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Abstract

Watermarking LLM-generated text is critical for content attribution and misin-
formation prevention, yet existing methods compromise text quality and require
white-box model access with logit manipulation or training, which exclude API-
based models and multilingual scenarios. We propose SAEMARK, an inference-
time framework for multi-bit watermarking that embeds personalized information
through feature-based rejection sampling, fundamentally different from logit-based
or rewriting-based approaches: we do not modify model outputs directly and
require only black-box access, while naturally supporting multi-bit message em-
bedding and generalizing across diverse languages and domains. We instantiate
the framework using Sparse Autoencoders as deterministic feature extractors and
provide theoretical worst-case analysis relating watermark accuracy to computa-
tional budget. Experiments across 4 datasets demonstrate strong watermarking
performance on English, Chinese, and code while preserving text quality. SAE-
MARK establishes a new paradigm for scalable, quality-preserving watermarks
that work seamlessly with closed-source LLMs across languages and domains.
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Figure 1: An overview of SAEMARK.
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Large language models (LLMs) have revolutionized text generation across domains, from creative
writing to code synthesis [1, 2]. However, their ability to produce human-quality text at scale
raises serious concerns about misinformation, copyright infringement, and content laundering. As
these models become ubiquitous, reliably attributing AI-generated content becomes critical for
accountability and trust.

Watermarking—embedding detectable signatures into generated text—offers a promising solution.
They must preserve text quality while enabling reliable detection, operate across languages and
domains, and scale to distinguish between many users or sources. Most critically, they must work
with real-world deployment constraints where model providers offer only API access without exposing
internal parameters. The challenge becomes even more complex for multi-bit watermarking. Beyond
simply detecting AI-generated text, the goal is to encode and recover a specific message m ∈
{0, 1}b—such as a user identifier for personalized attribution. This enables answering not just “is this
AI-generated?” but “which specific user or system generated this text?” Such fine-grained attribution
is essential for large-scale deployment where accountability matters.

Existing watermarking methods struggle with these requirements. Token-level approaches like
KGW [3] and EXP [4] require direct access to model logits, excluding API-based deployment, and
can degrade text quality through probability manipulation. Syntactic methods [5] fail to generalize
across languages, while specialized approaches [6] work well in narrow domains but break down
when applied more broadly. Even recent black-box methods [7, 8] rely on surface-level statistics or
require auxiliary models, limiting their robustness and scalability.

We introduce SAEMARK, a fundamentally different approach that sidesteps these limitations entirely.
Our key insight is deceptively simple: different LLM generations exhibit distinct patterns in their
semantic features, and these patterns can be leveraged for watermarking through selection rather than
modification. Instead of altering how text is generated, we generate multiple candidates and choose
those whose feature patterns align with a watermark key.

This approach works by operating on meaningful units of text—sentences for natural language,
functions for code. For each unit, we extract deterministic features that capture semantic properties,
compute a scalar statistic, and normalize it to behave predictably across different texts. Using the
watermark key, we derive target values for each position. During generation, we sample multiple
candidates from the LLM and select the one whose feature statistic is closest to the target, ensuring
the final sequence encodes the desired message. The elegance lies in what we don’t change: no model
weights, no logit manipulation, no token modifications. Every selected text segment is a natural LLM
output, preserving quality while enabling attribution. The approach works with any LLM through API
calls, generalizes across languages and domains, and provides theoretical guarantees on watermark
success that scale predictably with computational budget.

Our contributions span theory and practice. We develop a general framework for watermarking
through feature-guided selection that works with any feature extractor and LLM. We provide theoret-
ical guarantees that explain how SAEMark accuracy scales with compute budget, independent of
feature extractors. Finally, we demonstrate a practical instantiation using SAE as feature extractor
that achieves superior accuracy and text quality across languages and domains, encoding more
information than existing approaches.

2 Related Work

LLM watermarking is a technique to embed special patterns into the output of LLMs, and has
traditionally been used to identify LLM generated text from human-written text [9]. Different
from post-hoc detection methods [10] that analyze statistical patterns in existing text, language
model watermarking aims to embed detectable signatures during generation [3]. These methods
compromise generation quality through direct manipulation of token probabilities [3] or syntactic
modifications [11]. The challenge of language and domain generalization remains largely unad-
dressed, with current techniques primarily optimized for English and struggling with multilingual
content or specialized domains like code [6]. Notably, PersonaMark [12] represents early attempts at
personalized watermarking, but its reliance on English-specific syntactic patterns and closed-source
implementation makes scalability and cross-lingual capability difficult to verify. Recently, more
multi-bit watermarking methods have been proposed to embed multiple bits of information into gen-
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erated text [13, 14, 15, 16, 17, 18], primarily by extending single-bit watermarking that manipulates
logits during generation; these methods inherit the limitations of single-bit designs.

Complementary black-box watermarks avoid white-box logit access by using post-hoc selection or
rewriting [8]. However, they typically operate on statistics or introduce auxiliary model dependencies
and do not directly address multi-bit message embedding at scale. Our framework differs by
performing inference-time selection among naturally generated candidates using deterministic feature
statistics. This enables extractor-agnostic analysis and multilingual, domain-agnostic multi-bit
watermarking without modifying model logits.

Sparse Autoencoders (SAEs) are pre-trained interpretability tools that decompose LLM activations
into human-understandable features [19]. For a given base model M and layer l, an SAE processes
hidden states ht at position t as:

ft = SAEl(ht) (1)

where ft ∈ Rm is a sparse vector (typically m ≫ dim(ht)) with ≤ 5% active features. The SAE is
trained through two objectives: 1) reconstruct original activations, and 2) enforce feature sparsity via
L1 regularization: L = ∥ht − Dec(ft)∥2︸ ︷︷ ︸

Lrec

+λ ∥ft∥1︸ ︷︷ ︸
Lsparse

(2)

This training produces features that correspond to interpretable concepts [19, 20] like “Function
definitions” or “Concept related to color blue” [21]. Our watermarking leverages key properties of
pre-trained SAEs: multilingual activation allows the same features to fire for equivalent concepts
across languages deterministically. sparsity enables efficient analysis through few active features per
token. These properties support language-agnostic statistics via masked feature aggregations:

ϕ(y) =
1

|y|
∑
t

ft ⊙m (3)

where m filters background features that fire ubiquitously regardless of content (e.g., punctuation).
The summary ϕ(y) provides a deterministic statistic used by our watermarking procedures (Sec 3).

3 Methodology

We present a general framework for post-hoc, multi-bit watermarking via feature-based rejection
sampling. The key observation is that different LLM generations produce distinct values of determin-
istic feature statistics computed over domain-appropriate units, and these statistics can be steered
by selecting among naturally generated candidates, without modifying model logits, parameters or
generated texts. We structure the section as follows: (1) a general framework that is extractor-agnostic,
(2) theoretical guarantees with an emphasis on worst-case bounds, and (3) an effective instantiation
using sparse autoencoders as feature extractors.

3.1 Task Definition

We adopt a multi-bit view of attribution: beyond binary detection, the objective is to encode a message
m ∈ {0, 1}b that is recoverable at detection. Personalized attribution is a special case where m
encodes a user identifier bound to a key.

Generation (multi-bit). Given a base LLM M, watermark key k ∈ K, input x, and message
m ∈ {0, 1}b, the algorithm produces y by post-hoc selection over M’s outputs (black-box/API-
compatible; no access to logits or parameters; cf. black-box watermarking [7, 8]):

y = Mark(M,x, k,m). (4)

Detection (multi-bit). For any text y′ and key k, the detection algorithm outputs a decoded message
or reject:

Detect(k,y′) → m or ⊥ . (5)

Threat model and scope: The scheme targets three properties: key privacy (deriving k from
watermarked outputs is hard), verifier-held detectability (any party holding k can verify), and
collusion resistance (multiple keys should not facilitate forgery). Our focus is attribution without
storing LLM generated text. This work does not claim cryptographic unforgeability when keys are
known; preventing adversarial forgeries is an important direction for security-focused follow-ups.

3



3.2 General Framework for Feature-based Watermarking

Our approach operates on a simple intuition: suppose we have a deterministic feature extractor that
maps any text sequence into a scalar value, where such values follow a predictable distribution (e.g.,
approximately normal) for naturally generated text. Given a watermark key k encoding multi-bit
information, we can derive a sequence of target scalar values from this key. During generation, we
produce text chunk by chunk, ensuring each chunk yields a scalar value with the smallest difference
to its corresponding target—effectively implementing rejection sampling guided by our feature-based
reward function. This process steers generation toward key-dependent patterns without modifying
the underlying language model.

Algorithm 1: Watermark generation
Input: Prompt c, key k, LLM G, extractor ϕ,

statistic s(·) with CDF estimate F̂ , units M ,
attempts K, candidates N

Output: Watermarked text x∗

for attempt← 1 to K do
x∗ ← c; {τi}Mi=1 ← TargetsFromKey(k);
{zi} ← ∅

for i← 1 to M do
X ← GenerateCandidates(G, x∗, N)

xbest ← argmin
x∈X

∣∣F̂ (s(ϕ(x)))−τi
∣∣

x∗ ← x∗ ⊕ xbest; zi ← F̂ (s(ϕ(xbest)))
end
if CheckAlignment({τi}, {zi}) then

return x∗

end
end
return x∗

Algorithm 2: Watermark detection
Input: Text x, candidate keys K, extractor ϕ,

statistic s(·) with CDF estimate F̂ ,
alignment thresholds, significance α

Output: Detection result d ∈ K ∪ {∅}
{zj} ← [F̂ (s(ϕ(u))) ∀u ∈

SegmentByDomain(x)]
D ← ∅
foreach ki ∈ K do
{τj} ← TargetsFromKey(ki, |{zj}|)
if CheckAlignment({τj}, {zj}) then

t, p← StudentTTest({zj}, {τj})
if t > tα/2 ∧ p < α then
D ← D ∪ {(ki, t)}

end
end

end
return argmax(ki,ti)∈D ti if D ̸= ∅ else ∅

Figure 2: Pseudocode for SAEMARK: generation and detection.

Text segmentation. We segment text into smaller units {ui}Mi=1 such as sentences for natural
language or function blocks for code. Each unit will carry one symbol of the watermark signal.

Feature extraction. A deterministic feature extractor ϕ : U → Rd maps each text unit to a feature
vector, from which we compute a scalar statistic s(u) = g(ϕ(u)) ∈ R. Crucially, we assume that
this statistic follows a predictable distribution when computed over naturally generated text units.

Statistical normalization. To enable analysis independent of the specific feature extractor, we
normalize the statistic s(u) to a standard range [0, 1] using its empirical distribution. Specifically,
we estimate the cumulative distribution function FS from natural text, then map each unit’s statistic
via z(u) = F̂ (s(u)) where F̂ is the empirical CDF. This ensures z(u) values are approximately
uniformly distributed for natural text.

Watermark generation process. Given a watermark key k encoding multi-bit information, we
first randomly generate a sequence of target values {τi}Mi=1 by seeding a PRNG generator with k and
sampling each τi from a suitable range deterministically. Then, for each position i, we generate N
candidate text units from the LLM and select the candidate c∗ whose normalized statistic z(c∗) is
closest to the target τi.

Watermark detection process. To detect a watermark in input text, we segment it into units,
compute the normalized statistic z(u) for each unit, and compare the resulting sequence {zi} against
target sequences derived from candidate keys. We apply a two-stage CheckAlignment process to
verify sequence before statistical testing.

The CheckAlignment process employs two critical filters to ensure the observed sequence {zi}Mi=1

and expected target sequence {τi}Mi=1 are sufficiently similar:
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Range Similarity Filter: This constraint ensures the dynamic ranges of observed and target sequences
are similar:

Rmin <
zmax − zmin

τmax − τmin
< Rmax (6)

where zmax = maxi zi, zmin = mini zi, and similarly for τ . We set Rmin = 0.95, Rmax = 1.05.

Overlap Rate Filter: This constraint ensures sufficient overlap between the value ranges of both
sequences:

|{i : τi ∈ [zmin, zmax]}|
M

≥ Omin (7)

where M denotes the number of textual units in the sequence and Omin = 0.95 ensures that
at least 95% of target values fall within the observed range. These two filters aim to eliminate
spurious matches: the range similarity filter prevents matching sequences with fundamentally different
statistical properties, while the overlap rate filter ensures meaningful correspondence between target
and observed values. Only after passing both alignment checks do we apply Student’s t-test for
statistical significance. The key with the highest significance score is returned if it passes the threshold;
otherwise, we classify the text as unwatermarked.

3.3 Theoretical Analysis and Guarantees

We provide theoretical guarantees on watermark embedding success that enable reliable detection by
a conservative bound. For clarity, we present our analysis for a single textual unit and refer to our
experiments for empirical validation of multi-unit performance with CheckAlignment process.

Embedding success under Gaussian assumption. Let target values τ be sampled from the
feasible range [µ− 2σ, µ+2σ] where the feature statistic follows S ∼ N (µ, σ2). Given N candidate
generations with feature statistics S1, S2, . . . , SN , we seek the probability of finding at least one
candidate within relative tolerance k of our target:

P(∃j : |Sj − τ | ≤ kτ) ≥ 1− (1− pmin)
N (8)

Worst-case analysis and bounds. To derive conservative guarantees, consider the worst-case target
τ = µ+ 2σ at the boundary of the feasible range. The single-candidate success probability becomes:

pmin = P((1−k)τ ≤ Sj ≤ (1+k)τ) = Φ

(
(1 + k)(µ+ 2σ)− µ

σ

)
−Φ

(
(1− k)(µ+ 2σ)− µ

σ

)
(9)

where Φ denotes the standard normal CDF and pmin = Φ(2(1+ k) + kµ/σ)−Φ(2(1− k)− kµ/σ).

The fundamental insight is that observed feature statistics are tightly bounded to target values. Setting
strict tolerance k guarantees strong detection accuracy: embedding succeeds with high probability
1 − (1 − pmin)

N even with conservative parameters, while detection maintains precision because
legitimate watermarks exhibit tight statistical binding that unwatermarked text cannot match. This
framework provides exponential improvement with candidate count N , enabling principled compute-
accuracy tradeoffs validated empirically across diverse tasks.

3.4 Sparse Autoencoder Instantiation

What concrete feature extractor should we use? We need statistics that are deterministic, seman-
tically meaningful, and statistically regular. Sparse autoencoders—interpretability tools designed
to understand language model internals—provide an ideal solution. They decompose language
representations into interpretable semantic components (e.g. “technical writing,” “math symbols”)
that exhibit distinctly different activation patterns across generations. By applying the SAE to a
separate “anchor” model, our approach remains compatible with any target language model, including
API services, while extracting the discriminative yet predictable statistics our framework requires.

The Feature Concentration Score intuition. Rather than using raw sparse autoencoder outputs, we
compute a Feature Concentration Score (FCS) that captures a fundamental property of coherent text:
semantic focus. The key insight is that well-formed text tends to concentrate its semantic activation
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on a consistent set of relevant features, while unfocused or incoherent text spreads activation more
uniformly. For example, a technical manual concentrates activation on features related to formal
language and domain expertise, while creative writing focuses on narrative and stylistic features.

This concentration pattern provides an ideal watermark signal—we can steer generation toward
specific concentration levels without affecting text quality, since both high and low concentration can
correspond to natural, well-written text in different contexts. The FCS measures this by identifying
the most salient feature activated by each token, then computing what fraction of the total activation
mass concentrates in these important features:

FCS(T ) =
∑n

t=1

∑
i∈S ϕt,i∑n

t=1 ∥ϕt∥1
, (10)

where S = {argmaxi(ϕt,i ⊙mi) : t = 1, . . . , n} contains the indices of the most salient features
across all tokens, after applying the background mask m and deduplication. This provides our frame-
work’s statistic s(u) = FCS(u), which empirically follows approximately normal distributions across
different domains and languages, validating our theoretical assumptions. We provide illustration and
detailed analysis of this process in Appendix D.

Implementation details. Two practical optimizations bridge the gap between our theoretical frame-
work and robust empirical performance. First, the CheckAlignment algorithm’s eliminate spurious
statistical matches that would otherwise compromise detection accuracy. Second, background feature
masking ensures FCS calculations focus on discriminative semantic patterns rather than ubiquitous
surface features. We precompute a mask excluding "background" SAE features, like those related
to punctuation or basic grammar, to focus on discriminative semantic patterns. With empirically
observed parameters µ = 0.142, σ = 0.029, and tolerance ϵ = 0.1, our bounds yield concrete success
probabilities: N = 50 achieves > 99% per-unit success, N = 20 maintains 85.32%, and N = 10
achieves 61%. Since each generation involves multiple units, overall success rates significantly
exceed these per-unit bounds. Modern inference engines support parallel generation of N candidates
simultaneously, making the approach practically efficient despite these extra compute overhead. We
have extensive ablations and empirical results in the following experiments.

4 Experiments

Our experiments systematically address four fundamental questions: (1) How accurate and quality-
preserving is our method compared to existing single-bit and multi-bit watermarks? (2) What are the
computational overhead characteristics and scalability properties in practice? (3) How robust is our
method against adversarial attacks? (4) Which components contribute most significantly to bridging
the gap between theoretical bounds and empirical performance?

4.1 Experimental Setup
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Table 1: Dataset Statistics. Characteristics of the multilin-
gual benchmarks used in evaluation.

C4 [22] LCSTS [23] MBPP [24] PandaLM [25]

# Samples 500 500 257† 169
Language English Chinese Python English
Task Type Completion Summarization Code Generation Instruction Following

†From test split of sanitized version of MBPP.

We evaluate on 4 diverse datasets as
shown in Table 1. Following common
practice in prior work, we report Accu-
racy, Recall, F1 at 1% FPR. For text
quality, we report win-rates of pair-
wise comparison on PandaLM judged
by GPT-4o in our main results, and
average pointwise scores on BIGGen-
Bench judged by their officially re-
leased judge model as an alternative text-quality experiment. We use implementation for single-bit
watermarks from MarkLLM [26] toolkit and Waterfall [13] as it’s the current best open-source
training-free multi-bit watermark similar to our setting. Full details of baselines in Appendix C.

4.2 Watermarking Accuracy and Text Quality

Multi-bit watermarking poses a fundamentally harder challenge than single-bit detection: we must
embed significantly more information into the same text length while maintaining both accuracy
and quality. Despite this increased difficulty, Table 2 shows SAEMark achieves superior accuracy
compared to both single-bit baselines and the current best multi-bit watermark across all domains.

Accuracy across domains. SAEMark establishes new state-of-the-art performance: 99.7% F1 on
English, 99.2% on Chinese, and 66.3% on code. Notably, we outperform specialized methods in
their own domains—surpassing code-specific SWEET by 3.9 points F1 (66.3% vs. 62.4%) despite
our general-purpose design. While other methods suffer severe cross-domain performance cliffs,
SAEMark captures language-agnostic patterns that generalize across syntactic variations. The multi-
bit comparison reveals particularly dramatic advantages: SAEMark outperforms the current best
multi-bit method Waterfall by 6.5 points F1 on English (99.7% vs. 93.2%) and an exceptional 54.7
points on code (66.3% vs. 11.6%), demonstrating semantic feature-based selection’s clear superiority
over vocabulary permutation approaches, especially in low-entropy domains.

Text quality. Beyond accuracy, Table 2 shows SAEMark achieves the highest quality score
(67.6%) on PandaLM as judged by GPT-4o pairwise comparisons. To study how this generalizes
across different backbone LLMs, we conduct additional evaluation on BIGGen-Bench comparing
against watermarked baselines and unwatermarked text.

Table 3 confirms SAEMark achieves the highest quality among watermarks across three backbone
LLMs. This quality advantage stems from our design: rather than manipulating logits or applying
external rewriting to obtain watermarked text, we simply run post-hoc selection among naturally
generated candidates, ensuring text quality stays bounded by the its own capabilities.

Table 2: Comparison of Watermarks. We generate watermarked and unwatermarked texts and then
report detection performance at 1% false positive rate (FPR), all in single-bit settings. Best results
are in bold and second-best are underlined. All metrics are reported as percentages (%).

Method C4 (English, [22]) LCSTS (Chinese, [23]) MBPP (Code, [24]) PandaLM (Instruction, [25])

Acc.↑ Rec.↑ F1↑ Acc.↑ Rec.↑ F1↑ Acc.↑ Rec.↑ F1↑ Quality↑ Acc.↑ Rec.↑ F1↑

Single-bit Watermarks
KGW [3] 99.2 99.6 99.2 99.1 98.8 99.1 65.4 31.9 48.0 41.5 89.9 80.4 88.8
EXP [4] 99.5 99.6 99.5 99.3 99.4 99.3 57.8 16.7 28.4 23.2 79.3 59.4 74.2
UPV [27] 86.0 72.0 83.7 90.5 91.0 90.5 51.6 3.1 6.0 36.0 54.0 8.0 14.8
Unigram [28] 98.8 98.6 98.8 98.2 97.0 98.2 65.4 31.9 48.0 35.3 53.3 7.2 13.4
DIP [29] 96.0 92.6 95.9 97.7 96.2 97.7 60.7 22.6 36.5 36.5 81.5 63.8 77.5
Unbiased [30] 96.7 94.4 96.6 97.8 96.4 97.8 64.0 29.2 44.8 40.2 74.3 49.3 65.7
SynthID [31] 98.2 97.2 98.2 97.6 96.2 97.6 62.5 26.1 41.0 36.0 81.2 63.0 77.0
SWEET [6] 99.6 99.6 99.6 50.0 0.0 0.0 72.4 45.9 62.4 47.2 87.7 76.8 86.2
Multi-bit Watermarks
Waterfall [13] 93.6 88.0 93.2 95.3 91.6 95.1 52.5 6.2 11.6 46.4 73.2 47.1 63.7
SAEMARK (OURS) 99.7 99.8 99.7 99.2 99.6 99.2 74.5 50.2 66.3 67.6 86.6 73.9 84.6
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Table 3: Text quality evaluation on BIGGen-Bench. Scores are on a 5-point Likert scale (higher is
better) [32].

Model Unwatermarked SAEMark KGW Waterfall

Qwen2.5-7B-Instruct 4.13 4.05 3.97 4.02
Llama-3.2-3B-Instruct 3.69 3.85 3.56 3.62
gemma-3-4b-it 4.26 4.23 3.98 4.19

4.3 Computational Overhead and Scalability

Our theoretical analysis suggested requiring N=50 candidates to achieve 99%+ accuracy per unit.
However, through the two practical optimizations in our framework: background feature masking and
CheckAlignment filters, we achieve strong performance with significantly reduced computational
overhead in practice.

(a) Perf. vs. Sampled Candidates

N=5 N=10 N=20 N=50
C4 [22]

Acc. 98.7 99.2 98.7 99.7
Rec. 77.4 96.8 98.7 99.8
F1 86.8 98.0 98.7 99.7

LCSTS [23]
Acc. 98.6 99.0 98.6 99.2
Rec. 72.6 96.0 98.0 99.6
F1 83.6 97.5 98.6 99.2

(b) Perf. vs. End to end Latency

Method Acc. Rec. F1 Latency

KGW 99.0 99.5 98.9 3.24x
UPV 90.3 86.3 89.5 2.35x
DIP 99.5 99.7 99.5 3.29x
Waterfall 98.8 97.3 98.1 1.06x
Ours(N=50) 99.5 99.7 99.5 1.00x

Figure 4: Computational overhead analysis. (a) Performance vs. number of sampled candidates for
SAEMark. (b) Performance vs. avg latency across different watermarks.

Practical efficiency. Figure 4 (a) demonstrates this efficiency gain: N=10 achieves 98.0% F1 on
English with reasonable overhead, while even N=5 attains 86.8% F1—substantially better than
our conservative theoretical bounds predicted. This flexibility enables deployment across different
computational budgets. Moreover, subfigure (b) reveals a remarkable result: SAEMark achieves
99.5% F1 at 1.00× baseline latency, substantially outperforming methods requiring 3.24× latency
(KGW) and 3.29× latency (DIP) for comparable accuracy.

Infrastructure advantage. This performance difference reflects a genuine architectural advantage.
Since SAEMark requires no logit manipulation, we can leverage highly optimized inference backends
like TGI with parallel candidate generation and tricks like prefix caching and custom, optimized
CUDA kernels. In contrast, these optimized frameworks do not provide efficient watermark imple-
mentations for logit-manipulation methods, as such implementations require significant backend
rewriting and may impact performance. While this creates a significant latency difference despite
some methods theoretically needing less compute overhead, we consider this a practical advantage
reflecting the current state of inference infrastructure and these numbers reflect real deployment
advantages of SAEMark.

Multi-bit scaling. Figure 6 shows our approach maintains over 90% accuracy up to 10 bits
(effectively differentiating 1,024 users) and 75% accuracy at 13 bits (8,192 users), substantially
exceeding Waterfall’s performance through our high-dimensional SAE feature space. Importantly,
this does not mean our method is only effective with 1,024 users—we are conducting fixed text length
comparisons for fair evaluation. The superior information density stems from finer-grained semantic
distinctions our framework enables.

4.4 Adversarial Robustness and Ablation Studies

Adversarial Robustness. Semantic SAE features provide inherent robustness against paraphrasing
attacks. Figure 5 demonstrates our method’s resilience across three attack types—word deletion,
synonym substitution, and context-aware substitution. SAEMark shows strong resilience to such
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Figure 5: Adversarial robustness.
ROC curves showing robust perfor-
mance against three attack types
with varying intensities.
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Figure 6: Multi-bit scaling and information density. Wa-
termark acc. across different message bits at fixed text length,
demonstrating superior information density compared to
multi-bit baselines with ≥ 90% acc. up to 10 bits.

attacks. Due to space limitations, extended results testing attack intensities up to 50% are provided in
Appendix E, demonstrating continued robustness even under stronger attacks.

Ablation Studies primarily involves validating the following components’ contribution to SAEMark’s
empirical success: CheckAlignment filters. The Range Similarity and Overlap Rate filters prove the-
oretically grounded and empirically validated. Figure 7 (left) demonstrates that the CheckAlignment
algorithm’s 95% thresholds are not arbitrary—deviations cause significant degradation beyond 1,024
users (10 bits), confirming our theoretical analysis that these values optimally balance generation fea-
sibility with discriminative power. These filters successfully compensate for theoretical independence
assumptions when sequential generation creates dependencies in practice. Figure 7 (right) shows that
the empirically-derived parameters achieve optimal ROC performance, validating our framework’s
theoretical foundations.

Background feature masking. This implementation detail proves essential for signal quality.
Figure 12 in the appendix shows that removing the background mask causes AUC to plummet from
1.0 to 0.85. The mask excludes ubiquitous features like those related to punctuation or basic grammar
patterns that would otherwise dominate FCS calculations without providing discriminative signals
between different watermark keys. Detailed ablation results are provided in Appendix E.

These components work synergistically to enable SAEMark’s practical success: background masking
isolates meaningful signals while alignment constraints makes watermark detection more accurate
than the theoretical settings.
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Figure 7: Framework component ablation studies. Left: Multi-bit watermarking accuracy scaling
analysis with ablations. Right: ROC curves for feature concentration hyperparams (µ, σ).

9



5 Conclusion
SAEMARK introduces a paradigm shift in AI-generated content attribution through feature-based
rejection sampling. Our approach addresses critical limitations of existing watermarking methods
by operating entirely through inference-time selection rather than model modification, enabling
deployment with API-based services while maintaining superior text quality and detection accuracy.
Three key advances ensures success: First, our general framework provides theoretical guarantees that
relate watermark accuracy to computational budget, independent of the specific feature extractor used.
Second, the sparse autoencoder captures meaningful semantic patterns that generalize across domains
and languages and works great as a feature extractor. Third, practical optimizations bridge the gap
between theoretical bounds and empirical performance, enabling efficient deployment. This work
establishes that model interpretability tools can be effectively repurposed for content attribution tasks.
The decoupling of watermarking from generation dynamics opens new possibilities for scalable,
quality-preserving attribution systems that work seamlessly with existing language model APIs across
diverse applications and languages.
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A Limitations

We also found some limitations with our current approach. First, the method’s effectiveness depends
on SAE feature quality. But be noted that this does not affect the applicability of our algorithm on the
base LLMs, since we only apply SAEs on the Anchor LLM and require only access to the output
texts from the base LLM, and we have a lot of pretrained SAEs from the open-source community that
exhibit strong performance in interpreting model outputs. Second, detection watermarks effectively
requires open-ended generation tasks, making attribution challenging for very short outputs like
multiple-choice problems that only contain option keys. However this is a universal challenge for
all watermarking algorithms, since short texts inevitably contains less information and less space to
inject additional signatures.

These constraints reflect tradeoffs in privacy-preserving watermarking. Future work could explore
dynamic candidate pruning to address these limitations. Nevertheless, our experiments across 4
benchmarks suggest these constraints pose manageable practical impacts compared to the system’s
ethical advantages.

B Experimental Setup and Hyperparameter Details

This appendix provides a comprehensive description of the experimental setup, encompassing the
hyperparameters and software configurations employed in this study.

B.1 Hyperparameters (SAEMARK)

The following hyperparameters were used for the SAEMARK:

• Candidate Number (N): 50. This parameter denotes the number of candidate sequences
sampled from the LLM.

• Unit Number (M): 10. This specifies the number of discrete generation units produced by
the model per attempt.

• Attempt Number (K): 15. This metric represents the maximum times that the algorithm
attempts to get an alignment.

B.2 Model Configuration

The section outlines the hyperparameter by the model during generation.

• Base Model: Qwen2.5-7B-Instruct. This is the model on which the algorithm operates.

• Sampling: This algorithm enables the model to generate various candidates, for which the
parameter do_sample is set to True.

• Temperature: This controls the randomness of the predictions by scaling the logits. The
metric is set to 0.7.

• Max New Tokens: This specifies the maximum number of new tokens that the model can
generate, which is 20 during generation.

C Introduction to baselines

C.1 Single-bit Watermarks

KGW [3] The Key-based Green-list Watermarking (KGW) algorithm is a modern approach for
watermarking text generated by LLMs. This method builds upon the work of [3], who introduced a
watermarking scheme that divides the token set into ’red’ and ’green’ lists based on a secret key and
previously generated tokens.

Key features of KGW include the bifurcation of the token set into ’red’ and ’green’ lists, the use
of a random seed dependent on a secret key and hash of prior tokens, reweighting of token log-
probabilities to favor green tokens, and the introduction of permutation-based reweight strategies.
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These elements work in concert to create an effective watermarking system that balances detectability
with output quality preservation.

The approach offers a balance between watermark embedding and preservation of text quality,
addressing challenges faced by previous watermarking methods.

Unigram [28] The Unigram-Watermark and KGW algorithms, both designed for watermarking
LLM-generated text, have distinct characteristics. Unigram-Watermark operates on individual tokens,
using a consistent green list for each new token, while KGW employs a K-gram approach with
varying green lists. Unigram-Watermark’s simplicity offers enhanced robustness against editing
attacks and requires minimal implementation overhead. This streamlined approach leads to potential
efficiency gains in both watermark embedding and detection processes, setting it apart from the more
complex K-gram nature of KGW.

SWEET [6] The Segment-Wise Entropy-based Embedding Technique (SWEET) is an innovative
approach to watermarking code generated by large language models. SWEET addresses the challenge
of maintaining code functionality while embedding detectable watermarks. It operates by selectively
applying watermarking to high-entropy segments of the generated code, thereby preserving the overall
code quality. This method significantly improves code quality preservation while outperforming
baseline methods in detecting machine-generated code. SWEET achieves this by removing low-
entropy segments during both the generation and detection of watermarks, effectively balancing the
trade-off between detection capability and code quality degradation.

UPV [27] The key feature of UPV is its use of separate neural networks for watermark generation
and detection, addressing the limitation of shared key usage in previous methods. This separation
allows for public verification without compromising the watermark’s security. UPV employs shared
token embedding parameters between the generation and detection networks, enabling efficient and
accurate watermark detection. The algorithm embeds small watermark signals into the LLM’s logits
during generation, similar to existing methods, but uniquely conceals the watermarking details in the
detection process. This approach ensures high detection accuracy while maintaining computational
efficiency, and significantly increases the complexity of forging the watermark, thus enhancing its
security in public detection scenarios.

DIP [29] The Distribution-Preserving Watermarking (DIP) algorithm represents a significant
advancement in watermarking techniques for large language models (LLMs). DIP’s innovation is
its ability to maintain the original token distribution of the LLM while embedding a watermark,
addressing a critical limitation of previous methods. This distribution-preserving property is achieved
through a novel permutation-based approach that reweights token probabilities without altering the
overall distribution. DIP offers provable guarantees on distribution preservation, detectability, and
resilience against text modifications. The algorithm employs a texture key generation mechanism
that considers multiple previous tokens, enhancing its robustness. Notably, DIP maintains text quality
comparable to the original LLM output, owing to its distribution-preserving nature.

Unbiased [30] Unbiased watermarking and DIP watermarking are closely related concepts in
the field of text watermarking for large language models (LLMs). Both approaches aim to embed
watermarks while maintaining the original distribution of the LLM’s output. The key distinction
lies in their theoretical foundations and implementation. Unbiased watermarking ensures that the
expectation of the watermarked distribution matches the original distribution, while DIP watermarking
guarantees that the watermarked distribution is identical to the original for every input. In essence,
unbiased watermarking can be viewed as a relaxed version of DIP watermarking. While unbiased
watermarking allows for small deviations in individual instances, DIP watermarking maintains strict
distribution preservation. This relationship highlights a spectrum of watermarking techniques, where
unbiased methods offer a balance between practicality and distribution preservation, while DIP
methods provide stronger theoretical guarantees at potentially higher computational costs.

SynthID [31] SynthID is an advanced watermarking method for large language models (LLMs)
that builds upon previous work in generative text watermarking. The key innovation of SynthID
lies in its use of Tournament sampling, which provides superior detectability compared to existing
methods. This approach offers rigorous and customizable non-distortion properties, allowing for
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text quality preservation while maintaining effective watermarking. SynthID has been empirically
validated, including through real user feedback from millions of chatbot interactions. Notably, the
method introduces an algorithm to combine generative watermarking with speculative sampling,
enabling efficient deployment in high-performance, large-scale production LLMs.

EXP [4] EXP employs a pseudorandom function fs() with a secret seed s known only to the
model provider. Given previous tokens w1, ..., wt−1 and GPT’s probability distribution p1, ..., pK for
the next token wt, the algorithm generates real values ri ∈ [0, 1] using fs(). EXP then selects the
token i that maximizes r1/pi

i . To detect the watermark, it calculates
∑T

t=1 ln
1

1−r′t
and compares it

to a threshold. The scheme preserves the original token distribution while embedding a detectable
watermark, with theoretical analysis showing distinct expected values for normal and watermarked
text. The number of tokens required for reliable detection is O( 1

α2 log
1
δ ), where α is the average

entropy per token and δ is the acceptable misclassification probability.

C.2 Multi-bit Watermarks

C.2.1 Baselines

CTWL [86] CTWL is a framework designed to embed multi-bit customizable information into
texts produced by large language models (LLMs). It allows watermarks to carry details such as model
version, generation time, and user ID. CTWL provides a mathematical model for watermarking
and a comprehensive evaluation system that considers factors like success rate, robustness, coding
rate, efficiency, and text quality. The Balance-Marking method uses a proxy language model to
partition vocabulary probabilities, aiming to maintain watermarked text quality and achieve strong
performance in evaluations. CTWL seeks to integrate multi-bit information watermarks into LLMs
and offers a practical approach for tracing machine-generated texts.

Waterfall [13] Waterfall is a training-free framework designed for robust and scalable text wa-
termarking. It leverages large language models (LLMs) as paraphrasers to generate diverse text
variations while preserving semantic meaning. By combining vocab permutation with orthogonal
perturbation techniques, Waterfall aims to achieve scalability and robust verifiability while main-
taining text fidelity. The framework supports multi-bit watermarks, enabling it to accommodate
multiple users while ensuring effective watermark detection. Waterfall allows for a trade-off between
watermark strength and text quality, making it adaptable to various requirements.

CODEIP [17] CODEIP embeds a multi-bit message into generated code by softly biasing token
logits during decoding. At each step, a hash of the previous token and the secret ID selects “watermark”
tokens whose logits LWM are boosted proportional to a strength β . To guarantee syntactic validity,
a pretrained type predictor assigns logits LTP only to tokens matching the expected lexical category,
scaled by γ . The final next-token logits combine the base LLM scores, watermark bias, and grammar
bias via

wi = argmax
w∈V

softmax
(
LLLM + βLWM + γLTP

)
Extraction recovers the ID by re-hashing and finding the message maximizing cumulative watermark
contributions.

REMARK-LLM [14] REMARK-LLM introduces a robust watermarking framework for texts gen-
erated by large language models. It consists of three modules: message encoding, reparameterization,
and message decoding. The message encoding module uses a sequence-to-sequence model to embed
watermarks into LLM-generated texts. The reparameterization module applies Gumbel-Softmax to
the dense token distribution into a sparser form. The message decoding module extracts watermarks
using a transformer-based decoder. The framework incorporates malicious transformations during
training to enhance robustness against attacks.

Provably Robust Multi-bit Watermarking for AI-generated Text [18] The authors propose a
multi-bit watermarking scheme that embeds a user’s bit-string ID into LLM-generated text by first
partitioning the message into pseudo-randomly assigned bit-segments per token, then biasing “green
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Figure 8: An example of Feature Concentration Score (FCS) calculation process.

list” logits seeded by each segment’s value. A dynamic-programming step balances token-to-segment
assignments, and a Reed–Solomon error-correction layer encodes segments to correct editing errors.
Extraction enumerates only each segment’s possibilities O(k · 2b/k), yielding efficient, provably
robust watermark recovery under bounded edit distance.

Robust Multi-bit Text Watermark with LLM-based Paraphrasers [87] The authors propose a
robust multi-bit text watermarking method using LLM-based paraphrasing. They design an encoder
with two fine-tuned LLM paraphrasers (θ0 and θ1) that generate watermarked text by alternating based
on the watermark code. A text segmentor divides the text into sentence-level segments, allowing
each segment to encode one bit of the watermark message. The decoder uses a trained text classifier
to determine the watermark bit for each segment. The method employs a co-training framework
where the encoder and decoder are alternately updated. The decoder acts as a reward model during
PPO-based reinforcement learning to fine-tune the encoder, optimizing both the detection of the
watermark and the semantic similarity to the original text.

Robust Multi-bit Natural Language Watermarking through Invariant Features [15] The
authors propose a robust multi-bit natural language watermarking method based on invariant features.
They identify key words and syntactic dependencies as invariant features to embed watermarks,
leveraging these features’ resistance to minor textual modifications. A corruption-resistant infill
model is also introduced to enhance watermark extraction robustness. Their method first selects mask
positions based on these invariant features and then generates watermarked texts using an infill model.
A robust infill model is developed to improve recovery of watermarked texts from corrupted versions.

C.2.2 Why Choose Waterfall as the Multi-Bit Baseline?

Among the various text watermarking methods, Waterfall offers distinct advantages for multi-bit
applications. As a training-free framework, it efficiently generates diverse text variations using LLMs
as paraphrasers while preserving semantic meaning. Its key advantages include complexity that
doesn’t depend on word or sentence count, allowing scalability. It also offers evaluation metrics akin
to single-bit methods and supports multi-language and multi-dataset watermarking, making it highly
adaptable.

D Details of FCS Generation

This section elaborates on the methodology behind the generation of the Feature Concentration Score
(FCS). The process is illustrated in Figure Figure 8, which outlines four key steps.
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Algorithm 3: ComputeFCS(θ(T ))
Input: Token sequence T , SAE θ for the entire sequence
Output: Feature Concentration Score (FCS)
Φ← θ(T ), yielding activation vectors ϕ1, ϕ2, ..., ϕn for each token position in T ;
indices← [];
for t = 1 to n do

ϕt is the activation vector for token at position t;
index← argmaxi(ϕt ⊙m)i;
Append index to indices;

end
featureSet← set(indices), removing duplicates;
featureSum← 0;
totalNorm← 0;
for t = 1 to n do

tokenSignificance← 0;
foreach i ∈ featureSet do

tokenSignificance← tokenSignificance+ ϕt,i;
end
featureSum← featureSum+ tokenSignificance;
totalNorm← totalNorm+ ||ϕt||1;
// Accumulate significant features and norms

end
FCS ← featureSum

totalNorm
;

// Calculate final FCS
return FCS;

Extracting SAE Features for Each Token Given a token sequence T , we utilize SAE to derive
an activation vector ϕt for each token position t. This vector, ϕt, embodies the representation of the
token at position t with a dimensionality of 16,384.

Selecting the Most Significant Feature For every activation vector ϕt, our objective is to identify
the most significant feature, which serves as a descriptor for the token at position t. This is achieved
through applying the function argmaxi(ϕt ⊙m)i, where m is a mask. The output of this function
yields the indices corresponding to the most prominent feature, denoted as "SAE Feature Indices" in
Figure Figure 8.

Aggregating Most Significant Features As depicted in Figure Figure 8, each token’s position t has
its most significant feature. However, when summarizing the critical features of the entire sequence
T , redundancies may occur. To address this, we employ a set operation to eliminate duplicate entries
among the significant features, resulting in a unique collection termed as "Feature Set S".

Calculating Feature Concentration Score Upon obtaining the Feature Set S, we aim to quantify
how these significant features contribute to the overall sequence T concerning SAE feature values.
For each ϕt, we compute the sum of ϕt,i, where i represents the index belonging to S. This aggregate
score measures the contribution of significant features to individual tokens within T . Accumulating
this metric across all tokens provides a global measure for the sequence.

To evaluate the total activation value of SAE features over the sequence T , we apply the L1 norm to
each ϕt, obtaining the sum of absolute values for each token’s feature vector. Summing these across
all tokens yields the total SAE value for T . The Feature Concentration Score (FCS) is defined as the
ratio of the accumulated contributions of significant features to the total SAE feature values.

The detailed steps for computing the FCS are outlined in algorithm 3.

This score effectively captures the concentration of key features within a token sequence and is useful
for applications in watermark embedding.
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Figure 9: Word Deletion on SAEMark ROC curves highlighting the performance difference between
"keep structure" and "not keep structure" methods under word deletion attacks with varying intensities
(5%, 10%).

E Additional Experimental Results

E.1 Adversarial Robustness Evaluation

Word Deletion Attack In the main text, we conducted experiments using the "maintain content
structure" version of the word deletion attack. However, the original word deletion attack involves
splitting a paragraph and randomly removing words, which disrupts the structure that watermarking
methods rely on, making it harder for the detection system to identify the watermark. To address
this issue, we modified the attack to preserve structure while still performing word deletions. By
maintaining the integrity of the structure, the attack bypasses watermark detection more effectively.

In our experimental results, we compare two versions of the word deletion attack. The "keep structure"
method, represented in a darker color, shows more robust performance with higher AUC values
(0.949 at ϵ = 0.05 and 0.858 at ϵ = 0.1). In contrast, the "not keep structure" method, shown in a
lighter color, demonstrates a decline in performance, with AUC values dropping to 0.901 at ϵ = 0.05
and 0.825 at ϵ = 0.1. These results indicate that preserving the content structure during the attack
strengthens the watermark’s resistance, whereas random word deletions that disrupt the structure
reduce detection accuracy.

As shown in the Figure 9, the "keep structure" method outperforms the "not keep structure" method
in terms of AUC, demonstrating its effectiveness in watermark resistance.

Basic Synonym Substitution Attack Our study also examines "keeping structure" versus "not
keeping structure" approaches in the context of basic synonym substitution attacks, which are less
likely to disrupt the content’s structural integrity.

Figure 10 shows ROC curves comparing model performance under different conditions, with the
original non-structure-preserving method in lighter shades and the modified structure-preserving
method in darker hues. The analysis reveals minimal differences in AUC values between the two,
indicating similar model resilience to both forms of synonym substitution. Notably, the model
demonstrates performance robustness that exceeds that observed in deletion attack scenarios, reflected
by AUC scores that remain close to the baseline.

Context-aware Synonym Substitution Attack Due to our algorithm’s prominent performance
against context-aware synonym attack. More intensities (20%, 30%, 40%, 50%) are carried upon
these kinds of attacking.

The results of the context-aware watermarking method, shown in Figure 11 tested under this
attack, demonstrate substantial robustness. Even with high substitution ratios—up to 50% token
replacement—the AUC remains relatively high, highlighting the method’s ability to maintain detection
performance under significant adversarial pressure. The ROC curves further corroborate this, showing
that the true positive rate remains consistently high across varying false positive levels, even as attack
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Figure 10: Basic Synonym Substitution on SAEMark ROC curves comparing "keep structure" and
"not keep structure" methods under basic synonym substitution attacks at different intensities (5%,
10%).
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Figure 11: Context-Aware Synonym Substitution on SAEMark ROC curves comparing "keep
structure" and "not keep structure" methods under basic synonym substitution attacks at different
intensities (5%, 10%).

intensity increases. This demonstrates a well-balanced trade-off between true and false positives,
ensuring reliable detection without excessive false alarms. These findings affirm that the watermarking
method is both effective and robust, offering reliable protection against sophisticated attacks while
maintaining strong detection accuracy.

E.2 Ablation Study on Background Frequent Features

In section 3, we utilize ϕt ⊙m, where m is a mask that excludes background frequent features.

In this section, we generate the Feature Concentration Score (FCS) without using m and conduct
ROC experiments for further analysis. To evaluate the impact of background frequent feature masking
on our model’s performance, we performed an ablation study.

With background frequent feature masking in place, the model achieved an AUC of almost 1.0.
Upon removing this masking, the AUC dropped to 0.85, as illustrated in Figure 12. This significant
decrease demonstrates that background frequent feature masking plays a crucial role in our algorithm,
emphasizing its importance for optimal performance.
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Figure 12: Ablation on Background Frequent Feature Masking The ROC curve compares the
performance with and without background frequent feature masking.

F Use Of AI Assistants

We employed AI assistants for two tasks: (1) generating routine code implementations and boilerplate
functions, and (2) performing grammatical review and sentence-level editing of the manuscript. All
AI-generated content underwent thorough manual review. The core research methodology, findings,
and analysis remain entirely our own work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We support all claims with experiment results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide a dedicated limitations section in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide proof in methodology section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We report hyperparameters and we also open-source everything in the linked
mentioned in abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We open-source everything in the linked mentioned in abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We report all hyperparameters in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:In "methodology" section, we use t-test as our test method and we report
p-values in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the usage in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We report this in the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks – we do not train or release any model, and our
datasets involved are all from existing, published, peer-reviewed works.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all related assets including models, data, code and baselines.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide docs in our repository, including some one-line scripts to reproduce
our experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe this in the appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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