
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a paper at DATA-FM workshop @ ICLR 2025

TOWARD EFFICIENT INFLUENCE FUNCTION:
DROPOUT AS A COMPRESSION TOOL

Anonymous authors
Paper under double-blind review

ABSTRACT

Assessing the impact of training data points on machine learning models is crucial
for understanding the behavior of the model and enhancing the transparency of
modern models. Influence function provides a theoretical framework for quantify-
ing the effect of individual training data points on a model’s performance on given
specific test data points. However, the computational cost of influence function
presents significant challenges, particularly for large-scale models. In this work,
we introduce a novel approach that leverages dropout as a gradient compression
mechanism to compute the influence functions more efficiently. Our methods sig-
nificantly reduces computational and memory overhead, not only during the in-
fluence function computation but also in the compression process itself. Through
theoretical analysis and empirical validation, we demonstrate that using dropout
as a compression tool in influence function computation preserves critical com-
ponents of the data influence and enables its application to modern large-scale
models.

1 INTRODUCTION

Large foundation models such as GPT-4 (Achiam et al., 2023), Claude (Anthropic, 2023), Gem-
ini (DeepMind, 2023), and Llama (Touvron et al., 2023), have showcased remarkable capabilities
across a variety of tasks. Despite their success, even the state-of-art models face persistent chal-
lenges, including hallucination (Huang et al., 2023; Lin et al., 2021) and the generation of toxic and
biased content (Wang et al., 2023a; Abid et al., 2021). A critical factor underlying these shortcom-
ings is the composition and quality of their training data (Park et al., 2023). Furthermore, training
data not only impart knowledge to these models (Meng et al., 2022; Wang et al., 2023b), but also
form the foundation of their capabilities (Mirzadeh et al., 2024). These raise a critical question:
which specific data points contribute most significantly to a model’s performance, and which ones
negatively impact its capabilities? Addressing this question highlights the need for robust methods to
evaluate the impact of individual training data points on a model’s behavior and overall performance.

Influence function, a theoretical method rooted in statistics (Hampel, 1974; Law, 1986), provides
a powerful tool for assessing the impact of individual training data points on a model’s learned
parameters and subsequently on the model’s performance. Originally introduced in the context of
robust statistics, it was used to assess the robustness of statistical estimators (Huber & Ronchetti,
2011). The influence function offers a framework to understand how modifications to the training
dataset propagate through the model. The concept has since been adapted to deep learning (Koh &
Liang, 2017; Koh et al., 2019), enabling its application to modern large-scale models. This method
has been wildly used in training data selection (Xia et al., 2024; Yu et al., 2024; Hu et al., 2024),
model interpretation (Grosse et al., 2023; Guo et al., 2020), data synthesizing (Li et al., 2024), and
mislabel data detection (Koh & Liang, 2017; Kwon et al., 2023; Zhou et al., 2024).

Although the influence function provides a robust framework and has demonstrated promising re-
sults, their practical application is often hampered by high computational costs (Kwon et al., 2023;
Zhou et al., 2024; Choe et al., 2024). Computing influence function involves calculating an inverse
Hessian-vector product (iHVP) and the gradients of the loss function with respect to both train-
ing and test datasets. Since the Hessian matrix’s dimensionality scales quadratically with the size
of the model, and each gradient’s dimensionality is the same as the model size itself, this process
becomes prohibitively expensive for large-scale models. Previous methods have attempted to mit-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a paper at DATA-FM workshop @ ICLR 2025

igate the computational burden of the influence function using iterative methods (Agarwal et al.,
2017; Koh & Liang, 2017), employing an approximate version (Kwon et al., 2023), or compress-
ing gradients (Park et al., 2023; Choe et al., 2024). However, these approaches still face challenges
in scaling to modern large-scale models or adapting to diverse model architectures and structures,
which further limits their practicality.

Research has shown that modern machine learning (ML) models are highly overparameterized (Fis-
cher et al., 2024; Balaji et al., 2021), with only a small subset of parameters playing a critical role
in their performance (Xue et al., 2024; Fedus et al., 2022). Furthermore, previous studies indicate
that the effects of training data are closely tied to the high spectrum of the Hessian matrix, where
the majority of eigenvalues are concentrated near zero, and only a few outliers deviate significantly
from the bulk (Sagun et al., 2017; 2016). These findings highlight that tracking data influence does
not require exhaustive computation over the entire parameter space, but can focus on a few critical
directions or a small subset of parameters.

Our Contributions. We observe that the influence of particular training data points on the overall
performance of a ML model can be effectively tracked through a small subset of parameters, re-
ducing the need to consider the full parameter space. Building on this, we propose a novel dropout-
based compression method to compress gradients that is straightforward to implement and scales
efficiently to large-scale ML models, which significantly reduces both memory and computational
complexity associated with the computation of influence function and the compression process of
gradients. Through theoretical analysis and empirical experiments, we validate the effectiveness of
the proposed method, demonstrating its ability to accurately capture data influence while offering
computational efficiency.

2 PRELIMINARIES

We denote the input space and the output space by X and Y , respectively. Let Dtr =
{z1tr, z2tr, · · · , zntr } represent the training dataset, where each training data point zitr = (xi

tr, y
i
tr) ∈

X ×Y . For a given data point z = (x, y) and a model with parameters θ ∈ Θ, let l(y, fθ(x)) denote
the loss function, where fθ : X → Y is the model parameterized by θ, and l : Y × Y → R mea-
sures the discrepancy between the output and the ground truth. For a vector θ, the gradient of the
loss function evaluated at the data point z with respect to θ is denoted as ∇θl(y, fθ(x)). Addition-
ally, let Dval = (z1val, z

2
val, · · · , zmval) denote the validation dataset, where each validation data point

zjval = (xj
val, y

j
val) ∈ X × Y . Finally, we denote the number of parameters in the model by d.

2.1 INFLUENCE FUNCTION

Influence function quantifies how the model parameters change in response to upweighting a specific
training data point (Law, 1986; Hampel, 1974; Koh & Liang, 2017). Formally, given an infinitesi-
mally small ϵ > 0, the upweighted empirical risk minimization problem is formulated by increasing
the weight of the k-th training data point zktr = (xk

tr, y
k
tr) in the loss function. The optimization

problem is given by:

θ(k)(ϵ) = argmin
θ∈Θ

1

n

n∑
i=1

l(yitr, fθ(x
i
tr)) + ϵl(yktr , fθ(x

k
tr)).

Assuming the loss function is twice-differentiable and strongly convex in θ, the influence of the
k-th training data point zktr = (xk

tr, y
k
tr) ∈ Dtr on the emprircal risk minimizer θ∗ is defined as the

derivative of θ(k)(ϵ) at ϵ = 0 (Koh & Liang, 2017):

Iθ∗(zktr) :=
dθ(k)(ϵ)

dϵ

∣∣∣
ϵ=0

= −H−1gktr ,

where H := n−1
∑n

i=1 ∇2
θl(y

i
tr, fθ(x

i
tr))

∣∣
θ=θ∗ is the empirical Hessian matrix and gktr =

∇θl(y
k
tr , fθ(x

k
tr))

∣∣
θ=θ∗ represents the gradient of the loss function evaluated at the k-th training data

point zktr .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a paper at DATA-FM workshop @ ICLR 2025

For the validation dataset Dval = (z1val, z
2
val, · · · , zmval), the influence of the training data point zktr on

the validation loss is (Koh & Liang, 2017; Kwon et al., 2023):

I(zktr) := (
1

m

m∑
j=1

gjval)
TIθ∗(zktr) = −(

1

m

m∑
j=1

gjval)
TH−1gktr , (1)

where gjval = ∇θ(y
j
val, fθ(x

j
val))

∣∣∣
θ=θ∗

is the gradient of the loss function evaluated at zjval.

The influence function I(zktr) provides an intuitive method to evaluate how a training data point
zktr affects the performance on the validation dataset Dval. In other words, the influence function
quantifies whether the training data point zktr = (xk

tr, y
k
tr) is beneficial or detrimental to the loss

evaluated on Dval. When the loss function is cross-entropy loss, the Hessian can be approximated
with the Fisher Information Matrix (FIM), which is equivalent to the Gauss-Newton Hessian (Grosse
et al., 2023; Martens, 2020; Bae et al., 2022). Note that H is not invertible if the dimension of
θ exceeds the size of the training dataset n, which is common in many modern ML models. To
address this issue, a damping term is added to H , i.e. using H + λId replace H , where λ is a small
constant, and Id is a d× d identity matrix.

2.2 EFFICIENTLY CALCULATING INFLUENCE FUNCTION

Computing the influence function faces several challenges when fθ is a large-scale deep learning
model (Kwon et al., 2023; Basu et al., 2020; Bae et al., 2022). A key obstacle is that the size of the
Hessian becomes prohibitively large to compute directly, as its dimensionality scales quadratically
with the number of the model parameters. This limitation is a primary reason why the influence
function is not widely practical for modern large-scale ML models.

To address this challenge, several methods (Schioppa et al., 2022; Park et al., 2023) propose project-
ing gradients onto a low-dimensional subspace with a Gaussian random matrix (Johnson, 1984) and
computing the influence function on the subspace as follows:

Ĩ(zktr) = −(
1

m

m∑
j=1

gjval)
TPT (PHPT)−1Pgktr , (2)

where P ∈ Rr×d is a Gaussian random matrix. Here, r represents the dimensionality of the com-
pressed subspace. By compressing gradients into a smaller subspace using the projection matrix P ,
the computational and memory requirements of the computation of influence function are reduced,
but it introduce additional computing and memory costs (Choe et al., 2024). The computational cost
of calculating a gradient is O(d) with backpropagation. In comparison, the cost of compressing the
gradient into a lower-dimensional subspace using P is O(rd). This makes a gradient compression
process more expensive than the process of calculating a gradient. Additionally, the memory cost of
the projection matrix is O(rd), which can exceed the memory usage of the model itself, especially
when r is large, which is to preserve expressiveness. To improve both accuracy and efficiency of
influence function, further advanced method in gradient compression methods are necessary.

3 METHOD

To address the computational and memory challenges associated with influence function computa-
tion, we propose a novel approach that leverages dropout as a gradient compression mechanism. We
demonstrate that the influence of training data on a small subset of parameters can effectively reflect
its influence on the entire model. Unlike traditional gradient compression methods, which require a
Gaussian random matrix as a compression matrix (Johnson, 1984), incurring significant memory and
computation costs, our method randomly drops a subset of gradient entries. This technique reduces
the dimensionality of the gradient and eliminates the additional memory and computation overhead
associated with explicit projection matrices.

3.1 DROPOUT AS A COMPRESSION MECHANISM

Dropout is a widely used regularization technique in deep learning (Srivastava et al., 2014), where
a subset of model parameters or activations is randomly set to zero during training. We apply a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a paper at DATA-FM workshop @ ICLR 2025

similar approach to the gradient vectors during influence function computation, effectively com-
pressing the gradient by retaining only a small subset of its components. Let g represent the gra-
dient of the loss function with respect to the model parameters for a data point z = (x, y), i.e.
g = ∇θl(y, fθ(x))

∣∣
θ=θ∗ . To compress the gradient, we randomly sample r indices corresponding to

the retained components of the gradient g. Mathematically, this process is equivalent to generating a
binary matrix Ĩ ∈ {0, 1}r×d. Each row of Ĩ has exactly one entry equal to 1, while all other entries
are 0. Also, there is only one non-zero entry in every column. This ensures that the r-dimensional
compressed gradient retains exactly r components of the original gradient. The compressed gradient
g̃ ∈ Rr is then computed as:

g̃ = Ĩg.

The binary matrix Ĩ can be constructed by randomly sampling r rows from a d-dimensional identity
matrix Id. Each row corresponds to selecting one component of g. Specifically, Ĩij = 1 indicated
that the j-th component of the gradient is retained, while all other components are dropped.

It is important to note that the introduction of Ĩ is primarily for theoretical analysis. In practice,
we do not need to explicitly construct the matrix Ĩ and perform matrix multiplication. This avoids
unnecessary computational and memory overhead, thereby simplifying the implementation while
maintaining efficiency. We randomly select a subset of entries of each gradient to do compression
and compute the influence function using the compressed gradients.

Formally, replacing the original gradients with the compressed versions, the influence function is:

Ĩ(zktr) = −(
1

m

m∑
j=1

g̃jval)
T H̃−1g̃ktr = −(

1

m

m∑
j=1

gjval)
T ĨT (ĨHĨT)−1Ĩgktr . (3)

The matrix H̃ is the Hessian matrix/Gaussian-Newton Hessian calculated with respect to the com-
pressed gradients, i.e. H̃ = ĨHĨT .

3.2 EFFICIENCY COMPARISON

Even though tradition gradient compression methods, such as random projection (Johnson, 1984)
used in TRAK (Park et al., 2023), reduce the complexity of the calculation of influence function,
they rely on explicit projection matrices to reduce the dimensionality of the gradient. This will intro-
duce significant memory and computational overhead, because these methods use dense projection
matrices with a memory complexity of O(rd) and computational complexity dominated by matrix-
vector multiplication, which is O(rd). In contrast, our dropout compression method avoids the need
for explicit projection matrices. By directly sampling and retaining a subset of gradient components,
our method reduces memory complexity and computational cost to O(r), as only the r indices and
corresponding gradient entries are sampled and stored. This is significantly more efficient than the
O(rd) complexity of traditional methods.

Other efficient influence function computation methods, such as LiSSA (Agarwal et al., 2017) and
LOGRA (Choe et al., 2024), employ stochastic iterative approaches and the Kronecker product
for gradients computation, respectively. While these methods reduce the computational cost of the
iHVP, they still require expensive iterative algorithms (Klochkov & Liu, 2024) or are hard to ex-
pand to all deep learning architectures (Kwon et al., 2023; Grosse et al., 2023). The comparison of
computational and memory complexities with efficient influence function computation methods are
detailed in Appendix C.

3.3 ERROR ANALYSIS

While the compressed version in equation 3 offers a more efficient method for computing influence
functions compared to equation 2, it may introduce significant errors. Intuitively, this is because the
Gaussian random matrix compresses gradient information, whereas the dropout approach simply
discards most gradient information. To address this concern, we theoretically analyze the error
incurred by equation 3 and compare it with the error from equation 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a paper at DATA-FM workshop @ ICLR 2025

Specifically, for both methods, the compression error is given by the difference I(zktr)− Ĩ(zktr), and
the spectrum norm of this error can be expressed as:

||I(zk)− Ĩ(zk)||2 = ∥(1
m

m∑
j=1

gjval)
T∆Hgktr∥2 ≤ ∥ 1

m

m∑
j=1

gjval∥2∥∆H∥2∥gktr∥2, (4)

where ∆H is defined differently for the two compression methods:

∆H = (λId +H)−1 − PT (λIr + PHPT)−1P, (5)

for the Gaussian compression method and

∆H = (λId +H)−1 − ĨT (λIr + ĨHĨT)−1Ĩ , (6)

for the dropout compression method. Here, λ is the damping value used in both expressions, and
∥ · ∥2 denotes the spectral norm of a matrix or the L2 norm of a vector. The key factor influencing
the error is the spectral norm of ∆H , i.e. ∥∆H∥2, which depends on the difference induced by
compression. In the following theorems, we analyze the spectrum of ∆H and demonstrate that the
error introduced by the Gaussian-based compression method is significantly larger than dropout-
based compression method.

Theorem 1. For Gaussian-based compression method in equation 2, if λId + PTPH is invertible
and the dimension of θ exceeds the size of the training dataset n, the spectral norm of the difference
∥∆H∥2 is bounded by:

O(d+ d2σmax(H)),

where σmax(H) denotes the largest singular value of H .

To establish this result, we simplify equation 5 using woodbury matrix identity (Harville, 1998) and
leverage non-asymptotic theory of random matrices (Rudelson & Vershynin, 2010; Bai & Yin, 2008)
to get the upper bound. A detailed proof is provided in Appendix E.1.

Theorem 2. For the dropout-based compression method in equation 3, if the dimension of θ exceeds
the size of training dataset n, the spectral norm of the difference ||∆H||2 is bounded by:

O(σmax(H)),

where σmax(H) denotes the largest singular value of H .

The proof of Theorem 2 are similar to the proof of 1, and this is detailed in Appendix E.2.

Although the error bounds are loose and derived without fully accounting for the effect of com-
pression size on the error, they provide valuable insights into the utility of the dropout-based com-
pression in influence function computation. The theoretical bound indicates that the dropout-based
compression offers a significant advantage in terms of computational efficiency while maintaining a
reasonable level of accuracy compared to other methods.

These results suggest that dropout, traditionally used as a regularization technique, can serve as a
lightweight and practical tool for influence function computations, particularly in scenarios where
computational resources are constrained.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our method: Use dropout as a compression tool for
influence function computation, in terms of accuracy and efficiency, both of which are important
in real-world data attribution tasks. Specifically, we investigate the effectiveness of our approach
through two key experiments: mislabeled data detection 4.1, which uses influence function to iden-
tify mislabeled data points in a noisy training dataset, and model retraining 4.2, which identifies the
most influential training data points for a model and retrains the model without those points to ob-
serve their impact on performance. To comprehensively evaluate our method, we start with relatively
small experimental setups and then scale up to billion-parameter models. This allows us to assess
how well our method generalizes across settings and to demonstrate its scalability. More details of
the setups of experiments are provided in appendix D.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 1: Performance (AUC) of mislabeled data detection on selected GLUE benchmarks (MRPC,
QNLI, SST2, and RTE) using various methods for influence function computing. The reported re-
sults are averaged over 10 independent runs. The best results are highlighted in bold, and the second-
best results are underlined.

rank=2 rank=8
Method MRPC QNLI SST2 RTE MRPC QNLI SST2 RTE
Orig. 0.812 0.763 0.809 0.616 - - - -
DataInf 0.778 0.754 0.917 0.568 0.765 0.744 0.912 0.540
LiSSA 0.651 0.504 0.509 0.505 0.663 0.502 0.480 0.499
Hessian-Free 0.681 0.630 0.822 0.527 0.679 0.559 0.764 0.502
Gaussian 0.792 0.797 0.926 0.586 0.815 0.799 0.920 0.586
Dropout (Ours) 0.800 0.796 0.930 0.598 0.815 0.800 0.924 0.600

4.1 MISLABELED DATA DETECTION

Mislabeled data points often negatively impact a model’s performance. It is expected that the influ-
ence values of these mislabeled data points will be larger than those of clean data points, as their
inclusion tends to increase the overall loss.

In this experiment, we use four binary classification datasets from GLUE benchmark (Wang, 2018),
and synthetically generate mislabeled training data points similar to (Kwon et al., 2023), flipping
a binary label for 20% of randomly selected training data points to simulate the situation where a
part of data points are noisy. We use the RoBERTa model (Liu, 2019) and fine-tune the model on
those noisy datasets with Low-Rank Adaption (LoRA) (Hu et al., 2021) with 2-rank and 8-rank sep-
arately. As for the baselines, we investigate the performance of four efficient methods as well as the
Orig. influence function in equation 1. We consider LISSA (Koh & Liang, 2017) with 10 itera-
tions, Hessian-freewhich computes the dot product of gradients (Pruthi et al., 2020), DataInf
that uses an approximation version of influence function (Kwon et al., 2023) and Gaussian which
uses a Gaussian random matrix to compress gradients similar to (Park et al., 2023). Some of details
of these methods are attached in Appendix B. For Gaussian-based compression and dropout-based
compression, we use r = 16 for both 2-rank and 8-rank LoRA fine-tuning.

For evaluation metrics, we use the area under the curve (AUC) score to measure the quality of the
influence function values. The AUC quantifies the ability of the influence function to distinguish
between mislabeled and clean data points. Specifically, it measures the probability that a score ran-
domly selected from a class of mislabeled data is greater than that of a class of clean data. An
influence function that reliably assigns larger influence values to mislabeled data points will achieve
a high AUC score, reflecting its effectiveness in identifying mislabeled examples.

Results Table 1 shows the mislabeled data detection ability comparison of the six influence compu-
tation methods when the rank of LoRA is 2 and 8. The detection ability is evaluated with AUC, and
the results are averaged over 10 independent runs. The results show that Dropout achieves compa-
rable detection ability to Gaussian, which uses a Gaussian random matrix to compress gradients,
and Orig. which is the original version of influence function. Also, it has significantly better de-
tection ability than DataInf, LiSSA and Hessian-Free. Same as (Kwon et al., 2023), we find
that Orig. does not always have the best results. This is potentially because the gradients contain
some redundant information which has some negative impacts on the performance of Orig..

In terms of runtime, Dropout shows superior computational efficiency. For instance, on the GLUE-
QNLI dataset with 8-rank LoRA, Dropout takes 4.36 seconds while DataInf take 18.79 seconds
for computing the iHVP. Even though Hessian-Free gets rid of computing the iHVP, the perfor-
mance is much worse than our method.

The time consumption of these methods across various benchmarks is provided in Appendix D.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 2: Accuracies (%) of ResNet-9 on the test dataset after removing influential training data
points (remove 5%, 10%, 30% ,and 50% from the subset containing 10000 data points) from CIFAR-
10 identified by various methods. The reported results are averaged over 5 independent runs. The
accuracy trained on the full dataset (containing 10000 data points) is 80.50%. The best results are
highlighted in bold, and the second-best results are underlined.

Method 5% 10% 30% 50%

Random 79.28 79.94 77.16 70.84
Hessian-Free 79.36 77.88 68.38 58.52
DataInf 78.82 78.66 69.62 56.40
LOGRA 79.60 75.64 69.76 64.54
Gaussian 80.18 77.36 67.90 56.72
Dropout 77.88 75.86 68.30 55.96

4.2 MODEL RETRAINING

The model retraining process begins by identifying the most influential data points. A specified
number of highly influential data points are removed from the training dataset, and the model is then
retrained on the remaining data. The performance of the retrained model is subsequently evaluated
on the test dataset. A significant drop in performance after removing these data points underscores
their critical role in the model’s learning process and demonstrates the effectiveness of the method
used to identify influential data points.

4.2.1 SMALL-SCALE SETUPS

We initiate this experiment with small-scale setups: (1) ResNet-9 (He et al., 2016) with CIFAR-
10, in which we train a ResNet-9 model from scratch using a randomly selected subset containing
10000 data points and evaluate on a test dataset containing 256 data points by accuracy, and (2)
GPT-2 (Radford et al., 2019) with WikiText, in which we full fine-tune a GPT-2 using 2000 text
samples and evaluate on a small test set containing 50 text samples using perplexity. We use influence
function to compute the influential score of each training data point and rank training data points by
influential scores. Then we remove the top-k or top-k percent most valuable data points from the
training dataset and retrain the model multiple times without them. A larger performance decrease
indicates greater effectiveness of the method in identifying the most valuable data points. On these
benchmarks, we compare the performance of Dropout against five baselines: Random, which
removes training data points randomly; DataInf (Kwon et al., 2023) which uses the approximated
version of the influence function; Hessian-Free (Pruthi et al., 2020) which computes the dot
product of gradients directly; LOGRA (Choe et al., 2024) which uses Kronecker product for gradients
computation and compression; and Gaussian (Park et al., 2023) which uses a Gaussian random
matrix to compress gradients. Some of the details of these methods are attached in Appendix B. For
LOGRA we use rin = rout =

√
r = 64, and for Gaussian and Dropout we use r = 64 to

compress the gradients. Because LOGRA makes use of Kronecker product to get the gradients, the
compression size is much larger.

Results The retraining performance of ResNet-9 and GPT-2 are in Table 2 and Table 3, separately.
The reported results are averaged over 5 independent runs. We observe that Dropout achieves
performance comparable to traditional compression methods like Gaussian and the more recent
one like LOGRA in both experiments. Moreover, it significantly outperforms Hessian-Free and
DataInf.

In terms of efficiency, both Dropout and Gaussian demonstrate impressive performance in com-
puting iHVP due to the compression of gradients. Moreover, the efficiency of gradient compression
becomes crucial when dealing with large-scale models. Notably, the Dropout excels in efficiency
during the compression process, outperforming other approaches. For example, in the GPT-2 exper-
iment, Dropout requires only 9.98 seconds for gradient compression, compared to 964.65 seconds
for Gaussian, which exceeds the time required for the gradient computation itself. Additionally,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 3: Test perplexity of GPT-2 after removing influential training data points (remove 150, 250,
350, and 450 from the subset containing 2000 text samples) from WikiText identified by various
methods. The reported results are averaged over 5 independent runs. The perplexity of the model
trained on the full dataset (containing 2000 text samples) is 14.053. The best results are highlighted
in bold, and the second-best results are underlined.

Method 150 250 350 450

Random 15.419 18.182 23.401 23.647
Hessian-Free 15.335 18.122 23.418 23.729
DataInf 15.331 18.106 23.390 23.779
LOGRA 15.438 18.276 23.662 23.962
Gaussian 15.415 18.303 23.640 23.897
Dropout 15.420 18.310 23.683 23.959

Table 4: Test perplexity of Pythia 1.4B after removing influential training data points (remove 10%,
20%, 30%, and 40% from the training dataset containing 2000 text samples) from OpenWebText
identified by various methods. The reported results are averaged over 5 independent runs. The per-
plexity of the model trained on the full dataset (containing 2000 text samples) is 25.23. The best
results are highlighted in bold, and the second-best results are underlined.

Method 10% 20% 30% 40%

Random 25.52 25.91 26.28 26.49
LOGRA 25.68 25.89 26.62 26.79
Dropout 25.51 26.05 26.55 26.80

Dropout eliminates the extra memory overhead associated with storing the Gaussian matrix, which
is a requirement for methods like Gaussian and LOGRA.

The time consumption of these methods across the experiments, including the time usage for gradi-
ents compression and iHVP computing, is detailed in Appendix D.2.

4.2.2 LARGE-SCALE SETTINGS

We now evaluate the practical utility of our approach for data attribution in billion-scale models.
Specifically, we adopt Pythia (1.4B) (Biderman et al., 2023) and LLaMA-3.2 (1.24B) (Meta, 2024)
in our experiments and conduct data attribution on a subset of OpenWebText (OWT) (Gokaslan &
Cohen, 2019). As in the previous setup 4.2.1, we fine-tune the models, remove the top-k percent
most influential data points from the training dataset and retrain models. A larger performance de-
crease indicates a more effective method for the data attribution task. It is worth to note that we
use full fine-tuning in this setup too, which means the size of gradients used in the computation
of influence function is the same as the size of the model itself. This makes some gradient-based
data attribution methods impractical with limited computing resources, even the Hessian-Free,
which merely computes the dot product of gradients. The large size of gradients not only leads
CUDA out-of-memory (OOM) errors but also significantly increases overhead on CPUs. For meth-
ods that compress the size of gradients, Gaussian also become impractical due to the size of the
Gaussian random matrix required for gradient compression. So, we compare the performance of
LOGRA (Choe et al., 2024) using rin = rout =

√
r = 64, and Dropout with r = 512, both of

which are practical under limited computing resources.

Results The performance of retraining Pythia and LLaMA-3.2 is presented in Table 4 and Table 5,
respectively. Due to the large size of raw gradients, only LOGRA and Dropout are feasible for com-
puting and storing gradients across all data points. We observe that Dropout achieves comparable
performance with Pythia.

For LLaMA-3.2, we observe that the perplexity does not consistently increase as more training data
points are removed. We speculate that this is because OpenWebText is included in the pre-training

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 5: Test perplexity of LLaMA-3.2 after removing influential training data points (remove 10%,
20%, 30%, and 40% from the training dataset containing 2000 text samples) from OpenWebText
identified by various methods. The reported results are averaged over 5 independent runs. The per-
plexity of the model trained on the full dataset (containing 2000 text samples) is 16.82. The best
results are highlighted in bold, and the second-best results are underlined.

Method 10% 20% 30% 40%

Random 16.78 16.77 16.83 16.78
LOGRA 16.82 16.86 16.83 16.93
Dropout 16.83 16.83 16.88 16.86

dataset of LLaMA-3.2. As a result, removing these data points from the fine-tuning training dataset
does not lead to a significant increase in test perplexity.

5 ANALYSIS

In this section, We provide an additional error analysis to complement the results in section 3.3.
Previously, we observed that the error upper bounds of Gaussian is significantly larger than that
of Dropout. However, the analysis did not account for the compression size r, which could play a
crucial role in the performance.

Intuitively, smaller compression size r will lead to greater information loss, resulting in larger errors.
Notably, Dropout does not perform explicit information compression, instead, it simply discards
information from gradients. This characteristic makes Dropout be more instable when the com-
pression size r is relatively small. Therefore, it is valuable to investigate how influence function
performance with Dropout varies with different compression size r. For this, we use mislabeled
data detection as a case study.

Figure 1: Mislabeled data detection on COLA (one benchmark in GLUE) with rank = 2 for LoRA
fine-tuning. We compare Orig. (baseline) with gradient compression methods Gaussian and
Dropout using different compression size r (1, 2, 3, and 4). For Gaussian and Dropout, the
bounds and the average (over 5 different random seeds) detection performance are reported.

In Figure 1, we observe that the area between the bounds of the performance of Dropout is larger
than that of Gaussian when the compression size r is small. This indicates that Dropout is
less stable than Gaussian in small compression size setting. However, as r increasing, the per-
formance variability of both methods narrows, and the stability becomes comparable when r ≥ 3.
Interestingly, despite the instability of Dropout for small r, the average performance of Dropout
surpasses that of Gaussian even with a very small compression size (r = 1). This demonstrates
the superior performance of Dropout in data attribution tasks, highlighting its potential as an ef-
fective gradient compression strategy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a paper at DATA-FM workshop @ ICLR 2025

These observations have practical implications. While smaller r values reduce memory and compu-
tation overhead, it increases performance variability. This introduces a trade-off between efficiency
and robustness.

6 RELATED WORKS

Data attribution aims to quantify and understand the impact of each individual training data point on
the performance of a model (Albalak et al., 2024). In (Ghorbani & Zou, 2019), the authors proposed
Data Shapley, which quantifies the value of each training data point by leveraging Shapley values
as a metric. Despite its conceptual appeal, Data Shapley is computationally prohibitive, particularly
for modern large-scale ML models (Jia et al., 2019). Furthermore, several works such as (Ilyas et al.,
2022; Park et al., 2023) proposed frameworks to do data attribution by retraining a model multiple
times to evaluate the impact of some data points, thereby providing insights into their contributions
to model performance. Although efforts such as (Park et al., 2023) strive to balance computational
cost and effectiveness, the necessity of retraining models remains a significant drawback, especially
for resource-intensive deep learning applications.

Influence function is another approach to data attribution, adapted from robust statistics (Law, 1986;
Hampel, 1974), and introduced to the deep learning context in (Koh & Liang, 2017; Koh et al.,
2019). It tries to answer the counterfactual question: what would happen if we remove a training
point from the model. While influence function offers a theoretically grounded framework for data
attribution, the high computational cost has limited its applicability to large-scale models. To miti-
gate the computational burden of influence function, various methods have been proposed. In (Koh
& Liang, 2017; Agarwal et al., 2017), the authors introduced LiSSA, which approaches iHVP com-
putation iteratively, reducing the cost of influence function computation. Other approaches include
LOGRA (Choe et al., 2024) and EK-FAC (Grosse et al., 2023) propose using Kronecker product
for gradients computation, and compress gradients using Kronecker product structure or use eigen
decompositions, for efficiency. However, the Kronecker product structure cannot be universally ap-
plied to all deep learning models and eigen decompositions will be expensive in large-scale matrix.
DataInf (Kwon et al., 2023) proposed an approximation of the influence function by approximating
the inverse Hessian matrix. However, this method introduces errors that scale quadratically with the
size of the model. This is why DataInf is less suitable for large-scale models. (Zhou et al., 2024)
proposed a method which approximates the Hessian matrix using the Generated Fisher Information
Matrix (GFIM). This approach relies on a strong assumption that each column of the gradient matrix
is independent and has a zero mean, which often fails to hold in practice.

7 CONCLUSION

In this work, we demonstrate that the influence of training data on a small subset of parameters can
effectively reflect its influence on the entire model. Building on this insight, we introduce dropout as
a compression tool to enable efficient influence function computation, addressing the computational
and memory challenges that hinder the application of traditional influence function in large-scale
ML models. Our approach leverages the simplicity and scalability of dropout to selectively retain
gradient information, thereby significantly reducing computational and memory overhead compared
to methods relying on dense projection matrices such as Gaussian-based compression.

Through theoretical analysis, we demonstrated that the error upper bound of influence function with
dropout-based compression is smaller than Gaussian-based compression methods. Our empirical
results on mislabeled data detection and model retraining across various datasets and models val-
idated these findings, showing that dropout achieves comparable or superior performance in data
attribution while maintaining high computational efficiency. Although there is a trade-off between
the compression size and performance stability, dropout-based compression method has superior
average performance even in small compression size regime.

This work highlights the potential of dropout as a lightweight, efficient, and practical tool for gradi-
ent compression in influence function computation, paving the way for extending the application of
influence function in large-scale artificial intelligence (AI) systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a paper at DATA-FM workshop @ ICLR 2025

REFERENCES

Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language
models. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 298–
306, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning Research, 18(116):1–40, 2017.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Anthropic. Claude: An ai assistant by anthropic, 2023. URL https://www.anthropic.
com/.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
35:17953–17967, 2022.

Zhi-Dong Bai and Yong-Qua Yin. Limit of the smallest eigenvalue of a large dimensional sample
covariance matrix. In Advances In Statistics, pp. 108–127. World Scientific, 2008.

Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund Kalibhat, Mucong Ding, Dominik Stöger,
Mahdi Soltanolkotabi, and Soheil Feizi. Understanding overparameterization in generative ad-
versarial networks. arXiv preprint arXiv:2104.05605, 2021.

Samyadeep Basu, Philip Pope, and Soheil Feizi. Influence functions in deep learning are fragile.
arXiv preprint arXiv:2006.14651, 2020.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

Google DeepMind. Gemini: An ai model by google deepmind, 2023. URL https://www.
deepmind.com/.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Tim Fischer, Chris Biemann, et al. Large language models are overparameterized text encoders.
arXiv preprint arXiv:2410.14578, 2024.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

11

https://www.anthropic.com/
https://www.anthropic.com/
https://www.deepmind.com/
https://www.deepmind.com/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a paper at DATA-FM workshop @ ICLR 2025

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

David A Harville. Matrix algebra from a statistician’s perspective, 1998.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yuzheng Hu, Pingbang Hu, Han Zhao, and Jiaqi W Ma. Most influential subset selection: Chal-
lenges, promises, and beyond. arXiv preprint arXiv:2409.18153, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.

Peter J Huber and Elvezio M Ronchetti. Robust statistics. John Wiley & Sons, 2011.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Understanding predictions with data and data with predictions. In International Confer-
ence on Machine Learning, pp. 9525–9587. PMLR, 2022.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019.

William B Johnson. Extensions of lipshitz mapping into hilbert space. In Conference modern
analysis and probability, 1984, pp. 189–206, 1984.

Yegor Klochkov and Yang Liu. Revisiting inverse hessian vector products for calculating influence
functions. arXiv preprint arXiv:2409.17357, 2024.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. Advances in neural information processing systems, 32,
2019.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

John Law. Robust statistics—the approach based on influence functions, 1986.

Xiaochuan Li, Zichun Yu, and Chenyan Xiong. Montessori-instruct: Generate influential training
data tailored for student learning. arXiv preprint arXiv:2410.14208, 2024.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a paper at DATA-FM workshop @ ICLR 2025

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Meta. Llama 3.2 model card. https://huggingface.co/meta-llama/Llama-3.2-1B,
2024.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singu-
lar values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In
4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602.
World Scientific, 2010.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
larity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
tions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8179–
8186, 2022.

Jack Sherman. Adjustment of an inverse matrix corresponding to changes in the elements of a given
column or row of the original matrix. Annu. Math. Statist., 20:621, 1949.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models, 2023.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. Decodingtrust: A comprehensive assessment of
trustworthiness in gpt models. In NeurIPS, 2023a.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
editing for large language models: A survey. ACM Computing Surveys, 2023b.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
lecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
pretraining with data influence models. arXiv preprint arXiv:2406.06046, 2024.

13

https://huggingface.co/meta-llama/Llama-3.2-1B

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a paper at DATA-FM workshop @ ICLR 2025

Xinyu Zhou, Simin Fan, and Martin Jaggi. Hyperinf: Unleashing the hyperpower of the schulz’s
method for data influence estimation. arXiv preprint arXiv:2410.05090, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a paper at DATA-FM workshop @ ICLR 2025

A LIMITATIONS

While this work demonstrates the potential of dropout as an efficient gradient compression method
for influence function computation, several limitations remain to be addressed. As discussed in sec-
tion 5, smaller r values in dropout, though efficient, introduce greater unstableness in performance.
This unstableness can be a constraint in applications. In addition, our method does not alleviate the
significant resource needs for the gradient computation. Computing gradients for all data points,
particularly in large-scale models and datasets, remains a bottlenecks. This limitation highlights the
need for optimizations to make influence function methods more resource-efficient.

B EFFICIENT METHODS FOR INFLUENCE FUNCTION

LiSSA Agarwal et al. (2017) proposed an iterative method for computing iHVP (H + λId)
−1v,

which was later utilized by Koh & Liang (2017) to calculate the influence function. For s0 = v,
LiSSA recursively computes the following equation: si+1 = v+(Id− (H+λId))si. Agarwal et al.
(2017) proved that if H + λId ⪯ Id, si will converge to iHVP (H + λId)

−1v, as i increases. Then,
the iHVP could be approximated as:

si ≈ (H + λId)
−1v, (7)

and the influence function could be calculated by this approximation:

I(zktr) = −sTi g
k
tr . (8)

Here gktr = ∇θl(y
k
tr , fθ(x

k
tr))

∣∣
θ=θ∗ is the gradient of the loss function calculated at the k-

th training data point with respect to the parameters of model, and v = 1
m

∑m
j=1 g

j
val =

1
m

∑m
j=1 ∇θl(y

j
val, fθ(x

j
val))

∣∣
θ=θ∗ is the average of gradients of the loss function calculated at eval-

uation data points with respect to the parameters of model.

DataInf Kwon et al. (2023) proposed an approximate version of the influence function. The key
approximation in DataInf involves swapping the order of matrix inversion and the averaging in
(H + λId)

−1. Using this approximation, the inverse Hessian matrix becomes:

(
1

n

∑
k

gktrg
kT
tr + λId)

−1 ≈ 1

n

∑
k

(gktrg
kT
tr + λId)

−1 (9)

=
1

nλ

∑
k

(Id −
gktrg

kT
tr

λ+ gkTtr gktr
), (10)

where gktr is the gradient of the loss function calculated at the k-th training data point with respect to
the parameters of the model. The Sherman-Morrison formula (Sherman, 1949) is utilized to compute
the matrix inversion in equation 10. Based on this approximation, the influence function can be
computed efficiently, reducing the operation to linear complexity.

LOGRA Grosse et al. (2023); Choe et al. (2024) proposed using Kronecker product to approximate
gradients and Choe et al. (2024) compresses gradients make use of Kronecker product structure. For
the l-th layer of a deep learning model with parameter θl, let hl represent the output and gl represent
the pre-activated output of the l-th layer. The gradient of loss function evaluated on z = (x, y) with
respect to θl is given as the following:

∇θl l = hl−1 ⊗∇gl l, (11)

where ⊗ represents the Kronecker product. LOGRA (Choe et al., 2024) imposes an additional Kro-
necker product structure on the projection matrix P as follows:

P∇θl l = (Pin ⊗ Pout)(hl−1 ⊗∇gl l) (12)
= Pinhl−1 ⊗ Pout∇gl l, (13)

where Pin ∈ Rrin×din , Pout ∈ Rrout×dout . In equation 13, LOGRA first projects forward and
backward activations onto low-dimensional spaces with Pin and Pout respectively, and then re-
constructs projected gradient directly from these projected activations. It is important to note that
din = dout =

√
d and rin = rout =

√
r, making it straightforward to use relatively large compres-

sion size r.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 6: Comparison of complexity of influence function computation between Orig, LiSSA,
DataInf and gradient compression methods (includes Gaussian, Dropout and LOGRA). In
this case, the number of parameters in the model is d, the number of data points is n, and the
compression size is r.

Method Computational Complexity Memory Complexity

Orig. O(nd2 + d3) O(d2)
LiSSA O(nd2) O(d2)
DataInf O(nd) O(d)
Gradient Compression Methds O(nr2 + r3) O(r2)

Table 7: Comparison of complexity of performing compression between Gaussian, LOGRA, and
Dropout. In this case, the number of parameters in the model is d, the number of data points is n,
and the compression size is r.

Method Computational Complexity Memory Complexity
Gaussian O(nrd) O(rd)

LOGRA O(n
√
rd) O(

√
rd)

Dropout O(nr) O(r)

C COMPLEXITY COMPARISON

Table 6 presents a comparison of the computational and memory complexities of influence function
computation among Orig, LiSSA, DataInf and gradients compression methods with compres-
sion size r, such as Dropout, Gaussian and LOGRA. While gradient compression methods can-
not reduce the complexity to linear, the compression size r can be very small, making these methods
efficient in practice.

Although the influence function computation complexities for gradient compression methods are the
same, the complexity of compression operations themselves differ. Table 7 provides a comparison
of Dropout with Gaussian and LOGRA in terms of the complexity of compression process.

Because of the structure of Kronecker product used in LOGRA, it also reduces the gradient com-
putations process from O(nd) to O(nr), where n is the number of data points, d is the number of
parameters in the model and r is the compression size.

D EXPERIMENTS

D.1 DETAILS OF EXPERIMENTS

For each methods, we set the damping term in influence function as λl = 0.1 ×
(ndl)

−1
∑n

i=1 ∇θl l
T
i ∇θl li for layer l, where θl represents the parameters of the l-th layer, ∇θl li

represents the gradient of the loss function calculated at the i-th data point with respect to θl, and dl
represents the number of parameters in this layer. We use one H100GPU with 80GB VRAM for all
our evaluation experiments.

For model training, we use hyperparameters in Table 8 for each experiments.

D.2 MORE RESULTS

In this section, we include more results of our experiments. Table 9 contains the average time usage
for computing iHVP in the experiments of mislabeled data detection. Table 10 and Table 11 present
the average time usage for gradients compression and iHVP computation in experiments involving
the retraining of ResNet-9 and GPT-2. respectively. It is evident that the dropout-based method not

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 8: Hyperparameters used for model training in our experiments.

RoBERTa ResNet-9 GPT-2 Pythia LLaMA-3.2
Optimizer AdamW SGD-M AdamW AdamW AdamW
LR Scheduler Linear Linear None None None
Learning Rate 3e− 4 0.4 5e− 5 2e− 5 2e− 5
Weight Decay None 5e− 4 0.01 0.01 0.01
Batch Size 32 64 64 16 16
Sequence Length None N/A 256 128 128
Epochs 10 24 3 1 1

Table 9: Average time usage (seconds) of computing iHVP in mislabeled data detection tasks.

rank=2 rank=8
Method MRPC QNLI SST2 RTE MRPC QNLI SST2 RTE
Orig. 564.62 661.88 718.92 452.04 - - - -
DataInf 8.35 10.26 10.27 5.57 14.59 18.79 18.93 9.79
LiSSA 43.69 53.59 53.82 29.45 79.29 101.36 101.74 56.80
Gaussian 3.50 4.31 4.31 2.39 3.56 4.45 4.40 2.48
Dropout (Ours) 3.47 4.28 4.28 2.37 3.52 4.36 4.35 2.42

only achieves superior efficiency in iHPV computation process, but is also highly efficient in the
compression process itself.

E PROOF OF THEOREMS

We first introduce some theorems which will be used in the proof.

The Woodbury matrix identity (Theorem 3) allows cheap computation of inverses.
Theorem 3. Given a square invertible n× n matrix A, an n× k matrix U , and a k × n matrix V ,
let B be an n× n matrix such that B = A+ UV . Then, assuming (Ik + V A−1U)−1 is invertible,
we have:

B−1 = A−1 −A−1U(Ik + V A−1U)−1V A−1.

Rudelson & Vershynin (2010); Bai & Yin (2008) introduced a theorem about convergence of extreme
singular values and prove that the largest singular value σmax of a k × n random matrix converges
to O(

√
k).

Theorem 4. Let A = Ak,n be a k × n random matrix whose entries are independent copies of
some random variable with zero mean, unit variance, and finite fourth moment. Suppose that the
dimensions k and n grow to infinity while the aspect ratio n

k converges to some number κ ∈ (0, 1] .
Then, almost surely

1√
k
σmin(A) −→ 1−

√
κ,

1√
k
σmax(A) −→ 1 +

√
κ.

We will make use of Theorem 3 and 4 to prove Theorem 1 and 2.

E.1 PROOF OF THEOREM 1

We assume λId + PTPH is invertible, taking advantage of woodbury matrix identity (Theorem 3),
∆H could be expressed as:

∆H = (λId +H)−1 − PT (λIr + PHPT)−1P

= (λId +H)−1 − 1

λ
PTP − 1

λ
PTPH(λId + PTPH)−1PTP.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 10: Average time usage (seconds) of compression gradients and computing iHVP in the ex-
periment involving retraining ResNet-9.

DataInf Gaussian Dropout
Gradients Compression - 94.02 5.95
iHVP 41.32 4.92 4.75

Table 11: Average time usage (seconds) of compression gradients in the experiment involving re-
training GPT-2.

Gaussian Dropout
Gradients Compression 964.65 9.98

Accordingly, the spectrum norm of ∆H is:

∥∆H∥2 = ∥(λId +H)−1 − 1

λ
PTP − 1

λ
PTPH(λId + PTPH)−1PTP∥2,

and make use of basic properties of norm and singular value, we could get:

∥∆H∥2 ≤ ∥(λId +H)−1∥2 +
1

λ
∥PTP∥2 +

1

λ
∥PTPH∥2∥(λId + PTPH)−1∥2∥PTP∥2

=
1

σmin(λId +H)
+

σmax(P
TP)

λ
+

σmax(P
TPH)σmax(P

TP)

λσmin(λId + PTPH)

≤ 1

σmin(λId +H)
+

σmax(P
TP)

λ
+

σmax(P
TP)σmax(H)σmax(P

TP)

λσmin(λId + PTPH)
. (14)

Because the dimension of θ exceeds the size of training dataset n, the Hessian/Gauss-Newton Hes-
sian matrix H cannot be full rank, which means σmin(λId + H) and σmin(λId + PTPH) are λ.
In addition, because of the theorem about convergence of extreme singular values (Theorem 4), we
have:

σmax(P
TP) ≤ σmax(P

T)σmax(P) ≤ d.

Thus, from Equation 14, we have:

∥∆H∥2 ≤ 1 + d

λ
+

d2σmax(H)

λ2
∝ d+ d2σmax(H).

As a result, ∥∆H∥2 is bounded by O(d+ d2σmax(H)).

E.2 PROOF OF THEOREM 2

We have a binary matrix Ĩ provided in Equation 3, where λId+ ĨT ĨH is invertible. Using woodbury
matrix identity (Theorem 3), ∆H can be expressed as:

∆H = (λId +H)−1 − ĨT (λIr + ĨHĨT)−1Ĩ

= (λId +H)−1 − 1

λ
ĨT Ĩ − 1

λ
ĨT ĨH(λId + ĨT ĨH)−1ĨT Ĩ .

Similar to the proof of Theorem 1, the spectrum of ∆H can be expressed as:

∥∆H∥2 = ∥(λId +H)−1 − 1

λ
ĨT Ĩ − 1

λ
ĨT ĨH(λId + ĨT ĨH)−1ĨT Ĩ∥2,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a paper at DATA-FM workshop @ ICLR 2025

and be bounded by:

∥∆H∥2 ≤ ∥(λId +H)−1∥2 +
1

λ
∥ĨT Ĩ∥2 +

1

λ
∥ĨT ĨH∥2∥(λId + ĨT ĨH)−1∥2∥ĨT Ĩ∥2

=
1

σmin(λId +H)
+

σmax(Ĩ
T Ĩ)

λ
+

σmax(Ĩ
T ĨH)σmax(Ĩ

T Ĩ)

λσmin(λId + ĨT ĨH)

≤ 1

σmin(λId +H)
+

σmax(Ĩ
T Ĩ)

λ
+

σmax(Ĩ
T Ĩ)σmax(H)σmax(Ĩ

T Ĩ)

λσmin(λId + ĨT ĨH)
. (15)

Given the particular form of the binary matrix Ĩ , it is easy to verify that ĨT Ĩ is a binary diagonal
matrix. Accordingly, we have σmax(Ĩ

T Ĩ) = 1. In addition, as previously described, σmin(λId+H)

and σmin(λId + ĨT ĨH) are λ. Thus, equation 15 yields:

∥∆H∥2 ≤ 2

λ
+

σmax(H)

λ2
∝ σmax(H).

As a result, ∥∆H∥2 is bounded by O(σmax(H)).

19

	Introduction
	Preliminaries
	Influence Function
	Efficiently Calculating Influence Function

	Method
	Dropout as a Compression Mechanism
	Efficiency Comparison
	Error Analysis

	Experiments
	Mislabeled Data Detection
	Model Retraining
	Small-Scale Setups
	Large-Scale Settings

	Analysis
	Related Works
	Conclusion
	Limitations
	Efficient Methods for Influence Function
	Complexity Comparison
	Experiments
	Details of Experiments
	More Results

	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

