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Abstract

Recourse generators provide actionable insights, often through feature-based counterfactual
explanations (CFEs), to help negatively classified individuals understand how to adjust
their input features to achieve a positive classification. These feature-based CFEs, which
we refer to as low-level CFEs, are overly specific (e.g., coding experience: 4 → 5+ years)
and often recommended in a feature space that doesn’t straightforwardly align with real-
world actions. To bridge this gap, we introduce three novel recourse types grounded in
real-world actions: high-level continuous (hl-continuous), high-level discrete (hl-discrete),
and high-level ID (hl-id) CFEs.
We formulate single-agent CFE generation methods for hl-discrete and hl-continuous CFEs.
For the hl-discrete CFE, we cast the task as a weighted set cover problem that selects the
least cost set of hl-discrete actions that satisfy the eligibility of features, and model the
hl-continuous CFE as a solution to an integer linear program that identifies the least cost
set of hl-continuous actions capable of favorably altering the prediction of a linear classifier.
Since these methods require costly optimization per agent, we propose data-driven CFE
generation approaches that, given instances of agents and their optimal CFEs, learn a CFE
generator that quickly provides optimal CFEs for new agents. This approach, also viewed
as one of learning an optimal policy in a family of large but deterministic MDPs, considers
several problem formulations, including formulations in which the actions and their effects
are unknown, and therefore addresses informational and computational challenges.
We conduct extensive empirical evaluations using publicly available healthcare datasets
(BRFSS, Foods, and NHANES) and fully-synthetic data. For negatively classified agents
identified by linear and threshold-based binary classifiers, we compare the proposed forms of
recourse to low-level CFEs, which suggest how the agent can transition from state x to a new
state x′ where the model prediction is desirable. We also extensively evaluate the effective-
ness of our neural network-based, data-driven CFE generation approaches. Empirical results
show that the proposed data-driven CFE generators are accurate and resource-efficient, and
the proposed forms of recourse offer various advantages over the low-level CFEs.

1 Introduction

Machine learning models are increasingly being used to guide high-stakes decision-making processes. Given
the potential impact on individuals’ livelihoods, society demands transparency and the right to an expla-
nation, as outlined in Articles 13–15 of the European Parliament and Council of the EU (2016) General
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Calcium (mg): 309
Carbohydrate (gm): 109.45
Copper (mg): 0.425
Dietary fiber (gm): 4.1
Iron (mg): 4.08
Magnesium (mg): 96

...

PhysActivity: 1
Fruits: 0
Veggies: 0
AnyHealthcare: 1
LowBP: 0
NoSmoke: 1
LowChol: 0
HealthBMI: 0

...
Education: BSc in computer science
Coding experience: 4 years
Leadership: none
Published research: none

Calcium (mg): 309 → 113
Carbohydrate (gm):
109.45 → 43.376000000000005
Copper (mg):
0.425 → 0.21295000000000001
Dietary fiber (gm):
4.1 → 50.113950000000024
Iron (mg):
4.08 → 42.729460000000002
Magnesium (mg): 96 → 57

...

Fruits: 0 → 1
Veggies: 0 → 1
LowBP: 0 → 1
LowChol: 0 → 1
HealthBMI: 0 → 1

...
Coding experience: 4 → 5+ years
Leadership: none → 1+ years
Published research: none → 1+

Take “leavening agents: cream of
tartar” (ca1)
Take “fish, tuna, light, canned in
water, drained solids” (ca2)

Pickup the “lisinopril and
atorvastatin prescription
from the pharmacy” (da1)
Adopt “a keto diet” (da2)

Complete the Google AI residency
program

The agent profile (app1) The agent profile (app2)

The agent profile (app3)

The low-level CFE

The low-level CFE
The low-level CFE

The hl-continuous CFE The hl-discrete CFE The hl-id CFE

Figure 1: A comparative analysis of low-level CFEs with three high-level types: hl-continuous, hl-discrete,
and hl-id, offering actionable insights to help negatively classified agents (with initial profiles/states in grey)
achieve positive outcomes from binary classifiers: dietary changes to achieve a healthy waist-to-hip ratio
(app1), guide an agent (app2) to meet wellness check criteria, and help an agent (app3) qualify for an AI
junior research engineer role. In all cases, the low-level CFE precisely specifies which features to modify and
by how much. The hl-continuous CFE adjusts multiple features numerically, e.g., corresponding to features
in the profile (app3), ca1 = [8.0, 61.5, 0.195, 0.2, 3.72, 2.0, · · · ], ca2 = [17.0, 0.0, 0.05, 0.0, 1.63, 23.0, · · · ] but
the agent does not need to understand the exact changes to follow the CFE. The hl-discrete CFE ensures
features meet specific eligibility thresholds without the agent needing to know the exact adjustments to take
the CFE, e.g., da1 = [0, 0, 0, 0, 1, 0, 1, 0, · · · ], da2 = [0, 1, 1, 0, 0, 0, 0, 1, · · · ]. The hl-id CFE provides a single
overarching high-level action that favorably modifies all the features it should. This figure illustrates how
different types of CFEs might impact the agent’s ability to interpret and act on given recourse.

Data Protection Regulation and Article 13 of the European Union (2025) AI Act. A critical aspect of this
transparency is understanding how individuals (agents) can modify their input features to achieve a desired
outcome, such as a positive label in a binary classification setting. Recourse or counterfactual explanation
(CFE) generators that provide actionable insights offer one such solution (Wachter et al., 2018; Ustun et al.,
2019; Joshi et al., 2019; Dandl et al., 2020; Mothilal et al., 2020; Karimi et al., 2021; 2022).1

A popular form of recourse generation, actionable recourse (Ustun et al., 2019), generates feature-based
CFEs, specifying precise adjustments to features (state) to ensure that the new features collectively result
in a positive classification. For comparison with our work, we refer to these as low-level CFEs. While
helpful, low-level CFEs are overly specific and might be challenging to translate into real-world-like actions.
To address this limitation, we introduce three novel forms of recourse that align with real-world actions:
high-level continuous (hl-continuous), high-level discrete (hl-discrete), and high-level ID (hl-id) CFEs.

Figure 1 presents an illustrative example of hypothetical recourse across three binary classification tasks,
highlighting the distinctions between low- and high-level CFEs. Specifically, the hl-continuous CFEs involve

1Following prior work (Pawelczyk et al., 2022; Rasouli & Chieh Yu, 2024; Jiang et al., 2024; Verma et al., 2024), we use the
terms recourse and CFE interchangeably. For a detailed discussion and a nuanced differentiation of these terms, we refer the
reader to Section 2 of Karimi et al. (2022) and Section 3.3 of Verma et al. (2024).
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general and predefined real-world-like actions that modify multiple features simultaneously through numerical
adjustments. Similarly, hl-discrete CFEs also stem from real-world actions, each of which might affect several
features, with the effect on each feature assumed to be known. However, unlike hl-continuous CFEs, which
adjust feature values, hl-discrete CFEs modify feature eligibility. The hl-discrete CFEs use binary vector
actions to ensure all features meet a predefined threshold, reducing decisions to unit simple yes/no questions.
It is particularly efficient in scenarios where feature satisfiability depends on a set threshold, such as level-
one decision-making in wellness checks (see Figure 1 and Appendix A). Lastly, the hl-id CFE encapsulates
either hl-continuous or hl-discrete CFEs into a single overarching action, encompassing all necessary changes
without detailing specific feature modifications. This level of abstraction relies on domain knowledge and
often conveys significant implicit information.

Our contributions. First, we introduce three forms of recourse: hl-continuous, hl-discrete, and hl-id CFEs,
that bridge the gap between feature-based and real-world actions (Sections 1 and 2). Second, we propose
single-agent CFE generation methods that leverage predefined, real-world-like actions to generate optimal
CFEs. Specifically, we formulate single-agent hl-discrete CFE generation as a weighted set cover problem
and single-agent hl-continuous CFE generation as an integer linear programming (ILP) problem (Section 3).

Third, we propose data-driven approaches that, given instances of agents and their optimal CFEs (agent–CFE
dataset), learn a CFE generator that will quickly provide optimal hl-continuous, hl-discrete, and hl-id CFEs
for new agents. Unlike the expensive single-agent CFE generation approach, the data-driven methods are
more computationally friendly. Additionally, these methods are especially favorable when historical instances
of agents and their optimal CFE data are available or aggregatable, recourse generators can operate inde-
pendently of decision-makers, query access to the classifier is restricted or unavailable, and the actions along
with their costs and explicit effects on features are unknown (Section 4). To the best of our knowledge, these
alternative forms of recourse and the data-driven approach for generating CFEs are novel contributions.

Finally, we conduct extensive experiments on 30 agent–CFE datasets derived from real-world healthcare
datasets: BRFSS, Foods, and NHANES. We chose these datasets due to the availability of a wealth of
publicly accessible data, which allows us to effectively demonstrate the benefits of incorporating real-world-
like actions in CFE generation and sufficiently explore the impact of a larger action space (or action grid
according to Ustun et al. (2019)), enabled by the high number of actionable features with broad value ranges.
Alongside these real-world datasets, we also include 34 fully-synthetic agent–CFE datasets for comparison.
We extensively compare the low-level CFEs with the hl-continuous and hl-discrete CFEs, and provide an
in-depth analysis of the performance of the data-driven hl-continuous, hl-discrete, and hl-id CFE generators
under various settings (Sections 5 and 6). Our code can be accessed here.

2 Background

We consider a binary classification setting, where an agent in the state x ∈ X receives either a positive
(desirable) or negative (undesirable) outcome under a model f(x). The state space X consists of all valid
agent states, each represented by a feature vector capturing attributes such as age and calcium(mg). The
model operates over this space, and the CFE generator searches within it to identify alternative states with
favorable model outcomes. Although we focus on binary classification, our data-driven CFE framework
generalizes to other settings. Given an undesirable outcome, the CFE generator suggests actionable changes
to move the agent at state x to a new state x′ ∈ X where the model prediction is desirable. Actionable
recourse (Ustun et al., 2019) provides low-level CFEs that specify feature-level changes needed to reach such
a state.

The low-level CFE generator. Ustun et al. (2019) proposed an ILP-based low-level CFE generator
(Equation 1) that generates a low-level CFE to help an agent change an undesirable model outcome to a
desirable one.

min cost(a; x)
s.t. f(x + a) = ŷ⋆

a ∈ A(x),
(1)
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where ŷ⋆ is the desired model outcome, A(x) denotes the set of feasible actions given the input x, and
the function cost(·; x) : A(x) → R+ encodes the preferences between these actions. When Equation 1 is
feasible, the optimal actions that modify the features (i.e., x + a) and lead to a desirable model outcome
are recommended to the agent (cf. Figure 1). We refer the reader to Ustun et al. (2019) for a more detailed
description and to Appendix B.2.1 for dataset-specific experimental setup and supplementary examples of
low-level CFEs.

Shortcomings of low-level CFEs and their generators. We note two limitations of low-level CFEs in
comparison to our proposed forms of recourse (hl-continuous, hl-discrete, and hl-id CFE), and two, as we
compare the low-level CFE generator to the proposed data-driven CFE generation approach (Barocas et al.,
2020; Karimi et al., 2022; Verma et al., 2024).

First, low-level CFEs are feature-based and highly specific (e.g., in Figure 1, app1, calcium (mg): 309→ 113),
which may overwhelm agents and introduce additional costs to translate the CFE into implementable steps.
In contrast, our proposed CFEs are better aligned with real-world scenarios, offering what you see is what
you get actionable insights (see Figure 1). Furthermore, with low-level CFEs, details about the actions
the agent implements (the number of them needed, which features they would simultaneously modify, and
costs to incur) are often unknown beforehand, potentially leading to a misleading price of recourse and
related metrics such as sparsity (few modified features) and proximity (closeness of final state to initial
state) (Barocas et al., 2020).

Second, although a CFE (e.g., complete the Google AI residency program in Figure 1) could have been
optimal for several agents with different but close profiles (e.g., one has coding experience: 4 and another 3),
the low-level CFE being too specific, would give the agents different CFEs (coding experience: 4→ 5+ years
and coding experience: 3 → 5+ years). In contrast, our proposed recourse generation approaches are both
agent-specific (tailored to an agent’s initial state) and generalizable (providing similar recommendations to
agents with comparable profiles).

Lastly, while most low-level CFE generators operate on a single-agent basis (Karimi et al., 2022; Verma
et al., 2024), recent work by Pedapati et al. (2020); Rawal & Lakkaraju (2020); Kanamori et al. (2022);
Ley et al. (2023) and Carrizosa et al. (2024) propose global low-level CFE generators capable of producing
CFEs for multiple agents. However, these methods generate feature-based CFEs and require, at a minimum,
query access to the classifier. In contrast, we propose data-driven CFE generation approaches that, given
historical mappings between agents and their optimal CFEs, such as healthcare intervention records or high
school counselors’ past successful college recommendations, can learn to generate CFEs with real-world-like
actions for multiple new agents without requiring re-optimization. Additionally, the proposed data-driven
approaches work well in settings where access to critical information, such as sufficient classification training
data, classifier, or a comprehensive list of actions and their costs, is restricted or inaccessible.

3 The Proposed Single-agent CFE Generators

This section outlines the single-agent CFE generators for the proposed hl-continuous and hl-discrete CFEs.
Each generator relies on predefined, real-world-like actions to solve optimization problems for CFE genera-
tion: the weighted set cover problem for hl-discrete CFEs and ILP for hl-continuous CFEs.

3.1 The Single-agent hl-continuous CFE Generation

Below, we formally define hl-continuous actions and the single-agent hl-continuous CFE generation process
for outcomes predicted by linear classification models.
Definition 1. (hl-continuous action): An hl-continuous action is a signed (±) and predefined real-world
action whose cost and varied effects on an agent’s input features are predefined and known. For example, in
Figure 1, the hl-continuous action: ca1: take “leavening agents: cream of tartar” modifies 6+ features by a
known amount and the agent incurs a cost (e.g., estimated average price in USD) that is known apriori.

The singe-agent hl-continuous CFE generator. This generator produces an hl-continuous CFE by
solving an integer linear program (ILP). Given the profile of a negatively classified agent x and a set of
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hl-continuous actions with known costs (defined above), the objective is to identify the lowest-cost subset of
hl-continuous actions that, when taken, modify the agent’s features to achieve a positive classification. The
ILP is of the form:

minimize
∑
j∈J

costjaj

s.t. cT
∑
j∈J

aj · (2ϵj − 1) · vj ≥ −(cT x + b) + δ

ϵj ∈ {0, 1}, aj ∈ {0, 1}, ∀j ∈ J

(2)

where J denotes the indices of the hl-continuous actions, with each action represented by a vector vj and
with a predefined cost, costj ∈ R+. The boolean variable aj indicates the inclusion (aj = 1) or exclusion
(aj = 0) of the jth hl-continuous action, while ϵj encodes the sign of this action, representing addition
(ϵj = 1) or subtraction (ϵj = 0). The coefficients c and intercept b are the parameters of the linear classifier,
and δ is a small positive value that ensures strict inequality.

3.2 The Single-agent hl-discrete CFE Generation

Below, we formally define hl-discrete actions and the single-agent hl-discrete CFE generation process based
on a threshold classifier that determines feature eligibility.
Definition 2. (hl-discrete action): An hl-discrete action represents a binary vector that adds capabilities to
specific features to meet the eligibility threshold. For example, consider the agent state x = [0, 0, 0, 0, 1] and
the hl-discrete action vj = [1, 1, 0, 0, 0]. When taken, the hl-discrete action adds capabilities to features 1
and 2 of x, transforming it to a new state [1, 1, 0, 0, 1]. Although we focus on binary actions, the formulation
is extensible to more general cases.

The singe-agent hl-discrete CFE generator. This generator produces an hl-discrete CFE by solving a
weighted set cover problem. Specifically, it identifies the lowest-cost subset of hl-discrete actions, each with
a predefined cost, that a negatively classified agent x ∈ {0, 1}n (e.g., someone deemed a health risk) can take
to achieve a desirable classification (e.g., no longer classified as a health risk). The problem can be formally
defined as follows:

minimize
∑
j∈J

costjaj

s.t.
∑
j∈J

djiaj + xi ≥ ti, ∀i ∈ [n],

aj ∈ {0, 1}, dji ∈ {0, 1},

(3)

where J are the indices of the hl-discrete actions, each represented by a vector vj and with a predefined cost:
costj ∈ R+. The threshold classifier t = {t1, t2, · · · , tn} over n features classifies an agent state x positive
if xi ≥ ti, ∀i ∈ [n], and negative otherwise. The binary variable aj denotes inclusion (aj = 1) or exclusion
(aj = 0) of the jth hl-discrete action, while dji indicates whether the jth hl-discrete action transforms (adds
capabilities to) the feature i of the agent state x, i.e., when performed, the new agent state x + vj = x′ is
such that x′

i > xi and x′
i ≥ ti.

Input: x Output: CFE

The trained data-
driven CFE generator

hl-continuous CFE
hl-discrete CFE

hl-id CFE

Figure 2: Given an agent state (profile) x, a data-driven CFE generator trained on instances of agents and
their optimal CFEs (agent–CFE dataset) generates a high-level CFE (hl-continuous, hl-discrete or hl-id) for
the agent without the need for generator re-optimization or access to the decision-making classifier.
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4 The Proposed Data-driven CFE Generators

This section, supplemented by Appendix C, details the three proposed data-driven CFE generators: hl-
continuous, hl-discrete, and hl-id (see Figure 2). Each generator learns from instances of agents and respective
optimal CFEs, defined as the least cost CFE that leads to a favorable model outcome. Once trained, these
generators can produce optimal CFEs for new agents without re-optimization. Empirical results demonstrate
that even shallow deep-learning architectures perform strongly at this task, that is, generate correct CFEs,
the least cost CFEs that favorably flip the model outcome.

The data-driven approaches are computationally more efficient than single-agent CFE generation approaches,
which require optimization for each new agent. Furthermore, they are particularly favorable when agent–CFE
data is available or aggregatable from various sources. They allow recourse generation to operate indepen-
dently of decision-makers, function without direct access to the classifier, and handle scenarios where action
costs and their explicit effects on features are unknown.

4.1 The Data-driven hl-continuous CFE Generator

We develop a data-driven hl-continuous CFE generator trained on agent–hl-continuous CFE training dataset,
consisting of agents and their corresponding optimal hl-continuous CFEs. Each CFE defines a set of hl-
continuous actions along with their associated costs. For instance, a CFE might include actions {action-a,
action-b, action-c} with corresponding costs {cost-a, cost-b, cost-c}. The generator learns from this data to
produce hl-continuous CFEs for new agents without requiring generator re-optimization. Below are further
details of the generator architecture.

Given the agent–hl-continuous CFE training dataset, we train a neural network model to learn to generate
hl-continuous CFEs for testing set agents. Specifically, the generator is a neural network model with three
hidden layers, each containing 2, 000 neurons. The model incorporates ℓ2 regularization, dropout, and batch
normalization. The training process uses the Adam optimizer (Kingma & Ba, 2015) with early stopping,
restoring the best weights after a patience level of 300. The model trains with a batch size of 6, 000 for an
average of 5, 000 epochs. To ensure accurate data-driven hl-continuous CFE generation for both training
and testing set agents, we optimize the model loss function LHC given by:

LHC = − 1
M

M∑
m=1

J∑
j=1

[ajm log(âjm) + (1− ajm) log(1− âjm)] (4)

where âjm is the predicted probability and ajm is the true indication of a presence (1) or absence (0) of the
jth hl-continuous action in agent m’s hl-continuous CFE. There are J possible hl-continuous actions and M
agents in the agent–hl-continuous CFE training dataset.

4.2 The Data-driven hl-discrete CFE Generator

We propose a data-driven hl-discrete CFE generator, trained using the agent–CFE training dataset and
evaluated on the agent–CFE testing dataset. Each agent–CFE dataset comprises instances of agents and
their optimal hl-discrete CFEs that specify a set of hl-discrete actions and associated costs.

Given the agent–hl-discrete CFE training dataset, we design a sequential encoder-decoder model to generate
hl-discrete CFEs for new agents without generator re-optimization. The model configuration was dependent
on the experimental setting. On average, we used 500 training epochs with a batch size of 128, a dropout
rate of 0.4, a learning rate of 0.0005, and either the mean squared error or binary cross-entropy loss as the
objective function. The models, on average, consisted of three layers, each using ReLU activation functions.

4.3 The Data-driven hl-id CFE Generator

The data-driven hl-id CFE generator is a supervised learning model trained on agent–hl-id CFE dataset of
agent–CFE pairs consisting of agents’ initial states (profiles) and their corresponding optimal hl-id CFEs and
associated costs. Each hl-id CFE, as introduced in Section 1 and illustrated in Figure 1, is a single high-level
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action encapsulating all required changes without specifying individual feature modifications. When trained,
the generator learns to generate CFEs for new agents without requiring re-optimization. Below, we provide
details of the generator architecture.

Given the agent–hl-id CFEs training dataset, we design the data-driven hl-id CFE generator as a neural
network model with an average of two hidden layers, each consisting of 2000 neurons, ℓ2 regularization,
dropout, and batch normalization. We used the Adam optimizer (Kingma & Ba, 2015) and implemented
early stopping and restoration of the best weights after a patience level of 360. On average, we set the batch
size to 2000 and the number of epochs set to 3000. To ensure that the data-driven hl-id CFE generator
performs well on the training dataset and accurately generates hl-id CFEs for agents in the testing set, we
optimize the model loss function LHiD given by:

LHiD = − 1
M

M∑
m=1

K∑
k=1

[akm log(âkm)] (5)

where âkm is the predicted probability and akm is the true indication of the kth CFE being the hl-id CFE
(1) or not (0) for the mth agent. There are K possible hl-id CFEs and M agents in the training dataset.

5 Experimental Setup

This section provides a detailed description of the experimental setup, including the evaluation metrics
employed and the methodology for generating the 34 fully-synthetic agent–CFE datasets and the 30 semi-
synthetic agent–CFE datasets from real-world healthcare data sources: BRFSS, Foods, and NHANES.

5.1 Real-world Datasets

Below, we outline the extraction and preprocessing of the real-world datasets used in our experiments,
including their statistical descriptions. We split all datasets into an 80/20 ratio for training and testing.

The Foods, BMI, and WHR datasets. We extracted the Foods dataset from USDA, Agricultural
Research Service, Nutrient Data Laboratory (2016); Awram (2024) and the BMI (body mass index) and
WHR (waist-to-hip ratio) datasets from NHANES body measurement surveys (CDC, 1999; ICPSR at the
University of Michigan, 2024), covering the years 1999 to pre-pandemic 2020.

To ensure commonality in actionability features between the (Foods, BMI) and the (Foods, WHR) dataset
pairs, we selected intersectional nutritional intake features: protein (gm), carbohydrate (gm), dietary fiber
(gm), calcium (mg), iron (mg), magnesium (mg), phosphorus (mg), potassium (mg), sodium (mg), zinc (mg),
copper (mg), selenium (mcg), vitamin C (mg), niacin (mg), vitamin B6 (mg), total folate (mcg), vitamin B12
(mcg), total saturated fatty acids (gm), total monounsaturated fatty acids (gm), and total polyunsaturated
fatty acids (gm).

After preprocessing, for example, removing missing data and ensuring that selected nutritional intake fea-
tures were a subset of the intersectional ones, the Foods dataset contained 3901 food items. Each item
includes nutritional composition. We added two cost attributes: Monetary cost (in USD, obtained via web
scraping) and Caloric cost (reflecting total caloric content, sourced from (Caputo, 2023)). In our experi-
ments, Foods+costs serves as the hl-continuous action space, where food items represent actions, and
the cost attributes define the cost constraints. Based on cost type, we define two forms of hl-continuous
actions: (i) Foods+monetary cost and (ii) Foods+caloric cost.

The BMI dataset after preprocessing contained 50918 agents, each with 3 demographic features and 19
nutrient intake features, classified as either healthy (1) or unhealthy (0) BMI. On the other hand, the WHR
dataset contained 9120 agents, each with 3 demographic features and 20 nutrient intake features, classified
as either healthy (1) or unhealthy (0) WHR. For additional preprocessing details, see Appendix B.1.1.

The BRFSS dataset. We extracted the Behavioral Risk Factor Surveillance System (BRFSS) dataset
from Teboul (2024); Centers for Disease Control and Prevention (2024). After preprocessing, e.g., removing
missing data, the dataset was reduced to 13, 799 agents, each represented by 16 binary health risk features.
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These include: LowBP, LowChol, HealthBMI, NoSmoke, NoStroke, NoCHD, PhysActivity, Fruits, Veggies,
LightAlcoholConsump, AnyHealthcare, DocbcCost, GoodGenHlth, GoodMentHlth, GoodPhysHlth and NoDif-
fWalk. For additional details, see Appendix B.1.2.

5.2 Single-agent CFE Generation

Here and in Appendices B.2.1, B.2.2, and B.2.3, we describe the generation of low-level, hl-continuous, and
hl-discrete CFEs using single-agent CFE generators (i.e., Equations 1, 2, 3). Since the agents and their
computed CFEs will also be used to train and evaluate data-driven CFE generators, we generate CFEs for
negatively classified agents in the BMI, WHR, and BRFSS training and testing datasets.

For BMI and WHR datasets, only intersectional nutritional features are considered actionable, whereas all
features are actionable for the BRFSS dataset. We trained binary classifiers to identify agents requiring
CFEs and identify classifier parameters to use in single-agent CFE generators. Fine-tuned logistic regression
models for BMI and WHR achieved test accuracies of 72.78% and 85.18%, respectively. For the BRFSS
dataset, which focuses on wellness checks, a threshold classifier t = 116 achieved 100% accuracy.

The single-agent low-level CFE generation. We generated a low-level CFE for each negatively classified
agent in the BMI, WHR, and BRFSS training/testing datasets. We accomplished this by using the agent’s
initial state and the parameters of the trained binary linear decision-making classifiers for each dataset, along
with the ILP framework defined in Equation 1.

The single-agent hl-continuous CFE generation. For the BMI and WHR training/testing datasets,
we use the negatively classified agents alongside two types of hl-continuous actions: Foods+monetary costs
and Foods+caloric costs to create hl-continuous CFEs. Using the ILP framework defined in Equation 2,
we generate two distinct forms of hl-continuous CFEs for each agent: the optimal set of food items with
minimal monetary cost and the optimal set of food items with minimal caloric cost.

The single-agent hl-discrete CFE generation. Lastly, using the BRFSS training/testing set agents,
the threshold classifier (t = 116), and 100 synthetically generated hl-discrete actions (each of length 16) with
associated costs, we applied Equation 3 to generate a hl-discrete CFE for each agent. Each CFE represents
an optimal set of hl-discrete actions with minimal costs for each agent.

5.3 Data-driven CFE Generation

This section, along with Appendices B.2, B.3, and C, describe the creation of agent–CFE datasets (where
the CFE is either hl-continuous, hl-discrete, or hl-id), and their role in data-driven CFE generation.

The semi-synthetic agent–CFE datasets. Using agent states and their optimal CFEs from Section 5.2,
we construct training and testing agent–CFE datasets. First, we generate: 2 agent–hl-continuous CFE
train/test datasets for BMI, 2 agent–hl-continuous CFE train/test datasets for WHR, and 1 agent–hl-discrete
CFE train/test datasets for BRFSS.

Then, given the following agent–CFE datasets: the agent–hl-continuous CFE train/test datasets for BMI,
created using Foods+monetary costs as hl-continuous actions; the agent–hl-continuous CFE train/test
datasets for WHR, created using Foods+caloric costs as hl-continuous actions; and the agent–hl-discrete CFE
train/test datasets for BRFSS, we generate 3 agent–hl-id CFE datasets. Specifically, for each agent–CFE
dataset, we create a unique identifier for the CFE that denotes the single overarching action, resulting in an
agent–hl-id dataset corresponding to instances of agents and their hl-id CFE.

Lastly, for each of the agent–CFE datasets described above, we generated three variations based on the
frequency of CFEs in the dataset: all (includes all data), >10 (CFEs with more than 10 agents), and >40
(CFEs with more than 40 agents) varied frequency of CFEs agent–CFE datasets.

The fully-synthetic agent–CFE datasets. We use the ILP defined in Equation 3 to generate five variants
of the agent–hl-discrete CFE datasets: varied dimensionality, frequency of CFEs, information access, feature
satisifiability, and actions access. Below, we briefly describe the varied dimensionality and frequency of CFEs
datasets and include more details about these and other variants in Appendix B.3.
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For varied dimensions agent–CFE datasets, we generated datasets with 20, 50, and 100 dimensions (action-
able features), where we set the agent’s feature to 1 with a probability pf , and each discrete action can add
capabilities to a feature with a probability pa. The cost of each action depends on the features it transforms.
Lastly, we created three varied frequency of CFEs datasets: all, >10, and >40, and agent–hl-id CFE datasets
for each varied dimensions agent–CFE dataset, using a similar approach as in the semi-synthetic agent–CFE
datasets described above.

Data-driven CFE generators. Given the semi-synthetic and fully-synthetic training agent–CFE datasets,
we train the corresponding data-driven generators described in Section 4 and evaluate their effectiveness on
the testing agent–CFE datasets. See Appendix C for supplemental details.

5.4 Evaluation and Comparative Analysis Metrics

We compare single-agent generated low-level CFEs to both hl-continuous and hl-discrete CFEs. Additionally,
we assess the performance of data-driven CFE generators. The metrics used for comparison and evaluation
are detailed below and in Appendix D.

Accuracy of data-driven generators. To assess the accuracy of the proposed data-driven CFE generators,
we use zero-one loss (see Equation 6), which checks if the generated CFE Î matches the true CFE I, defined
as the least cost CFE that favorably flips the model outcome.

Leval(I, Î) =
{

0 if I = Î

1 if I ̸= Î
(6)

Comparison metrics. We analyze various factors related to the use of CFEs, including the average number
of actions taken, the number of modified features, the proportion of agents sharing the same optimal CFE,
and the overall improvement measured as the distance between an agent’s initial state and its final state
after following a CFE. Assuming CFEs encourage truthful responses, we refer to this as agent improvement.
We compare these factors when agents follow a low-level CFE versus a high-level CFE, either hl-continuous
or hl-discrete. The comparative analysis focuses on CFEs generated by single-agent CFE generators for
negatively classified agents in the training sets of three datasets: BMI, WHR, and BRFSS. To ensure a fair
comparison, we include only agent–CFE pairs where both low- and high-level CFEs are available, as the
low-level CFE generator (cf. Equation 1) occasionally fails to produce a CFE.

To assess how much each variable, e.g., number of modified features varies across groups, for example,
between male and female agents, we compute the coefficient of variations (Equation 7), a normalized measure
of dispersion calculated as the ratio of the standard deviation to the mean of the variable v.

coefficient of variation(v) = standard deviationv

meanv
× 100 (7)

6 Experimental Results

In this section, we provide comprehensive empirical evidence showcasing the strong performance of our data-
driven CFE generators and their advantages over single-agent CFE generators. Furthermore, we highlight
the advantages of hl-continuous and hl-discrete CFEs, which offer actionable insights that closely align with
real-world action spaces, over feature-based low-level CFEs.

6.1 Comparison of low-level CFEs to the hl-continuous and hl-discrete CFEs

Below and in Appendices E.1 and E.2, we provide empirical evidence to show that, compared to low-level
CFEs, both hl-continuous and hl-discrete CFEs involve fewer actions but lead to more improvement involving
more modified features, are easier to personalize, and simplify the design and interrogation of CFE generators
for fairness issues.

Fewer actions but higher improvement and more modified features. Our results indicate that
hl-continuous and hl-discrete CFEs require fewer actions while yielding higher improvements and modi-
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Figure 3: On the WHR dataset, (a) compared to low-level CFEs, to take hl-continuous CFEs require fewer
actions but modify a significant number of features and result in higher improvement. On average, each hl-
continuous CFE is optimal for multiple agents, with a high frequency of 27.5 per CFE, unlike the low-level
CFEs with 1.0. Additionally, as shown in (b), there is greater variability in the number of features modified
across sensitive groups when using low-level CFEs, suggesting lower fairness than with hl-continuous CFEs.
For more details on (a), see Appendix Figures 9, 10, and 11; for (b), see Appendix Figure 13(c) and 13(d).

fying more features than low-level CFEs. In contrast, low-level CFEs involve more actions but result in
lower improvements despite modifying a high number of features. For instance, while on average, on the
WHR dataset, the hl-continuous CFEs require only 2 actions yet achieve a significantly higher improve-
ment (12, 765), the low-level CFEs involve 9 actions but yield a much lower improvement (4, 484.5) (see
Figure 3(a)).

In low-level CFE generation, sparsity (small number of modified features) and proximity (new agent state
after taking the CFE close to the initial state) are often a primary goal due to actionable insights being
part of the feature space (Ustun et al., 2019; Verma et al., 2024). We observe a perfect positive correlation
between the number of modified features and actions taken (Kendall’s τ = 1.0, p-value = 0.0) and a positive
correlation between actions taken and improvement achieved in low-level CFEs (Kendall τ = 0.368, p-value =
5.41e-227). However, for hl-continuous CFEs, the correlation between the number of modified features and
actions taken is positive but weaker (Kendall’s τ = 0.722, p-value = 0.0) and there is almost no relationship
between the number of actions taken and improvement achieved (Kendall τ = 0.0625, p-value = 3.21e-06).
Despite requiring fewer actions (2), hl-continuous CFEs modify significantly more features (16) compared to
low-level CFEs, which involve 9 actions and modify 9 features (Figures 1 and 3(a)).

Consequently, unlike taking low-level CFEs, agents using hl-continuous or hl-discrete CFEs tend to become
more “positive” or “qualified” after taking fewer actions. That is, our proposed form of CFEs require
fewer actions but result in greater improvement, broader feature modifications, and lower costs in both
interpretation and execution (see Figures 1 and 3(a), and Appendix E.1 and Figures 9, 10, 11 and 12).

Personalization and fairness. Since both hl-discrete actions and hl-continuous actions are predefined
and real-world-like, it is easier and more transparent to examine the hl-discrete and hl-continuous CFE
generators and generated CFEs for potential fairness issues, and to tailor the CFE generation to agents’
needs. For example, our data-driven hl-continuous CFE generators can produce CFEs for agents who place
greater importance on monetary costs over caloric costs.

Moreover, agents across the intersectional sensitive (race, age, and gender) groups (e.g., Hispanic, 21-40,
Female) take a comparable number of actions, modifying a closely similar number of features, achieving
comparable improvements, and incurring closely similar costs when using hl-continuous CFEs, as indicated
by the low coefficient of variation in Figure 3(b) and Appendix Figures 13 and 14. In contrast, taking
low-level CFEs results in higher variability across the groups in all these variables (see Figure 3(b) and
Appendices E.2.2 and E.2.1). Thus, high-level CFEs yield fairer outcomes than low-level CFEs.
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Accuracy of CFE generators

hl-continuous hl-discrete hl-id

BMI 0.92 ± 0.0053 0.94 ± 0.0045
WHR 0.92 ± 0.0176 0.97 ± 0.0107
BRFSS 0.98 ± 0.0102 0.99 ± 0.0050
20-dim 0.94 ± 0.0042 0.99 ± 0.0014

Effect of frequency of CFEs

all >10 >40

20-dim 0.84 ± 0.0060 0.89 ± 0.0052 0.94 ± 0.0042
20-dim⋆ 0.97 ± 0.0028 0.98 ± 0.0021 0.99 ± 0.0014
BMI 0.90 ± 0.0057 0.91 ± 0.0055 0.92 ± 0.0053
BRFSS 0.70 ± 0.0182 0.86 ± 0.0158 0.98 ± 0.0102

Table 1: (left) The accuracy of the hl-continuous, hl-discrete, and hl-id data-driven CFE generators on
the testing set agents for >40, BMI, BRFSS, WHR, and fully-synthetic (20-dim): 20-dimensional, datasets.
(right) The data-driven CFE generators’ accuracy decreases with a decrease in the frequency of CFEs
(number of agents for whom a given CFE is optimal) in the agent–CFE training set, regardless of the dataset
type. Specifically, training and testing on the (20-dim): the 20-dimensional agent–hl-discrete CFE dataset,
(20-dim)⋆: the 20-dimensional agent–hl-id dataset, (BMI): the BMI agent–hl-continuous CFE dataset, and
(BRFSS): the BRFSS agent–hl-discrete CFE dataset all show this trend. The data-driven CFE generators
are accurate (left) and their accuracy improves as the frequency of CFEs increases, with those trained
highest CFE frequency dataset (>40) performing best (right).

Lastly, our data-driven hl-discrete CFE generators effectively generate CFEs for all agents, regardless of
action restrictions or feature satisfiability variations. This strong performance holds even without explicit
knowledge of these variations (see Appendices E.2.3 and E.2.4).

6.2 The Data-driven CFE generators are Accurate and Resource-efficient

Our results show that the proposed data-driven CFE generators are resource-efficient in terms of both limited
information access and low computational overhead. These generators, without requiring re-optimization,
accurately and efficiently generate CFEs for new agents after being trained under restrictive constraints such
as no query access to the classifier or, in the case of the data-driven hl-id CFE generator, without knowledge
of the cost and impact of actions on agent states. Refer to Table 1(left) and Appendices E.3, E.4, and E.5).

In contrast to the overly specific low-level CFEs, which are generally unique to each agent, hl-continuous and
hl-discrete CFEs are often optimal for a broad range of agents (refer to Figures 1 and 3(a) and Appendix
Figure 18). The removal of the need for re-optimization for each new agent, combined with the general
applicability of the actions to agents, enhances the scalability of our proposed CFE generators compared
to low-level generators. Additionally, because the actions in the hl-continuous and hl-discrete CFEs are
both general and predefined, they are more transparent and easier to interpret (see Figure 1), making them
cheaper and more desirable than the overly specific and unique low-level CFEs.

However, our results show that the accuracy of the proposed data-driven generators declines with the low
frequency of CFEs (see Table 1 (right)) and the generalizability of CFE generation decreases with an increase
in the number of actionable features. We observed that this is due to the growing uniqueness of CFEs to
agents (see Table 1 (right)) and Section E.6). Data augmentation mitigates the negative effects of low CFE
frequency. For instance, on the all 20-dimensional dataset, data augmentation improves accuracy from
0.969 to 0.982.

Lastly, the performance of data-driven CFE generators improves as model complexity increases. For example,
on a discrete agent–hl-id dataset, the neural network model outperforms the Hamming distance method (see
Appendix Figure 20). Future research could explore more advanced data-driven models for CFE generation
and techniques like federated learning to enable CFE generation under limited access to agent–CFE data
and privacy constraints.

7 Limitations and Ethical Considerations

The decision-maker must have access to data on instances of agents and their corresponding optimal CFEs
to train the proposed data-driven CFE generators. Although this level of access mitigates some information
access challenges, such as needing at least query access to the classifier and representative prediction training
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data or having an exhaustive list of actions and the associated costs, obtaining a historical agent–CFE dataset
may still pose significant challenges. Future research could investigate techniques like federated learning and
secure multi-party computation to facilitate collaborative training of robust CFE generators under varied
privacy and data access constraints.

While our proposed data-driven CFE generators are agnostic to the underlying classification model, the
proposed single-agent hl-continuous CFE generators rely on linear classifiers. Although the linear models
may not always be optimal, they can outperform non-linear models in some contexts (Wainer, 2016). When
non-linear classifiers are preferred, one practical alternative is to approximate them by linear models (e.g.,
(Bshouty & Long, 2012; Li, 2015; Shalizi, 2020; Liu et al., 2021)), enabling CFE generation with the proposed
single-agent CFE generator. Extending the generator to produce exact CFEs for non-linear models in a
scalable and computationally efficient manner remains a challenging but promising avenue for future research.

Additionally, our formulations of hl-continuous and hl-discrete CFEs restrict them to being defined as a set
of actions. More generally, one could consider settings where the order of actions matters, such as where
a CFE corresponds to an optimal policy for an agent in a deterministic Markov decision process (MDP).
Further, one could consider actions whose effects are stochastic, and a CFE then corresponds to an optimal
policy for the agent in a general MDP.

Since the proposed approaches to data-driven CFE generation are closely related to data-driven algorithm
design, ethical concerns related to data-driven algorithms, e.g., potentially propagating and exacerbating
biases in historical agent–CFE data and the potential for flawed resource allocation, might apply to our
proposed CFE generators. Future research should investigate these ethical implications in greater depth.

Although our experiments primarily use healthcare datasets, our data-driven CFE generation approach
generalizes to a broad spectrum of real-world scenarios, such as college admissions, loan applications, judicial
systems, and other settings. Future works could expand our setup to other data settings and informational
access challenges. Lastly, we caution readers that the experimentally generated CFEs from our empirical
analyses are intended solely for illustrative purposes, and readers should not use them for self-treatment.

8 Related Work

The proposed single-agent hl-continuous and hl-discrete CFE generation approaches are in principle, similar
to search-based optimization CFE generation frameworks (Ramakrishnan et al., 2020), single-agent ILP
recourse generation approaches (Cui et al., 2015; Gupta et al., 2019; Ustun et al., 2019), and CFE generation
methods based on logic and answer-set programming (Bertossi, 2020; Liu & Lorini, 2023; Marques-Silva,
2024). However, unlike these approaches, ours uses predefined real-world-like actions (see Figure 1), resulting
in CFEs that involve fewer actions but modify more features and lead to more improvement.

Although most low-level CFE generators operate on a single-agent basis (Karimi et al., 2022; Verma et al.,
2024), recent studies (Pedapati et al., 2020; Rawal & Lakkaraju, 2020; Kanamori et al., 2022; Ley et al.,
2023; Carrizosa et al., 2024) have introduced approaches that can produce CFEs for multiple agents. Most
closely related to our work is the approach by Kanamori et al. (2022), which learns a decision-tree-based
global CFE generator that, once learned, can generate CFEs for multiple agents. However, unlike Kanamori
et al. (2022), our data-driven CFE generators generate CFEs with real-world-like actions. Moreover, solving
the mixed-integer linear programs and the overall Counterfactual Explanation Tree can be computationally
prohibitive for scenarios with large action spaces, making our supervised learning approach a more scalable
and efficient alternative.

Unlike low-level CFE generators that require, at a minimum, query access to the classifier and knowledge of
the cost and impact of each action on state features (Shavit & Moses, 2019; Pedapati et al., 2020; Rawal &
Lakkaraju, 2020; Naumann & Ntoutsi, 2021; Verma et al., 2022; Kanamori et al., 2022; De Toni et al., 2023;
Ley et al., 2023; Carrizosa et al., 2024), without explicit access to this information, our data-driven CFE
generators leverage access to agents and their optimal CFEs to generate CFEs described by real-world-like
actions and costs.
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While in some ways, the proposed data-driven CFE generators are similar to reinforcement learning-based
CFE generation tools (Shavit & Moses, 2019; Naumann & Ntoutsi, 2021; De Toni et al., 2023), our proposed
approach offers a more resource-efficient and exact solution alternative to the often high computational and
approximate solutions. Notably, our approach is closest to that of Verma et al. (2022). While our method is
akin to learning an optimal policy in a large but deterministic family of Markov decision processes (MDPs),
Verma et al. (2022) focuses on learning optimal policies within smaller, stochastic MDP settings.

Finally, our work also relates to data-driven algorithm design (Gupta & Roughgarden, 2016; Balcan et al.,
2018; Balcan, 2020), where models learn from training data instances to generalize to the testing data. We
introduce novel data-driven CFE generators that address the question: Can we, by learning from training
agent–CFE data (i.e., instances of agents and their optimal CFEs), develop a CFE generator that quickly
provides optimal CFEs for new agents? Our proposed approach excels in generating CFEs for new agents, is
computationally efficient and scalable, and functions effectively under varied informational access settings.

9 Conclusion

In this work, we propose three forms of recourse where actionable insights align closely with real-world
actions and investigate settings where CFEs can be generated by analyzing the similarities between nega-
tively classified agents using data-driven approaches. Our findings show that compared to low-level CFEs,
both hl-continuous and hl-discrete CFEs require fewer actions, modify more features, and result in higher
improvements. Additionally, the CFEs are fairer across sensitive groups and are easier to examine, compare,
and personalize than low-level CFEs. Lastly, we empirically show that the proposed data-driven CFE gen-
erators are accurate, resource-efficient, and perform effectively under various information access constraints,
including limited or restricted access to classifier parameters and training data.
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A The hl-discrete CFE vs. hl-continuous CFE: Supplementary Details

We further elaborate on the distinction between hl-continuous and hl-discrete CFEs and a potentially inter-
esting future direction.

Differentiation between hl-discrete and hl-continuous CFEs. The key distinction between hl-
discrete and hl-continuous CFEs is how they affect features, where the former caters to feature eligibility
and the latter numerically modifies feature values. For instance, consider the feature healthBMI in App2,
Figure 1. While hl-discrete CFE would ensure BMI is past a desired threshold, thus ensuring healthBMI =
1, the hl-continuous CFE would affect the actual feature values, such as reducing BMI from 30 to 22.3.

It is important to note that a threshold defining feature eligibility can stem from any classifier type. Contin-
uing with the healthBMI example, the binary eligibility ({0, 1}) is determined based on whether the feature
crosses a predefined threshold of what qualifies as a healthy BMI, as dictated by the classification model’s
set threshold.

These two forms of CFEs are suited for different contexts. The hl-discrete CFEs are particularly effective
in rule-based systems, such as eligibility checks, wellness evaluations, or quality and safety assessments. In
contrast, hl-continuous CFEs are better suited for scenarios where fine-grained numerical adjustments are
meaningful, typically in settings where low-level CFEs are effective.

While it might be easier to go from hl-continuous CFEs to hl-discrete CFEs, the reverse is less trivial and
may require additional considerations.

Integration of high-level actions into existing CFE generation methods. While it may be feasible
to incorporate the hl-continuous or hl-discrete actions into existing CFE generation methods workflows,
it’s currently unclear which methods are best suited, how readily they can be adapted, or what challenges
might emerge. For example, in evolutionary algorithm-based approaches, generating exact CFEs under this
new paradigm could be computationally intensive, particularly in large action spaces, thus potentially only
generating approximate or Pareto-optimal CFEs. We hope future research explores how to effectively adapt
existing CFE generation methods to this new paradigm and uncover any associated interesting challenges.
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B Datasets: Supplemental Details

This section describes the supplemental details about the datasets used in the experiments. We conducted
all experiments on a laptop with a CPU featuring the following hardware specifications: a 2.6 GHz 6-Core
Intel Core i7 processor, 16 GB of 2400 MHz DDR4 RAM, and an Intel UHD Graphics 630 with 1536 MB
of video memory. In all cases where we implement Equations 1, 2 and 3, we use the CVXPY Python package
(Diamond & Boyd, 2016; Agrawal et al., 2018).

B.1 Real-world Datasets Extraction and Preprocessing

First, we describe the extraction and preprocessing of real-world datasets: Foods, BMI, WHR, and BRFSS.
Then, we describe the creation of semi-synthetic agent–hl-continuous CFE, agent–hl-discrete CFE, and
agent–hl-id CFE datasets.

B.1.1 Foods, Body Mass Index (BMI), and Waist-to-Hip Ratio (WHR) Datasets

Intersectional nutritional features. After extracting the datasets for Foods, BMI, and WHR and re-
moving features with missing values in the Foods dataset, we selected an intersectional subset of nutritional
value features in the Foods and BMI datasets and the Foods and WHR datasets. This subset consisted of
20 features, including: ‘protein (gm)’, ‘carbohydrate (gm)’, ‘dietary fiber (gm)’, ‘calcium (mg)’, ‘iron (mg)’,
‘magnesium (mg)’, ‘phosphorus (mg)’, ‘potassium (mg)’, ‘sodium (mg)’, ‘zinc (mg)’, ‘copper (mg)’, ‘sele-
nium (mcg)’, ‘vitamin C (mg)’, ‘niacin (mg)’, ‘vitamin B6 (mg)’, ‘total folate (mcg)’, ‘vitamin B12 (mcg)’,
‘total saturated fatty acids (gm)’, ‘total monounsaturated fatty acids (gm)’, and ‘total polyunsaturated fatty
acids (gm)’.

Foods dataset preprocessing. The Foods dataset from Awram (2024) initially contained 53 features.
After finding the intersectional subset of nutritional value features and removing datapoints with missing
values, the dataset had 27 features. These included the following: ‘NDB_No’, ‘Shrt_Desc’, ‘GmWt_1’,
‘GmWt_Desc1’, ‘GmWt_2’, ‘GmWt_Desc2’, and ‘Refuse_Pct’, along with the 20 nutritional features de-
scribed above. To add costs to the dataset, we web-scraped the average USD prices and extracted caloric
prices for each food item given their name specified in the ‘Shrt_Desc’ feature. Out of 3901 food items,
we successfully extracted USD prices for 3871 food items and caloric prices for 3125 food items. Therefore,
when using USD prices as costs, there were 3871 possible hl-continuous actions, while using caloric prices
meant 3125 possible hl-continuous actions.

BMI dataset preprocessing. The body mass index (BMI) dataset originally had 57 features. After
removal of features with at least 20% null values and selecting the above nutritional features, except the
feature ‘total folate (mcg)’, we had 23 features including: ‘gender’, ‘age’, ‘race’, and ‘body mass index
(kg/m**2)’. We selected agents whose age was greater than or equal to 20 at the time of surveys. Using
the features ‘body mass index (kg/m**2)’ and ‘age’, we computed the target label (binary class variable)
for each agent as either healthy (1) BMI or unhealthy (0) (WebMD, 2024). We then removed the feature
‘body mass index (kg/m**2)’ and all the duplicates datapoints. At the end of data preprocessing, we did
the 80/20 train/test data split resulting in 40734 data points in the predictive training set and 10184 in the
predictive testing set.

WHR dataset preprocessing. Unlike the BMI dataset, there were fewer datapoints with ‘waist-to-hip
ratio’ (WHR) information among the NHANES body measurement surveys (for years 1999 to prepandemic
2020) we scraped. First, we removed all features with at least 20% null values. Then using the features ‘waist
circumference (cm)’, ‘hip circumference (cm)’ and ‘gender‘, we created the binary class variable whr-class
(Wikipedia contributors, 2024), indicating healthy (1) or unhealthy (0) WHR. After preprocessing, we had
23 features, including the 20 nutritional features described above and the demographic features: ‘gender’,
‘age’, and ‘race’. Lastly, we removed the duplicates and split the dataset 80/20, creating 7296 data points
in the predictive training set and 1824 in the predictive testing set.
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B.1.2 Behavioral Risk Factor Surveillance System (BRFSS) Dataset

The initial BRFSS dataset comprised 253680 rows and 22 features, each detailing various health and demo-
graphic attributes of agents (Teboul, 2024).

First, we removed all data points where ‘Age’ = 1 denoting an age range of 18-24 because computation a new
variable which relied on age being equal to or above 20 years, which reduced the dataset to 247, 980 rows.
The new variable was called ‘HealthBMI,’ an adult health BMI classification value (WebMD, 2024) from
the feature ‘BMI.’ Next, we transformed the existing features, which were predominantly binary, into new
features where the 1 represents a desirable condition and 0 otherwise. We focused particularly on features we
deemed actionable and renamed them to enhance their intuitiveness, specific to satisfiability. For instance,
we renamed the feature ‘HighBP’, which indicated high blood pressure (0 = no, 1 = yes), to ‘LowBP’: {1
= yes (lowBP), 0 = no (highBP)}. Additionally, we removed six features ‘CholCheck,’ Diabetes_012,’ ‘Sex,’
‘Age,’ ‘Education,’ and ’Income,’ and remained with 16 features.

These final 16 binary features included the following: ‘LowBP’: {1 = yes (lowBP), 0 = no (highBP)},
‘LowChol’: {1 = yes (lowChol), 0 = no (highChol)}. The feature ‘HealthBMI ’: {1 =yes (healthy), 0 =
no (unhealthy), ‘NoSmoke’: {1 = yes, 0 = no}, ‘NoStroke’: {1 = yes, 0 = no}, ‘NoCHD’: {1 = yes, 0
= no}, ‘PhysActivity’: {1 = yes, 0 = no}, ‘Fruits’: {1 = yes, 0 = no}, ‘Veggies’: {1 = yes, 0 = no},
‘LightAlcoholConsump’: {1 = yes, 0 = no}, ‘AnyHealthcare’: {1 = yes, 0 = no}, ‘DocbcCost’: {1 = yes, 0
= no}, ‘GoodGenHlth’: {1 = excellent (1,2,3), 0 = bad (4,5)}, ‘GoodMentHlth’: {1 = {1 = good (< 2), 0 =
bad (≥ 2)}, ‘GoodPhysHlth’: {1 = good (< 2), 0 = bad (≥ 2)}, and ‘NoDiffWalk’: {1 = yes, 0 = no}.

Since we consider the setting where t = 116, of the remaining data points, 8392 were considered to have a
desirable outcome (no health risk) because all their features met the respective feature thresholds. Lastly,
after removing the duplicate health risk agents and splitting the whole dataset 80/20, we had 11039 data
points in the predictive training set and 2760 in the predictive testing set.

B.2 Single-agent CFE Generation and Semi-synthetic agent–CFE Datasets

For all datasets, to determine which agents require CFEs (negatively classified agents), we use the classifica-
tion models. Specifically, we trained logistic regression models on the BMI and WHR training sets, tuning
the solver and max_iter hyperparameters using GridSearchCV. The best-performing models achieved test
accuracies of 72.78% on the BMI dataset and 85.18% on the WHR dataset. For the BFRSS dataset, the
threshold classifier t = 116 achieved 100% test accuracy. We then used these models to determine the clas-
sifier parameters needed for single-agent CFE generation (see Equations 1, 2, and 3) and the specific agents
requiring CFEs in the BMI, WHR, and BRFSS train/test datasets.

Below are details on the actionable features for each of the datasets. Refer to Appendix B.1.1 and Ap-
pendix B.1.2 for a detailed description of the meaning of the features.

BMI actionable features. For BMI agents states, we considered the following 19 actionable features:
‘protein (gm)’, ‘carbohydrate (gm)’, ‘dietary fiber (gm)’, ‘calcium (mg)’, ‘iron (mg)’, ‘magnesium (mg)’,
‘phosphorus (mg)’, ‘potassium (mg)’, ‘sodium (mg)’, ‘zinc (mg)’, ‘copper (mg)’, ‘selenium (mcg)’, ‘vitamin
C (mg)’, ‘niacin (mg)’, ‘vitamin B6 (mg)’, ‘vitamin B12 (mcg)’, ‘total saturated fatty acids (gm)’, ‘total
monounsaturated fatty acids (gm)’, and ’total polyunsaturated fatty acids (gm)’.

WHR actionable features. For the generation of recourse for WHR agents, we use the following 20
actionable features: ‘protein (gm)’, ‘carbohydrate (gm)’, ‘dietary fiber (gm)’, ‘calcium (mg)’, ‘iron (mg)’,
‘magnesium (mg)’, ‘phosphorus (mg)’, ‘potassium (mg)’, ‘sodium (mg)’, ‘zinc (mg)’, ‘copper (mg)’, ‘selenium
(mcg)’, ‘vitamin C (mg)’, ‘niacin (mg)’, ‘vitamin B6 (mg)’, ‘total folate (mcg)’, ‘vitamin B12 (mcg)’, ‘total
saturated fatty acids (gm)’, ‘total monounsaturated fatty acids (gm)’, and ’total polyunsaturated fatty acids
(gm)’.

BRFSS actionable features. Lastly, for the BRFSS agent states, we considered the following 16
actionable features: ‘PhysActivity’, ‘Fruits’, ‘Veggies’, ‘AnyHealthcare’, ‘LowBP’, ‘NoSmoke’, ‘LowChol’,
‘HealthBMI ’, ‘NoStroke’, ‘NoCHD’, ‘LightAlcoholConsump’, ‘DocbcCost’, ‘GoodGenHlth’, ‘GoodMentHlth’,
‘GoodPhysHlth’, and ‘NoDiffWalk’.
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B.2.1 The Low-level CFEs

Given negatively classified agents in the training and testing BMI, WHR and BRFSS datasets, and the
actionable features for the corresponding datasets, we generate low-level CFEs using the low-level CFE
generator (actionable recourse) (Ustun et al., 2019) described in Equation 1. Figure 4 illustrates examples
of the generated low-level CFEs for the BMI, WHR and BRFSS datasets.

(a) for a BMI agent state

(b) for a WHR agent state (c) for a BRFSS agent state

Figure 4: Given a negatively classified BMI agent with actionable features presented in the order specified in
Appendix B.2 and values [253.51, 352.76, 48.2, 1327., 29.61, 1204., 3966., 6163., 5890.0, 44.19, 7.903, 275.1, 30.,
109.198, 3.492, 2.3, 59.686, 154.24, 113.429], the low-level CFE generator (cf. Equation 1) generates CFE (a)
to help them become positive. On the other hand, given a negatively classified WHR agent with action-
able features [29.03, 109.45, 4.1, 309., 4.08, 96., 488., 994., 1326., 2.61, 0.425, 45., 35.7, 8.755, 0.482, 172., 1.21,
10.077, 12.392, 13.999] in the order as described in Appendix B.2, the low-level CFE generator generates
CFE (b). Lastly, the low-level CFE generator generates CFE (c) or an agent negatively classified based on
their BRFSS features, with values [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]. All the low-level CFEs ((a), (b) and
(c)) are feature-based and precisely describe which features to change and by how much.
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B.2.2 The hl-continuous CFEs and agent–hl-continuous CFE Datasets

Below, we describe the single-agent hl-continuous CFE generation and the creation of the four semi-synthetic,
agent–hl-continuous CFE datasets from the training/testing BMI and WHR datasets and the 2 forms of hl-
continuous actions: Food+monetary costs and Food+caloric costs actions. Figure 6 shows examples of the
generated hl-continuous CFEs for BMI and WHR agents.

For each negatively classified BMI and WHR train/test set agent, we generated hl-continuous CFEs using
two types of actions: Foods+monetary costs and Foods+caloric costs. Leveraging the respective classifier
parameters and the ILP formulation (Equation 2), we computed two distinct CFEs for each agent, one
optimized for monetary cost and the other for caloric cost, each specifying an optimal set of food items.

As a result, we produced four unique agent–hl-continuous CFE datasets. We generated two CFEs for each
training/testing BMI agent, one for each form of hl-continuous actions, yielding 40692 agent–CFE pairs for
training and 10167 pairs for testing in each case. Similarly, for the WHR dataset, we generated 6387 training
and 1603 testing agent–CFE pairs for both Foods+monetary and Foods+caloric costs.

B.2.3 The hl-discrete CFEs and agent–hl-discrete CFE Datasets

Here, we outline the single-agent hl-discrete CFE generation and the process of generating the agent–hl-
discrete CFE dataset, which consists of negatively classified BRFSS training/testing agents and their corre-
sponding optimal synthetic hl-discrete CFEs. Figure 6 shows an example of the generated hl-discrete CFE
for a BRFSS agent.

First, we generated 100 synthetic 16-dimensional, binary hl-discrete actions. The probability pa of an action
satisfying feature eligibility was set to 0.5. The cost of satisfying feature eligibility was randomly predefined
and remained uniform across all actions and agents. The total cost of an action was the sum of the costs
associated with satisfying each feature’s eligibility.

Next, we employed a threshold classifier with t = 116 where an agent x is classified as not at health risk
if xi ≥ ti, ∀i ∈ [n], and as a health risk otherwise. This classifier achieved perfect test accuracy 100.00%
on the BRFSS dataset, allowing us to accurately identify agents requiring CFEs in the training and testing
datasets.

Using the identified agents, the synthetic hl-discrete actions, and the threshold classifier t = 1n, we applied
Equation 3 to generate the agent–hl-discrete CFE dataset. As a result, we obtained 11, 039 agent–CFE pairs
in the training dataset and 2, 760 in the testing agent–hl-discrete CFE dataset, where each CFE comprised
optimal hl-discrete synthetic actions.

B.2.4 The agent–hl-id CFE Datasets and other Variants

After creating the agent–hl-continuous CFE, agent–hl-discrete CFE, training/testing datasets, we generate
other agent–CFE dataset variants from them.

The agent–hl-id CFE datasets. Given the agent–hl-continuous CFE and agent–hl-discrete CFE datasets
described in Sections B.2.2 and B.2.3, we created corresponding agent–hl-id CFE datasets. This process
involves encoding each CFE in the agent–CFE dataset with a unique identifier that distinguishes it from all
other possible CFEs in that dataset. For example, given instances of agents–hl-discrete CFEs, we generate
unique identifiers for all the hl-discrete CFEs to generate corresponding hl-id CFEs. At the end, we had 5
agent–hl-id CFE training/testing datasets.

The semi-synthetic varied frequency of CFEs agent–CFE datasets. For each of the generated
agent–hl-continuous CFE, agent–hl-discrete CFE, and the agent–hl-id CFE training/testing datasets de-
scribed above, we generate three frequency of CFE dataset variants: all (including all data), >10 (more
than 10 agents per CFE), and >40 (more than 40 agents per CFE).
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B.3 The Fully-synthetic agent–CFE Datasets

We created five kinds of fully-synthetic agent–hl-discrete CFE datasets: varied dimension, frequency of CFEs,
information access, feature satisfiability, and actions access. We provide statistical detailed information about
the five variations of the agent–hl-discrete CFE datasets in Table 2 and Figure 5.

B.3.1 Varied Dimensions agent–CFE Datasets

We created 20-, 50- and 100-dimensional agent states datasets by varying the number of actionable features
(n = 20, 50, 100) and keeping pf = 0.68 the same for all datasets. We consider a unit vector threshold of
length n. The cost associated with satisfying a feature’s eligibility was predefined randomly and the same
across all actions and agents. Each action was of length n, pa was 0.5, and action cost was the sum of
the cost for each features the action fulfills. To create the 20-, 50- and 100-dimensional agent–hl-discrete
CFE datasets, we computed the hl-discrete CFEs for each varied dimensional agent states datasets using
the information above and the ILP defined in Equation 3.

B.3.2 Varied Frequency of CFEs agent–CFE Datasets

To investigate the effect of frequency of CFEs in the agent–CFE training set on the performance of the
data-driven CFE generator, we create three varied frequency of CFEs agent–CFE datasets. For each of the
varied dimensions agent–hl-discrete CFE datasets described in Appendix B.3.1, before the train/test split,
we created three frequency-based agent–CFE datasets: all, where all data is included, >10, where we ensure
a frequency of more than 10 agents per hl-discrete CFE, and >40 with insurance of a frequency of more than
40 agents per hl-discrete CFE.

B.3.3 Varied Information Access agent–CFE Datasets

We construct varied information access agent–CFE datasets for synthetically generated agents and their
corresponding fully-synthetic hl-discrete CFEs. That is, for each of the 20-, 50- and 100-dimensional agent–hl-
discrete CFE datasets and their corresponding frequency-based datasets (all, >10, and >40), we created
three varied information access datasets: agent–hl-discrete CFE dataset where the original hl-discrete CFE
remains unchanged, the agent–hl-discrete-named CFE dataset where a unique name encodes each hl-discrete
action in the hl-discrete CFE, and the agent–hl-discrete-id CFE dataset where a unique identifier denotes the
entire hl-discrete CFE. For example, consider an agent x = [0, 0, 0, 0, 1] and their corresponding hl-discrete
CFE given by {[0, 0, 1, 1, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]}. The hl-discrete-named CFE {a, b, c} where each hl-
discrete action has a name (e.g., a) that uniquely identifies a specific hl-discrete action (e.g., [0, 0, 1, 1, 0])
among all hl-discrete actions. On the other hand, a unique name, say z, denotes the hl-discrete-id CFE,
where z uniquely represents this specific hl-discrete CFE among all the hl-discrete CFEs.

Dataset name Dataset size One-action CFEs Two-action CFEs Three-action CFEs

20-dimensional dataset 71125 23687 44858 2576
50-dimensional dataset 98966 1262 96770 934
100-dimensional dataset 99728 0 45515 54213
manual groups 73484 13480 56653 3351
probabilistic groups 70226 44661 20258 5307
First10 74524 61794 12046 39
First5 74594 60656 6005 0
Last10 74401 53822 19952 1
Last5 74565 66068 644 0
Mid5 74594 63530 3010 0

Table 2: Statistics of some of the fully-synthetic agent–hl-discrete CFE datasets used in the experiments.
Each hl-discrete CFE for each agent in all datasets has atmost 3 hl-discrete actions.
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This setting aims to study the effectiveness of the data-driven CFE generators under various information
access constraints within an agent–CFE training set, for example, (1) full access to hl-discrete actions and
their effects on features (hl-discrete CFE), (2) access only to the names of hl-discrete actions without any
information on how each action affects features (hl-discrete-named CFE), and (3) minimal information access,
where only hl-discrete-id CFEs are known, with no explicit knowledge of the corresponding hl-discrete actions
or their impact on features.

Given the agent–hl-discrete CFE varied information access datasets, we use the data-driven hl-continuous
CFE generator to generate hl-discrete CFEs, data-driven hl-continuous CFE generator for hl-discrete-named
CFEs, and data-driven hl-id CFE generators for hl-discrete-id CFEs.

B.3.4 Varied Feature Satisfiability agent–CFE Datasets

Using the ILP formulation defined in Equation 3 with n = 20, and following the same agent and hl-discrete
generation approach as in Appendix B.3.1 while varying the feature satisfiability for the threshold-based
binary classifier (differing in which features are classifier-active (non-zero)), we generated five agent–hl-
discrete CFE datasets. For the dataset Last5, the threshold vector is set as t = [15 zeros, 5 ones], while for
the dataset First5, it is set as t = [5 ones, 15 zeros]. The third dataset, First10, has a threshold vector of
t = [10 ones, 5 zeros], and the dataset Last10 has t = [10 zeros, 10 ones]. Finally, the dataset Mid5 has all
features set to zero except for the five middle features set to one.

These varied feature satisfiability agent–hl-discrete CFE datasets are specifically created to investigate the
effect of feature satisfiability on the nature of the hl-discrete CFEs and the effectiveness of the data-driven
hl-continuous CFE generator at generating CFEs for new agents.

B.3.5 Varied Access to Actions agent–CFE Datasets

Lastly, we consider two settings where grouped agents have restricted access to a set of actions: 1) manual
groups where actions generated with the same probability pa = 0.5 and agents are randomly assigned a
restricted subset of actions; and 2) probabilistic groups where agents are assigned to groups and each
group has its actions generated by different probabilities pa = [0.4, 0.5, 0.6, 0.7, 0.8]. See Figure 5 for the
statistics of the datasets.

We designed the varied access to actions agent–hl-discrete CFE datasets to empirically investigate fairness
in CFE generation. Specifically, we examine the impact of restricting access of a group of agents to some
actions on the nature of hl-discrete CFEs, such as CFE costs and the variations in accuracy of data-driven
hl-continuous CFE generators across different groups.
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Figure 5: Statistics on the varied access to actions agent–hl-discrete CFE datasets for manual groups and
probabilistic groups. In the probabilistic groups, the action probability pa varies as follows: Group
0 (pa = 0.4), Group 1 (pa = 0.5), Group 2 (pa = 0.6), Group 3 (pa = 0.7), and Group 4 (pa = 0.8). While
the manual groups exhibit a more balanced distribution in terms of the number of actions taken by agents,
the probabilistic groups introduce disparities where agents in certain groups have access only to more
expensive and limited hl-discrete actions compared to others.
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(a) for a BRFSS agent state

(b) for a BMI agent state (c) for a WHR agent state

Figure 6: For an agent negatively classified based on their BRFSS features, with values [0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 0, 0] in order similar to (a), the hl-discrete CFE generator recommends hl-discrete CFE(a) with
hl-discrete actions, action-1 and action-2. Additionally, for a negatively classified BMI agent, given their ac-
tionable features with values [253.51, 352.76, 48.2, 1327., 29.61, 1204., 3966., 6163., 5890.0, 44.19, 7.903, 275.1,
30., 109.198, 3.492, 2.3, 59.686, 154.24, 113.429], arranged in the same order as features shown in (b), the hl-
continuous CFE generator recommends CFE(b) containing the following hl-continuous actions: action-1:
take Swiss chard, raw, action-2: take leavening agents: cream of tartar), and action-3: take clams, mixed
species, canned, in liquid. Similarly, for a negatively classified WHR agent with actionable feature values
ordered as features in (c) [29.03, 109.45, 4.1, 309., 4.08, 96., 488., 994., 1326., 2.61, 0.425, 45., 35.7, 8.755, 0.482,
172., 1.21, 10.077, 12.392, 13.999] the hl-continuous CFE generator recommends CFE(c) with the following
hl-continuous actions: action-1: take leavening agents: cream of tartar and action-2: take fish, tuna, light,
canned in water, drained solids.
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C Data-driven CFE Generators: Supplemental Details

This section includes supplemental details about the architectures of the data-driven CFE generators, details
about other baseline models, and future works. Although we do not explicitly create a separate validation
set during the initial 80/20 data split for training and testing, we use “validation_split” when training all
the generator models.

C.1 The Data-driven hl-continuous CFE Generator

The neural-network hl-continuous CFE generator we use in these experiments is susceptible to imbalance
and overfitting. Therefore, we weight and regularize the loss function LHC in Equation 4 as follows:

Lw
HC = pwLHC + α

1
M

M∑
m=1
||âm − am||1 (8)

The weighting factor pw weights LHC by scaling the contribution of each agent to the loss function. The
term α 1

M

∑M
m=1 ||âm−am||1 regularizes the model, thus preventing overfitting by nudging the model towards

producing hl-continuous CFEs closer to am’s distribution. We, on average chose the values of α from the set
{0.05, 0.1, 0.07} and pw from {0.05, 0.1, 0.07}.

C.2 The Data-driven hl-discrete CFE Generator

Below is the architecture of the neural-network based data-driven hl-discrete CFE generator described in
the main paper.

C.3 The Hamming Distance Data-driven CFE Generator

To produce hl-discrete-id CFEs (refer to Appendix B.3.3) for new agents, we mainly used the data-driven
hl-id CFE generator. However, we wanted to investigate the effect of model complexity on the accuracy
of CFE generation. Therefore, we compare the more complex data-driven hl-id CFE generator (refer to
Section 4.3) with a basic model, e.g., Hamming distance-based CFE generator, whose choice is due to the
agent features being binary for this setting. Below is a description of the Hamming distance hl-discrete-id
CFE generator.

Input: x ∈ {0, 1}n Output: Î ∈ {0, 1}s×n

Encoder

Internal state

Decoder

Figure 7: An encoder-decoder data-driven hl-discrete CFE generator, where n is the data dimension and s
is the number of hl-discrete actions in the generated hl-discrete CFE Î.
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xtr

xts

1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0

Hamming Distance: (xtr, xts) = 6

Figure 8: Hamming distance between the agent–CFE training set agent xtr and a testing set agent xts.

Given a negatively classified new agent xts, we compute the Hamming distance (see Figure 8) between them
and each of the agents xtr in the agent–hl-discrete-id CFE training set. Then, based on these distances,
we choose the k nearest training set agents and their associated hl-discrete-id CFEs. We then use the most
common hl-discrete-id CFE as the hl-discrete-id CFE for the new agent xts. We experimented with varied
number of nearest neighbors: 5, 10 and 15, for the 20-, 50- and 100-dimensional agent–hl-discrete-id CFE
datasets, respectively.

C.4 Extensions of Data-driven CFE Generation

Robust data-driven CFE generators. CFE generators, whether single-agent, global, or data-driven,
can be explicitly or implicitly compromised by changes in the underlying classifier, especially if that classifier
is inaccurate or evolves with time. Low-level, feature-based CFEs, such as those proposed by Ustun et al.
(2019), are particularly vulnerable: their specificity makes them highly sensitive to even minor modifications
in the classification model. Data-driven CFE generators are also at risk of model drift and classification
errors, primarily due to their reliance on agent–CFE datasets, implicitly or explicitly shaped by aggregation
methods that depend on the current classifier.

To address issues related to classification model errors and changes, recent robust CFE generation approaches
(see (Jiang et al., 2024)) account for model and distribution drift during the CFE generation process, which
would improve the overall performance of all CFE generators, whether single-agent, global, or data-driven.

A key direction for future research is to investigate the robustness of data-driven CFE generators under
model drift. In particular, it would be valuable to assess whether high-level CFEs offer improved resilience
to model changes or errors compared to feature-based, low-level CFEs. Furthermore, future work could focus
on valuing agent–CFE data instances and developing robust aggregation and data-sharing strategies (e.g.,
federated learning) to enhance the overall performance of data-driven CFE generators.

Extension to multiple valid CFEs generation. In the agent–CFE dataset, each agent is associated
with a single valid CFE of minimal cost. The probability of agents possessing multiple unique valid CFEs
with identical minimal costs was negligible because we assigned unique feature eligibility costs, resulting in
varied overall hl-discrete action costs and uniquely optimal CFEs. In the rare cases where such ties occurred,
we excluded the corresponding agents from the dataset.

Although we ensure each agent has a unique optimal CFE in the agent–CFE dataset, other valid CFEs
that flip the prediction may exist but incur marginally higher costs. This scenario is more prevalent when
generating sets of actions, whether hl-discrete or hl-continuous, as different combinations may achieve the
same classification outcome at a higher cost.

Our current evaluation function (Equation 6) is overly strict, disproportionately penalizing valid CFEs that
incur higher costs. A promising avenue for future work involves extending data-driven CFE generators to
produce sets of valid CFEs rather than single optimal ones. Instead of training the generators on agent–CFE
pairs (each agent mapped to a unique minimal-cost CFE), train the generators on agent–validCFE sets,
where each agent is associated with multiple valid CFEs. During inference, evaluate each generated CFE
for prediction flip and relative cost. This approach broadens the CFE search space, potentially enhancing
robustness of the CFE generators.
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D Evaluation and Comparative Analysis Metrics: Supplemental Details

Here, we provide additional details on the evaluation metrics used to compare low-level CFEs with both
hl-continuous and hl-discrete CFEs, as well as to assess the effectiveness of data-driven CFE generators.

D.1 Comparison Metrics

We evaluate each key variable (v), such as the number of actions taken, features modified, agents using the
same CFE, and agent improvement, when agents follow a low-level CFE vs. a high-level CFE (hl-continuous,
or hl-discrete). Specifically, using the general Equation 9, we define comparison metric δv that compares
each variables when an agent follows a low-level CFE versus an hl-continuous or hl-discrete CFE.

δv(P, Q) = Pv −Qv (9)

Where P and Q denote two CFEs under consideration, e.g., P may correspond to a low-level CFE and Q to
an hl-discrete CFE. The terms Pv and Qv denote the variable value, such as the number of actions taken,
following the execution of each CFE.

For all variables, a positive δv indicates that the low-level CFE variable value is higher than the compared
CFE, while a negative δv indicates the opposite. The magnitude of δv reflects the extent of this difference.
Below are the specific δv metrics.

Difference in number of actions taken. The metric δactions(·, ·) (Equation 10) quantifies the difference
in the number of actions taken when an agent executes a low-level CFE versus an hl-continuous or hl-discrete
CFE.

δactions(P, Q) = Pactions −Qactions (10)

Here, P and Q represent the low-level CFE and the hl-continuous or hl-discrete CFE, respectively, while
Pactions and Qactions denote the number of actions taken when executing each.

Difference in agent improvement. The metric δimprovement(·, ·) (Equation 11) quantifies the difference in
the agent improvement earned when an agent executes a low-level CFE versus an hl-continuous or hl-discrete
CFE.

δimprovement(P, Q) = Pimprovement −Qimprovement (11)

Here, P and Q represent the low-level CFE and the hl-continuous or hl-discrete CFE, respectively, while
Pimprovement and Qimprovement denote the agent improvement earned when executing each. Specifically,

Pimprovement = ∥x′ − x∥ (12)

where P is the CFE taken and x′ is the resultant agent state after taking the CFE from x, which is the
initial agent state. Ideally high improvement (less proximate), that is, x′ more distant from x is preferred.

Difference in number of features modified. The metric δfeatures(·, ·) (Equation 13) quantifies the
difference in the number features modified when an agent executes a low-level CFE versus an hl-continuous
or hl-discrete CFE.

δfeatures(P, Q) = Pfeatures −Qfeatures (13)

Here, P and Q represent the low-level CFE and the hl-continuous or hl-discrete CFE, respectively, while
Pfeatures and Qfeatures denote the number of features modified when executing each.

D.2 Statistical Significance between Variables

Given the different variables, e.g., list of the number of actions taken, number of modified features, and
improvement achieved with each CFE: hl-continuous, hl-discrete, and low-level, we compute the statistical
significance of the differences. We use the Scipy stats tool (Developers, 2023) to compute the Kendall tau
and p-value to assess the statistical significance of the relationship between the two variables at a time.
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E Experimental Results: Supplemental Details

In this section, we provide additional and thorough empirical evidence demonstrating the strong performance
of the proposed data-driven CFE generators in producing optimal CFEs for new agents. We also highlight
the strong and desirable characteristics of the hl-continuous and hl-discrete CFEs over the low-level CFEs.
Lastly, we analyze how various constraints, such as varied data dimensions, the frequency of CFEs, decision-
makers information access, feature satisfiability, and restrictions on agents’ access to actions, affect the
agent–CFE data distribution and the effectiveness of data-driven CFE generators.
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Figure 9: A comparison of hl-continuous CFEs consisting of a set of Food+monetary or Food+caloric cost hl-
continuous actions for WHR and BMI datasets, alongside hl-discrete CFEs on the BRFSS dataset, evaluated
against low-level CFEs for their respective datasets. All annotations up to one decimal place, low-level CFEs
require (a) more actions but lead to (b) fewer feature modifications and (c) result in less improvement (i.e.,
closer resultant agent states) compared to hl-discrete and hl-continuous CFEs.
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Figure 10: Given WHR negatively classified agents and the low-level and hl-continuous CFEs they took, a
computation of δimprovement(P, Q) (Equation 11)} and δfeatures(P, Q) (Equation 13) where P denotes taking
a low-level CFE and Q denotes taking an hl-continuous CFE, shows that most of the density is negative
implying that when agents take hl-continuous CFEs, a higher number of their features is modified (a) and
resultant improvement is significantly higher (b) than if they took low-level CFEs.
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Figure 11: A comparative analysis of the (a) difference in number of modified features (δfeatures(P, Q) (Equa-
tion 13)) and (b) difference in agent improvement (δimprovement(P, Q) (Equation 11)) when each negatively
classified WHR agent takes a low-level CFE (P) versus an hl-continuous CFE (Q), shows that hl-continuous
CFEs modify more features (a) and lead to significantly higher improvement (b) than low-level CFEs.

E.1 High-level CFEs Result in Higher Improvement and More Feature Modifications

Unlike low-level CFEs, high-level CFEs (hl-continuous and hl-discrete CFEs) involve fewer actions on average
(see Figure 9(a)) and results in higher improvements (Figures 9(c), 10(b), and 11(b)) and simultaneously
modify multiple features (see Figures 9(b), 10(a), and 11(a)).

While low-level CFEs exhibit a perfect correlation between the number of actions taken and the number of
features modified, hl-continuous and hl-discrete CFEs show a positive but weaker relationship (Figure 12(b)).
Additionally, hl-discrete and low-level CFEs have a strong positive correlation (τ = 0.708) in the number
of modified features (see BRFSS dataset in Figure 12(a)). In contrast, hl-continuous CFEs show a weak
negative correlation with low-level CFEs in the number of modified features and actions taken (see BMI and
WHR datasets in Figure 12(a), τ = −0.2684 and τ = −0.233 respectively).
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Figure 12: In (a), we illustrate the correlations for three different aspects: (1) between the number of actions
taken with CFEs P and Q, (2) between the number of features modified with CFEs P and Q, and (3) between
the improvement achieved after taking CFEs P and Q. For the BMI and WHR datasets, P and Q represent
low-level and hl-continuous CFEs, respectively. For the BRFSS dataset, P and Q denote low-level and hl-
discrete CFEs, respectively. On the other hand, (b) shows the correlation between the number of actions
taken and the number of modified features and between the number of actions taken and improvement
achieved for each CFE and dataset. In general, low-level CFEs have a perfect positive relationship between
the number of actions and modified features

E.2 High-level CFEs are Easier to Personalize and Lead to Fairer Outcomes

Fairness in CFE generation has primarily been studied along the dimension of equalizing the recourse costs
across different groups (e.g., (Gupta et al., 2019)). In this work, we extend the analysis by exploring several
dimensions of fairness in CFE generation.

First, we investigate how agents across sensitive groups using the same CFE generator (same kind of CFEs)
experience differences in how much they improve, the number of actions taken, the number of modified
features, and the costs incurred. Second, we explore the effects of limiting agents to a subset of actions
(varied access to actions) on the distribution of agent–CFE datasets and the accuracy of data-driven CFE
generators across groups. Lastly, we examine variations in feature satisfiability (differences in what features
need to be satisfied) across agent groups, influences the distribution of the agent–CFE dataset, and the
performance of data-driven CFE generators in generating CFEs for different agent groups.

In addition to fairness, we also investigate the personalization of CFE generation along two dimensions. 1)
Agents may be interested in a subset of actions (varied access to actions) and thus restricted to CFEs that
involve only specific actions. 2) Agents might prioritize different costs in the CFE generation process (varied
cost preferences) and thus prefer CFE generators that optimize those specific costs in CFE generation, e.g.,
caloric costs over monetary ones.

E.2.1 Fairness Based on Variability of CFEs Execution Outcome

We analyze variations in costs incurred, actions taken, features modified, and agent improvement across
sensitive groups to assess the fairness of low-level CFEs compared to hl-continuous and hl-discrete CFEs.

Variability in improvement, number of modified features, and number of actions taken. To
quantify differences in agent experiences across sensitive groups, we compute the coefficient of variation for
three key variables: improvement, number of modified features, and number of actions taken. Figure 13
illustrates that in the WHR dataset, low-level CFEs exhibit substantial variation across sensitive groups
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(c) Average number of features modified across groups
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(e) Average improvement achieved across groups
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Figure 13: A comparative analysis of the average number of actions taken, the number of features modified,
and the improvement achieved by agents across sensitive groups when they take low-level CFEs versus hl-
continuous CFEs. (a), (c), and (e) show the raw distributions for these variables across sensitive groups
while (b), (d), and (f) present the coefficients of variation that concisely illustrate the extent of dispersion
around the mean for each variable. In summary, low-level CFEs are less fair than hl-continuous CFEs, which
exhibit lower coefficients of variation, ensuring more comparable outcomes for agents from different groups.
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(a) BMI: average costs incurred across groups
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(c) WHR: average cost incurred across groups
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Figure 14: A comparative analysis of average cost variations among agents in sensitive groups when taking
low-level CFEs versus high-level continuous CFEs. Although not comparable across CFEs, (a) and (c) show
the distribution of costs between groups for each CFE, and (b) and (d) show the coefficient of variations
- indicating how variable around mean the average costs in groups are. Costs across sensitive groups vary
more when agents take low-level CFEs than when they take hl-continuous CFEs.

regarding agent improvement, actions taken, and features modified. Specifically, the coefficient of variation
for agent improvement was 27.53% with low-level CFEs versus 22.67% otherwise. The variation in the
number of actions taken was 43.29% compared to 27.48%, and for modified features, 43.29% compared
to 12.88%. These findings indicate that the benefits of low-level CFEs are not distributed equally across
sensitive groups, potentially favoring some over others, thus raising fairness concerns in CFE generation.

Variability in costs incurred across sensitive groups. Although the costs agents incur by taking
low-level CFEs cannot be directly compared with taking hl-continuous CFEs because they are contextually
different (feature-based vs action-based), we study how the costs of executing the same kind of CFEs varies
across agents in different sensitive groups.

Our results show that the costs incurred in taking low-level CFEs vary more widely across various sensitive
groups than in taking hl-continuous CFEs. For example, in Figure 14, the coefficient of variation for taking
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low-level CFEs is 41.16% and 79.55% versus 5.60% and 37.61% with taking hl-continuous CFEs, on BMI
and WHR datasets, respectively. Therefore, compared to taking hl-continuous CFEs, taking low-level CFEs
is more biased and more likely to favor some sensitive groups.

(a) low-level CFE

(b) hl-continuous CFE with caloric costs (c) hl-continuous CFE with monetary costs

Figure 15: When given actionable features values [29.03, 109.45, 4.1, 309., 4.08, 96., 488., 994.,
1326., 2.61, 0.425, 45., 35.7, 8.755, 0.482, 172., 1.21, 10.077, 12.392, 13.999], in the same order as shown in
(b) and (c), for a negatively classified WHR agent, the low-level CFE generator recommends a CFE (a)
with a cost of 56.588. This CFE was unique to the agent. In contrast, the hl-continuous CFE generator
generates two CFEs optimized for different agent’s preferences. When optimizing for caloric cost, the CFE
generator generates CFE (a) with a cost of 2.750. This CFE, which was also optimal for other 25 negatively
classified agents, includes action-1 (consume endive, raw) and action-2 (consume leavening agents: cream
of tartar). When optimizing for monetary cost, the CFE generator produces a CFE (b) of cost 4.010. This
CFE, also optimal for other 105 agents, consists of action-1 (consume leavening agents: cream of tartar)
and action-2 (consume fish, tuna, light, canned in water, drained solids). Lastly, while the low-level CFE
(a) involves 19 actions but modifies 19 features and improve by 5679.95, the hl-continuous CFEs both
involve 2 actions but modify 19 features and lead to an improvement of 16815.04 (b) and 16682.62 (c).
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E.2.2 Varied Costs Preferences

We model two types of hl-continuous CFEs: a set of Foods+monetary costs hl-continuous actions and a set
of Foods+caloric costs hl-continuous actions (see Appendix B.1.1 and B.2.2). In a setting where negatively
classified agents care more about monetary costs over caloric costs, and vice versa, the CFE generator adapts
to these preferences and recommends the corresponding optimal CFE, as demonstrated in Figure 15.

Additionally, regardless of whether monetary or caloric costs were the desired costs by the agent, we consis-
tently observed that taking hl-continuous CFEs involved fewer actions, resulted in more feature modifications
and higher improvement when compared to low-level CFEs (see Figures 13 and Figure 15 ). Future research
could investigate the data-driven CFE generation at the intersection of various settings. For instance, this
could involve exploring Pareto-optimal solutions where agents seek to simultaneously optimize multiple fac-
tors, such as monetary and caloric costs.

E.2.3 Varied Feature Satisfiability

In general, as shown in Table 2, compared to the unit threshold datasets: 20- 50- and 100-dimensional
agent–CFE datasets, agents in the varied binary feature satisfiability datasets described in Appendix B.3.4
required fewer action due to the fewer features to satisfy to get a desirable classification.

Our results show that without explicit knowledge of the varied feature satisfiability when given testing
set agents, the data-driven hl-discrete CFE generator trained on instances of a mixture of varied feature
satisfiability agent–hl-discrete CFE datasets successfully generates the right hl-discrete CFEs for the new
agents. The data-driven hl-discrete CFE generator achieves an accuracy of 99.683% on First10, 99.496%
on Last10, 100% on First5, 100% on Mid5, and 100% on Last5, dataset variants.

E.2.4 Varied Access to Actions

The manual groups agent–hl-discrete CFE datasets (described in Appendix B.3.5) are more balanced in
terms of the number of actions agents take (see Figure 5(a)). The reason is agents have access to the same
distribution of hl-discrete actions, i.e., although agents in each group have access to only a selected group
of hl-discrete actions, all the hl-discrete actions for all groups were generated with the same probability,
pa = 0.5.

However, for the probabilistic groups agent–hl-discrete CFEs datasets (described in Appendix B.3.5),
Figure 5(b) shows that as the probability of hl-discrete capabilities pa decreases, the number of hl-discrete
agents require to get all the necessary capabilities to transform their states to get a positive model outcome
increases. In other words, agents in certain groups only have access to more expensive and limited hl-discrete
actions compared to others. For instance, agents in the probabilistic groups Group 0 face more difficulty
(due to limited capabilities and more costly hl-discrete actions) in achieving positive classification outcomes
than those in the Group 4.

Manual Groups Probabilistic Groups
Group Accuracy Group Accuracy
Group 0 0.881± 0.01200 Group 0 (0.4) 0.880± 0.04400
Group 1 0.871± 0.01260 Group 1 (0.5) 0.771± 0.02081
Group 2 0.875± 0.01249 Group 2 (0.6) 0.802± 0.01571
Group 3 0.847± 0.01359 Group 3 (0.7) 0.873± 0.01241
Group 4 0.886± 0.01212 Group 4 (0.8) 0.931± 0.00947

Table 3: Group-wise accuracy of the data-driven hl-discrete CFE generator on manual groups &
probabilistic groups (see Appendix B.3.5). While the accuracy on the manual groups was within the
same range (87%), it greatly varied across the probabilistic groups.
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Figure 16: The data-driven hl-id CFE generator for the (a) hl-discrete-id CFEs, the data-driven hl-continuous
CFE generator for the (b) hl-discrete-named CFEs, and the data-driven hl-discrete CFE generator for the
(c) hl-discrete CFEs, achieved strong performance on the 20-dimensional all agent–hl-discrete CFE, varied
information access, test datasets (new agents for the respective variants).

Performance of the data-driven CFE generators
all >10 >40

20-dimensional 0.969± 0.00284 0.984± 0.00208 0.993± 0.00141
50-dimensional 0.744± 0.00608 0.838± 0.00534 0.915± 0.00458

100-dimensional 0.354± 0.00664 0.630± 0.00778 0.856± 0.00772

Table 4: A comparative analysis of the performance of the data-driven hl-discrete CFE generator across
agent–hl-discrete CFE datasets with varied dimensions (20-, 50- and 100-dimensional) and varied frequency
of the CFEs (all, >10, and >40). Results indicate that accuracy declines as dimensionality increases and
CFE frequency decreases. Notably, the 20-dimensional >40 dataset, which has the lowest dimensionality and
highest CFE frequency, achieved the highest accuracy.

Since the agents in the manual groups agent–hl-discrete CFE datasets had more balanced access to hl-
discrete actions as depicted in Figure 5(a), the data-driven hl-discrete CFE generators had almost similar
accuracy (∼87%) in the generation of CFEs across all agents in different manual groups, as shown in Table 3
(left). On the other hand, since the agents in the probabilistic groups had access to varied hl-discrete
actions, the accuracy of the data-driven hl-discrete CFE generator varied greatly across the groups, as shown
in Table 3 (right). For instance, as expected, the CFEs for probabilistic groups Group 4 agents with
one-action hl-discrete CFEs were more accurately generated with an accuracy of 93.06% as compared to
Group 0 and Group 1 agents, generated at an accuracy of 88.04% and 77.09%, respectively.

E.3 Data-driven Generators are Accurate, Confident and Approximate when needed

Our results show that the data-driven CFE generators are accurate and confident information-specific CFE
generators. Additionally, unlike low-level CFE generators that sometimes fail to produce a CFE entirely for
an agent, our data-driven CFE generators generate approximately good CFEs instead of no CFEs at all.
The supplemental results in this appendix subsection are mainly for the fully-synthetic datasets.

E.3.1 Accuracy and Confidence

The proposed data-driven CFE generators are evidenced to perform strongly on the varied datasets. As
shown in Figure 16, on the 20-dimensional all agent–CFE dataset variants, the CFE generators achieved high
accuracy at generating hl-discrete CFEs, hl-discrete-id CFEs, and hl-discrete-id CFEs. All the generators
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perform best on the single-action CFE agents. Furthermore, with strong confidence, i.e., low margin error
rates (see Table 4), the proposed data-driven CFE generators performed well on all datasets regardless of
the data dimension or frequency of CFEs. Notably, they excelled on high-frequency datasets, that is to say,
>40 datasets regardless of the data dimensions, as seen in Table 4.

E.3.2 Approximation

Unlike ILP-based low-level CFE generators, which do not generate CFEs for agents when the ILP solu-
tion is sub-optimal or infeasible, our data-driven CFE generators alternatively produce valid CFE mistakes
when suboptimal (see Figure 17). For example, of the 1.58%, 16.23% and 37.00% mistakes the hl-id gener-
ator makes on the 20-, 50-, and 100-dimensional >10 agent–hl-discrete-id CFE datasets, 100%, 99.23%, and
87.29%, respectively, were valid CFE mistakes. Similarly, the majority of the mistakes of the hl-discrete CFE
generators were valid, e.g., on the 20-dimensional >10 agent–hl-discrete CFE dataset, of the 10.8% mistakes
the generator makes, 63.10% were valid.

Additionally, the likelihood of the ILP-based low-level CFE generator’s failure at generating CFEs (i.e.,
returns no CFEs) increases with the number of actionable features (data dimensions). On the hand, the
percentage of valid mistakes from our proposed CFE generators decreases with the frequency of CFEs in the
agent–CFE training set, e.g., the percentage of valid mistakes is 87.29% on the >10 dataset and 57.83% on
the 100-dimensional all dataset.
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Figure 17: A generated CFE is a mistake if the CFE doesn’t match the true CFE. A valid CFE mistake
transforms the agent’s initial state to get a desirable model outcome. An invalid CFE mistake does not
favorably transform the agent state. Distribution of costs of generated and true CFEs for (a) invalid and (b)
valid CFE mistakes the data-driven hl-id CFE generator makes on 20-dimensional all agent–hl-discrete-id
dataset. Valid CFE mistakes are, by definition, more expensive than the true CFEs, while invalid CFE
mistakes are cheaper than the true CFEs.

E.4 Data-driven CFE Generators are Easier to Scale and the CFEs are more Interpretable

Our results show that data-driven CFE generators, including hl-continuous, hl-discrete, and hl-id, are more
scalable than low-level CFE generators. In addition, the costs and actions of hl-continuous and hl-discrete
CFEs are interpretable and transparent, simplifying validation and comparison.

E.4.1 Scalability

Unlike the overly specific feature-based actions in low-level CFEs (see Figure 15(a)), actions in hl-continuous
and hl-discrete CFEs are more general, increasing the likelihood of their optimality for agents with closely
similar profiles. As shown in Figure 18, while low-level CFEs were typically unique to each agent, hl-
continuous and hl-discrete CFEs were often simultaneously optimal for multiple agents (see also Figure 15).
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Figure 18: The average number of agents with the same CFE when agents take hl-continuous CFEs (as a
set of Food+monetary and Foods+caloric costs hl-continuous actions) for WHR and BMI datasets, as well
as hl-discrete CFEs on the BRFSS dataset, compared to when they take low-level CFEs for the respective
datasets. Regardless of the dataset considered, on average, while low-level CFEs were unique to a given
agent (individual), hl-continuous and hl-discrete CFEs were simultaneously optimal to multiple agents.

Furthermore, while our data-driven CFE generators efficiently produce CFEs for new agents without re-
quiring re-optimization, low-level CFE generators operate on a single-agent basis, making them significantly
more resource-intensive.

E.4.2 Interpretability

The hl-continuous and hl-discrete CFEs comprise real-world-like actions (see Figures 15(b) and 15(c)), in
contrast to low-level CFEs, which rely on overly specific, feature-based actions (see Figure 15(a)). Con-
sequently, hl-continuous and hl-discrete CFEs are more intuitive, interpretable, and easier to execute and
compare since they align more closely with executable actions. Moreover, the costs associated with these
actions are more transparent and easier to comprehend, given a general understanding of how they were
derived, an essential factor in ensuring clarity and trust in following the recommended CFE.

Looking ahead, conducting a comprehensive user study would be a valuable avenue for future work. The
human-subject study could empirically validate the transparency and interpretability of the proposed high-
level CFEs, serving as a test of the underlying hypotheses.

E.5 Performance under various Information Access Constraints

In addition to other information access constraints, we investigate the effectiveness of the data-driven CFE
generators under two more information access constraints. From the original agent–hl-discrete CFE datasets,
we created two more information access variants, the agent–hl-discrete-named CFE dataset, and agent–hl-
discrete-id CFE dataset as described in Appendix B.3.3. Given the agent–hl-discrete CFE information access
datasets, we use the data-driven hl-discrete CFE generators for the hl-discrete CFEs, hl-continuous CFE
generators for hl-discrete-named CFEs, and data-driven hl-id CFE generators for hl-discrete-id CFEs.

In general, all the data-driven CFE generators, regardless of information access constraints described in
Appendix B.3.3, generate single-action CFEs more accurately than multi-action CFEs. For example, the
hl-discrete CFE generator, as seen in Figure 16(c), generates one-action CFEs at an accuracy of 94.6%,
two-action CFEs at an accuracy of 79.6%, and three-action CFEs at an accuracy of 60.0%.

However, in general, data-driven hl-id CFE generators were shown in Figure 16(a) to 16(c) and Table 5 to be
more accurate and need less CFE frequency in the training set than the hl-continuous and hl-discrete CFE
generators. For example, on the 20-dimensional all dataset, the data-driven hl-id CFE generator had an
accuracy of 96.9%, compared to 85.4% with hl-continuous CFE generator and 83.9% with hl-discrete CFE
generator.
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Performance on 20-dimensional datasets
all >10 >40

Data-driven hl-id CFE generator 0.969± 0.00284 0.984± 0.00208 0.993± 0.00141
Data-driven hl-continuous CFE generator 0.854± 0.00581 0.886± 0.00531 0.940± 0.00411
Data-driven hl-discrete CFE generator 0.839± 0.00605 0.892± 0.00518 0.937± 0.00420

Table 5: Accuracy of the CFE generators on 20-dimensional: all, >10, and >40 datasets. All the data-
driven CFE generators demonstrate consistently high accuracy across all datasets, with particularly strongest
performance on high CFE frequency datasets (>40).

E.6 Challenges and Proposed Solutions in Designing Data-driven CFE Generators

We identify several challenges in data-driven CFE generators: the infrequent occurrence of CFEs, the large
number of actionable features, and the significant dependence on the complexity of the CFE generator model.
In this work, we thoroughly examine these challenges, propose plausible solutions, and suggest avenues for
future research to explore these issues in greater depth.

E.6.1 Negatively Affected by High Number of Actionable Features

As the number of actionable features increases, agents CFEs have more actions (see Table 2). For instance,
in the 100-dimensional agent–hl-discrete CFE dataset, 54.4% of agents’ hl-discrete CFEs had three actions,
and in the 20-dimensional dataset, 33.3% of agents needed only one action in their CFE and only 3.6% had
three.

Beyond an increase in the number of actions in the CFEs, the uniqueness of CFEs also rises as the number
of actionable features grows. The average frequency of CFEs in the all agent–hl-discrete CFE training set
dropped from 46.64% in the 20-dimensional dataset to 21.75% in the 50-dimensional dataset and further to
8.09% in the 100-dimensional dataset. Additionally, 18.115%, 20.797%, and 31.072% of CFEs in the 20-,
50-, and 100-dimensional all datasets, respectively, were unique (i.e., optimal for only one agent). This low
frequency of CFEs in the agent–CFE datasets led to discrepancies after train/test splits, where some CFEs
appeared in one split but not the other. Specifically, for the 20-, 50-, and 100-dimensional datasets, there
were 52, 154, and 708 unique CFEs in the testing set that were absent from the training set.

As a result, data-driven CFE generators become less accurate as the number of actionable features increases.
As shown in Table 4, the data-driven hl-id CFE generator consistently performed worse on higher-dimensional
datasets. For example, while it achieved 96.9% accuracy on the 20-dimensional all dataset, its accuracy
dropped to 74.4% on the 50-dimensional all dataset and was lowest on the 100-dimensional all dataset.

E.6.2 Negatively Affected by Low Frequency of CFEs

We created the varied frequency of CFEs agent–CFE datasets: all, >10, and >40 (see Appendix B.3.2),
to examine how CFE frequency in the agent–hl-discrete CFE dataset impacts the robustness of data-driven
CFE generators. After the train/test split, the >40 dataset ensured that at least 20 agents shared the same
CFE in the training set. By definition, the >40 dataset had the highest CFE frequency, while all had the
lowest. This frequency also varied with data dimensionality, as illustrated in Appendix E.6.1.

The low frequency of CFEs in the agent–hl-discrete CFE training sets negatively impacted CFE generation
across all datasets, regardless of data dimensionality. However, this effect became more pronounced as
data dimensions increased. For instance, as shown in Table 4, the accuracy of CFE generators on the
20-dimensional dataset was highest when CFEs had a frequency of at least 20 in the training set (>40)
and lowest on the all dataset, where some CFEs appeared in the test set but not in the training set.
Specifically, the data-driven hl-id CFE generator achieved an accuracy of 99.3% on the 20-dimensional >40
dataset, compared to 96.9% on the 20-dimensional all dataset. In contrast, CFE generation accuracy on
the 20-dimensional dataset was significantly higher than on the 100-dimensional dataset. This difference
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highlights that the negative impact of low CFE frequency in the training set becomes more severe as data
dimensionality increases.

Additionally, the minimum frequency of CFEs required for a strong CFE generator increases with the number
of actionable features. While the frequency of at least 20 in the training set ensured an accuracy of 99.3%
of the CFE generator on the 20-dimensional dataset (see Table 4), a higher frequency is needed for the 50-
and 100-dimensional datasets (see Table 4 and Figure 19).

>40 >100 >150 >20030

40

50

60

70

80

90

100

Varied frequency of CFEs in the training agent–CFE dataset

A
cc

ur
ac

y
100-dimensional 50-dimensional

Figure 19: Impact of CFE frequency in agent–CFE training datasets for 50 and 100-dimensional datasets on
the accuracy of the data-driven CFE generators. As the frequency of CFEs (the number of agents sharing
the same optimal CFE) increases, the accuracy of data-driven CFE generators improves. This improvement
occurs more rapidly in the lower-dimensional (50-dimensional) dataset.

Data augmentation. We examine the impact of increasing the frequency of CFEs through data aug-
mentation (Algorithm 1) on the performance of the data-driven hl-discrete CFE generator. Algorithm 1 is
specific for the agent–hl-discrete CFE datasets with all kinds of threshold classifiers. To generate new agents
for which a given hl-discrete CFE is the most optimal, we ensure that no other hl-discrete CFE within the
complete set of CFEs can achieve the transformation at a lower cost.

Therefore, given an agent state, we find all possible worse-off agent states, such that the current optimal
hl-discrete CFE is still the best CFE for the worse-off agent states. Worse-off agent states are those such
that the features where the hl-discrete CFE adds more capabilities than required to transform the agent
state favorably are made worse, i.e., for i such that x⋆

i > ti, augi < xi. Specific to the threshold classifier
we use in the experiments, a hl-discrete CFE is adding more capabilities than required to feature i of x,
if by after the action, the transformed feature x⋆

i is such that x⋆
i > ti. The derived worse-off agent state

(augment) aug is valid if x’s hl-discrete CFE is also the optimal CFE.

Algorithm 1: The agent–hl-discrete CFE dataset augmentation
Input: an agent x and their hl-discrete CFE I, and the threshold classifier t
Output: valid derived augmentations of agent x, xaugs with the same CFE
Data: indices of features ids where the hl-discrete CFE when taken, adds more than needed

capabilities to x
augs← 2|ids| possible worse-off agents;
foreach aug in augs do

if aug is valid then
xaugs ← xaugs ∪ {aug};

end
end
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Effect of data augmentation
20-dimensional 50-dimensional 100-dimensional

Before data augmentation 0.969± 0.00284 0.744± 0.00608 0.354± 0.00664
After AG1 0.965± 0.00303 0.760± 0.00595 0.505± 0.00694
After AG2 0.982± 0.00218 0.845± 0.00504 0.790± 0.00565

Table 6: Effects of AG1 and AG2 augmentation on the accuracy of the data-driven CFE Generator. Data
augmentation mitigates the negative impact of low frequency of CFEs and improves the accuracy of data-
driven CFE generators on the 20-, 50-, and 100-dimensional: all datasets.

Data augmentation reduces negative impact of low frequency of CFEs. Using Algorithm 1, we
augment the agent–hl-discrete CFE training set to ensure that each CFE appears at least twice (AG1) and to
increase the frequency of CFEs with fewer than 20 occurrences (AG2). As a result, the number of hl-discrete
CFEs with fewer than 20 agents significantly decreased from 813 to 638, 2676 to 2005, and 9043 to 7144 for
the 20- 50- and 100-dimensional datasets, respectively.

Experimental results show an improvement in the accuracy of the CFE generators on the test samples after
data augmentation, e.g., on the 100-dimensional dataset, the accuracy of the data-driven CFE generator
increases from 35.37% before data augmentation to 50.54 after AG1, and 78.99% after AG2 (see Table 6).
The findings show that data augmentation can improve the robustness of CFE generators in cases where the
frequency of CFEs in the agent–CFE training datasets is low.

E.7 Performance Heavily Depends on Complexity of CFE Generator Model

Given the agent–hl-discrete-id CFE 20-dimensional, >40 dataset variant, we compare the effectiveness of
the neural network-based CFE generator against the Hamming distance-based CFE generator. As shown
in Figure 20, the neural network-based CFE generator demonstrates greater accuracy in generating CFEs
for new agents. Interesting for future works is an exploration of the effectiveness of CFE generators based
on more advanced and alternative methods, e.g., multi-chain neural networks, reinforcement learning, and
transformer models.
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Figure 20: A comparison of accuracy of two data-driven hl-discrete CFE generators on the 20-dimensional
>40 dataset. The neural network model consistently performs better than the hamming distance model.

41


	1 Introduction
	2 Background
	3 The Proposed Single-agent CFE Generators
	3.1 The Single-agent hl-continuous CFE Generation
	3.2 The Single-agent hl-discrete CFE Generation

	4 The Proposed Data-driven CFE Generators
	4.1 The Data-driven hl-continuous CFE Generator
	4.2 The Data-driven hl-discrete CFE Generator
	4.3 The Data-driven hl-id CFE Generator

	5 Experimental Setup
	5.1 Real-world Datasets
	5.2 Single-agent CFE Generation
	5.3 Data-driven CFE Generation
	5.4 Evaluation and Comparative Analysis Metrics

	6 Experimental Results
	6.1 Comparison of low-level CFEs to the hl-continuous and hl-discrete CFEs
	6.2 The Data-driven CFE generators are Accurate and Resource-efficient

	7 Limitations and Ethical Considerations
	8 Related Work
	9 Conclusion
	A The hl-discrete CFE vs. hl-continuous CFE: Supplementary Details
	B Datasets: Supplemental Details
	B.1 Real-world Datasets Extraction and Preprocessing
	B.1.1 Foods, Body Mass Index (BMI), and Waist-to-Hip Ratio (WHR) Datasets
	B.1.2 Behavioral Risk Factor Surveillance System (BRFSS) Dataset

	B.2 Single-agent CFE Generation and Semi-synthetic agent–CFE Datasets
	B.2.1 The Low-level CFEs
	B.2.2 The hl-continuous CFEs and agent–hl-continuous CFE Datasets
	B.2.3 The hl-discrete CFEs and agent–hl-discrete CFE Datasets
	B.2.4 The agent–hl-id CFE Datasets and other Variants

	B.3 The Fully-synthetic agent–CFE Datasets
	B.3.1 Varied Dimensions agent–CFE Datasets
	B.3.2 Varied Frequency of CFEs agent–CFE Datasets
	B.3.3 Varied Information Access agent–CFE Datasets
	B.3.4 Varied Feature Satisfiability agent–CFE Datasets
	B.3.5 Varied Access to Actions agent–CFE Datasets


	C Data-driven CFE Generators: Supplemental Details
	C.1 The Data-driven hl-continuous CFE Generator
	C.2 The Data-driven hl-discrete CFE Generator
	C.3 The Hamming Distance Data-driven CFE Generator
	C.4 Extensions of Data-driven CFE Generation

	D Evaluation and Comparative Analysis Metrics: Supplemental Details
	D.1 Comparison Metrics
	D.2 Statistical Significance between Variables

	E Experimental Results: Supplemental Details
	E.1 High-level CFEs Result in Higher Improvement and More Feature Modifications
	E.2 High-level CFEs are Easier to Personalize and Lead to Fairer Outcomes
	E.2.1 Fairness Based on Variability of CFEs Execution Outcome
	E.2.2 Varied Costs Preferences
	E.2.3 Varied Feature Satisfiability
	E.2.4 Varied Access to Actions

	E.3 Data-driven Generators are Accurate, Confident and Approximate when needed
	E.3.1 Accuracy and Confidence
	E.3.2 Approximation

	E.4 Data-driven CFE Generators are Easier to Scale and the CFEs are more Interpretable
	E.4.1 Scalability
	E.4.2 Interpretability

	E.5 Performance under various Information Access Constraints
	E.6 Challenges and Proposed Solutions in Designing Data-driven CFE Generators
	E.6.1 Negatively Affected by High Number of Actionable Features
	E.6.2 Negatively Affected by Low Frequency of CFEs

	E.7 Performance Heavily Depends on Complexity of CFE Generator Model


