
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Contrastive Sparse Autoencoders for Interpreting Planning of Chess-Playing
Agents

Anonymous Authors1

Abstract
AI led chess systems to a superhuman level, yet
these systems heavily rely on black-box algo-
rithms. This is unsustainable in ensuring trans-
parency to the end-user, particularly when these
systems are responsible for sensitive decision-
making. Recent interpretability work has shown
that the inner representations of Deep Neural Net-
works (DNNs) were fathomable and contained
human-understandable concepts. Yet, these meth-
ods are seldom contextualised and are often based
on a single hidden state, which makes them unable
to interpret multi-step reasoning, e.g. planning.
In this respect, we propose contrastive sparse au-
toencoders (CSAE), a novel framework for study-
ing pairs of game trajectories. Using CSAE, we
are able to extract and interpret concepts that are
meaningful to the chess-agent plans. We primar-
ily focused on a qualitative analysis of the CSAE
features before proposing an automated feature
taxonomy. Furthermore, to evaluate the quality
of our trained CSAE, we devise sanity checks to
wave spurious correlations in our results.

1. Introduction
Chess is one of the very first domains where superhuman
AI shined, first with DeepBlue (Campbell et al., 2002) and
more recently with Stockfish (Nasu, 2018) and AlphaZero
(Silver et al., 2018). While the design of these superhuman
programs is intended to gain performances, e.g. by opti-
mising the tree search, the node evaluation or the training
procedure, a lot remains to be done to understand the in-
trinsic processes that led to these performances truly. In
this respect, the first component to decipher is thus the
DNN heuristic that guides the tree search. While DNNs are
often thought of as black-box systems, they learn a basic

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

linear representation of features. During the last decade,
arguments to support this hypothesis has been demonstrated
repeatedly for language models (Mikolov et al., 2013; Burns
et al., 2022; Tigges et al., 2023) but also vision models (Rad-
ford et al., 2015; Kim et al., 2017; Trager et al., 2023) and
others (Nanda et al., 2023; Rajendran et al., 2024). This
strong hypothesis also transferred to chess (McGrath et al.,
2022), showing that traditional concepts like ”attacks” or
”material advantage” were linearly represented in the latent
representation of the model.

In this work, we focus on the open-source version of Alpha
Zero, Leela Chess Zero (Pascutto, Gian-Carlo and Linscott,
Gary, 2019), interpreting the neural network heuristic in
combination with the tree search algorithm. In particular,
we extend the dynamic concepts introduced in (Schut et al.,
2023). Figure 1 summarises our approach and illustrates
our aim at disentangling planning concepts.

s0

S−≤3(s0)S+≤3(s0)

Figure 1: Better viewed in colour. Our proposed framework
aims to retrieve planning concepts, represented as icons at
the bottom. For that, we analyse the plans of a chess-playing
agent. A sampling of an optimal trajectory S−≤3(s0) (in
green) and a suboptimal trajectory S+≤3(s0) (in blue) from
a root node s0. The star represents a concept meaningfully
to the optimal trajectory while the lightning represents a
concept relevant to the suboptimal trajectory.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

We state our contributions as follows:

• New dictionary architecture to encourage the discovery
of differentiating features between latent representa-
tions

• Automated sanity checks to ensure the relevance of our
dictionaries

• Discovery and interpretation of new strategic concepts
creating a feature taxonomy

With this paper, we release the code1 used to create the
datasets and to discover and analyse concepts.

2. Background
2.1. Chess Modelling

Heuristic network The studied agent, introduced as Alp-
haZero (Silver et al., 2018), is a heuristic network used in
a Monte-Carlo tree search (MCTS) (Coulom, 2006; Kocsis
& Szepesvári, 2006). The network is traditionally trained
on self-play to collect data, i.e. the network is frozen and
plays against a duplicate version of itself. After the collec-
tion phase, the network is trained to predict a policy vector
for the next move based on the MCTS statistics and a cur-
rent state value based on the outcomes of the played games.
Here, more specifically, the full network Fθ, parametrized
by θ, can be describe as a tuple,

Fθ(s) = [Pθ(s), Wθ(s), Mθ(s)] , (1)

with Pθ(s) the policy vector, Wθ(s) the win-draw-lose prob-
ability and Mθ(s) the moves left. The three heads share
a Squeeze-and-Excitation (SE) backbone (Hu et al., 2019),
based on ResNet (He et al., 2016). The state s fed to the
network is made of the current board as well as the 7 pre-
vious boards. These boards are decomposed into one-hot
planes that we describe in the next paragraphs. The com-
putation process is illustrated in figure 2; for more details,
we refer the reader to the exact implementation in (Pascutto,
Gian-Carlo and Linscott, Gary, 2019).

Tree-search The AlphaZero (Silver et al., 2018) and its
open-source version LeelaZero (Pascutto, Gian-Carlo and
Linscott, Gary, 2019) are based on evaluation and tree
search similar to Stockfish NNUE. The search algorithm
is based on MCTS (Coulom, 2006; Kocsis & Szepesvári,
2006) using a slightly modified version of the upper bound
confidence of the PUCT algorithm (Rosin, 2011), equation
2.

1Available in supplementary materials and released upon publi-
cation.

U(s, a) = Q(s, a) + cpuct · P (s, a) ·
√∑

b N(s, b)

1 +N(s, a)
(2)

Here, we focused on the policy P (s, a) = Pθ(s, a) directly
outputted by the network. We further detail the computation
of the Q-values and their links to the WDL head Wθ(s, a)
and the ML head Mθ(s, a) in the appendix A.

(a) Board encoding (b) Network backbone

Pθ(s)

Wθ(s)

Mθ(s)

(c) Heads prediction (d) MCTS

Figure 2: Modelling components; first, the boards are en-
coded into planes (a) and fed to the network backbone (b).
The different heads use the extracted features to make heuris-
tic predictions (c) guiding the MCTS when encountering
new nodes (d).

2.2. Discovering Concepts

Sparse autoencoders While linear probing (Alain & Ben-
gio, 2018) requires labelled concepts, sparse autoencoders
are an efficient tool for discovering concepts at scale without
supervision, which were introduced concurrently in (Cun-
ningham et al., 2023) and (Bricken et al., 2023). The fun-
damental idea is to decompose the latent activations h on a
minimal set of features, formulated as the minimisation of

||h−Df ||22 + λ||f ||0. (3)

D is the feature dictionary and f is the feature decomposi-
tion with f ≥ 0 for the combination view. In practice, sparse
autoencoders (SAEs) have been proposed to solve sparse
dictionary learning and have already proven to find a wide
range of interpretable features (Bricken et al., 2023). In their
simplest form, with only one hidden layer, the architecture
can be described as

f = ReLU(Weh+ be), (4)

ĥ = Wdf + bd. (5)

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Where the encoder weights (We, be) and decoder weights
(Wd, bd) are trained using an MSE reconstruction loss with
l1 penalisation to incentivize sparsity:

LSAE = Eh

[
||h− ĥ||22 + λ||f ||1

]
(6)

We describe in appendix B.2 some additional architectural
changes and hyperparameters we used and how we evaluated
those.

Dynamical concepts While traditional concepts only
rely on a single position (McGrath et al., 2022), dynam-
ical concepts consider sequences of states and are still
discoverable using linear probing (Schut et al., 2023).
In order to find these concepts, we need to consider
an optimal rollout, according to the chosen sampling
method, S+≤T (s0) = (s+1 , s

+
2 , ..., s

+
T) with T be-

ing the maximal depth considered starting at state s0.
This rollout is associated with other sub-optimal rollouts
S−≤T = (s−1 , s

−
2 , ..., s

−
T). A linear probe can then be trained

to differentiate the origin set of a state s using the model’s
hidden state h; the process is illustrated in Figure 1.

3. Methods
3.1. Disantangling Planning Concepts

The basic idea proposed here is to study a latent space
vector in contrast with others. The intuition is that we want
to know what additional concepts are present in subsequent
states. So, for a depth t, we use a pair of vectors defined
as a concatenation of the search root s0 with s+t from the
optimal rollout and s−t from a suboptimal rollout; similarly
to (Schut et al., 2023).

h+ = [h(s0);h(s
+
t)] (7)

h− = [h(s0);h(s
−
t)] (8)

We introduce a feature constraint in order to train SAEs
with a contrastive loss, equation 9. By dividing the feature
dictionary into a set of common features c and a set of
differentiating features d, we can separate the s0 dependence
and focus on planning concepts contained in d. In practice,
the separation is made using tensor concatenation f = [c; d]
as illustrated in the figure 3a.

Lcontrast = Eh

[
||c+ − c−||1 + ||d+ ⊙ d−||1

]
(9)

In order to concentrate the s0 dependence into the c-features,
we added an additional SAE loss term (reconstruction and
sparsity) to reconstruct h(s0) from c+ and c−. Additionally,
to ensure that the d-features account for differentiability, we

train a linear probe on this intermediate representation of
our SAEs using the binary cross-entropy, equation 10. We
present the results as part of our first sanity checks in the
section 4.1.

L± = Eh

[
− log

{
P(d+)

}
− log

{
1− P(d−)

}]
(10)

h(s0) h(s+t)

h(s−t)

c d

ĥ(s0) ĥ(s−t)

ĥ(s+t)

(a) Contrastive SAE

s0

S−≤3(s0)S+≤3(s0)

d+

d−

(b) Rollouts concepts extraction

Figure 3: Better viewed in colour. (a) Contrastive SAEs
are trained using a contrast of an optimal trajectory (green)
and suboptimal trajectories (blue). They take in input the
root hidden state h(s0) and a subsequent node’s hidden
state h(s±t). The c-features are represented in red, and the
d-features are in blue and green. (b) Schematic view of
concepts extraction from different rollouts. The dynamical
concepts from the rollout S+≤3(s0) is extracted in d+ and for
S−≤3(s0) in d−.

3.2. Concepts Interpretation

Interpreting individual features In order to decipher the
nature of the learned dictionary features, a first qualitative

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

analysis can be run using activation maximisation based
on data sample (Chen et al., 2020). As illustrated in figure
4, for a given feature, it is possible to investigate the most
activated samples. Here, the samples are latent pixels and
thus can be visualised on the corresponding chess boards. It
is thus possible to create a basic feature categorisation based
on the samples they activate in and whether they activate on
a wide or restricted range of samples.

Categorising concepts While the learned features appear
to be relatively interpretable, it does not scale well with re-
spect to the required human labour. Recent work proposed
automated methods to interpret models based on causal
analysis (Conmy et al., 2023), using a language model in-
terpreter (Bills et al., 2023) or a multimodal (Shaham et al.,
2024). Yet these methods are hard to supervise humanly and
are adding an additional black box layer. We investigate a
more frugal alternative, creating an automated taxonomy of
features using hierarchical clustering. To test this taxonomy,
presented in section 4.3, we propose a last sanity check
based on the c-features in section 4.1.

Figure 4: (a) Illustration of the process of interpreting a
feature using activation maximisation. The most activated
samples are retrieved and analysed. (b) In order to compare
a pair of features, the first indicator is the correlation of
the feature activation (right). It is also possible to count
common samples retrieved using activation maximisation.

4. Experiments
4.1. Sanity Checks

We justify our architecture choice by a will to separate
dynamical concepts from root-related concepts. It is thus
important to explore whether this proves true in practice. In
this respect, we designed sanity checks to alleviate trivial
errors. Furthermore, we discuss the choice of hyperparam-

eters and trade-offs and report key metrics in the appendix
B.2.

Partitioned features To understand the coarse-grained
difference between c-features and d-features, we compute
a set of metrics reported in the table 1. The metrics
are computed on unseen examples (test) similarly to
validation but were not optimised against.

Metric F < 10−3 F > 0.1 H(As) H(At)
c-features 153 58 2.18 2.81
d-features 0 119 2.33 3.24
f 153 177 2.25 3.02
Metric F1(P) P (P) R(P)
c-features 0.537 0.541 0.534
d-features 0.566 0.575 0.557
f 0.578 0.584 0.571

Table 1: Sanity check metrics. F is the feature activa-
tion frequency, and we report the number of features (out
of 2048). H is the entropy, and As (respectively At) is
the activation rate on the different squares (respectively
trajectories). As a baseline, the maximum entropy achiev-
able are respectively maxH(As) = log(64) ≈ 4.16 and
maxH(At) = log(500) ≈ 6.21. P is a linear probe trained
to differentiate optimality, with F-score (F1), precision P
and recall (R).

We report more dead (frequency F < 0.1%) c-features, i.e.
an over-specification of the c-features, and more overactive
(frequency F > 10%) d-features, i.e. over-generalisation
of d-features. We see that the entropy H(As), the entropy
of activation distribution over the square, and respectively
H(At), the entropy over the trajectories, is smaller for c-
features, especially for trajectories. The c-features have
overfitted certain trajectories, making them sort of look-
up tables. Finally, we train a linear classifier to find the
difference between activations originating from optimal or
suboptimal trajectories. Notably, the probe P performances
are better using c-features than d-features.

Correlation of features In order to further compare the
c-features and d-features, we clustered the samples using
either of them. While the visualisation look-alike for both,
as shown in figure 5, the attribution of classes is uncorre-
lated, with a maximum person coefficient per cluster pair
averaging over 0.1.

To categorise the two clusterisation approaches, we explored
the cluster specificity with respect to the square, state opti-
mality, and trajectory. For that, we computed the respective
entropy Hs, Ho, and Ht for each cluster, reported in table
2. We found no clear distinction between the two clusteri-
sations. This informs us that both sets of features contain

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

overspecific features that should be removed, as reported in
appendix D, but overall, they can be used in combination.

Metric Hs Ho Ht

c-features 2.2± 1.0 2.5± 1.3 0.57± 0.23
d-features 2.53± 0.92 2.9± 1.1 0.62± 0.17

Table 2: Entropy measures across the clusters of figure 5.
We report the mean entropy and the associated standard
deviation.

(a) c-features clustering

(b) d-features clustering

Figure 5: Clustering of the different samples using an ag-
glomerative clustering approach after an NMF followed by
a t-SNE for the visualisation (van der Maaten & Hinton,
2008; Pedregosa et al., 2011). We present the first 100 clus-
ters, and colours are repeated. Each colour represents 5
different clusters, and the colours are independent of (a) and
(b). While the structures are similar (due to the t-SNE pro-
jection), the labels are uncorrelated, suggesting a difference
in representations for the c-features and d-features.

4.2. Qualitative Concept Analysis

In this section, we cherry-picked features and the samples
that maximally activate them to present qualitative analyses.
The samples are selected here by finding the maximally
activating channels and subsequently computing the feature
on their respective full board. We first present in the figure 6
a feature that seemed to be linked to the pieces’ safety. And
we then present a rook threat feature in figure 7.

(a) Safe place

(b) Protection

Figure 6: Illustration of a feature that seems to be linked
with the concept of protection or safety. These samples
were among the 16 samples that most activated the feature.
On (a), the feature is activated on the king and a traditional
safe place for the king. The path for the king to join the
place is also activated. In (b), the black king is dangerously
threatened, and a safe move might be to bring back the
queen.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

(a) Rook threat 1

(b) Rook threat 2

Figure 7: Illustration of a feature that seems to be linked
with the concept of rook threat These samples were among
the 16 samples that most activated the feature. The feature
activates for both black and white. In (a), the black rook
should move to the red square to check the king, while in
(b), the white rook should take the knight.

4.3. Dynamic Concept Clustering

We present a way to explore features by grouping them. For
that, we used an agglomerative clustering of features and
reported the results in figure 8. It seems here that a lot of
features are outliers, but overall clusters appear. We found
that the cluster can be found on the activation patterns of
the feature, but it is not possible to use the feature vectors,
i.e., the columns of Wd.

(a) Clustered features

(b) Wd cosine similarities

Figure 8: (a) Clustering of the elicited features using an ag-
glomerative clustering approach after an NMF followed by
a t-SNE for the visualisation. We removed outlier features
that might be overspecific. (b) Cosine similarities of feature
vectors originating from two significant clusters. There is no
correlation between the intra and extra-cluster similarities.

Finally, we report a dendrogram in figure 9, i.e. an auto-
mated taxonomy of our elicited features. This analysis could
be leveraged to adopt a more or less-grained view of the
feature dictionary and thus explore it more easily. This is
especially important since a human in the loop still needs to
decipher the meaning of the features.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Figure 9: Dendrogram of the clustered features. The dendro-
gram can help visualise features and be leveraged to explore
and interpret groups of features.

5. Discussion
5.1. Limitations

Having good SAEs SAE is still an active field of research,
and there is an ongoing effort to find better training strategies
and extract the most knowledge from them. It has also
proven to be a challenge in this article, e.g. training with
a dictionary that is too big mostly led to trajectory-specific
features that seemed to implement a look-up table.

Feature interpretation In order to interpret the features,
human analysis cannot be totally replaced. We presented
automated analyses in addition to our qualitative results, and
we are excited about automated interpretability methods.
Yet, having a human in the loop might be the only way
not to defer to yet another black box. All the more so that
some features require expert knowledge to be faithfully
interpreted.

Contrastive interpretations Here, we didn’t focus all our
attention on finding contrastive interpretations, e.g. compar-
ing the heatmap obtained on the root board and the trajectory
board. Yet they might be more prominent, naturally emerg-
ing from our contrastive architecture. Thus, we should aim
to interpret the features in a pair of root and trajectory vi-
sualisation. In this respect features also show a blinking
problem, i.e. features can have a different facet for white
and black. Indeed, two similar boards will be encoded quite
differently for white and black since the board is flipped for
black. Because of this, we might need to pair black root
boards with black trajectory boards.

5.2. Future Work

Concept sampling While we presented our sampling re-
sults in the appendix B, our choices might have introduced

inductive biases. It would be important to quantify the im-
pact of different strategies for suboptimal sampling. For
example, it is unclear to what extent the pairing strategy
should take deeper trajectory boards and to what extent op-
timal and suboptimal trajectories can share a common state
path.

Weak-to-strong generalisation We already mentioned
that using a pair of latent activations is a more flexible
interpretability method. But to go further, it is also possible
to use the latent activation of smaller models to explain
bigger models’ strategies, as depicted by (Burns et al., 2023).
While we only covered an introductory analysis, we think
this track is highly promising and relevant to the safety of
such models.

Different architectures A direct extension of this work
would be to apply the same methodology to a model with
the same architecture but a different number of layers. The
scaling law could be compared across models w.r.t. the ELO
and layer. Furthermore, it would be interesting to use SAEs
with a common feature dictionary and a specific encoder
and decoder layer for each layer and checkpoint to compare
feature transferability.

6. Related Work
Discovering concepts in DNNs Linear probing is a simple
idea where you train a linear model (probe) to predict a
concept from the internals of the interpreted target model
(Alain & Bengio, 2018). The prediction performances are
then attributed to the knowledge contained in the target
model’s latent representation rather than to the simple linear
probe. In practice, a lasso formulation, i.e. l1 penalty, has
been a default choice as it encourages sparsity (Tibshirani,
1996), and has been augmented as sparse probing for neuron
attribution (Gurnee et al., 2023). Linear probing has also
been derived with concept activation vectors (Kim et al.,
2018), which often require training a linear probe (Dreyer
et al., 2023).

Explaining chess models Chess has always been a good
playground for AI, and explanability is no exception (Mc-
Grath et al., 2022). Simplified versions of this game have
even been created to make research easy (Hammersborg &
Strümke, 2023b;a). It is even possible to explore planning,
including tree search, through dynamical concepts (Schut
et al., 2023).

Explainable tree search It is possible to make tree search
explainable by default. By extracting a policy using a surro-
gate model (Soemers et al., 2022) or using a simpler heuris-
tic model (Soemers et al., 2019).

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

7. Conclusion
This article explored multiple approaches to gaining knowl-
edge from superhuman chess agents. We designed principles
to try to elicit knowledge from the neural network’s latent
spaces. We successfully found interpretable features that
were linked to the model plans. Furthermore, we proposed
an automated feature taxonomy to help explore features,
keeping a human in the loop. While presenting our key
results, we also showed automated sanity checks. Finally,
we presented the limitations and possible future directions
to tackle them or to continue this project.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alain, G. and Bengio, Y. Understanding intermediate layers

using linear classifier probes, 2018.

Bills, S., Cammarata, N., Mossing, D., Tillman, H.,
Gao, L., Goh, G., Sutskever, I., Leike, J., Wu,
J., and Saunders, W. Language models can
explain neurons in language models. https:
//openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html,
2023.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
Lasenby, R., Wu, Y., Kravec, S., Schiefer, N., Maxwell,
T., Joseph, N., Hatfield-Dodds, Z., Tamkin, A., Nguyen,
K., McLean, B., Burke, J. E., Hume, T., Carter, S.,
Henighan, T., and Olah, C. Towards monosemanticity:
Decomposing language models with dictionary learning.
Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Burns, C., Ye, H., Klein, D., and Steinhardt, J.
Discovering latent knowledge in language mod-
els without supervision. ArXiv, abs/2212.03827,
2022. URL https://api.semanticscholar.
org/CorpusID:254366253.

Burns, C., Izmailov, P., Kirchner, J. H., Baker, B., Gao,
L., Aschenbrenner, L., Chen, Y., Ecoffet, A., Joglekar,
M., Leike, J., Sutskever, I., Wu, J., and OpenAI.
Weak-to-strong generalization: Eliciting strong capabil-
ities with weak supervision. ArXiv, abs/2312.09390,
2023. URL https://api.semanticscholar.
org/CorpusID:266312608.

Campbell, M., Hoane, A., and hsiung Hsu,
F. Deep blue. Artificial Intelligence, 134
(1):57–83, 2002. ISSN 0004-3702. doi:
https://doi.org/10.1016/S0004-3702(01)00129-1.
URL https://www.sciencedirect.com/
science/article/pii/S0004370201001291.

Chen, Z., Bei, Y., and Rudin, C. Concept whitening for
interpretable image recognition. Nature Machine Intelli-
gence, 2(12):772–782, December 2020. ISSN 2522-5839.
doi: 10.1038/s42256-020-00265-z. URL http://dx.
doi.org/10.1038/s42256-020-00265-z.

Conerly, T., Templeton, A., Bricken, T., Marcus, J.,
and Henighan, T. Update on how we train saes.
2024. URL https://transformer-circuits.
pub/2024/april-update/index.html.

Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated
circuit discovery for mechanistic interpretabil-
ity. ArXiv, abs/2304.14997, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258418244.

Coulom, R. Efficient selectivity and backup operators
in monte-carlo tree search. In Computers and Games,
2006. URL https://api.semanticscholar.
org/CorpusID:16724115.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models. ArXiv, abs/2309.08600,
2023. URL https://api.semanticscholar.
org/CorpusID:261934663.

Dreyer, M., Pahde, F., Anders, C. J., Samek, W., and La-
puschkin, S. From hope to safety: Unlearning biases
of deep models via gradient penalization in latent space,
2023.

Gurnee, W., Nanda, N., Pauly, M., Harvey, K., Troit-
skii, D., and Bertsimas, D. Finding neurons in a
haystack: Case studies with sparse probing. Transac-
tions on Machine Learning Research, 2023. ISSN 2835-
8856. URL https://openreview.net/forum?
id=JYs1R9IMJr.

Hammersborg, P. and Strümke, I. Information based ex-
planation methods for deep learning agents–with applica-
tions on large open-source chess models. arXiv preprint
arXiv:2309.09702, 2023a.

Hammersborg, P. and Strümke, I. Reinforcement learning
in an adaptable chess environment for detecting human-
understandable concepts. IFAC-PapersOnLine, 56(2):
9050–9055, 2023b.

8

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://api.semanticscholar.org/CorpusID:254366253
https://api.semanticscholar.org/CorpusID:254366253
https://api.semanticscholar.org/CorpusID:266312608
https://api.semanticscholar.org/CorpusID:266312608
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
http://dx.doi.org/10.1038/s42256-020-00265-z
http://dx.doi.org/10.1038/s42256-020-00265-z
https://transformer-circuits.pub/2024/april-update/index.html
https://transformer-circuits.pub/2024/april-update/index.html
https://api.semanticscholar.org/CorpusID:258418244
https://api.semanticscholar.org/CorpusID:258418244
https://api.semanticscholar.org/CorpusID:258418244
https://api.semanticscholar.org/CorpusID:16724115
https://api.semanticscholar.org/CorpusID:16724115
https://api.semanticscholar.org/CorpusID:261934663
https://api.semanticscholar.org/CorpusID:261934663
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. Squeeze-
and-excitation networks, 2019.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C. J., Wexler,
J., Viégas, F. B., and Sayres, R. Interpretability be-
yond feature attribution: Quantitative testing with con-
cept activation vectors (tcav). In International Confer-
ence on Machine Learning, 2017. URL https://api.
semanticscholar.org/CorpusID:51737170.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., and Sayres, R. Interpretability beyond feature
attribution: Quantitative testing with concept activation
vectors (tcav), 2018.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M. (eds.), Machine Learning: ECML 2006, pp. 282–293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
ISBN 978-3-540-46056-5.

McGrath, T., Kapishnikov, A., Tomaš ev, N., Pearce, A.,
Wattenberg, M., Hassabis, D., Kim, B., Paquet, U., and
Kramnik, V. Acquisition of chess knowledge in Alp-
haZero. Proceedings of the National Academy of Sciences,
119(47), nov 2022. doi: 10.1073/pnas.2206625119.

Mikolov, T., tau Yih, W., and Zweig, G. Linguistic reg-
ularities in continuous space word representations. In
North American Chapter of the Association for Com-
putational Linguistics, 2013. URL https://api.
semanticscholar.org/CorpusID:7478738.

Nanda, N., Lee, A., and Wattenberg, M. Emer-
gent linear representations in world models of self-
supervised sequence models. ArXiv, abs/2309.00941,
2023. URL https://api.semanticscholar.
org/CorpusID:261530966.

Nasu, Y. Nnue efficiently updatable neural-network based
evaluation functions for computer shogi. Ziosoft Com-
puter Shogi Club, 2018.

Pascutto, Gian-Carlo and Linscott, Gary. Leela chess zero,
2019. URL http://lczero.org/.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Radford, A., Metz, L., and Chintala, S. Unsupervised
representation learning with deep convolutional gen-
erative adversarial networks. CoRR, abs/1511.06434,
2015. URL https://api.semanticscholar.
org/CorpusID:11758569.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kram’ar, J., Shah, R., and Nanda, N. Improv-
ing dictionary learning with gated sparse autoencoders.
2024. URL https://api.semanticscholar.
org/CorpusID:269362142.

Rajendran, G., Buchholz, S., Aragam, B., Schölkopf,
B., and Ravikumar, P. Learning interpretable
concepts: Unifying causal representation learning
and foundation models. ArXiv, abs/2402.09236,
2024. URL https://api.semanticscholar.
org/CorpusID:267657802.

Rosin, C. D. Multi-armed bandits with episode
context. Annals of Mathematics and Artificial
Intelligence, 61:203–230, 2011. URL https:
//api.semanticscholar.org/CorpusID:
207081359.

Schut, L., Tomasev, N., McGrath, T., Hassabis, D., Paquet,
U., and Kim, B. Bridging the human-ai knowledge gap:
Concept discovery and transfer in alphazero, 2023.

Shaham, T. R., Schwettmann, S., Wang, F., Ra-
jaram, A., Hernandez, E., Andreas, J., and Torralba,
A. A multimodal automated interpretability agent.
2024. URL https://api.semanticscholar.
org/CorpusID:269293025.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Soemers, D. J. N. J., Piette, É., and Browne, C. Biasing mcts
with features for general games. 2019 IEEE Congress
on Evolutionary Computation (CEC), pp. 450–457,
2019. URL https://api.semanticscholar.
org/CorpusID:84842738.

Soemers, D. J. N. J., Samothrakis, S., Piette, É., and
Stephenson, M. Extracting tactics learned from
self-play in general games. Inf. Sci., 624:277–298,
2022. URL https://api.semanticscholar.
org/CorpusID:255326863.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 58(1):267–288, 1996.

9

https://api.semanticscholar.org/CorpusID:51737170
https://api.semanticscholar.org/CorpusID:51737170
https://api.semanticscholar.org/CorpusID:7478738
https://api.semanticscholar.org/CorpusID:7478738
https://api.semanticscholar.org/CorpusID:261530966
https://api.semanticscholar.org/CorpusID:261530966
http://lczero.org/
https://api.semanticscholar.org/CorpusID:11758569
https://api.semanticscholar.org/CorpusID:11758569
https://api.semanticscholar.org/CorpusID:269362142
https://api.semanticscholar.org/CorpusID:269362142
https://api.semanticscholar.org/CorpusID:267657802
https://api.semanticscholar.org/CorpusID:267657802
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:269293025
https://api.semanticscholar.org/CorpusID:269293025
https://api.semanticscholar.org/CorpusID:84842738
https://api.semanticscholar.org/CorpusID:84842738
https://api.semanticscholar.org/CorpusID:255326863
https://api.semanticscholar.org/CorpusID:255326863

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Tigges, C., Hollinsworth, O. J., Geiger, A., and
Nanda, N. Linear representations of sentiment
in large language models. ArXiv, abs/2310.15154,
2023. URL https://api.semanticscholar.
org/CorpusID:264591569.

Trager, M., Perera, P., Zancato, L., Achille, A., Bha-
tia, P., and Soatto, S. . Linear spaces of mean-
ings: Compositional structures in vision-language
models. 2023 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 15349–15358,
2023. URL https://api.semanticscholar.
org/CorpusID:257766294.

van der Maaten, L. and Hinton, G. E. Visualizing
data using t-sne. Journal of Machine Learning Re-
search, 9:2579–2605, 2008. URL https://api.
semanticscholar.org/CorpusID:5855042.

10

https://api.semanticscholar.org/CorpusID:264591569
https://api.semanticscholar.org/CorpusID:264591569
https://api.semanticscholar.org/CorpusID:257766294
https://api.semanticscholar.org/CorpusID:257766294
https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:5855042

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A. Additional Chess Modelling Details
Board encoding The current position is encoded using planes, formally channels, equivalent to the colours in images, in a
tensor of the shape 112× 8× 8. The 112 planes can be first decomposed into two parts, the first 104 planes corresponding to
the history planes (8 last boards) and 8 additional planes encoding the game metadata. Each board of the history is encoded
through 13 distinct planes, comprising two sets of 6 sparse planes each for the current2 player’s and the opponent’s pieces,
as illustrated in figure 2a. The last 8 planes are always full planes and represent meta information like the castling rights, the
current player’s colour and the half-move clock value.

Move encoding The policy outputted by the network is a vector of size 1858. This number is obtained considering each
starting position and counting all accessible ending positions using queen and knight moves. The different promotions
should also be accounted for, with promotion to knight being the default in lc0. Note that as the corresponding moves are
relative to the swapped board, promotion is only possible at rank 8. This table is hardcoded within the chess engine for
programming efficiency and readability.

Tree-search In practice, the Q-values Q(s, a) are obtained through the value V (s+ a), and by adding the move-left-head
utility Mθ(s+ a) defined in equation 11. The value is simply computed using the network outputted probabilities and the
defined reward Wθ(s+ a) ·R. These engineering tricks make the network tuning flexible, e.g., to incentivise drawing or
aiming for short games.

M(s+ a) = sign(−V (s+ a)) ·Πmmax
[m · (Mθ(s+ a)−Mθ(s))] · χ

[
∼
V (s+ a)

]
(11)

With χ a second-degree polynomial function and
∼
V the extra-value ratio defined as:

∼
V (s+ a) = ReLU

(
|V (s+ a)| − Vthreshold

1− Vthreshold

)
(12)

Here, the final bound used, equation 13, doesn’t rely on the visit could N(s, a). It thus can be used with the raw output of
the neural network to perform the sampling.

U(s, a) = αV (s+ a) + βM(s+ a) + γPθ(s, a) (13)

B. Technical Details
B.1. Dynamical Concepts Dataset

Chess boards dataset In order to train the SAEs, we created a base dataset3 of around 20k games from the TCEC archives.
These games were then processed and transformed into 20M individual boards to form the board dataset4. The first moves
were filtered only to take position after the ”book exits” and after at least 20 plys. For this preliminary study, we sampled
trajectories from 200k random boards for the train split and 20k boards in the test split. The sampling of trajectories is
further detailed below.

Concept sampling In order to choose the best strategy, i.e. the best hyperparameters of equation 13, we run several
matches between the different models and hyperparameters; the results are reported in table 3. Using this strategy, we then
constructed a trajectory dataset5 for each model. This dataset was then converted into an activation dataset6 to make the
SAE training easy to configure. When sampling suboptimal trajectories, we used a normalised distribution without any
optimal action.

2Note that the player is the same for all 8 boards of the history.
3Released upon publication.
4Released upon publication.
5Released upon publication.
6Released upon publication.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Win rate vs Pθ(s)
Model 1893 3051 4012 4238 Average

St
ra

te
gy

Raw Q-values: Wθ(s+ a) ·R −0.18 −0.48 −0.73 −0.78 −0.55± 0.24
U(s, a) (α = 1, β = 0, γ = 0.25) −0.17 −0.45 −0.65 −0.63 −0.48± 0.19
U(s, a) (α = 1, β = 0, γ = 0.5) −0.10 −0.35 −0.67 −0.48 −0.40± 0.21
U(s, a) (α = 1, β = 0, γ = 1) 0.03 0.03 −0.13 −0.15 −0.05± 0.09
U(s, a) (α = 1, β = 0.5, γ = 0) −0.18 −0.57 −0.73 −0.68 −0.54± 0.22
U(s, a) (α = 1, β = 0.5, γ = 0.1) −0.20 −0.43 −0.72 −0.68 −0.51± 0.21
U(s, a) (α = 1, β = 0.5, γ = 0.25) −0.07 −0.37 −0.67 −0.65 −0.44± 0.25
U(s, a) (α = 1, β = 0.5, γ = 0.5) −0.12 −0.33 −0.55 −0.43 −0.36± 0.16

Table 3: Hyperparameters tournament scores against the raw policy baseline. Only the combinations selected after an initial
random search are reported. Here, the policy is better for almost all models and combinations.

B.2. SAE Training

Procedure We based our SAE training on recent work from like (Rajamanoharan et al., 2024) and take into account the
monthly updates of Anthropic like (Conerly et al., 2024). We will be reporting relevant metrics for our SAEs in the figure
10. β1 = 0 stabilised the training. We also use the modified loss, described in equation 14, in order to prevent arbitrary
norm of dictionary columns that trick the ℓ1 norm. Indeed, without it, the features f can get a low ℓ1 norm but not a low ℓ0
norm since even small features can reconstruct the activation x if Wd is unconstrained.

LSAE = Eh

[
||h− ĥ||22 + λ

∑
i

|fi| · ||Wdi||2

]
(14)

We will release our trained assets7. To make the SAE analysis easy, we also will release the feature activation dataset8 which
will be then used in our interactive demonstration9. Hyperparameters are chosen to balance the trade-off between sparsity
and reconstruction accuracy, as presented in the figure 10a. We also monitor the activation of the feature, reported in figure
10b, and as already discussed in the section 4.1.

7Released upon publication.
8Released upon publication.
9Released upon publication.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

(a) Trade-off sparsity/accuracy (b) Feature activation histogram

Figure 10: (a) Trade-off between the coefficient R2 measuring the reconstruction accuracy vs the norm ℓ0 of the features,
measuring the sparsity. The plot is obtained using a sweep of the coefficient λ and shows a power law dependence. (b) The
histogram of feature activation rate F . As already pointed out by previous works on SAE, a low-frequency cluster naturally
emerges.

Results When training SAEs, the first metrics to report, in addition to the losses, are the ℓ0 norm of features and the
determination coefficient R2 for the reconstruction. Indeed, we aim to jointly minimise the norm ℓ0 to get a sparse
decomposition and maximise R2 to ensure a correct reconstruction of the activations. We showed in the table 4 the different
metrics obtained for the model used in this article. In particular, the trained SAE has, on average, 73 active features while
trying to reconstruct activations of dimension 256, a reduction of around 71%. But with respect to the dictionary, it represents
only 3.5% of active features.

Losses MSE Sparsity Lcontrast ℓ0 R2

train 21.7 26.7 10.7 73.3 0.81
validation 21.8 26.8 10.7 73.4 0.81

Table 4: Losses and metrics obtained for the model used in this article for the sets train and validation. MSE
refers to the mean squared error, e.g. the reconstruction loss Eh

[
||h− ĥ||22

]
, and similarly Sparsity refers to ||f ||1. ℓ0 and

R2 are metrics that were optimised using the validation set. ℓ0 measures the feature sparsity and R2 the activation
reconstruction (1 is the best). As ℓ0 is a count, it can be understood knowing that the activation dimension is 256 and the
dictionary dimension is 2048.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

(a) CSAE (b) SAE

Figure 11: Histogram of the cosine similarities of the dictionary vectors. (a) is reported for our CSAE and (b) for a regular
SAE. We find that we conserve the independence of the learned directions.

C. Concepts in Different Models and Layers
Comparing features by pair It is important to investigate the correlation between features, which is a simple proxy to
understand basic interactions between features. This analysis can be run for the c-features and the d-features, which is
illustrated in figure 12. We first present a sanity check on the c-features in section 4.1 and expand d-features categorisation
in 4.3. This method is especially relevant when dealing with different latent spaces, e.g. from different models or layers. In
the following paragraph, we present a small investigation of the correlation between features from different layers and at
different training stages.

Figure 12: In order to compare a pair of features, the first indicator is the correlation of the feature activation (right). It is
also possible to count common samples retrieved using activation maximisation (left).

Probing across different latent spaces In order to investigate universal concepts shared across models or layers we
need to probe different latent spaces. A quick analysis of these latent spaces yields that they differ, at least in barycentre,
amplitude, and principal components. We thus only investigate the correlation between features and leave the design of
universal SAEs decomposing multiple latent spaces simultaneously for future work. Similarly to (Bricken et al., 2023), to
analyse features of different SAEs, we used the correlation of the activations to which we add the correlation between the

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

most activated sample, i.e. using data-based activation maximisation (Chen et al., 2020).

Feature comparison The study was on a 10-layer model across 4 checkpoints named after their ELO, i-e, their chess
performance level; the results are shown in figure 13. While conclusions must be drawn with care, Figure 13(a) seems to
show a scaling law of feature density or storage across layers and training. Later latent spaces are denser, surely due to
refined and more complex information, but the training compresses the latent spaces, possibly using sharper features. Figure
13(b) represents the correlation between maximum activated samples between the last layer of ELO-4238 and the layers of
ELO-4012 and indicates that earlier layers wield more universal features.

(a) ||f ||0 across layers for different models named after their ELO. (b) Overlap for ELO-4012 with the last layer of ELO-4238.

Figure 13: Feature analysis of the agents’ latent spaces, summarising scaling properties. The SAEs trained for this figure are
regular ones (without the contrastive framing). (a) represents the evolution of ℓ0 on different models and at different layers.
There seems to be a general trend of information densification through layers but more condensed in better models. (b)
represent the correlation between features of different layers. While the gradual correlations is expected to correlate with
layers, the peak at 100% could indicate over-active features or universal ones.

D. Unwanted Features
We show two kinds of unwanted features that are present in our trained SAE.

Square specific features Features that are specific to a given square. They act as over-generic features.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

(a) White facet (b) Black facet

Figure 14: Illustration of a feature that is linked to the lower left square (a1). (a) was among the 16 samples that most
activated the feature, and (b) was chosen arbitrarily. The feature is sometimes dead or differently activated but mostly
activates on a1. It also happens to activate on a8 relatively when the heatmap is when the heatmap is flipped according to the
model’s view.

Trajectory specific features Features that are specific to a given trajectory. They act as lookup tables.

(a) Specific trajectory state (b) Protected square

Figure 15: Illustration of a feature that is linked to a particular trajectory. (a) was among the 16 samples that most activated
the feature, and (b) was chosen arbitrarily. On (a), the feature is activated on almost every square, but on (b), it is dead.

16

