by
encouraging the distribution of logits to be close to the uniform distribution.

However, the robustness assumption may not hold, especially on the out-of-distribution (OOD) novel sam-
ples, because the existing regularization methods only provided effective robustness to in-distribution (ID)
samples. This leads to “wrong” features of novel samples Kumar et al. (2022). This problem cannot be well
addressed by only strengthening the robustness of the pre-trained feature extractor without transferring the
extracted features. Finetuning is a typical and simple technology in the transferring learning on large-scale
datasets to quickly transfer the features Kornblith et al. (2019); He et al. (2020); Chen et al. (2020). Howev-
er, the existing FSL finetuning strategies cannot appropriately finetune the over-fitted feature extractor Shen
et al. (2021). Consequently, designing an appropriate finetuning strategy for the fully-trained feature ex-
tractor on the limited samples is a critical point to transfer the features and hence make the finetuned feature
extractor yield “good” novel features.

To design an appropriate finetuning strategy, we started by analyzing the existing finetuning strategies Kumar
et al. (2022); Kanavati & Tsuneki (2021); Levine et al. (2016); Radford et al. (2021), especially on the ODD
samples Kumar et al. (2022). Linear-Probing-Finetuning (LP-FT) Kumar et al. (2022) theoretically proved
that the existing finetuning strategies underperformed due to distorted novel features. This is because when
trying to fit the novel samples with a randomly initialized linear classifier, the extracted ID features and
OOD features change inconsistently. The inconsistent problem is caused by the unchanged features of the
samples in the space orthogonal to the space spanned by the base samples, i.e., out-of-distribution features
unchanged (details in Section 2.2). Kumar et al. proposed using a linear classifier well-trained on the fitting
novel samples to address this distorted problem.

Although LP-FT is effective, it is used to address the finetuning problem on large-scale out-of-distribution
datasets, which contain enough samples to provide an unbiased estimation. In FSL tasks, limited novel
samples lead to a biased estimation of the updated parameters. Seeing this, we reduce the Firth Bias of the
model Ghaffari et al. (2022); FIRTH (1993) to obtain an unbiased estimation (called Firth Bias Reduction).
However, Firth Bias Reduction (FBR) gives an unbiased estimation only for the linear classifier but not the
feature extractor. Experimental result also shows that FBR decreased the performance of the finetuned fea-
ture extractor. A deep analysis (Section 2.3) shows that when the scaling factor λ (see Eq. 2) is positive, FBR
encourages the distribution of the linear classifier output to be far away from the uniform distribution (See
Fig. 1) - FBR strengthens the influence of novel samples for linear probing. This accelerates the convergence
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of the low-parameterized linear classifier but hampers the generalization of the over-parameterized feature
extractor. According to the analysis, we proposed inverse-FBR (i-FRB, negative λ in Eq. 2) to encourage
the distribution of the linear classifier output to be close to uniform distribution (See Fig. 1) to address the
over-fitting problem Müller et al. (2019).

Combining LP-FT, FBR, and the proposed i-FBR, we proposed Linear-Probing-Finetuning with Firth Bias
(LP-FT-FB) to appropriately finetune the fully-trained feature extractors to adapt them to the target domain
on limited novel samples. Firstly, we use linear probing to address the distorted feature problem. The linear
probing is regularized with FBR for unbiased estimation. Then the whole pre-trained model is finetuned
regularized with the proposed i-FBR on the limited novel samples to strengthen the transferring ability of
the feature extractor for more separable features. The proposed LP-FT-FB makes the extracted features of
novel samples undistorted and separable. The whole LP-FT-FB finetuning strategy is visualized in Fig. 1.
Furthermore, the unbiased finetuned feature extractor transfers the novel features close to the novel domain.
This is verified in the cross-domain FSL tasks (Section 3.5).

Our main contributions include (1) studying and finding the gaps between finetuning-based and LP-based
FSL methods: distorted features and a biased estimation; (2) designing a novel and simple finetuning s-
trategy, LP-FT-FB, to quickly transfer the extracted features to the novel domain to bridge the gaps; (3)
proposing inverse Firth Bias Reduction (i-FBR) to address the biased estimation problem of finetuning the
feature extractor due to limited samples.

2 METHODS

LP-FT is first described in Section 2.2. Then FBR is formulated and analyzed in Section 2.3 to address the
unique limited-sample problem in FSL, i.e., the biased estimation problem. However, FBR is not suitable
for the over-parameterized feature extractor. Based on the analysis of FBR, i-FBR is proposed to finetune
the feature extractor. In Section 2.4, LP-FT-FB is stated.

2.1 SET UP

Following FBR Ghaffari et al. (2022), we assume a multinomial logitic regression model for the classi-
fier v(·,β). β = {βc}1≤c≤C and βc denotes the logistic regression weights for class c. B(·, θ) de-
notes the feature extractor. The dataset D = {(xi,yi)}1≤i≤M totally contains C classes and M samples.
The whole inference process is formulated as: ŷi = v(zi,β) = v(B(xi, θ),β), where zi = B(xi, θ).
In the multinomial logistic regression model, the assignment probability of zi to class c is formulated

as pci := Pr(yi = c|zi) = eβ
T
c zi

1+
∑C
c′=1

e
βT
c′

zi
. Then the logistic log-likelihood function is formulated as

Llogistic :=
∑M
i=1

∑C
c=1 1[yi = c] · log pci , where 1[·] denotes the yi in the one-hot manner. For the

linear probing and finetuning, we used the Cross Entropy Loss LCE = − 1
M

∑M
i=1 [yi · log(Pi)], where

Pi = {pci}Cc=1. Pi = ŷi denotes the predicted probability vector.

2.2 LINEAR-PROBING-FINETUNING

LP-FT explored the reason why LP underperforms FT on in-distribution samples but outperforms FT in out-
of-distribution samples on large-scale datasets. LP-FT theoretically proved that when a pre-trained feature
extractor tried to fit the ID samples, the transfer of the model will not change the feature of out-of-distribution
samples in the space orthogonal to the space spanned by pre-training samples.

To show this, let S denote the subspace spanned the training samples X, and the training loss is
L(v(B(X, θ),β),Y) = ‖XθTβ − Y‖22. B is assumed to be a linear model; Y denotes the one-hot la-
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bels of X. The gradients of the training loss with respect to the parameter θ of the feature extractor B is
computed as:

∇θL(v(B(X, θ),β),Y) = 2β(Y −XθTβ)TX (1)
With Eq. 1, if u is a sample in the subspace orthogonal to S, the features of u do not change with the finetuned
B(·, θ): ∆z = ∇θL(v(·,β),B(·, θ))u = 2β(Y−XθTβ)T (X · u) = 0. This leads to the distorted features
extracted by the finetuned B(·, θ) because the in-distribution and out-of-distribution features inconsistently
change.

However, LP-FT explores the feature extractor finetuning problem on large-scale datasets. Observing this,
we wish to address the feature extractor finetuning problem with LP-FT in FSL if we can address the limited-
sample problem. Because the novel samples used to finetune the pre-trained feature extractor are out-of-
distribution in FSL models. The limited-sample problem is actually a biased estimation problem.

2.3 INVERSE FIRTH BIAS REDUCTION

For linear probing, we use Firth Bias Reduction (FRB) to obtain an unbiased estimation. PMLE FIRTH
(1993) added a log-determinant penalty 1 to remove the O(n−1) term of the asymptotic bias of the maxi-
mum likelihood estimate parameters for the unbiased estimation. FBR Ghaffari et al. (2022) addressed the
situation when det(F ) = 0 and proposed an approximate format for the linear classifier and cosine classifier.
In FBRGhaffari et al. (2022), the FBR loss is formulated as

L = LCE + LFirth = LCE − λ ·
1

M

M∑
i=1

DKL(U[0,C]‖Pi), (2)

where U[0,C] denotes the uniform distribution between 0 and C, and λ denotes the scaling factor of FBR.
From Eq. 2, we concluded that when λ > 0, the LFirth encourages the distribution of the logits zi to be far
away from U[0,C], which totally differs from Label Smoothing Müller et al. (2019). When λ < 0, LFirth
encourages the distribution of the logits zi to be close to U[0,C], and hence avoids too high confidence of zi.
This coincides with the effectiveness of Label Smoothing Müller et al. (2019); Hein et al. (2019).

However, the vanilla FBR is not suitable for finetuning feature extractor because when λ > 0 (used in FBR
Ghaffari et al. (2022)), the logits z is encouraged to be far away from U[0,C]. The distribution drag leads to
too high similarity between the distribution of the logits z and y, and hence makes the over-parameterized
feature extractor over-fitted Hein et al. (2019). Seeing this, according to the analysis of Eq. 2, we proposed
inverse FBR (i-FBR) to encourage the distribution of the z to be close to U[0,C] with λ < 0 (we use the
λinv to denote the scaling factor of i-FBR) to address the over-fitting problem. The proposed i-FBR works
similarly to Label Smoothing to a certain extent because both of them encourage the output distribution of
the model to be close to the uniform distribution. Hence they can reduce the influence of the training novel
samples and alleviate the too high confidence problem.

In addition to the above distribution drag, we computed the gradients of LCE and L with respect to ri =
β ·B(xi, θ) as follows to show the gradient variation brought by λ.

∂L
∂ri

=
∂LCE
∂ri

+
λ

(C + 1)
(CPi −E), (3)

where E is a one-full vector with the same size as Pi and Pi = ŷi is the predict of the whole model. The
detailed derivation is given in Appendix. According to Eq. 3, we concluded that when λ > 0, the gradient
∂L
∂rci

is increased for the low-parameterized linear classifier to quickly reach the optimal point, and hence
the linear probing model performs better Prabhu et al. (2021). The overfitting problem does not need to be
considered because of the low-parameterized property.

1log(det(F )), where F := −Hessβ(Llogistic) = Ey[∇βLlogistic ·∇βLT
logistic]
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However, it is not suitable for finetuning the over-parameterized feature extractor because of too large sim-
ilarity between zi and yi. From Eq. 3, we found that when λ < 0 and the class of xi is c, the gradient
∂L
∂rci

is decreased and ∂L
∂rki

(k 6= c) is increased. This reduces the influence of xi, which is used to train the
over-parameterized feature extractor, and hence alleviates the over-fitting problem. Furthermore, different
from Label Smoothing, the proposed i-FBR decreases the gradients, which is suitable for finetuning the
over-parameterized model, and hence outperforms Label Smoothing (See Table 6).

2.4 LP-FT-FB

With FBR, LP-FT, and the proposed i-FBR, we proposed LP-FT-FB to quickly transfer the extracted features
instead of the robustness assumption to address the over-fitting problem. Firstly, a randomly initialized linear
classifier v(·,β) is re-trained on the novel samples and regularized with FBR. For the Cfew-way-K-Shot 2

FSL tasks, the re-trained classifier v′(·,β′) is updated as

β′ = β +
α1

K · Cfew
·
K·Cfew∑
i=1

∂L(ŷi,yi)

∂ri
· ∂ri
∂β

, (4)

where ri = β ·B0(xi, θ0); ŷ = {ŷi}
Cfew·K
i=1 ; y = {yi}

Cfew·K
i=1 ; α1 is the LP learning rate.

Then the pre-trained B0(·, θ0) and v′(·,β′) are together finetuned on the same novel samples and regularized
with i-FBR. FT is stated as follows. The forward process of FT is formulated as

ŷ′ = v′(B0(x, θ0),β′). (5)
The loss of FT is computed as:

L(ŷ′,y) =
1

Cfew ·K

K·Cfew∑
i=1

L(ŷ′i, yi). (6)

The feature extractor B0(·, θ0) is updated as

θ̂ = θ0 +
α2

K · Cfew
·
K·Cfew∑
i=1

∂L(ŷ′i,yi)

∂r′i
· ∂r

′
i

∂θ0
, (7)

where r′ = {r′i}
K·Cfew
i=1 and r′i = β′ ·B0(xi, θ0). The linear classifier v′(·,β′) is updated as

β̂ = β′ +
α2

K · Cfew
·
K·Cfew∑
i=1

∂L(ŷ′i,yi)

∂r′i
· ∂r

′
i

∂β′
, (8)

where α2 is the learning rate of FT. The analytic formula of Eq. 4, Eq. 8, and Eq. 7 are given in Appendix.
With B̂(·, θ̂) and v̂(·, β̂), the performance of LP-FT-FB is evaluated on the novel query samples. The whole
flow of LP-FT-FB is given in Appendix.

3 EXPERIMENTS

To comprehensively show the effectiveness of the proposed i-FBR and LP-FT-FB, we conducted many
in-domain experiments: 1) 5-way-1\5-shot tasks on mini-Imagenet, tiered-Imagenet, and CUB datasets
under the typical FSL backbone, WideResNet-28-10; 2) few-shot tasks under multiple scale backbones
including ResNet-18 and ResNet-34; 3) N-way-K-shot (N > 5,K > 5) tasks on mini-Imagenet and tiered-
Imagenet; 4) few-shot tasks on the extracted features augmented by Distribution Calibration (DC) Yang et al.
(2021). Also, the cross-domain few-shot tasks, mini-Imagenet → CUB and tiered-Imagenet → CUB, are
also evaluated.

2Here, we used Cfew-way-K-Shot to correspond with C in Sec. 2.1, 2.2, and 2.3 instead of N-way-K-Shot.
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3.1 EXPERIMENTAL SETUP

1) Datasets. The experiments are evaluated on three typical FSL datasets, mini-Imagenet Vinyals et al.
(2016), tiered-Imagenet Ren et al. (2018), and CUB Wah et al. (2011). mini-Imagenet consists of 100
classes from the ImageNet, which are split randomly into 64 base, 16 validation, and 20 novel classes. Each
class has 600 samples of size 84 × 84. tiered-Imagenet consists of 608 classes from the ImageNet, which
are split randomly into 351 base, 97 validation, and 160 novel classes. CUB contains 200 classes with a
total of 11,788 images of size 84× 84. The base, validation, and novel split contain 100, 50, and 50 classes.
2) Backbones. To show the effectiveness of LP-FT-FB, we used many backbones. WideResNet-28-10
Zagoruyko & Komodakis (2016) with Dropout Hinton et al. (2012) is a typical backbone which used in the
SOTA methods, such as S2M2 Mangla et al. (2020), FBR Ghaffari et al. (2022), and DC Yang et al. (2021).
Also, multiple scale backbones including ResNet-18 He2 (2016) and ResNet-34, are used. The ResNets are
the same as Mangla et al. (2020). 3) Finetuning hyper-parameters. The pre-trained hyper-parameters are
the same as Mangla et al. (2020). We only give the hyper-parameters in the LP-FT process. For LP, we
used the linear classifier proposed in the Baseline++ Chen et al. (2019). For the optimizer, the SGD is used
with the learning rate α1 = 0.01, momentum 0.9, dampening 0.9, and weight decay 1e−3. For the FBR
of classifier, the factor λ in Eq. 2 is set to 1. For FT, the feature extractor and the classifier are together
manually finetuned with the learning rate α2 = 1e−3 and the i-FBR factor λinv in Eq. 7 is set to −1e−3.
4) Evaluation. The reported results are averaged in percent with 95% confidence interval on 10000 tasks
randomly selected by the Episodic Sampler. As the settings in Yang et al. (2021) and Ghaffari et al. (2022),
the query sample number is 15 in each task for evaluating the performance.

3.2 5-WAY-1\5-SHOT TASKS

In-domain 5-way-1\5-shot tasks are the most typical FSL tasks. We directly used the pre-trained
WideResNet-28-10 provided by S2M2R Mangla et al. (2020). The evaluated results are reported in Ta-
ble 1. On mini-Imagenet, LP-FT-FB outperforms FBR by 1.45% and 0.86% for 1\5-shot tasks respectively.
With the same pre-trained model, LP-FT-FB outperforms S2M2R by 2.56% and 1.23% for 1\5-shot tasks.
Similarly, on the tiered-Imagenet, LP-FT-FB outperforms FBR by 3.04% and 3.75% for 1\5-shot tasks. On
CUB, LP-FT-FB outperforms S2M2R by 1.48% and 1.03% for 1\5-shot tasks.
Table 1: The evaluation experiments for 5-way FSL tasks are conducted under the WideResNet28-10 on
three typical FSL datasets.

Methods mini-Imagenet tiered-Imagenet CUB
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML Finn et al. (2017) 48.70 63.10 – – 71.29 80.33
ProtoNet Snell et al. (2017) 54.16 73.68 65.65 83.40 71.88 87.42
Baseline++ Chen et al. (2019) 51.87 75.68 68.00 84.20 69.40 87.50
S2M2 Mangla et al. (2020) 64.48 82.67 73.50 88.00 80.68 90.85
DeepEMD Zhang et al. (2020) 65.91 82.41 71.16 86.03 75.65 88.69
FBR Ghaffari et al. (2022) 65.59 83.04 73.64 88.31 80.92 91.03
LP-FT-FB 67.04 83.90 76.68 92.06 82.16 91.88

3.3 EVALUATION UNDER DIFFERENT BACKBONES

In addition to WideResNet-28-10, we also evaluated LP-FT-FB under different backbones, ResNet-18 and
ResNet-34. Because S2M2R did not provided the pre-trained models of ResNet-18 and ResNet-34, we used
the code 3 of S2M2R to reproduce the pre-trained models.

3https://github.com/nupurkmr9/S2M2_fewshot
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Table 2: The evaluation results for 5-way FSL tasks under different backbones.

Dataset Methods ResNet-18 ResNet-34
1-shot 5-shot 1-shot 5-shot

mini-Imagenet
Baseline++ Chen et al. (2019) 53.56 74.02 54.41 74.14

S2M2 Mangla et al. (2020) 64.06 80.58 63.74 79.45
LP-FT-FB 66.20 83.06 66.16 82.96

CUB
Baseline++ Chen et al. (2019) 67.68 82.26 68.09 83.16

S2M2 Mangla et al. (2020) 71.43 85.55 72.92 86.55
LP-FT-FB 73.36 86.88 76.48 90.02

tiered-Imagenet
Baseline++ Chen et al. (2019) 68.27 82.46 58.83 82.60

S2M2 Mangla et al. (2020) 69.86 85.52 69.38 84.41
LP-FT-FB 73.98 89.48 73.44 89.02

As given in Table 2, for ResNet-18, LP-FT-FB outperforms S2M2R by 2.14% and 2.48% for 1\5-shot
tasks on mini-Imagenet. LP-FT-FB outperforms S2M2R by 1.93% and 1.33% for 1\5-shot tasks on CUB.
For ResNet-34, LP-FT-FB outperforms S2M2R by 2.42% and 3.51% for 1\5-shot tasks on mini-Imagenet.
LP-FT-FB outperforms S2M2R by 3.56% and 3.47% for 1\5-shot tasks on CUB.

3.4 EVALUATION ON AUGMENTED SAMPLES

The feature extractor is finetuned, and the novel features are since equivariant while novel samples totally
differ from the base samples. The equivariant features are since closer to the distribution of the novel sample
than the unchanged feature extractor used in DC. To show this, we used DC to augment the yielded features
before evaluation. The evaluated results are given in Table 3.

The data augmented experiments are conducted on the tiered-Imagenet. For the 1-shot-10-way task, LP-
FT-FB outperforms DC and FBR by 0.74% and 0.79%, respectively. For the 5-shot-10-way task, LP-FT-
FB outperforms DC and FBR by 1.13% and 1.54%, respectively. Also, for the 15-way tasks, LP-FT-FB
outperforms DC and FBR.

Table 3: The results of FSL tasks with DC data augmentation.

Methods tiered-Imagenet
1&10 5&10 1&15 5&15

DC Yang et al. (2021) 61.85 79.66 54.57 73.88
FBR Ghaffari et al. (2022) 61.90 80.07 54.62 74.40
LP-FT-FB + DC 62.64 81.20 55.02 75.64

3.5 CROSS-DOMAIN TASKS

To show the transferring ability brought by LP-FT-FB, we conducted cross-domain FSL experiments. LP-
FT-FB is evaluated on the CUB dataset, but the feature extractor is pre-trained on mini-Imagenet and tiered-
Imagenet, respectively. In this experiment, we used DC to augment the novel samples, just as the evaluated
experiments in FBR Ghaffari et al. (2022). LP-FT-FB + DC denotes the proposed method in Table 4.

As is shown in Table 4, for mini-Imagenet→ CUB tasks, LP-FT-FB outperforms DC by 2.07% and 2.29%
for 5-shot-10-way and 5-shot-15-way tasks. For tiered-Imagenet→ CUB tasks, LP-FT-FB outperforms DC
by 1.65% and 2.09% for 5-shot-10-way and 5-shot-15-way tasks.
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Table 4: The results of cross-domain FSL tasks. K & N denotes N-way-K-shot tasks.

Methods mini-Imagenet→ CUB tiered-Imagenet→ CUB
1&10 5&10 1&15 5&15 1&10 5&10 1&15 5&15

DC Yang et al. (2021) 37.14 59.77 30.22 52.73 64.36 86.23 57.73 82.16
FBR Ghaffari et al. (2022) 37.40 60.77 30.37 53.84 64.52 86.66 57.74 83.05
LP-FT-FB + DC 37.96 61.84 30.98 55.02 65.02 87.88 58.26 84.25

3.6 ABLATION STUDY

LP-FT v.s. FBR v.s. i-FBR. We give the ablation study to explore the effectiveness of each part. The study
is evaluated on mini-Imagenet and tiered-Imagenet for 5-way-1\5-shot tasks. As given in Table 5, we show
the effectiveness of LP-FT-FB’s each part.

Table 5: The ablation study on LP-FT v.s. FBR v.s. i-FBR.

Strategy LP FT Datasets
LP-FT FBR FBR i-FBR mini-Imagenet tiered-Imagenet
X 65.80 73.82

X 65.59 73.64
X X 66.40 74.59
X X X 67.04 76.68
X X X 65.89 73.82
X X 66.38 74.70

i-FBR factor λinv tuning. We give the tuning of λinv as follows to show the pattern of i-FBR.

-1 -1e-1 -1e-2 -7e-3 -4e-3 -1e-3 -1e-4 0 1e-3 1e-2 5e-2 1e-1
inv

65

66

67

Ac
c 

\%

inv Tuning

Figure 2: i-FBR factor λinv tuning.

As given in Fig. 2, we show the tuning trend of λinv . The ablation experiments is evaluated on mini-
Imagenet for the 5-way-1-shot task with λ = 1. We obtained the best performance with λinv = −7e−4.
While λinv ≥ 0, i.e., i-FBR is turned into FBR, the performance is decreased.

i-FBR v.s. smoothing regulariers. The proposed i-FBR is a sort of regularizer smoothing the output
distribution of the model. We compared the performance of different smoothing regularizers. As given in
Table 6, the proposed i-FBR outperforms the smoothing regulaizers. The detailed experiment settings are
given in Section Appendix.
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Table 6: The ablation study on different smoothing regularizers. LP-FT-None denotes no smoothing regu-
larizers is used.

Methods mini-Imagenet tiered-Imagenet
1-shot 5-shot 1-shot 5-shot

LP-FT-None 66.40 83.20 75.66 90.85
LP-FT-LS 66.60 83.24 76.02 91.67
LP-FT-Mixup 66.64 83.37 76.00 91.54
LP-FT-CutMix 66.48 83.26 75.84 90.98
LP-FT-FB 67.04 83.90 76.68 92.06

4 RELATED WORKS

The FSL methods are divided into meta-learning-based methods and finetuning-based methods. The
finetuning-based methods are divided into Linear-Probing-based and finetuning-the-whole methods.

Finetuning-learning-based Methods. In 2019, Chen et al. proposed Baseline++ Chen et al. (2019),
which showed that a re-trained linear classifier could get a comparable performance to the meta-learning-
based methods when the feature extractor is pre-trained. The pre-trained feature extractors are easy to be
obtained without the need of training starting from scratch (used in meta-learning-based methods). Fol-
lowing Baseline++, Tian et al. proposed RFS Tian et al. (2020) to show that learning a supervised or
self-supervised representation on the meta-training set, followed by training a linear classifier on top of this
representation, gets a good performance better than most meta-learning-based methods. Similarly, S2M2
Mangla et al. (2020) and SKD Rajasegaran et al. (2020) proposed that the feature extractor pre-trained with
Rotation Augmentation, Manifold Mixup Verma et al. (2019), and Knowledge Distillation Hinton et al.
(2015) can make the feature extractor more robust. These methods are called Linear Probing methods be-
cause they only re-trained the linear classifier but fixed the pre-trained feature extractor, and they are based
on a strong robustness assumption.

However, the robustness assumption may not hold. To address the problem, Shen et al. proposed Shen
et al. (2021) a searching algorithm finding the layers suitable for finetuning. The searching algorithm is
time-consuming and performs poorly on a single dataset because it does not address the distorted feature
problem. Additionally, the related meta-learning FSL methods is left to Appendix.

5 CONCLUSION

In this paper, we proposed LP-FT-FB finetuning the pre-trained feature extractor to bring strong transferring
ability to the feature extractor instead of a strong robustness assumption. The transferring ability addressed
the distorted feature problem caused by the OOD novel samples. However, the strong transferring ability
is at the cost of the over-parameterized feature extractor finetuning. The proposed LP-FT-FB is also time-
consuming, just like the first-order gradient computation of Reptile Nichol et al. (2018). In future works, we
will try to design a filter-wise or layer-wise finetuning method instead of the unit-wise one.
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