
Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Jinlong Pang 1 Na Di 2 Zhaowei Zhu 3 Jiaheng Wei 4 Hao Cheng 5 Chen Qian 1 Yang Liu 1

Abstract
Recent studies show that in supervised fine-tuning
(SFT) of large language models (LLMs), data
quality matters more than quantity. While most
data cleaning methods concentrate on filtering
entire samples, the quality of individual tokens
within a sample can vary significantly. After pre-
training, even in high-quality samples, patterns
or phrases that are not task-related can be redun-
dant, uninformative, or even harmful. Continuing
to fine-tune on these patterns may offer limited
benefit and even degrade downstream task per-
formance. In this paper, we investigate token
quality from a noisy-label perspective and pro-
pose a generic token cleaning pipeline for SFT
tasks. Our method filters out uninformative tokens
while preserving those carrying key task-specific
information. Specifically, we first evaluate to-
ken quality by examining the influence of model
updates on each token, then apply a threshold-
based separation. The token influence can be mea-
sured in a single pass with a fixed reference model
or iteratively with self-evolving reference mod-
els. The benefits and limitations of both methods
are analyzed theoretically by error upper bounds.
Extensive experiments show that our framework
consistently improves downstream performance.
Code is available at https://github.com/
UCSC-REAL/TokenCleaning.

1. Introduction
Supervised fine-tuning (SFT) has served as a widely adopted
approach and a fundamental step in aligning large language
models (LLMs) with human expectations. This process
ensures that LLMs can accurately understand human in-
structions and produce relevant responses. In practice, SFT

1University of California, Santa Cruz 2Northeastern Univer-
sity 3Docta.ai 4Hong Kong University of Science and Technology
(Guangzhou) 5Hong Kong Baptist University. Correspondence to:
Yang Liu <yangliu@ucsc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

involves fine-tuning pre-trained models using annotated in-
structional data (Touvron et al., 2023). Following general
data scaling laws (Zhang et al., 2024), significant efforts
have been dedicated to collecting large-scale instructional
data containing millions of examples (Wang et al., 2022;
Chung et al., 2024; Longpre et al., 2023).

Recent studies on the SFT have widely agreed that data
quality matters far more than quantity (Zhou et al., 2024;
Chen et al., 2023; Pang et al., 2024b; Liu et al., 2023). That
is, a small, well-curated dataset can often deliver effective or
even superior performance on downstream tasks, highlight-
ing the critical role of data cleaning or selection. Existing
data cleaning approaches primarily emphasize identifying
high-quality samples in large dataset pools via some metrics,
including perplexity (Cao et al., 2024), completion length
(Zhao et al., 2024), confidence scores (Chen & Mueller,
2024), LLM-generated quality ratings (Chen et al., 2023;
Pang et al., 2024b; Liu et al., 2023) or even costly human an-
notations (Zhou et al., 2024). Although these methods have
proven effective, focusing solely on sample-level cleaning
may overlook complexities within each sample.

In practice, each sample typically contains hundreds of to-
kens, some of which occur frequently regardless of the
sample’s quality. These common tokens/patterns can over-
shadow task-specific words that are crucial for model perfor-
mance during training. Moreover, during interference, if the
model continually outputs these frequent tokens, it may ne-
glect more informative ones, producing outputs that appear
correct yet fail to address specific tasks. Thus, even well-
curated samples can contain token-level noise that dilutes es-
sential signals. For convenience, we refer to tokens that are
uninformative, low-impact, or even harmful as uninforma-
tive tokens, and the rest as informative tokens. Addressing
these token-level issues by removing or down-weighting the
uninformative tokens can help the model prioritize impor-
tant and informative tokens and then improve downstream
task performance (Lin et al., 2024).

In this paper, we go beyond traditional sample-level data
cleaning by proposing a generic token cleaning pipeline and
an analytical framework for LLM SFT tasks. Specifically,
we filter out uninformative tokens while retaining those
with meaningful task-specific information. This is achieved
by first assessing token quality using an influence-guided

1

https://github.com/UCSC-REAL/TokenCleaning
https://github.com/UCSC-REAL/TokenCleaning

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

scoring mechanism, followed by threshold-based separation.

Figure 1 illustrates two scoring strategies supported by our
token cleaning pipeline. The high-level idea is to evaluate
the influence of model updates on each token, which can be
calculated by the loss disparity between a base model and a
reference model. We introduce two implementations:

• Fixed-Model Cleaning. In this strategy, both the base
model and the reference model remain fixed, and a one-
shot token cleaning is applied to the entire SFT dataset.
The base model is then fine-tuned on the cleaned tokens,
producing the final model output. This strategy is similar
to the latest token selection method for pre-trained data
(Lin et al., 2024). We defer detailed comparisons to
Section 4.3.1 (analytical) and Section 6 (experimental).

• Self-Evolving Cleaning. In this strategy, the base model
remains fixed while the reference model is updated it-
eratively. The data is divided into multiple parts, with
each iteration cleaning one part. The reference model is
then updated sequentially using the cleaned results from
each part. Unlike the fix-model cleaning, the final model
output is the reference model obtained in the last iteration.

Our main contributions can be summarized as follows.

• Generic Token Cleaning Pipeline. We formulate the prob-
lem from the perspective of noisy labels and present a
novel influence-guided token cleaning pipeline that scores
and filters out uninformative tokens, enhancing task per-
formance by focusing model training on the most relevant
tokens. The pipeline not only encompasses existing ap-
proaches but also inspires new implementations.

• Self-Envolving Cleaning. Beyond merely calculating the
influence scores with a pair of fixed models, we propose
to update the reference model iteratively, which could
progressively enhance the quality of supervision signals,
leading to better downstream performance.

• Analytical Framework. We provide rigorous analyses to
show when and why SFT with the cleaned token outper-
forms the full tokens. Specifically, we establish an upper
bound on the error incurred when learning with full to-
kens (Theorem 5.1), offering theoretical insights into the
trade-offs of different cleaning strategies. Our analysis
explains why fixed-model cleaning yields stable but lim-
ited improvements, while self-evolving cleaning shows
greater potential but requires careful implementation.

• Comprehensive Experiments. We conduct extensive ex-
periments across multiple tasks, demonstrating that our
token cleaning pipeline consistently boosts performance
over baselines and validates its practical merits.

2. Related Work
LLM Data Selection In the LLM SFT phase, various met-
rics have been introduced to assess data quality including

completion length (Zhao et al., 2024), perplexity (Cao et al.,
2024), reward scores (Gou & Nguyen, 2024), discrete confi-
dence scores (Chen & Mueller, 2024), the loss disparities
when certain examples are included or excluded (Li et al.,
2023), gradient matching (Zhou et al., 2023) and influence
function scores (Xia et al., 2024). Another line of work
uses advanced LLMs directly to filter out low-quality sam-
ples according to different metrics, such as quality-based
rating scores (Chen et al., 2023; Liu et al., 2023; Pang et al.,
2024b) and fine-grained tags (Lu et al., 2023). Diversity-
aware scoring has also been integrated into the overall qual-
ity assessment, highlighting its importance. Although ex-
tensive data selection methods have shown promise, fine-
grained token-level selection remains underexplored. Re-
cent studies (Lin et al., 2024) have highlighted the signifi-
cant benefits of token selection during the pre-training phase,
yet its application in the SFT has received limited attention.

Noisy Data Cleaning The learning with noisy labels has
been extensively studied (Vahdat, 2017; Veit et al., 2017; Li
et al., 2017; Liu & Wang, 2021; Yuan et al., 2024). Vari-
ous approaches have been proposed to mitigate label errors,
including developing noise-tolerant loss functions (Natara-
jan et al., 2013; Reed et al., 2014; Zhu et al., 2021) and
identifying clean samples while re-labeling corrupted ones
(Northcutt et al., 2021; 2017; Cheng et al., 2021; Zhu et al.,
2022). Recently, the issue of noisy labels in LLM alignment
has gained increasing attention, driven by the observation
that data quality is far more critical than quantity (Zhou
et al., 2024). Recent work (Chong et al., 2022) investi-
gated the effectiveness of leveraging pre-trained models to
identify inherent label errors in natural language datasets.
Additionally, efforts have been made to mitigate label errors
in LLM alignment datasets (Zhu et al., 2024), particularly
in the context of binary harmlessness classification. Fur-
thermore, Pang et al. (2024b) systematically analyzed error
patterns in LLM-generated quality rating scores to reduce
score errors. Another line of research has focused on devel-
oping noise-tolerant DPO-based loss functions, including
cDPO (Mitchell), robust-DPO (Chowdhury et al., 2024),
and PerpCorrect (Kong et al.). The above studies primarily
focus on noisy labels at the sample level. In contrast, our
work explores fine-grained, token-level noisy labels to iden-
tify and filter out uninformative tokens, thereby boosting
downstream task performance.

3. Preliminary
3.1. Next-Token Prediction

Consider a data pool comprising N samples, denoted as
{xi}Ni=1. Each sample xi represents a sequence of to-
kens (including the prompt and the response) defined as
xi := {xi,j}Li

j=1, where Li denotes the token length for the

2

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

 Base
Model

3-rd Reference
Model

Final
Model

. . .
D0 D1 D2

Dataset D
Split

DT

. . . Base
Model

Reference
 Model Base

Model

Token Scores

Self-Evolving CleaningFixed-Model Cleaning

2-nd Reference
Model

 Token Scores = Base Loss — Reference Loss

Reference

Token Scores for Dt = Base Loss — t-th Reference Loss

Dataset D～
～

～ ^ ^ ^

1-st Reference
(Warmup) Model

Figure 1: Overview of the token cleaning pipeline. Fixed-Model Cleaning applies a one-shot cleaning process to the entire
dataset D̃. In contrast, Self-Evolving Cleaning follows an iterative approach. It begins with a warm-up phase, where a model
is fine-tuned on the full tokens of split-0, denoted as D̃0, and then used to clean the next data split, transforming D̃1 into D̂1.
The reference model is subsequently updated by fine-tuning the warm-up model (i.e., the first reference model) on D̂1. This
iterative process continues, progressively refining the reference model with each newly cleaned data split.

i-th sample. The training of LLMs can be framed as mini-
mizing the negative log-likelihood of the observed tokens
in the dataset. The model predicts the conditional proba-
bility P(xi,j |xi,:j ; θ) for each token xi,j given its preced-
ing context, where θ represents the model parameters, and
xi,:j denotes the first j − 1 tokens, i.e., {xi,1, · · · , xi,j−1}.
Denote by D := {(xi,j ,xi,:j , yi,j),∀(i, j) ∈ S}, where
S := {(i, j)|i ∈ [N], j ∈ [Li]}, [N] := {1, 2, · · · , N}.
The loss function for the dataset can be expressed as:

L̂D(θ) =
1∑

(i,j)∈S yi,j

∑
(i,j)∈S

yi,jℓ(xi,j |xi,:j ; θ), (1)

where ℓ(xi,j |xi,:j ; θ) := − logP(xi,j |xi,:j ; θ), and yi,j ∈
{0, 1} is a binary (ground-truth) label indicating whether the
token xi,j is a valid target or not. By iteratively updating θ,
the model learns to assign higher probabilities to the correct
tokens while disregarding irrelevant ones.

3.2. Token-Level Labels

Token-level labels yi,j ∈ {0, 1} play a crucial role in de-
termining which tokens contribute to the loss calculation.
However, its ground-truth value is often unknown. Denote
ỹi,j by the (noisy) token label that we use in practice, which
may or may not be identical to yi,j . During different training
phases, the criteria for setting ỹi,j may vary:

• Model Pretraining: When training on general text data
without explicit distinction between prompts and responses,
all tokens are typically considered valid targets (ỹi,j =
1), unless specific tokens are identified as irrelevant or
redundant (Lin et al., 2024).

• Supervised Fine-tuning (SFT): In this phase, the tokens

corresponding to the prompt part are ignored, as they do not
represent the model’s predictions. Therefore, for prompt
tokens, ỹi,j = 0, and for response tokens, ỹi,j = 1.

4. Token Cleaning: A Noisy Label Perspective
4.1. Intuition

In the phase of SFT, some tokens are deemed uninformative
or noisy since most of the knowledge has been obtained in
the pretraining phase, e.g., common patterns and structures,
high-frequency phrases. In practice, the SFT phase assigns
a label of 1 to every token in the response, resulting in noisy
token labels, where irrelevant tokens are incorrectly labeled
as important (ỹi,j = 1). Such noise can hinder the model’s
optimization process by introducing misleading gradients,
reducing the signal-to-noise ratio by hiding informative
tokens, and potentially leading to suboptimal performance.

To address this issue, it is essential to perform fine-grained
token label cleaning. This involves identifying and filter-
ing out uninformative tokens while preserving the tokens
that carry valuable task-specific information. As suggested
by the noisy label literature (Zhu et al., 2022; 2024), the
cleaning process typically involves two key components: a
scoring function to assess the quality of each token and a
threshold to distinguish between informative and uninfor-
mative tokens, which will be detailed in the next subsection.

4.2. Token Cleaning Pipeline

In this section, we will introduce the main components of
the token-cleaning pipeline, including the scoring function
and a simple yet effective threshold.

3

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

4.2.1. SCORE FUNCTIONS: AN INFLUENCE-GUIDED
APPROACH

We deliver our intuition when designing score functions
using the following example. Suppose that the model is
improved from θ to θ′ by fine-tuning it on some data. Ac-
cording to Koh & Liang (2017); Pang et al. (2024a), the
model update influences the prediction accuracy of each
token, which can be written as

Infl (xi,j |xi,:j ; θ, θ
′) := ℓ(xi,j |xi,:j ; θ

′)− ℓ(xi,j |xi,:j ; θ).
(2)

Intuitively, a more negative Infl (xi,j |xi,:j ; θ, θ
′) indicates

a higher confidence improvement on predicting xi,j given
xi,:j . The equation can be explained from two perspectives:

• Assume Token Quality: As demonstrated by Pang et al.
(2024a), if we believe that token xi,j is the best choice
given context xi,:j , the above influence can be used
to evaluate the quality of data that brings the model
from θ to θ′ on this specific task, i.e, a more negative
Infl (xi,j |xi,:j ; θ, θ

′) indicates a higher data quality.

• Assume Model Quality: From another perspective, if we
believe the model θ′ performs better on θ on this specific
task, the above influence can be used to evaluate the quality
of token xi,j since a good and underfitted choice of xi,j

tends to have a negative Infl (xi,j |xi,:j ; θ, θ
′).

In this paper, we assume the model quality and use the
negative of the influence defined in Eq. (2) to evaluate the
quality of tokens, i.e.,

Score(xi,j |xi,:j ; θ, θ
′) = −Infl (xi,j |xi,:j ; θ, θ

′), (3)

where a higher score indicates a higher token quality.

Extending from the current use of influences (Koh & Liang,
2017; Pang et al., 2024a), we notice that θ and θ′ are not
necessarily to be the same model structure, as long as they
share the same tokenizer. We will discuss potential choices
of θ and θ′ in Section 4.3.

4.2.2. THRESHOLD

After computing token scores, a threshold is directly applied
to filter out uninformative tokens. The threshold separates
the tokens that significantly improve the model performance
from those that do not. An ideal approach is to use algo-
rithms to estimate the ratio of the corrupted and then select
the informative tokens according to the ratio. However,
although there are lots of trials in the literature on noisy
labels, most works focus on cleaning the image labels (Lad
& Mueller, 2023) or sample-level text labels (Zhu et al.,
2024; Pang et al., 2024b). To the best of our knowledge,
a feasible algorithm for estimating the noise ratio of token

labels is unclear, which is beyond the scope of our paper
and left for future explorations. In this paper, we use a
fixed ratio (i.e., selected token proportion) k% to separate
between informative and uninformative tokens. Denote by
ŷi,j the token label after cleaning. We have

ŷi,j =
{
1 if Score(xi,j |xi,:j ; θ, θ

′) ranks top k%,∀i, j;
0 otherwise. (4)

4.3. Selection of θ and θ′

We discuss two feasible strategies for selecting θ and θ′.

4.3.1. FIXED-MODEL CLEANING

Following the analyses in Section 4.2.1, we can assume
the access to a model θ′ that outperforms θ. For example, a
moderately performing Llama model can be considered as θ,
while a well-performing Llama model can be considered as
θ′ (Mindermann et al., 2022; Lin et al., 2024). Specifically,
given the warm-up model θ′ and the base model θ, we
compute the token scores for the entire dataset D̃ according
to Eq. (3) and use a fixed threshold kfixed to assign token
labels ỹi,j according to Eq. (4). Note that token cleaning
is performed globally, meaning that some samples may be
entirely removed if they contain no positive tokens. This
differs from Lin et al. (2024), where each sample retains
a fixed proportion of positive tokens. The benefits and
limitations of this strategy will be discussed theoretically in
Section 5.2.

4.3.2. SELF-EVOLVING CLEANING

Inspired by the success of semi-supervised learning (SSL),
we propose to do token cleaning iteratively. Specifically, in
the t-th iteration, we fix the base model θ and adopt θ′ = θt,
then fine-tune θt with the selected tokens after cleaning. See
Algorithm 1 for more details.

Algorithm Details The overall procedure is outlined in
Algorithm 1. First, we evenly partition the dataset D̃ into
a series of subsets, denoted as {D̃0, D̃1, . . . , D̃T }. Next,
the base model θ is fine-tuned on the initial subset D̃0 to
produce a warm-up model θ0, which serves as the initial
reference model. Rather than relying solely on θ0 as a fixed
reference model, a self-evolving mechanism is introduced
in Lines 4-8. Specifically, for each subsequent subset D̃t,
we keep the base model fixed and utilize the latest updated
model as the reference model, i.e., θ = θ0 and θ′ = θt,
to compute token scores. By applying a threshold kself-evol
to these scores, we obtain the cleaned labels ŷi,j . The up-
dated model θt is then fine-tuned on the cleaned subset D̂t,
producing the reference model for the next iteration. This
process continues iteratively, and the final reference model
is used as the output of the algorithm.

4

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Algorithm 1 Token Cleaning Pipeline

1: Input: Entire dataset D̃, base model θ0, threshold
kself-evol.

2: Split dataset D̃ into a series of subset {D̃0, · · · , D̃T }.
Denote their indices by {S0, · · · , ST }.

3: Warmup Model θ1: Finetune from base model θ0 on
D̃0 subset with all tokens.

4: for t in {1, 2, · · · , T} do
5: Compute scores for subset D̃t’s tokens via

Score(xi,j |xi,:j ; θt−1, θt),∀xi,j ∈ D̃t.
6: Assign token labels ŷi,j with a threshold kself-evol.
7: Obtain θt+1 by finetuning θt on cleaned subset D̂t =

{(xi,j ,xi,:j , ŷi,j),∀(i, j) ∈ St}.
8: end for
9: Output: θT+1

5. Theoretical Analyses
Let 1{·} be the indicator function taking value 1 when the
specified condition is satisfied and 0 otherwise. Define the
0-1 loss as 1(θ(Xprev), Xnext) := 1{θ(Xprev) ̸= Xnext},
where Xnext is the random variable for the next token, Xprev
is the random variable for tokens before the next token, and
θ(Xprev) stands for the prediction of next token for model θ
given Xprev as input. Without loss of generality, we consider
the ideal case where all the training instances for next-token
prediction are i.i.d. and minimize 0-1 loss in the following
analyses. The loss can be generalized to bounded loss ℓ(·)
and finite function space F following the generalization
bounds that can be introduced using Rademacher complex-
ity (Bartlett & Mendelson, 2002).

5.1. Exceed the Performance of Full Tokens

Denote by D̃ := {(xi,j ,xi,:j , ỹi,j),∀i, j} the full-token
dataset. By minimizing the noisy loss

L̂D̃(θ) =
1

N

N∑
i=1

1∑Li

j=1 ỹi,j

Li∑
j=1

ỹi,j1(θ(xi,:j), xi,j)

we can get model θ̂D̃ := argminθ L̂D̃(θ). Denote by
Ỹ , Y the random variables for ỹi,j and the corresponding
ground-truth label yi,j . The expected loss of training with
full tokens can be denoted by

LD̃(θ) = E
[
Ỹ · 1(θ(Xprev), Xnext)

]
,

where D̃ is the distribution of D̃. Denote by

η(D̃) := P(Ỹ ̸= Y)

the noise rate of full tokens. Theorem 5.1 shows the error
upper bound of learning with full tokens. See Appendix C
for the proof.

Theorem 5.1 (Error of learning with full tokens). With
probability at least 1−δ, the generalization error of learning
with full tokens is upper-bounded by

LD(θ̂D̃) ≤ η(D̃)︸ ︷︷ ︸
Data quality

+

√
2 log(4/δ)

M︸ ︷︷ ︸
Data quantity

, (5)

where M :=
∑N

i=1 Li denotes the number of tokens.

Theorem 5.1 shows that the error of learning with full tokens
depends on two factors:

• Data Quality: η(D̃) denotes the noise rates of learning
with full tokens, where a higher noise rate leads to a larger
error, i.e., a worse performance. The negative impact of
wrong token labels may not be canceled by increasing the
number of tokens.

• Data Quantity: When the number of tokens M increases,
the generalization could be smaller, showing that the
token cleaning result cannot merely return a small set of
high-quality tokens, i.e., the precision and recall of the
token cleaning algorithm are both important.

Denote by Ŷ the random variable of token labels after clean-
ing. We show the superiority of token cleaning compared to
the full-token case in the following corollary.

Corollary 5.2. With probability as least 1−2δ, token clean-
ing performs better than full-tokens in terms of the error
upper bound when

η(D̃)− η̂ ≥
√
2 log(4/δ) ·

√
1

M
·

(√
1

r̂
− 1

)
, (6)

where η̂ := P(Ŷ ̸= Y) denotes the noise rates of cleaned
labels and r̂ := P(Ŷ = 1) denotes the ratio of positive
tokens after token cleaning.

Corollary 5.2 shows token cleaning is preferred when the
positive impact of reducing noise rate outweighs the nega-
tive impact of reducing the number of feasible tokens. For
example, when M is larger (a larger dataset), the inequality
in Corollary 5.2 is more likely to hold since the right-hand
side is smaller.

5.2. Fixed-Model Cleaning: Stable But Limited
Improvement

We now analyze the benefits and limitations based on The-
orem 5.1 and Corollary 5.2. By selecting an appropriate
model θ′, we can take a one-shot token cleaning on all the
tokens in the candidate data pool. In this case:

• Data Quality: The noise rate of cleaned tokens is fixed,
i.e., the data quality term in Eq. (5) is fixed. By carefully
selecting the threshold kfixed, there exists a token cleaning
result whose noise rate η̂ is less than η(D̃).

5

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

• Data Quantity: With more tokens being cleaned, M is
increasing. Then the total generalization error can be
consistently reduced.

Therefore, under this strategy, as long as the reference model
θ′ is sufficiently good to reduce the noise rate from η(D̃) to
a lower rate η̂, the model’s performance can be improved by
fine-tuning with additional i.i.d. cleaned tokens, demonstrat-
ing the advantage on stability. However, even as M → ∞,
the total error does not go to zero due to imperfect data
quality, showing the limitations on final performance.

5.3. Self-Evolving Cleaning: Potential Matthew Effect

For ease of presentation, we divide the data into three groups
according to their task difficulty and number of i.i.d. clean
tokens in the training dataset:

• G1 (Rich Group): Characterized by lower noise rates after
token cleaning and a higher proportion of effective tokens.
This group typically experiences significant performance
gains during warmup (Line 3, Algorithm 1) and has a
great number of relevant tokens.

• G2 (Poor Group): Marked by higher noise rates after to-
ken cleaning and fewer effective tokens. This group often
exhibits limited or even degraded performance during
warmup and has a scarce number of relevant tokens.

• G3 (Intermediate Group): Falling between the rich and
poor groups in terms of data quality and quantity. While
it generally sees reasonable performance improvement
during warmup, its convergence tends to be unstable due
to a limited number of effective tokens.

Note that the definition of groups only applies to the theo-
retical analyses, which does not mean we need to explicitly
know the group attribute of each data. In fact, it is challeng-
ing to know this information. Theoretically, there are three
observations during SFT.

• Observation 1: The rich get richer (G1). When η̂ < η(D̃)
and r̂ ·M is sufficiently large, according to Corollary 5.2,
fine-tuning on D̂1 benefits from lower token noise rates
and a higher number of effective tokens, thereby reducing
the error upper bound and resulting in a better model θ2.
With a better reference model and a similar number of
effective tokens, the model in the next iteration can be
further improved, i.e., the rich get richer.

• Observation 2: The poor get poorer (G2). When the
model θ1 underperforms compared to θ0, η1 increases
significantly and may even exceed 0.5. According to
Corollary 5.2, continued fine-tuning on tokens with such
high noise rates can further degrade performance, exem-
plifying a “the poor get poorer” effect.

• Observation 3: Unstable convergence (G3). If η̂ is com-
parable to η(D̃) and r̂ ·M is only marginally sufficient,
fine-tuning on D̂3 may yield moderate improvements but

suffers from instability due to the limited number of ef-
fective tokens. According to Corollary 5.2, the model’s
error upper bound may not decrease consistently, leading
to unstable convergence.

From the above analyses, we know that self-evolving mod-
els are more adaptive and aggressive compared to fixed
models. The theoretical insights further highlight strategies
for achieving better performance.

6. Experiments
6.1. Experiments Setup

Data Pool We utilize a high-quality data pool with 50k
sample size from five popular SFT datasets (300k in total):
Flan v2 (Longpre et al., 2023), Open Assistant 1 (Köpf
et al., 2024), Stanford Alpaca (Taori et al., 2023), Dolly
(Databricks, 2023), and WizardLM (Xu et al., 2023). The
data pool is constructed based on a new powerful data cu-
ration pipeline proposed by (Pang et al., 2024b), which
involves selecting data samples using quality rating scores
generated by LLMs. More dataset statistical information
including token length can be found in Appendix D.1. For
the self-evolving cleaning strategy, we heuristically divide
the data pool into five equally sized subsets (10k samples).

Base Models In this paper, we select three popular open-
source LLMs as our base models, including LLaMA-3.2-3B,
LLaMA-3.1-8B (Dubey et al., 2024) and Mistral-7B-v0.3
(Jiang et al., 2023). These base models will be fine-tuned
using samples from our data pool.

Baselines There are several baselines for performance
comparisons: 1) BASE denotes the used base model; 2) DS2

(Pang et al., 2024b) fine-tunes base model on 10k selected
high-quality samples (with full tokens) from the entire data
pool (50k); 3) FULL TOKENS utilizes all tokens to fine-tune
the base model; 4) UNIFORM RANDOM randomly selects
k% tokens from the 50k data pool without replacement; 5)
RHO (Mindermann et al., 2022; Lin et al., 2024) directly
computes the excess loss for all tokens between the base
and reference model and then selects top-k% tokens. Recall
that k is the pre-defined threshold for token cleaning.

Warmup We warmup by fine-tuning the base model on
subset D̃0 with full tokens, and make it the (initial) reference
model for RHO, our FIXED-MODEL CLEANING, and SELF-
EVOLVING CLEANING. The warmup model is equivalent
to the DS2 baseline (Pang et al., 2024b).

Evaluation To comprehensively evaluate the efficacy of
token cleaning methods, we adopt seven OpenLLM Leader-
board tasks, including MMLU (Hendrycks et al., 2020),
TruthfulQA (Lin et al., 2021), TydiQA (Clark et al., 2020),
HellaSwag (Zellers et al., 2019), ARC-Challenge (Clark
et al., 2018), BoolQ (Clark et al., 2019) and LogiQA. These

6

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Table 1: Performance (original score ×100) comparison of different baselines on various benchmarks. We highlight the best
result in boldface and the second-best with underline. By default, the selected token proportion (i.e., threshold) is 0.6.

Model TruthfulQA TydiQA LoqiQA MMLU HellaSwag ARC-C BoolQ AVG

Base model: LLaMA-3.2-3B

BASE 39.39 21.10 22.17 56.29 55.24 42.20 72.95 44.19
DS2 (10K) 43.35 41.20 24.96 56.93 55.64 44.62 74.80 48.79
FULL TOKENS (50K) 43.32 49.60 24.34 56.87 55.57 44.44 74.98 49.87
UNIFORM RANDOM (50K×0.6) 43.79 47.00 23.41 56.96 55.37 44.44 75.05 49.43
RHO 45.57 53.60 26.05 57.10 55.16 45.39 77.36 51.46

FIXED-MODEL CLEANING 48.96 52.60 25.89 57.09 56.43 45.39 77.52 51.98
SELF-EVOLVING CLEANING 51.07 56.38 28.22 56.18 55.81 45.99 77.33 53.00

Base model: LLaMA-3.1-8B

BASE 45.10 22.80 26.51 65.29 59.92 50.82 82.18 50.37
DS2 (10K) 49.57 45.80 27.44 65.77 60.37 53.49 83.26 55.10
FULL TOKENS (50K) 47.51 58.10 28.53 65.78 60.42 54.01 82.49 56.70
UNIFORM RANDOM (50K×0.6) 48.68 56.60 27.29 65.81 60.40 54.09 83.11 56.57
RHO 54.63 61.90 28.99 65.74 62.14 54.78 81.66 58.55

FIXED-MODEL CLEANING 56.02 62.38 28.22 65.71 61.92 55.12 82.67 58.90
SELF-EVOLVING CLEANING 59.58 63.58 26.05 65.07 62.67 54.87 82.49 59.20

Base model: Mistral-7B-v0.3

BASE 42.56 54.70 25.74 62.41 60.77 48.92 82.30 52.88
DS2 (10K) 44.24 55.70 25.27 62.50 61.10 50.39 83.45 53.85
FULL TOKENS (50K) 43.67 55.60 25.27 62.41 61.14 50.56 83.85 54.12
UNIFORM RANDOM (50K×0.6) 43.82 55.70 24.81 62.47 61.20 50.04 83.76 53.64
RHO 43.92 54.50 25.43 62.12 61.35 51.08 83.29 53.60

FIXED-MODEL CLEANING 44.52 59.03 26.05 61.45 61.47 51.68 82.03 55.20
SELF-EVOLVING CLEANING 45.41 56.17 27.44 62.30 61.40 50.65 81.28 55.00

datasets are sufficiently diverse to thoroughly assess the
fine-tuned model across various aspects, including factual
accuracy, reasoning, and multilingual capability. The task
performances are evaluated on the lm-eval-hareness1 reposi-
tory. More evaluation and training details can be found in
Appendix D.2.

6.2. Main Empirical Results

As shown in Table 1, our proposed strategies consistently
outperform baselines across three base models on seven
evaluation benchmarks. Notably, compared to using full
tokens, our self-evolving cleaning has achieved the average
performance improvement of 6.3% on the 3B model and
2.0%/4.4% on the 7B/8B models.

Local Ranking vs. Global Ranking Compared to RHO
(Lin et al., 2024), which ranks token scores locally within in-
dividual samples and removes the same proportion of tokens
per sample, our fixed-model cleaning method globally ranks
token scores across the entire dataset. As shown in Table 1,

1https://github.com/EleutherAI/
lm-evaluation-harness

the local-ranking method (RHO) yields lower average per-
formance than the global-ranking method (FIXED-MODEL
CLEANING), e.g., 51.46 vs. 51.98 for LLaMA-3.2-3B and
53.60 vs. 55.20 for Mistral-7B-v0.3, demonstrating that
global ranking leads to more stable performance improve-
ments. One possible explanation is that local ranking is
constrained by the quality of individual samples. For exam-
ple, in SFT, a low-quality sample may not contain any useful
tokens, while almost all tokens in a high-quality sample may
be useful. Since local ranking removes the same proportion
of tokens from both samples, it inevitably retains uninfor-
mative tokens from low-quality samples while discarding
informative ones from high-quality samples. This limitation
can be mitigated through global token ranking, as employed
in our fixed-model cleaning approach.

Self-Evolving Cleaning Follows the Matthew Effect Ta-
ble 2 presents the model’s performance across different
training iterations (checkpoints), illustrating three phenom-
ena arising from the Matthew effect, as discussed in Sec-
tion 5.3. Specifically, performance on TruthfulQA, TydiQA,
and LogiQA steadily improves over iterations, representing
Observation 1: the rich get richer. In contrast, MMLU

7

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Table 2: Performance results of self-evolving cleaning strategy over iterations (checkpoints) on seven benchmarks. Base
model: LLaMA-3.2-3B. These performance results align with three observations arising from the Matthew effect.

Model TruthfulQA TydiQA LoqiQA MMLU HellaSwag ARC-C BoolQ

REFERENCE-1 45.46 50.05 27.44 57.31 56.10 45.91 76.87
REFERENCE-2 46.67 53.18 27.44 56.89 56.25 46.51 77.15
REFERENCE-3 48.91 54.36 28.22 56.43 56.13 46.43 77.36
REFERENCE-4 51.07 56.38 28.22 56.18 55.81 45.99 77.33

Figure 2: Average performance results of two cleaning
pipelines under different token proportions. Base model:
LLaMA-3.2-3B.

which focuses on factual knowledge, exhibits a slight per-
formance decline, illustrating Observation 2: the poor get
poorer. Meanwhile, for the remaining tasks (HellaSwag,
ARC-C, and BoolQ), performance improvements are ob-
served but exhibit fluctuations, aligning with Observation 3:
unstable convergence.

6.3. Ablation Study

Impact of Selected Token Proportion Here, we inves-
tigate the impact of selected token proportion for our
pipeline using a series of token proportion values includ-
ing {0.3, 0.4, · · · , 0.9}. As shown in Figure 2, the best
results are achieved when the selected token proportion is
approximately 50% to 70%. Beyond this range, the overall
performance declines, which may be attributed to uninfor-
mative tokens. One valuable empirical finding is that the
performance gains in SFT tasks largely rely on a small num-
ber of highly informative and clean tokens. This observation
supports the prevailing view that data quality is more cru-
cial than mere volume. Full results can be referred to in
Appendix E (Table 7).

Impact of Reference Model To assess the impact of the
reference model on performance, we run RHO and our fixed-
model cleaning approach using LLaMA-3.1-8B-Instruct as
the new reference model and compare the results with our
previous reference model (DS2 as the warmup). As shown

Table 3: Performance comparison with a new reference
model: LLaMA-3.1-8B-Instruct. Blue: A better reference
model brings a higher performance improvement. Red: The
counterpart.

Models MMLU BoolQ TydiQA ARC-C

REFERENCE: LLAMA-8B-INST 68.18 84.03 21.63 51.77

RHO 57.04 75.94 39.37 46.08
FIXED-MODEL CLEANING 56.96 76.37 39.17 46.08

REFERENCE: WARMUP 56.93 74.80 41.20 44.62

RHO 57.10 77.36 53.60 45.39
FIXED-MODEL CLEANING 57.09 77.52 52.60 45.39

in Table 3, a more powerful reference model generally leads
to greater performance improvements in datasets such as Ty-
diQA and ARC-C. However, some counterintuitive results
emerge: in MMLU and BoolQ, despite the 8B reference
model significantly outperforming the warmup model, it
fails to yield further improvements through token cleaning.
A possible explanation for this phenomenon is the distribu-
tion shift. If we divide the evaluation task distribution into
two parts: an in-distribution segment aligned with our data
pool and an out-of-distribution segment, LLaMA-3.1-8B-
Instruct, while achieving high overall performance, may not
necessarily surpass the warmup model in the in-distribution
subset. Investigating this hypothesis and validating this as-
sumption are promising directions for future research. More
detailed results can be found in Appendix E.

7. Conclusion
This work has demonstrated the effectiveness and impor-
tance of token cleaning, introducing a generic token cleaning
pipeline that removes uninformative tokens while preserv-
ing task-relevant information. Our theoretical analysis has
revealed the strengths and limitations of two scoring strate-
gies: fixed-model cleaning, which provides stability but
limited improvements, and self-evolving cleaning, which
has shown the potential for greater performance gains but
requires more careful implementation. Empirically, we have
found that filtering out approximately 30%–40% of tokens
consistently enhances performance across both strategies,
achieving an average 6.3% improvement over the full-token
baseline at the 3B model scale.

8

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Acknowledgment
Pang and Qian were partially supported by NSF Grants
2322919, 2420632, 2426031, and 2426940.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Bartlett, P. L. and Mendelson, S. Rademacher and gaussian

complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463–482, 2002.

Cao, Y., Kang, Y., Wang, C., and Sun, L. Instruction min-
ing: Instruction data selection for tuning large language
models. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=wF6k0aWjAu.

Chen, J. and Mueller, J. Automated data curation for
robust language model fine-tuning. arXiv preprint
arXiv:2403.12776, 2024.

Chen, L., Li, S., Yan, J., Wang, H., Gunaratna, K., Yadav,
V., Tang, Z., Srinivasan, V., Zhou, T., Huang, H., et al.
Alpagasus: Training a better alpaca with fewer data. arXiv
preprint arXiv:2307.08701, 2023.

Cheng, H., Zhu, Z., Li, X., Gong, Y., Sun, X., and Liu, Y.
Learning with instance-dependent label noise: A sample
sieve approach. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=2VXyy9mIyU3.

Chong, D., Hong, J., and Manning, C. Detecting label errors
by using pre-trained language models. In Proceedings of
the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 9074–9091, Abu Dhabi, United
Arab Emirates, December 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
618. URL https://aclanthology.org/2022.
emnlp-main.618.

Chowdhury, S. R., Kini, A., and Natarajan, N. Provably ro-
bust dpo: Aligning language models with noisy feedback.
arXiv preprint arXiv:2403.00409, 2024.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, J. H., Choi, E., Collins, M., Garrette, D.,
Kwiatkowski, T., Nikolaev, V., and Palomaki, J. Tydi qa:
A benchmark for information-seeking question answering
in ty pologically di verse languages. Transactions of the
Association for Computational Linguistics, 8:454–470,
2020.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Databricks. Free dolly: Introducing the world’s first truly
open instruction-tuned llm, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Gou, Q. and Nguyen, C.-T. Mixed preference optimization:
Reinforcement learning with data selection and better
reference model. arXiv preprint arXiv:2403.19443, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Kong, K., Xu, X., Wang, D., Zhang, J., and Kankanhalli,
M. Perplexity-aware correction for robust alignment with
noisy preferences. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Köpf, A., Kilcher, Y., von Rütte, D., Anagnostidis, S.,
Tam, Z. R., Stevens, K., Barhoum, A., Nguyen, D., Stan-
ley, O., Nagyfi, R., et al. Openassistant conversations-
democratizing large language model alignment. Advances
in Neural Information Processing Systems, 36, 2024.

9

https://openreview.net/forum?id=wF6k0aWjAu
https://openreview.net/forum?id=wF6k0aWjAu
https://openreview.net/forum?id=2VXyy9mIyU3
https://openreview.net/forum?id=2VXyy9mIyU3
https://aclanthology.org/2022.emnlp-main.618
https://aclanthology.org/2022.emnlp-main.618

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Lad, V. and Mueller, J. Estimating label quality and errors in
semantic segmentation data via any model. arXiv preprint
arXiv:2307.05080, 2023.

Li, M., Zhang, Y., Li, Z., Chen, J., Chen, L., Cheng, N.,
Wang, J., Zhou, T., and Xiao, J. From quantity to quality:
Boosting llm performance with self-guided data selection
for instruction tuning. arXiv preprint arXiv:2308.12032,
2023.

Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., and Li, L.-J.
Learning from noisy labels with distillation. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 1910–1918, 2017.

Lin, S., Hilton, J., and Evans, O. Truthfulqa: Measuring
how models mimic human falsehoods. arXiv preprint
arXiv:2109.07958, 2021.

Lin, Z., Gou, Z., Gong, Y., Liu, X., Xu, R., Lin, C., Yang, Y.,
Jiao, J., Duan, N., Chen, W., et al. Not all tokens are what
you need for pretraining. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Liu, W., Zeng, W., He, K., Jiang, Y., and He, J. What
makes good data for alignment? a comprehensive study
of automatic data selection in instruction tuning. arXiv
preprint arXiv:2312.15685, 2023.

Liu, Y. and Wang, J. Can less be more? when
increasing-to-balancing label noise rates consid-
ered beneficial. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 17467–17479. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
91e50fe1e39af2869d3336eaaeebdb43-Paper.
pdf.

Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W.,
Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., et al. The
flan collection: Designing data and methods for effec-
tive instruction tuning. In International Conference on
Machine Learning, pp. 22631–22648. PMLR, 2023.

Lu, K., Yuan, H., Yuan, Z., Lin, R., Lin, J., Tan, C., Zhou,
C., and Zhou, J. # instag: Instruction tagging for ana-
lyzing supervised fine-tuning of large language models.
In The Twelfth International Conference on Learning
Representations, 2023.

Mindermann, S., Brauner, J. M., Razzak, M. T., Sharma, M.,
Kirsch, A., Xu, W., Höltgen, B., Gomez, A. N., Morisot,
A., Farquhar, S., et al. Prioritized training on points that

are learnable, worth learning, and not yet learnt. In In-
ternational Conference on Machine Learning, pp. 15630–
15649. PMLR, 2022.

Mitchell, E. A note on dpo with noisy preferences and rela-
tionship to ipo, 2023. URL https://ericmitchell. ai/cdpo.
pdf.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. In Advances in neural
information processing systems, pp. 1196–1204, 2013.

Northcutt, C., Jiang, L., and Chuang, I. Confident learn-
ing: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 70:1373–1411, 2021.

Northcutt, C. G., Wu, T., and Chuang, I. L. Learning with
confident examples: Rank pruning for robust classifi-
cation with noisy labels. In Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence,
UAI’17. AUAI Press, 2017. URL http://auai.
org/uai2017/proceedings/papers/35.pdf.

Pang, J., Wang, J., Zhu, Z., Yao, Y., Qian, C., and Liu,
Y. Fairness without harm: An influence-guided ac-
tive sampling approach. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024a. URL https://openreview.net/forum?
id=YYJojVBCcd.

Pang, J., Wei, J., Shah, A. P., Zhu, Z., Wang, Y., Qian, C.,
Liu, Y., Bao, Y., and Wei, W. Improving data efficiency
via curating llm-driven rating systems. arXiv preprint
arXiv:2410.10877, 2024b.

Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., and
Rabinovich, A. Training deep neural networks on noisy la-
bels with bootstrapping. arXiv preprint arXiv:1412.6596,
2014.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023. GitHub repository.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vahdat, A. Toward robustness against label noise in training
deep discriminative neural networks. In Advances in
Neural Information Processing Systems, pp. 5596–5605,
2017.

10

https://proceedings.neurips.cc/paper/2021/file/91e50fe1e39af2869d3336eaaeebdb43-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/91e50fe1e39af2869d3336eaaeebdb43-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/91e50fe1e39af2869d3336eaaeebdb43-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/91e50fe1e39af2869d3336eaaeebdb43-Paper.pdf
http://auai.org/uai2017/proceedings/papers/35.pdf
http://auai.org/uai2017/proceedings/papers/35.pdf
https://openreview.net/forum?id=YYJojVBCcd
https://openreview.net/forum?id=YYJojVBCcd
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., and
Belongie, S. Learning from noisy large-scale datasets
with minimal supervision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 839–847, 2017.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu,
K. R., Wadden, D., MacMillan, K., Smith, N. A., Beltagy,
I., and Hajishirzi, H. How far can camels go? exploring
the state of instruction tuning on open resources, 2023.

Xia, M., Malladi, S., Gururangan, S., Arora, S., and Chen,
D. Less: Selecting influential data for targeted instruction
tuning. arXiv preprint arXiv:2402.04333, 2024.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao,
C., and Jiang, D. Wizardlm: Empowering large language
models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

Yuan, S., Feng, L., and Liu, T. Early stopping against
label noise without validation data. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=CMzF2aOfqp.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, B., Liu, Z., Cherry, C., and Firat, O. When scal-
ing meets llm finetuning: The effect of data, model and
finetuning method. arXiv preprint arXiv:2402.17193,
2024.

Zhao, H., Andriushchenko, M., Croce, F., and Flammarion,
N. Long is more for alignment: A simple but tough-to-
beat baseline for instruction fine-tuning. arXiv preprint
arXiv:2402.04833, 2024.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. Advances in Neural Information Processing
Systems, 36, 2024.

Zhou, D., Wang, K., Gu, J., Peng, X., Lian, D., Zhang, Y.,
You, Y., and Feng, J. Dataset quantization. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 17205–17216, 2023.

Zhu, Z., Liu, T., and Liu, Y. A second-order approach to
learning with instance-dependent label noise. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10113–10123, 2021.

Zhu, Z., Dong, Z., and Liu, Y. Detecting corrupted labels
without training a model to predict. In International Con-
ference on Machine Learning, pp. 27412–27427. PMLR,
2022.

Zhu, Z., Wang, J., Cheng, H., and Liu, Y. Unmasking
and improving data credibility: A study with datasets
for training harmless language models. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=6bcAD6g688.

11

https://openreview.net/forum?id=CMzF2aOfqp
https://openreview.net/forum?id=CMzF2aOfqp
https://openreview.net/forum?id=6bcAD6g688
https://openreview.net/forum?id=6bcAD6g688

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Appendix

Organization of the Appendix
The Appendix is organized as follows.

• Section A discusses the potential limitations of this work.
• Section B discusses the additional computational cost of our proposed piplines.
• Section C provides a full proof for Theorems shown in Section 5.
• Section D illustrates the experimental details including data pool, evaluation benchmarks, and training details.
• Section E demonstrates detailed omitted performance results and the visualization of token influence scores.
• Section F provides several samples with tokens selected by the self-evolving cleaning pipeline.

A. Limitations
While the proposed token cleaning pipelines demonstrate competitive performance compared to other baselines, we
acknowledge that there are still potential limitations:

• Base Model Scale Our experiments are primarily conducted on a base model with a 3B-8B scale. It remains uncertain
how well the pipeline would perform on larger-scale base models.

• Data Pool Scale Due to cost considerations, our data pool is limited to 50k samples. The performance of the proposed
pipeline on a larger-scale data pool remains uncertain.

B. Computational Time and Cost Analysis
Computational Cost The computational costs associated with the token cleaning pipelines primarily consist of the training
costs, akin to those of standard SFT, along with two types of additional inference costs. These additional costs stem from
one base model and another reference model, both of which are used to calculate token-level influence scores. Compared to
the Rho baseline (Lin et al., 2024), our two proposed piplines do not incur any additional inference costs since the total data
size for inference remains unchanged. For the Naive Fixed-Model Cleaning, we perform a one-shot inference on all samples
simultaneously, mirroring the process used in Rho. For the Self-Evolving Cleaning pipeline, we simply segment the data
pool into several partitions for independent inference using different reference models, i.e., 50k samples → {10k, 10k, · · · ,
10k} samples. Consequently, the inference cost for the Self-Evolving Cleaning pipeline is also equivalent to that of Rho
baseline.

Computational Time It’s important to note that compared to standard SFT, token cleaning pipelines does not achieve
computational speedup because the next-token prediction xij still relies on the context formed by previous tokens xi,:j .
The current implementation simply masks out uninformative tokens to ignore their token loss, which is simple and
compatible with all training paradigms. Existing token-level approaches, including RHO and our approaches, mainly focus
on performance efficiency rather than data (token) training efficiency. In practice, the GPU memory usage of these methods
remains the same as when using full tokens. Therefore, investigating and enhancing token training efficiency represents a
promising direction for future research, such as exploring ways to skip uninformative token memory occupation altogether.

C. Proof for Theorem 5.1
We first reproduce the definitions as follows.

Denote by D̃ := {(xi,j ,xi,:j , ỹi,j),∀i, j} the full-token dataset. By minimizing the noisy loss

L̂D̃(θ) =
1∑

(i,j)∈S ỹi,j

∑
(i,j)∈S

ỹi,j1(θ(xi,:j), xi,j),

where S := {(i, j)|i ∈ [N], j ∈ [Li]}, [N] := {1, 2, · · · , N}. we can get model θ̂D̃ := argminθ L̂D̃(θ). When train with

12

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

full tokens, we have ỹi,j = 1,∀i, j. The corresponding expected loss can be denoted by

LD̃(θ) = E
[
Ỹ · 1(θ(Xprev), Xnext)

]
= E [1(θ(Xprev), Xnext)] ,

where D̃ is the distribution of D̃. Denote by Ỹ the random variable for noisy token label ỹi,j , and Y the random variable for
the ground-truth token label yi,j . Accordingly, with ground-truth token labels, the expected loss is

LD(θ) =
1

E[Y]
E [Y · 1(θ(Xprev), Xnext)] .

Decomposition With the above definitions, the generalization error of model θ̂D̃ on the clean distribution could be
decomposed as

LD(θ̂D̃) = (LD(θ̂D̃)− LD̃(θ̂D̃))︸ ︷︷ ︸
Term-1

+LD̃(θ̂D̃)︸ ︷︷ ︸
Term-2

,

where Term-1 transforms the evaluation of θ̂D̃ from clean distribution D to the noisy distribution D̃. Term-2 is the
generalization error but the model is trained and evaluated on noisy distribution D̃. Both terms are analyzed as follows.

C.1. Term-1 Upper Bound

For a certain model θ, there always exist a random variable X̃next such that when Y = 1, Xnext = X̃next and when Y = 0,

EX|Y=1 [1(θ(Xprev), Xnext)] = EX|Y=0

[
1(θ(Xprev), X̃next)

]
.

Then we have

E
[
Ỹ · 1(θ(Xprev), X̃next)

]
=P(Y = 1) · EX|Y=1

[
1(θ(Xprev), X̃next)

]
+ P(Y = 0) · EX|Y=0

[
1(θ(Xprev), X̃next)

]
=P(Y = 1) · EX|Y=1 [1(θ(Xprev), Xnext)] + P(Y = 0) · EX|Y=1 [1(θ(Xprev), Xnext)]

=EX|Y=1 [1(θ(Xprev), Xnext)]

=
1

E[Y]
· E [Y · 1(θ(Xprev), Xnext)]

13

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

LD(θ)− LD̃(θ)

=

∫
X

(
Y

E[Y]
· P(θ(Xprev) ̸= Xnext|X)− Ỹ · P(θ(Xprev) ̸= Xnext|X)

)
P(X) dX

=

∫
X

(
Ỹ · P(θ(Xprev) ̸= X̃next|X)− Ỹ · P(θ(Xprev) ̸= Xnext|X)

)
P(X) dX

=

∫
X

(
P(θ(Xprev) ̸= X̃next|X)− P(θ(Xprev) ̸= Xnext|X)

)
P(X) dX

=

∫
X

(
P(θ(Xprev) = Xnext|X)− P(θ(Xprev) = X̃next|X)

)
P(X) dX

≤1

2

∫
X

(∣∣∣P(θ(Xprev) = X̃next|X)− P(θ(Xprev) = Xnext|X)
∣∣∣

+
∣∣∣P(θ(Xprev) ̸= X̃next|X)− P(θ(Xprev) ̸= Xnext|X)

∣∣∣)P(X) dX

(a)
=

∫
X

TD(X̃next(Xprev; θ)||Xnext(Xprev; θ))P(X) dX

(b)

≤ 1

2

∫
X

∑
k∈[K]

∣∣∣P(X̃next = k|X)− P(Xnext = k|X)
∣∣∣P(X) dX

=P(Y = 1) · 1
2

∫
X

∑
k∈[K]

∣∣∣P(X̃next = k|X,Y = 1)− P(Xnext = k|X,Y = 1)
∣∣∣P(X|Y = 1) dX

+ P(Y = 0) · 1
2

∫
X

∑
k∈[K]

∣∣∣P(X̃next = k|X,Y = 0)− P(Xnext = k|X,Y = 0)
∣∣∣P(X|Y = 0) dX

≤P(Y = 0)

=P(Y ̸= Ỹ)

=η(D̃).

where in equality (a), given model θ and previous tokens, we can treat X̃next(Xprev; θ) as a Bernoulli random variable such
that

P(X̃next(Xprev; θ) = +) = P(θ(Xprev) = X̃next|X) and P(X̃next(Xprev; θ) = −) = P(θ(Xprev) ̸= X̃next|X).

Then according to the definition of total variation of two distributions, i.e.,

TD(P ||Q) :=
1

2

∫
u

|dP
du

− dQ

du
|du,

we can summarize the integrand as the total variation between X̃next(Xprev; θ) and Xnext(Xprev; θ).

Inequality (b) holds due to the data processing inequality since the probabilities [P(X̃next = θ(Xprev)),P(X̃next ̸= θ(Xprev))]

are generated by [P(X̃next = i),∀i ∈ [K]], and the probabilities [P(Xnext = θ(Xprev)),P(Xnext ̸= θ(Xprev))] are generated
by [P(Xnext = k),∀k ∈ [K]].

The results also hold for an arbitrary Ỹ . To prove it, we need to split the loss into two part: 1) Ỹ = 1 and 2) Ỹ = 0. The
first part follows the previous proof, yields an upper bound of P(Ỹ = 1, Y = 0). The second part leads to an upper bound
of P(Ỹ = 0, Y = 1). By summing up two bounds, we still have the same result, i.e., an upper bound of P(Y ̸= Ỹ).

14

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

C.2. Term-2 Upper Bound

Recall that
L̂D̃(θ) =

1∑
(i,j)∈S ỹi,j

∑
(i,j)∈S

ỹi,jℓ(xi,j |xi,:j ; θ).

Let θ̂D̃ denote the model trained by minimizing 0-1 loss with noisy dataset D̃, i.e.,

θ̂D̃ := argmin
θ

L̂D̃(θ).

Recall that the expected error of model θ on distribution D̃ is

LD̃(θ) = E
[
Ỹ · 1(θ(Xprev), Xnext)

]
.

The optimal classifier is denoted by
θD̃ := argmin

θ
LD̃(θ).

Denote by M :=
∑N

i=1 Li the number of toekns. With probability at least 1− δ, we have:

LD̃(θ̂D̃)− LD̃(θD̃)

=L̂D̃(θ̂D̃)− L̂D̃(θD̃) +
(
LD̃(θ̂D̃)− L̂D̃(θ̂D̃)

)
+
(
L̂D̃(θD̃)− LD̃(θD̃)

)
(a)

≤0 + |L̂D̃(θ̂D̃)− LD̃(θ̂D̃)|+ |L̂D̃(θD̃)− LD̃(θD̃)|
(b)

≤
√

2 log(4/δ)

M
,

where inequality (a) holds since 1) L̂D̃(θ̂D̃) achieves the minimum empirical risk according to its definition, thus L̂D̃(θ̂D̃)−
L̂D̃(θD̃) ≤ 0; 2) each of the following two terms will be no greater than the corresponding gap |L̂D̃(θ)−LD̃(θ)|. Specifically,
inequality (b) holds due to the Hoeffding’s inequality, i.e., given any classifier θ̂D̃, and θD̃, with probability at least 1− δ/2,
we have the following bounds independently:

|L̂D̃(θ̂D̃)− LD̃(θ̂D̃)| ≤
√

log(4/δ)

2M
, |L̂D̃(θD̃)− LD̃(θD̃)| ≤

√
log(4/δ)

2M
.

By the union bound, we have inequality (b) with probability at least 1− δ.

Supposing a unique next token for given previous tokens in distribution D̃, we have LD̃(θD̃) = 0.

D. Experimental Details
D.1. Data Pool

The data pool used in this work is primarily composed of five widely used SFT datasets, derived either from human
annotations or generated by advanced LLMs. Further details on these datasets can be found in Table 4. Notably, these
datasets differ in format, quality, prompt length, and target tasks, highlighting the diversity of our foundational data pool.
For consistency, we adopt the “Tulu” template format proposed by Wang et al. (2023) to standardize these datasets. The
“Tulu” template includes two primary tags, <|User|> and <|Assistant|>, which denote the roles of the user and the
assistant, respectively.

D.2. Evaluation Benchmarks

For MMLU, TruthfulQA, LogiQA, ARC-C, BoolQ, and HellaSwag datasets, we directly use accuracy as the performance
metric. In particular, for the TruthfulQA dataset (a multiple-choice question benchmark), we utilize the MC2 metric,
which evaluates only the answer assigned the highest probability by the model (i.e., the model’s most confident choice).
For the TydiQA dataset, we consider using the 1-shot F1 score. One can double-check these performance metrics in the
LM-EVALUATION-HARNESS repository. By default, we use all benchmark samples to conduct evaluation.

15

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Table 4: Statistical summary of our 50k data pool. The average prompt length and the average response length are measured
based on LLaMA-3.2-3B.

Datasets Data source Data quality # Data size Prompt Len Completion Len Overall Len

OPEN-ASSISTANT 1 Human-generated Both 2418 45.4 364.1 409.5
STANFORD ALPACA Generated w/ Davinci-003 Normal 4598 22.5 84.8 107.2
WIZARDLM ChatGPT-generated High 34772 126.1 419.23 545.4
DOLLY Human-generated Normal 1567 119.1 133.7 252.9
FLAN V2 Human-generated Normal 6645 475.1 38.6 513.7

D.3. Training Details

Following the experimental setup (Wang et al., 2023), we apply the LoRA technique (Hu et al., 2022) with a rank-size of 64
and a scaling factor of 16. The overall batch size is 48, with the learning rate at 1e-4 as well as 1 training epoch. By default,
the maximum input length is 2048. All experiments are conducted on eight NVIDIA L40S GPUs. Fine-tuning 7B or 8B
models on a dataset of 50k samples typically takes approximately 3 hours.

E. Additional Experimental Results
E.1. Empirical Results Still Follows the Observation of the Matthew Effort

Here, we also provide the empirical results of the self-evolving cleaning strategy on the other two base models. As shown in
Table 5, the performance results over iterations also align with the theoretical observation, as discussed in Section 5.3.

Table 5: Performance results of self-evolving cleaning pipeline over iterations (checkpoints) on seven benchmarks. Base
models: LLaMA-3.1-8B and Mistral-7B-v0.3. These performance results still align with three observations arising
from the Matthew effect.

Model TruthfulQA TydiQA LoqiQA MMLU HellaSwag ARC-C BoolQ

Base model: LLaMA-3.1-8B

REFERENCE-1 53.45 58.62 28.68 65.65 61.58 55.56 82.98
REFERENCE-2 56.77 63.23 27.91 65.40 62.29 56.16 82.64
REFERENCE-3 59.01 65.27 26.05 65.18 62.56 55.81 82.74
REFERENCE-4 59.58 63.58 26.05 65.07 62.67 54.87 82.49

Base model: Mistral-7B-v0.3

REFERENCE-1 44.36 55.79 26.20 62.31 61.32 51.34 84.03
REFERENCE-2 44.78 56.04 27.13 62.41 61.37 51.25 83.82
REFERENCE-3 44.93 55.69 27.44 62.32 61.30 50.82 80.36
REFERENCE-4 45.41 56.17 27.44 62.30 61.40 50.65 81.28

E.2. Impact of Selected Token Proportion

This section provides more experimental results to explicitly demonstrate the impact of the selected token proportion across
iterations. Here, Table 6 and Table 7 show the full performance results of the fixed-model cleaning and self-evolving
cleaning pipeline, respectively.

E.3. Impact of Reference Model

Here, we provide the full performance results under different reference models, as shown in Table 8. Here, we select
LLaMA-3.1-8B-Instruct2 as our reference model.

2https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct.

16

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Table 6: Performance comparison of self-evolving cleaning pipeline over different iterations on various benchmarks under
different selected token proportions.

Model Token Prop TruthfulQA TydiQA LoqiQA MMLU HellaSwag ARC-C BoolQ
Base Model: LLaMA-3.2-3B

REFERENCE-1

0.3

45.68 49.36 27.60 57.23 56.06 45.56 77.08
REFERENCE-2 46.84 50.10 28.22 56.53 56.01 47.11 77.18
REFERENCE-3 49.15 50.69 27.44 56.11 55.83 46.51 77.15
REFERENCE-4 51.57 52.96 26.51 55.42 55.55 46.51 77.24

REFERENCE-1

0.4

45.56 46.88 26.98 57.32 56.29 45.99 77.15
REFERENCE-2 46.95 51.73 29.30 56.82 56.34 46.94 77.18
REFERENCE-3 48.72 54.56 28.84 56.52 56.05 46.68 77.52
REFERENCE-4 50.69 55.20 27.91 56.27 55.77 46.86 77.36

REFERENCE-1

0.5

45.47 47.49 27.13 57.18 56.22 45.82 76.99
REFERENCE-2 46.93 53.02 27.44 57.04 56.45 46.68 77.30
REFERENCE-3 48.73 54.65 28.37 56.55 56.10 46.94 77.33
REFERENCE-4 50.42 55.19 28.37 56.25 55.83 46.77 77.12

REFERENCE-1

0.6

45.46 50.05 27.44 57.31 56.10 45.91 76.87
REFERENCE-2 46.67 53.18 27.44 56.89 56.25 46.51 77.15
REFERENCE-3 48.91 54.36 28.22 56.43 56.13 46.43 77.36
REFERENCE-4 51.07 56.38 28.22 56.18 55.81 45.99 77.33

REFERENCE-1

0.7

45.34 50.45 27.60 57.42 56.09 45.65 76.90
REFERENCE-2 46.82 52.02 26.98 56.86 56.34 46.43 77.30
REFERENCE-3 48.48 55.27 27.91 56.38 56.18 46.77 77.21
REFERENCE-4 50.66 55.47 27.91 56.10 55.93 46.43 77.36

REFERENCE-1

0.8

45.09 56.21 26.67 57.50 45.65 32.73 76.87
REFERENCE-2 46.25 56.39 26.67 57.21 46.08 32.93 77.08
REFERENCE-3 47.30 56.34 26.67 57.05 45.99 33.33 77.33
REFERENCE-4 48.40 56.23 26.82 56.89 45.91 33.33 77.18

REFERENCE-1

0.9

44.75 46.88 26.20 57.52 56.10 45.39 76.68
REFERENCE-2 45.06 50.47 26.20 57.27 56.42 46.08 76.96
REFERENCE-3 45.23 50.36 25.43 57.37 56.45 46.08 77.02
REFERENCE-4 46.36 51.68 26.98 57.25 56.34 45.65 76.90

E.4. Token Influence Score Visualization

We visualize the token influence scores from our Self-Evolving Cleaning approach using scatter plots, as shown in Figure 3.
As training progresses across iterations, we observe that token points gradually spread out from the diagonal line y = x,
where most tokens were initially concentrated. This trend indicates that the influence scores become increasingly diverse.
Figures 3a through 3b reveal similar token influence score patterns, as both base models originate from the LLaMA series,
despite differing in scale. Specifically, more informative tokens (highlighted in red) shift into the upper-left region of the
plot, where the reference model assigns low loss but the base model assigns higher loss. This pattern suggests that the
Self-Evolving Cleaning strategy successfully amplifies the contrast in token-level influence scores across iterations, thereby
enabling a more effective separation between informative and uninformative tokens.

F. Illustrative Examples with Selected Tokens
Intuitively, those common tokens are less likely to be selected by our proposed strategies. Here, we provide several samples
with tokens selected by the proposed self-evolving cleaning strategy. The selected (i.e., clean) tokens are highlighted in blue.

17

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

(a) LLaMA-3.2-3B

(b) LLaMA-3.1-8B

(c) Mistral-7B-v0.3

Figure 3: Visualization of token loss (i.e., influence scores) across training iterations of the Self-Evolving Cleaning pipeline.
We plot the cases for three base models. The minimum influence score value of informative tokens is approximately in the
range [0.0003, 0.001]. As the training progresses, token points diverge from the y = x diagonal, indicating greater variability
in influence scores. This allows Self-Evolving Cleaning to better differentiate between informative and uninformative
tokens.

18

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Table 7: Performance comparison of two token cleaning pipelines and RHO on various benchmarks under different selected
token proportions. Token Prop denotes the selected token proportion.

Model Token Prop TruthfulQA TydiQA LoqiQA MMLU HellaSwag ARC-C BoolQ AVG
Base Model: LLaMA-3.2-3B

FIXED MODEL CLEANNING 0.3 48.46 51.08 26.36 56.93 56.22 46.25 77.36 51.80
FIXED MODEL CLEANNING 0.4 47.97 51.77 26.36 57.12 56.39 46.25 77.24 51.90
FIXED MODEL CLEANNING 0.5 47.65 52.61 26.51 57.14 56.45 45.99 77.15 51.90
FIXED MODEL CLEANNING 0.6 48.96 52.60 25.89 57.09 56.43 45.39 77.52 51.98
FIXED MODEL CLEANNING 0.7 47.53 51.96 25.74 57.06 56.55 45.99 77.15 51.70
FIXED MODEL CLEANNING 0.8 47.33 50.04 25.74 57.10 56.56 46.34 76.87 51.40
FIXED MODEL CLEANNING 0.9 46.26 49.75 24.81 57.18 56.39 46.34 76.03 51.00
FIXED MODEL CLEANNING 1.0 43.32 49.60 24.34 56.87 55.57 44.44 74.98 49.87

SELF-EVOLVING CLEANING 0.3 51.57 52.96 26.51 55.42 55.55 46.51 77.24 52.25
SELF-EVOLVING CLEANING 0.4 50.69 55.20 27.91 56.27 55.77 46.86 77.36 52.87
SELF-EVOLVING CLEANING 0.5 50.42 55.19 28.37 56.25 55.83 46.77 77.12 52.85
SELF-EVOLVING CLEANING 0.6 51.07 56.38 28.22 56.18 55.81 45.99 77.33 53.0
SELF-EVOLVING CLEANING 0.7 50.66 55.47 27.91 56.10 55.93 46.43 77.36 52.83
SELF-EVOLVING CLEANING 0.8 48.40 56.23 26.82 56.89 45.91 33.33 77.18 49.25
SELF-EVOLVING CLEANING 0.9 46.36 51.68 26.98 57.25 56.34 45.65 76.90 51.59
SELF-EVOLVING CLEANING 1.0 43.32 49.60 24.34 56.87 55.57 44.44 74.98 49.87

RHO 0.3 49.68 49.54 26.98 56.94 55.97 46.51 76.65 51.80
RHO 0.4 48.17 51.09 26.20 57.01 56.15 46.25 76.96 51.70
RHO 0.5 48.04 53.31 26.67 57.00 56.39 46.17 77.12 52.10
RHO 0.6 45.57 53.60 26.05 57.10 55.16 45.39 77.36 51.46
RHO 0.7 47.56 52.92 25.58 57.08 56.42 46.08 76.28 51.70
RHO 0.8 46.97 49.66 26.36 57.31 56.45 46.34 76.00 51.30
RHO 0.9 46.19 50.16 25.12 57.22 56.06 45.91 75.26 50.80
RHO 1.0 43.32 49.60 24.34 56.87 55.57 44.44 74.98 49.87

Sample 1

User: Write a response that appropriately completes the request.
Instruction: Does Palmeiras have a Fifa club world cup?
Response:

Assistant: Despite many claims that Palmeiras won a club world cup in 1951, the official list of the
Fifa World Club winners starts in the year 2000 with Corinthians being the first champion of the tourna-
ment and Palmeiras doesn’t have won any Fifa World Cup tournament since.

Sample 2

User: Seven Wonders of the Underwater World. Answer:

Assistant: Here’s a list of the Seven Wonders of the Underwater World: - Palau- Belize Barrier Reef, Belize-
Great Barrier Reef, Australia- Deep-sea hydrothermal vents (worldwide) - Galápagos Islands, Ecuador- Lake Baikal,
Russia- Northern Red Sea, bordered by Saudi Arabia and Yemen on the eastern shore, and Egypt, Sudan, Eritrea,
and Djibouti on the western shore

19

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Table 8: Performance results under different reference models. Base model: LLaMA-3.1-3B. Additional reference model:
LLaMA-3.1-8B-Instruct.

Model TruthfulQA TydiQA LoqiQA MMLU HellaSwag ARC-C BoolQ AVG
BASE MODEL 39.39 21.10 22.17 56.29 55.24 42.20 72.95 44.19

LLAMA-8B-INST 54.12 21.63 31.47 68.18 59.0 51.77 84.03 52.89
RHO (LLAMA) 44.06 39.37 25.58 57.04 55.35 46.08 75.94 49.1
FIXED-MODEL CLEANING (LLAMA) 44.27 39.17 24.96 56.96 55.22 46.08 76.37 49.0

WARMUP REFERENCE MODEL 43.35 41.20 24.96 56.93 55.64 44.62 74.80 48.79
RHO (WARMUP) 45.57 53.60 26.05 57.10 55.16 45.39 77.36 51.46
FIXED-MODEL CLEANING (WARMUP) 48.96 52.60 25.89 57.09 56.43 45.39 77.52 51.98

Sample 3

User: In a restaurant kitchen, a chef uses a food processor to prepare a sauce. The recipe calls for 2 cups of chopped
tomatoes, 1 cup of diced onions, and 1/2 cup of minced garlic. The food processor has a maximum capacity of 4
cups. If the chef wants to make enough sauce for 6 servings, how many times must the ingredients be processed in
the food processor? Hint: Assume that the food processor can process the entire recipe at once.

Assistant: The recipe requires a total of 2 + 1 + 0.5 = 3.5 cups of ingredients. To make enough sauce for 6 serv-
ings, the chef needs to prepare 6 * 3.5 = 21 cups of ingredients in total. Since the food processor can process up
to 4 cups of ingredients at a time, the chef needs to process the ingredients 21 / 4 = 5.25 times. However, since the
chef cannot process ingredients a fraction of a time, they will need to process the ingredients 6 times to make enough
sauce for 6 servings.

Sample 4

User: What is the meaning of ”real life”? How does one distinguish the real world from the imaginary? Can virtual
reality experiences be considered real life? How do our senses interpret reality?

Assistant: The meaning of ”real life” can be subjective and varies from person to person. Generally, it refers to
experiences and interactions that occur in the physical world, as opposed to in one’s imagination or virtual real-
ity. Distinguishing the real world from the imaginary can be difficult, as imagination and perceptions can be influ-
enced by personal beliefs, emotions, and past experiences. However, in general, the real world is considered to be
the physical environment we inhabit and experience through our senses, whereas the imaginary world is one that ex-
ists solely in our minds and is not physically present. Virtual reality experiences can provide a sense of im-
mersion that can feel very real, but they are still created and controlled by technology, and not experienced
in the physical world. As such, they are not typically considered ”real life.” Our senses play a critical role in
interpreting and experiencing reality. Our brains receive information from our eyes, ears, nose, skin, and other
sensory receptors, and then process and interpret that information to create our experience of the world. How-
ever, our senses are not perfect and can be influenced by factors such as fatigue, illness, or external stimuli,
which can alter our perceptions of reality.

20

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Sample 5

User: Develop a comprehensive metric that takes into consideration various factors such as user engagement, user
feedback, user retention, user conversion rate, and user satisfaction to evaluate the effectiveness of a given phone
application designed to connect people with mental health professionals. The metric should also take into account
the different types of mental health conditions that the application caters to, such as depression, anxiety, bipolar
disorder, and schizophrenia, and should provide separate scores for each condition. Additionally, the metric should
consider the geographical location of the users and the availability of mental health professionals in their area. The
evaluation should be done over a period of at least six months to account for any seasonal variations. Finally, the
metric should be presented in a format that is easily understandable by both technical and non-technical stakeholders,
such as a dashboard with charts and graphs, and should also include recommendations for improving the application
based on the evaluation results.

Assistant: The following is a comprehensive metric that takes into consideration various factors to evaluate the effec-
tiveness of a given phone application designed to connect people with mental health professionals: 1. User Engage-
ment: This factor measures the level of user interaction with the application. The following metrics can be used to
evaluate user engagement: - Number of downloads: The total number of downloads of the application over a pe-
riod of six months. - Active Users: The number of users who actively use the application on a weekly or monthly
basis. - Session Duration: The average time spent by users on the application during each session. - Frequency of
Use: The number of times users access the application in a week or month. 2. User Feedback: This factor measures
the level of satisfaction of users with the application. The following metrics can be used to evaluate user feedback: -
App Rating: The average rating of the application on app stores such as Google Play Store and Apple App Store.
- User Reviews: The number and content of user reviews on app stores and other forums. - Net Promoter Score (NPS):
A metric that measures the likelihood of users to recommend the application to others. 3. User Retention: This fac-
tor measures the ability of the application to retain users over a period of time. The following metrics can be used
to evaluate user retention: - Churn Rate: The percentage of users who stop using the application over a period of time.
- Retention Rate: The percentage of users who continue to use the application over a period of time. 4. User Con-
version Rate: This factor measures the ability of the application to convert users into paying customers. The fol-
lowing metrics can be used to evaluate user conversion rate: - Conversion Rate: The percentage of users who
upgrade to a paid subscription or purchase additional services. - Average Revenue Per User (ARPU): The aver-
age amount of revenue generated per user. 5. User Satisfaction: This factor measures the level of satisfaction
of users with the mental health professionals they connect with through the application. The following met-
rics can be used to evaluate user satisfaction: - Patient Satisfaction Score (PSS): A metric that measures the satisfac-
tion of patients with the mental health professionals they connect with through the application. - Mental Health
Professional Satisfaction Score (MHPSS): A metric that measures the satisfaction of mental health profession-
als with the application and the quality of patients they connect with. 6. Mental Health Condition: This factor takes
into account the different types of mental health conditions that the application caters to, such as depression, anxiety,
bipolar disorder, and schizophrenia. The following metrics can be used to evaluate the effectiveness of the appli-
cation for each condition: - Condition-specific Engagement: The level of engagement of users with the applica-
tion for each mental health condition. - Condition-specific Feedback: The level of satisfaction of users with the
application for each mental health condition. - Condition-specific Retention: The ability of the application to re-
tain users with each mental health condition over a period of time. - Condition-specific Conversion Rate: The abil-
ity of the application to convert users with each mental health condition into paying customers. - Condition-
specific Satisfaction: The level of satisfaction of users with the mental health professionals they connect with
through the application for each mental health condition. 7. Geographical Location: This factor takes into account the
geographical location of the users and the availability of mental health professionals in their area. The following met-
rics can be used to evaluate the effectiveness of the application for each geographical location: - Location-specific En-
gagement: The level of engagement of users with the application for each geographical location. - Location-specific
Feedback: The level of satisfaction of users with the application for each geographical location. - Location-specific
Retention: The ability of the application to retain users in each geographical location over a period of time. - Loca-
tion-specific Conversion Rate: The ability of the application to convert users in each geographical location into pay-
ing customers. - Location-specific Satisfaction: The level of satisfaction of users with the mental health professionals
they connect with through the application in each geographical location. The evaluation should be done over a period
of at least six months to account for any seasonal variations.

21

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Sample 6

User: What’s the furthest back we can prove human existence? Is there good reason to believe it goes further then
this point?

Assistant: Human is an ever-evolving species. If we starts from Homo sapiens the species, there are traces of human
in Africa since 300,000 years ago. For Homogenus, earliest fossil record discovered so far is dated around 2.8 mil-
lion years ago. The above dates are based on fossil records. It is completely possible for new fos-
sil emerges with an earlier date. It is also possible that carbon dating, technique used to determine fossil age, may not
be accurate. For example if there are more carbon-14 than we thought there would be in the past, we would
underestimate the age of existing fossils, pushing human history further back.

User: How reliable is carbon dating exactly?

Assistant: There is no exact answer to how reliable carbon dating is. It depends on many factors, such as the quality
of the sample, the calibration of the equipment, and the assumptions made about the past. Generally speaking, car-
bon dating can be accurate up to about 50,000 years ago, but beyond that it becomes less reliable. The margin of er-
ror can range from a few years to several thousand years, depending on the situation.

22

