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Abstract

Monitoring machine learning systems post deployment is critical to ensure the
reliability of the systems. Particularly importance is the problem of monitoring the
performance of machine learning systems across all the data subgroups (subpopu-
lations). In practice, this process could be prohibitively expensive as the number
of data subgroups grows exponentially with the number of input features, and the
process of labelling data to evaluate each subgroup’s performance is costly. In this
paper, we propose an efficient framework for monitoring subgroup performance
of machine learning systems. Specifically, we aim to find the data subgroup with
the worst performance using a limited number of labeled data. We mathematically
formulate this problem as an optimization problem with an expensive black-box
objective function, and then suggest to use Bayesian optimization to solve this prob-
lem. Our experimental results on various real-world datasets and machine learning
systems show that our proposed framework can retrieve the worst-performing data
subgroup effectively and efficiently.

1 Introduction

Supervised machine learning (ML) systems are increasingly deployed in critical application domains
but there is no guarantee that these systems will continue to perform well after deployment [25].
Monitoring the performance of ML systems is thus crucial to prevent potential failures that may cause
severe unintended consequences [8, 27]. Particularly importance is to monitor the performance of
ML systems across all the data subgroups so as to discover the scenarios when the systems may show
anomalous or faulty behaviours [27]. In practice, there have been various issues reported regarding
the malicious performance of well-known ML systems on some particular data subgroups. For
example, researchers have noted that in COMPAS [15], an ML system used across US courtrooms
to predict future crimes, females who initially committed misdemeanors have their recidivism risk
significantly over-estimated for half of the COMPAS risk groups [30]. Another example is that
various commercial facial detection algorithms have been shown to perform significantly different
across different data subgroups of races and genders with a worse performance on females with darker
skins [2]. In practice, it is recognized that organizations often want to understand the performance of
the ML systems on different demographic data subgroups, customer segments, etc. [27]. Therefore, it
is important to monitor the performance of an ML system across the data subgroups (subpopulations).

Existing literature tackles this problem by focusing on some limited pre-defined data subgroups
(e.g., gender and race). However, this does not include all the possible subgroups, and therefore,
important defective subgroups might not be discovered. In this work, we aim to monitor the ML
systems’ performance across all the possible data subgroups. In particular, we aim to find the data
subgroup where an ML system performs the worst. An exhaustive search across all the subgroups
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could be prohibitively expensive, and in many cases, is impossible. The reason is that evaluating the
performance of an ML system on a data subgroup requires the collection of an amount of labelled data
corresponding to that subgroup. For example, to evaluate the performance of an ML system for the
data subgroup female + black + married, a set of labelled data with input attributes female, black, and
married need to be collected. However, the number of possible data subgroups scales exponentially
with the number of input attributes (to be used to create subgroups), and thus the amount of labelled
data to be collected could be exploded if an exhaustive search is employed. For a dataset with n input
attributes (to be used to create subgroups) and each attribute has mi distinct values, the number of
possible data subgroups is

∏n
i=1 mi. If it is required to collect K labelled data points to estimate the

performance of a data subgroup, then in total, K
∏n

i=1 mi data points need to be labelled, which is
expensive and could be impossible in many situations.

In this paper, we propose an efficient framework that can find the worst-performing data subgroup
with a minimal number of labelled data. We first formulate the problem as an optimization problem
with an expensive black-box objective function. We then suggest to use Bayesian Optimization (BO),
a powerful sequential global optimization technique, so as to find the worst-performing data subgroup
efficiently. The key idea of BO is to train a surrogate model from an initial labelled dataset, construct
an acquisition function from this surrogate model, and use this function to select the most informative
data subgroup(s) that can help to find the worst-performing subgroup most efficiently. Our framework
can work with various types of supervised ML systems, e.g. classifier and regressor, and can also
work with different performance metrics such as accuracy, mean square error, precision, recall.

In summary, our contributions are:

1. A generic and efficient framework for monitoring the subgroup performance of ML systems;
2. An effective technique that can help to find the worst-performing data subgroup using a

minimal number of labelled data;
3. A set of experiments to demonstrate the efficacy of our proposed framework.

Related Work There have been various research works tackling the problem of assessing or
monitoring the subgroup performance of an ML system, however, their settings are generally different
compared to ours. Please refer to Section A.1 in the Appendix for more details.

2 An Efficient Framework for Monitoring Subgroup Performance

In this section, we present our proposed framework for monitoring subgroup performance of an ML
system. An overview of our proposed framework is shown in Figure 1.

2.1 Formulating the Subgroup Monitoring Problem

Let us denote an individual input data and its ground-truth as ((x, x′), yx,x′) where x ∈ X denotes
the attributes that are used to construct the data subgroups, x′ ∈ X ′ as the attributes of non-interest,
and yx,x′ as the corresponding ground-truth of (x, x′). For example, for a problem of using census
data of a person to predict their income, one can set the attributes x to be gender, race, relationship,
age whilst other attributes can be set as attributes of non-interest x′. The choice of attributes to be
used to construct the subgroups depends on the users, in particular, it depends on which data segments
the users want to monitor. Given an ML system C, let us denote C(x, x′) as the prediction of C for
an input (x, x′). The performance value of the system C with a metric M can then be expressed as,

M(C) = M(CX ,X ′ ,YX ,X ′),

where CX ,X ′ = {C(x, x′)}x∈X ,x′∈X ′ , YX ,X ′ = {yx,x′}x∈X ,x′∈X ′ . Then the performance value of
the ML system C w.r.t. a data subgroup x can be computed as,

Mx(C) = M(Cx,X ′ ,Yx,X ′).

The problem of finding the worst-performing data subgroup becomes the problem of finding x∗:
x∗ = argminx∈X Mx(C). (1)

As discussed in Section 1, computing Mx(C) for each data subgroup x is expensive, therefore, it is
generally impossible to exhaustively search for x∗. In this paper, we aim to solve the optimization
problem in Eq. (1) in an efficient manner, i.e., using a minimal number of evaluations of Mx(C).
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Figure 1: Left: The subgroup performance monitoring workflow; the monitoring system takes the data
stream, the ML systems’ predictions, and a human oracle as inputs, and outputs the worst-performing
data subgroup that can alert users regarding the quality of the ML system. Right: The detailed
implementation of our proposed subgroup performance monitoring framework based on BO method.

2.2 An Efficient Subgroup Searching Methodology

To solve the optimization problem in Eq. (1) in an efficient manner, we propose to use Bayesian
Optimization (BO) technique [14, 13, 28, 26]. BO is a powerful optimization method to find the
global optimum of an expensive black-box objective function by sequential queries. Applying BO to
solve the problem in Eq. (1) can be done as follows.

Firstly, an initial dataset D0 = {(xi,Mxi(C))}N0
i=1 is constructed from a number of data subgroups

{xi}N0
i=1 and their corresponding performance values {Mxi

(C)}N0
i=1. Secondly, a surrogate model

is trained on this initial dataset to approximate the behaviour of the performance function Mx(C).
Thirdly, an acquisition function is constructed from this surrogate model to suggest the next most
informative data subgroup to be evaluated so as to find the worst-performing subgroup x∗ fastest. The
ML system’s performance is then evaluated at this data subgroup and the data pair is then added to
D0. The process is conducted repeatedly until the labelling budget is depleted. The worst-performing
subgroup x̂∗ is then chosen as the worst-performing subgroup from the labelled dataset DT obtained
after the BO process, i.e., x̂∗ = argminx∈DT

Mx(C).

In the BO technique, there are various common choices of surrogate models including the Gaussian
Process (GP) [23], the random forest [12, 1], the neural network [29]. In this work, we use a GP
as the surrogate model of the BO process as GP has been shown to be effective in many practical
scenarios [28, 26]. Note that, in the subgroup performance monitoring problem, the data subgroups
x are categorical variables, so we use the corresponding BO technique for categorical variables. In
particular, the categorical variables are one-hot encoded, so that they can be treated as continuous
variables, and then the standard continuous BO process is performed on the transformed variables.
Finally, we use the Expected Improvement (EI) [19] as the acquisition function as it is one of the
most effective and well-studied acquisition functions in the BO literature [26].

3 Experimental Results

In this section, we describe in details the experimental evaluation of our proposed framework. Our
experiments aim to answer the question of whether our proposed framework can find the worst-
performing data subgroup efficiently.

Datasets We evaluate our proposed framework using two real-world datasets from the UC Irvine
(UCI) Data Repository1. The first dataset is the Adult dataset [17]. Each record in this dataset
describes the census data of a person and the goal is to predict whether the income of this person
exceeds 50,000 USD per year. We choose the subgroup attributes to be age, race, gender and
relationship. The second dataset we use for evaluation is the Bike Sharing dataset [5]. This dataset
contains the hourly count of rental bikes between years 2011 and 2012 in Capital bikeshare system
with the corresponding weather and seasonal information. The goal is to predict the hourly count

1https://archive.ics.uci.edu
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Figure 2: Results of the Adult dataset with different ML systems. Black lines are the true worst
subgroup performance. Coloured lines are the worst subgroup performance found by the methods.
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Figure 3: Results of the Bike Sharing dataset with different ML systems. Black lines are the true worst
subgroup performance. Coloured lines are the worst subgroup performance found by the methods.

of rental bikes given a particular weather and seasonal information. For this dataset, we choose the
subgroup attributes to be season, weather, hours, and working day.

Machine Learning Systems We split each dataset into two parts: training and testing. We have
two choices of training size: 1000 and 2000 data points, the rest of the data is the testing part. We
train different ML systems on the training part and then use our proposed framework to find the
worst-performing data subgroups of these ML systems on the test part. The Adult dataset corresponds
to a classification problem, so we use Logistic Regression [3] and Gradient Boosting [7] as the
ML systems, and the classification accuracy as the performance metric. The Bike Sharing dataset
corresponds to a regression problem so we use Linear Regression [11] and Gradient Boosting [7] as
the ML systems, and the mean square error as the performance metric. With two choices of training
dataset size, we have in total four ML systems for each dataset. For each combination of dataset and
ML system, we repeat the experiments 20 times with different split of training and testing parts, and
report the means and standard errors of the worst subgroup performance found at each iteration.

Baselines We compare our proposed framework with two baselines: Random Search (RS) and
Exhaustive Search (ES). With RS, we randomly select a number of data subgroups, evaluate the
ML system’s performance associated with these subgroups, and then retrieve the worst-performing
subgroup. With ES, we construct all the possible valid data subgroups, sequentially evaluate the ML
system’s performance of all the subgroups, and then retrieve the worst-performing subgroup.

In Figures 2 and 3, we show the experimental results of our proposed method and baseline methods
for the Adult and Bike Sharing datasets, respectively. It can be clearly seen that our proposed method
can find the worst-performing data subgroup much faster compared to the baseline methods. For
the Adult dataset, our proposed method can find the worst-performing subgroup after only around
100 iterations (i.e., 100 subgroup performance evaluations) whilst other methods takes much more
iterations to find this subgroup. Similarly, for the Bike Sharing dataset, our proposed method can find
the worst subgroup within 50-70 iterations, which is much faster compared to other baseline methods.

4 Conclusion
In this paper, we have proposed a framework for efficiently monitoring the performance of an ML
system across all the data subgroups. In particular, we aim to find the data subgroup with the worst
performance. Our proposed framework is data-efficient as it requires a minimal amount of labeled
data, and generic as it can be applied to various types of ML systems and performance metrics.
Our experimental results on two real-world datasets and various types of ML systems confirm the
effectiveness of our proposed framework.
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A Appendix

A.1 Related Work

There are various works targeting the problem of detecting the bad performance of an ML system
on some data subgroups, especially in the context of evaluating the biasness of an ML system, for
example, [4, 6, 20]. However, most of these work only aim to assess the performance of ML systems
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on some pre-defined data subgroups such as race, gender. Our work, on the other hand, assesses the
performance of an ML system across all the data subgroups.

Directly related to our work, there are some works targeting the problem of assessing the performance
of an ML system across all the data subgroups, however, these work can only work on a limited
types of ML system (e.g., binary classifiers), and they do not target the problem of reducing the
cost of labelling data. The work in [16] suggests considering the fairness statistical notions via a
large number of subgroups. However, this work only considers the binary classifiers, on the other
hand, our proposed framework can work with different types of ML systems including multi-class
classifiers and regressors. The paper by Zhang and Neil [30] presents a subset scan method to detect
if a probabilistic binary classifier has statistically significant bias over or under predicting the risk
for some subgroups and identify the characteristics of this subgroup. However, similar to [16], this
work also only works for binary classifiers, and it also does not focus on the problem of reducing the
cost of labelling data. The work in [21] presented a method for finding data subgroups that behave
differently from the overall dataset. However, the method does not tackle the problem of expensive
labelled data as our proposed framework.

There are works targeting the problem of monitoring ML systems [8], but this work do not care about
the performance of the ML systems across all the data subgroups. Finally, there are works that aim
to test the performance of an ML system in a data-efficient manner [25, 9, 10, 18], however, these
works also do not care about the performance across the data subgroups.

A.2 Background

Bayesian Optimization Bayesian optimization is a powerful optimization method to find the global
optimum of an unknown objective function f(x) by sequential queries [14, 13, 28, 26]. First, at time
t, a surrogate model is used to approximate the behaviour of f(x) using all the current observed data
Dt−1 = {(xi, yi)}ni=1, yi = f(xi) + ζi, where ζi ∼ N (0, σ2) is the noise. Second, an acquisition
function is constructed from the surrogate model that suggests the next point xitr to be evaluated.
The objective function is then evaluated at xitr and the new data point (xitr, yitr) is added to Dt−1.
These steps are conducted in an iterative manner to get the best estimate of the global optimum.

Gaussian Process A GP defines a probability distribution over functions f under the assumption
that any finite subset {(xi, f(xi)} follows a normal distribution [24]. Formally, a GP is defined
as f(x) ∼ GP (µ (x) , k (x,x′)), where µ(x) = E [f (x)] is the mean function and k(x,x′) =
E
[
(f (x)− µ (x))(f (x′)− µ (x′))T

]
is the covariance function [24].

Assuming a zero mean prior m(x) = 0 for simplicity, we have the joint multivariate Gaussian
distribution between the observed point f and a new data point xnew, fnew = f (xnew) as follows,[

f
fnew

]
∼ N

(
0,

[
K kT

new
knew knew

])
, (2)

where knew = k (xnew,xnew), knew = [k (xnew,xi)]∀i≤N and K = [k (xi,xj)]∀i,j≤N . Combining Eq.
(2) with the fact that p (fnew | f) follows a univariate Gaussian distribution N

(
µ (xnew) , σ

2 (xnew)
)
,

the GP posterior mean and variance at the data point xnew can be computed as,

µ (xnew) =knew
[
K+ σ2I

]−1
y,

σ2 (xnew) =knew − knew
[
K+ σ2I

]−1
kT

new.

As GPs give full uncertainty information with any prediction, they provide a flexible nonparametric
prior for Bayesian optimization. We refer the interested readers to [24] for further details on GPs.

A.3 Experimental Setup

Datasets We evaluate our proposed framework using two real-world datasets from the UC Irvine
(UCI) Data Repository2. The first dataset is the Adult dataset [17]. Each record in this dataset
describes the census data of a person (e.g., age, race, gender, relationship, workclass, education), and
the goal is to predict whether the income of this person exceeds 50,000 USD per year. We choose the

2https://archive.ics.uci.edu
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subgroup attributes to be age, race, gender and relationship. Note that for the age attribute, we group
the values to be within 6 distinct values representing people with ages less than 20, from 20 to 30, ...,
50 to 60, and more than 60. The second dataset we use for evaluation is the Bike Sharing dataset
[5]. This dataset contains the hourly count of rental bikes between years 2011 and 2012 in Capital
bikeshare system with the corresponding weather and seasonal information. The goal is to predict the
hourly count of rental bikes given a particular weather and seasonal information. For this dataset, we
choose the subgroup attributes to be season, weather, hours, and working day. For the hour attribute,
we group the values to be within 5 distinct values representing early morning, morning, afternoon,
evening and midnight.

Machine Learning Systems We split each dataset into two parts: training and testing. We have
two choices of training size: 1000 and 2000 data points, the rest of the data is the testing part. We
train different ML systems on the training parts and then use our proposed framework to find the
worst-performing subgroup of these ML systems on the test part. In particular, for each subgroup x,
we compute the metric value Mx(C) by collecting the labelled data points in the dataset according to
this subgroup. For classification problems (Adult and Bank datasets), we use the Logistic Regression
and the Gradient Boosting as the ML systems. For the regression problem (Bike Sharing dataset),
we use the Linear Regression and Gradient Boosting as the ML systems. All the ML systems are
implemented using sklearn [22] with default settings. For each ML system, we repeat the experiments
20 times with different split of training and testing parts.

Baselines We compare our proposed framework with two baselines: Random Search and Exhaustive
Search. With Random Search, we randomly select a number of subgroups, evaluate the ML system’s
performance associated with these subgroups, and then retrieve the worst-performing subgroup
based on these performance values. With Exhaustive Search, we construct all the possible valid
subgroups, and then sequentially evaluate the ML system’s performance on each subgroup until the
labelling budget is depleted. We then retrieve the worst-performing subgroup based on the evaluated
performance values.
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